N

HAL

open science

COL: a logic-based language for complex objects
Serge Abiteboul, Stéphane Grumbach

» To cite this version:

Serge Abiteboul, Stéphane Grumbach. COL: a logic-based language for complex objects. Francois
Bancilhon ; Peter Buneman. Advances in database programming languages, ACM Press, pp.347-374,

1987, 0-201-50257-7. 10.1145/101620.101641 .

inria-00075838

HAL Id: inria-00075838
https://inria.hal.science/inria-00075838
Submitted on 24 May 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00075838
https://hal.archives-ouvertes.fr

(139635511

Rapports de Recherche

COL: A LOGIC-BASED
LANGUAGE FOR COMPLEX
OBJECTS

Serge ABITEBOUL
Stéphane GRUMBACH

SEPTEMBRE 1987

COL: A LOGIC-BASED LANGUAGE
FOR COMPLEX OBJECTS!

COL: un langage pour objets complexes
basé sur la logique

Serge Abiteboul Stéphane Grumbach

LN.R.LA.
78153 Le Chesnay, FRANCE

August 13, 1987

Abstract: A logic-based language for manipulating complex objects constructed using set and
tuple constructors is introduced. Under some stratification restrictions, the semantics of programs
is given by a canonical minimal and causal model that can be computed using a finite sequence of
fixpoints. Applications of the language to procedural data, semantic database models, heterogene-

ous databases integration, and Datalog queries evaluation are presented.

Résumé: On introduit un langage basé sur la logique dans le but de manipuler des objets com-
plexes obtenus & partir de constructeurs de nuplets et d’ensembles. Sous certaines restrictions de
stratification, la sémantique des programmes est donnée par un modele canonique, minimal et
causal, qui peut &tre calculé en utilisant une séquence finie de points fixes. Des applications du
langage pour les données procédurales, les modéles de données sémantiques, 'intégration de bases

de données et I'évaluation de requétes Datalog sont présentées.

1. This research was supported in part by the Projet de Recherches Coordonnées BD3.

H! !D PAPIER RECUPERE ET RECYCLE

INTRODUCTION

Two approaches have been followed for defining manipulation languages for complex objects: (1)
an algebraic approach [AB,ABi},FT,SS and many others|, and (2) a calculus approach [J,AB,RKS].
Recently, there has been some interest in pursuing a so-called logic programming approach to

define languages for complex objects [BK,AG,Be+,K]. This is the approach followed here.

The language COL (Complez Object Language) based on recursive rules is presented. This
language is an extension of Datalog which permits the manipulation of complex objects obtained
using tuple and (heterogeneous) set constructors. The originality of the approach is that besides
the base and derived relations, base and derived "data functions” are considered. As we shall see,
data functions are multivalued functions defined either extensionally (base data functions) or
intensionally (derived data functions). The introduction of these functions permits the manipula-

tion of complex objects. Other advantages of data functions are also discussed.

The semantics for COL programs is based on minimal models. Unfortunately, because of
sets and data functions, some programs may have more than one minimal model. A stratification
in the spirit of the stratification introduced by [ABW,G,N and others] is used. It is shown that
stratified programs do have minimal models. Furthermore, a canonical causal [BH] and minimal

model of a given program is computed using a sequence of fixpoints of operators.

Stratification is used in [ABW,G,N] to handle the presence of negation in the body of the
rules. It turns out that negation can be simulated using data functions. Indeed, the stratification
for negation thereby obtained corresponds precisely to the stratification imposed by data func-
tions. In the present paper, we also allow negations in the body of the rules. As just mentioned,

this does not add any power to the language.

Daia funciions are natural tools to manipulate complex objects. Data functions present

other advantages as well:

[« %

() Since queries can be viewed as data functions, the inelegant dichotomy between data and
queries of the relational medel disappear. In particular, queries can be stored in the daia-

base as data functions. The model therefore permits the manipulation of procedural data

[s].

(if) In COL, data can be viewed both in a functional and in a relational manner. As a conse-
quence, the language can be used in a heterogeneous databases context (e.g., relational view

on a functional data base; integration of a relational database with a functional one).

(iii) COL can also be used as a kernel language for semantic database models like SDM [HM],
IFO [AH] or Daplex [Sh].

(iv) Some evaluation techniques for datalog queries like Magic Sets or others [B+,GM] make

extensive use of particular functions. These functions can be formalized using our model.

As mentioned above, two other approaches have been independently followed to obtain a
rule-based language for complex objects [Be+,K]. In [Be+|, they do not insist on a strict typing
of objects. In [K], only one level of nesting is tolerated. However, both approaches could easily
be adapted to the data structures considered in this paper. Furthermore, in [AB], it is argued
that all these approaches yield essentially the same power (i.e., the power of the safe calculus of

[AB]). The points (i-iv) above clearly indicate advantages of our approach.

The paper is organized as follows. In the first section, types and typed objects are
described, and examples of COL rules given. The second section is devoted to the formal
definition of the language. The stratification is introduced in Section 3. In the fourth section, it
is shown that each stratified program has a canonical, causal and minimal model which can be
computed using a sequence of fixpoints. Advantages of the language are briefly considered in a

last section. The proof of key results of Section 4 can be found in an appendix.

L. PRELIMINARIES

In this section, types and typed objects are described, and examples of COL rules given.

The existence of some atomic types is assumed. A set of values is associated with each type
A. This set is called the domain of A, and denoted dom(A). More complex types are obtained in
the following way. ' '

A

Definition: if T ,..., T are types (n 2> 1), then

(i) T=[T,...,T]is a (tuple) type, and
dom(T) = { [a 2] | V/ i, 1<i<n, a, € dom(T)}.
(i) T={T,,...,T,} is a (set) type, and
dom(T) = { {al,...,am} |m >0, \7" i, 1<i<m, _:1 3 1Sj<n, a2, € dom(Tj)}.

An object of type T is an element of dom(T).

Note that objects of a given type can be seen as particular trees of bounded depth. Most of
the results of the paper would still hold if the strict typing policy is replaced by a weaker condi-

tion which guarantees the boundedness of object trees.

Note also that the language allows the manipulation of heterogeneous sets. For instance, if
CAR and PLANE are two types, then, for instance, {747, Concorde, Le Car, Mustang} is an
object of type {CAR, PLANE}. However, our types are more restricted than types in
[AH,HY,KV] which use a "union of type” constructor. For instance, pairs with atomic first coordi-
nate of type CAR, and second coordinate of type PLANE or CAR, are not considered. On the
other hand, the type corresponding to sets of such pairs (i.e., {{ CAR,PLANE], [CAR,CAR]|}) can
be used. Since we are mainly interested in sets of objects, this limitation is not too severe.

Furthermore, the language COL could be extended in a simple way to handle such types.

For each type T, the existence of an infinite set {xT, y,r...} of variables of that type is
assumed. When the type of a variable X is understood, or when this type is not relevant to the

discussion, the variable is simply denoted x.

Various aspects of the language are now illustrated through three examples.

Ezample 1 (sets):
Sets form an important component of the data structure. The predicates € and = belong to the
language. It is possible to define other predicates like C, disjoint, disjoint-union, union, ..., or

functions like U, M, ... using rules.

In this example, x is a variable of type integer, and X and Y are variables of type set of
integers. The following rules define the functions N, U, and Difference:
x€ENXY)—x€X, x€Y,
x €EUX)Y) —x €X,
x €EUX)Y) «x €Y,
x € Difference(X,Y) — x € X, 7(x € Y).

4

Intuitively, the functions N, U and Difference define sets by stating explicitly what are the
elements of each set. Thus the term N(X,Y) for instance is interpreted as the set of all the ele-
ments x such that x € X, and x € Y. Using these functions, the predicates C, C, Disjoint,

Union, and Disjoint-union are now defined:
| C(XY) « UX,Y) =Y,
C(X,Y) « C(X,Y),x € Difference(Y, X),
Disjoint(X,Y) « N(X,Y) = ¢,
Union(X,Y,U(X,Y)) «,
Disjoint-union(X,Y,U(X,Y)) « Disjoint(X,Y).

The language allows the manipulation of complex objects, and also of “nested relations”

[ABi,FT,JS,...] which are special cases of complex objects.

Ezample 2 (nested relations):

Let N denote the set of integers. Consider the predicate R(N,N,N) and the three predicates
S(N,{[N,N]}), S’(N,{[N,N]}), S”(N,{{N,N]}). (The first field of S, S’ and S” contains an integer,
and the second a binary relation.) Let Z be a variable of type {[N,N]}; and F and TC be functions
of the appropriate types.

Unnest:
R{xyy) < $(x2), [yy'] € 2.
Nest:
vy’ € F(x) < R(xy,y),
S'(xF(x)) < R(xy,y).
Transitive closure of the second fie)d of S’
[x,2] € TC(Z) « [x,3] € Z,
[x,2] € TC(Z) + [x,y] € Z, [y,z) € TC(2),
$”(x,TC(Z)) « S’(x,Z).

Ezample 8 (heterogeneous sets):

Let STRING be a type. Consider the following typed symbols:

e P({{N,STRING}}) (i.e., P is a unary predicate, and its unique field contains a set of sets of

integers and strings).

. F is a function of type {N,STRING} — {N};

e Q({{N}}); and
. H a function of type {{N,STRING}} — {{N}}.

. x,. is a variable of type N;

N

. Y of type {N,STRING};

The following program filters the integers from P:
x EF(Y) « P(X), YEX, x, €,
F(Y) € H(X) « P(X), Y € X,
Q(H(X)) « P(X).

II. THE COL LANGUAGE

In this section, the complex object language is defined.

The language L of the underlying logic is first defined. This language is based on a typed

alphabet containing:

. (a) typed constants and variables;

(b) ’ logical connectors and quantifiers /\, \/, =, 7, \ ;
(c) typed equality (=p), and membership (GT_S) symbols;

(d) typed predicate symbols;

(¢) typed function symbols of three kinds:
e data functions, @

e tuple functions [, .,

e set functions {},, ..

Terms of the form ”'-1‘1,...,'1‘:1(3'1""’%)’ will be denoted by [a,,...,a]; and terms of the form
(e ma(apa,) by {a;--sa,}. The set function has an arbitrary (but finite) number of argu-
ments. Clearly, that function could be replaced by a binary function set-cons and a particular

symbol, say (p, for the empty set. For instance, {}, .»ag) would stand for set-cons(a ,set-

_',m('a.l,..

cons(a,set-cons(a,,®))).

In the remainder of the paper, the word “function” will only refer to data functions, and not
to tuple or set functions. It is assumed that all the functions that are considered in the following
are set-valued, i.e., an image by a data function is always a set. In the last section, this limita-

tion is discussed, and an extension of the language to remove it considered.

Note that € is a symbol of the language. Clearly, € 18 interpreted by the classical
membership of set theory. Indeed, when the types are understood, € ¢ is simply denoted by €.
A constant of a certain type T is interpreted as an element of dom(T).

The terms of the language are now defined:

Definition: A constant or a variable is a term. If ty..st, are terms and jod is an n-ary data, tuple
or set function symbol, F(tl,...,tn) is a term. (The obvious restrictions on types are of course
imposed.)

A closed term is a term with neither variables, nor data functions.

Ezample II.1: The term [1,{2,3},{7}] is a closed term. On the other, [1,{2,3},F(2)] is not closed.
These two terms are different, but they may have the same interpretation (if F(2) = {7}).

Literals are defined by:

Definition: Let R be an n-ary predicate, and ty5-.st, terms. Then (with the obvious typing restric-

tions) R(t,5-0t,), t, =ty and t| € t, are positive literals.

If 9 is a positive literal, =% is a negative literal.

Arbitrary well-formed formulas are defined from literals in the usual way. We have defined
here the language of a first order logic. One can define a model theory and a proof theory for this
language. This is not in the scope of the present paper. We next introduce a clausal logic based on
this first order logic. A key cc')mponent of that clausal logic is the notion of “atom”. An atomis a

literal of the form R(t,..t) or 'tl € F(tz,...,tn). If t,,...,t are closed terms, the atom is said to be

closed.

Mo wa have:

Definition: A rule is an expression of the form A « Ll,...,Ln where
. the body L,...,L isa conjunction of literals; and

. the head A is an atom.

A program is a finite set of rules.

Ezample IL.2: consider the following program P
R(1,2,3) «—
R(1,3,5) «
[y,¥’] € F(x) < R(x,y,y’)
S(x,F(x)) < R(x,y.y).
The predicate R is e;?tensionaly defined, whereas the function F and the predicate S are intensio-

naly defined.

In Datalog, rules are used to specify the extension of derived predicates. Consider the third
rule above. The predicate in the left hand side of the rule is € which is interpreted by the set
membership. In fact, the rule is used to specify the data function F and not the extension of a

predicate.

We are interested by Herbrand-like models of our programs, The universe U is formed of all
the closed terms which can be built from the constants of the language. Let P be a program The
base By of P is the set of all closed atoms formed from the predicate and function symbols

appearing in P, and the closed terms of U. An interpretation of a program P is a finite subset of
the base B,

Continuing with the example above, we have:

Ezampie I1.2 (continued]: An interpretation of the program P, is:

I={R(1,2,3), R(1,3,5), [2.3] € F(1), [3,5] € F(), S(1,{[2,3,(3,5]}) }.

It should be noted that elements in the base (and thus, in the interpretation) have very sim-

ple form. In par

(2) € G(2) are not in the base.

In order to define the notion of satisfaction of a rule, and thus of a program, the concept of
valuation is introduced. Valuations play here the role of substitution in classical logic program-

ming.

Definition: Let 6 be a ground substitution of the variables, and I an interpretation. The

corresponding valuation 01 is a function from the set of terms to the set of closed terms defined

by%

(B 01 is the identity for constants, and olx = @x for each variable,
(i) Oyt) = [0 08), O{t et} = {0408}, and
(i) OF(t,t) = {a][a € F(ft,08) €1}
The function 8, is extended to literals by:
(iv) OP(t,..t) = P(Ot,,...08),

v) Ot =) = (0, = 0,), 0,(t, € t,) = (6, € Ot,), and
(vi) 0,(-A) =-0A.

A valuation in this context depends on the interpretation that is considered. This comes
from the need to assign values to terms built using function symbols. As we shall see, this is a

major reason for the non monotonicity of the operators that will be associated to COL programs.

Using valuations, we now define the notion of satisfaction of rules and programs:

Definition: The notion of satisfaction (denoted by |=) and its negation (denoted by k) are
defined by:

e For each closed positive literal, I |= P(b,,...,b) iff P(b,...b) € ;I |=b =b,iff b, = b,
is a tautology; and I |= b, € b, iff b, € b, is a tautology.
. For each closed negative literal = B, I |= - Biff I # B.

e Letr=A <+ L,. L ThenI [= riff for each valuation 8 such that for each i, I |= L,
then I |= 0/A.

. For each program P, I l= P iff for each ruler in P, I l= r.

2 The reader has to be aware of a subtlety in (iii). The symbol € in {a € F(f,...0,t)] is a symbol of the
language COL, whereas the other occurrence of € denotes the usual membership of set theory.

A model M of P is an interpretation which satisfies P.

A model M of P is minimal iff for each model Nof P, NC M => N = M.

Ezample I1.2 (end): The interpretation I, is a model of P. Furthermore, I, is minimal.

A given COL program may not have a minimal model. This of course arises because of the
use of negation. However, even positive COL programs may not have a minimal model as illus-

trated by the following example:

Ezample I1.8: Consider the program:
1EF, p(F), q(2),
q(1) « p({1}).
Then {1 € F, p({1}), a(1), q(2)} and {1 € F, 2 € F, p({1,2}), q(2)} are two incomparable

minimal models.

III. STRATIFIED PROGRAMS

The notion of stratification has been used by several authors [ABW, G, N,...] to give a semantics
to programs with negation in the body of rules. We present a similar notion for programs allowing

complex objects and data functions.

Some basic notions are first defined.

In a literal P(tl,...,tn), the symbol P is the defined symbol. Similarly, in a literal t, €
F(tz,...,tn), F is the defined symbol. The defined symbof of a rule is the defined symbol of the head
of the rule. (This clearly relates to the fact that a rule 't € F(tz,...,tn) — ...” does not pertain
to the definition of the predicate €, but in that of the function F.)

A symbol which occurs in a rule not as the defined symbol of the head is called determinant

of the rule.

Consiaer, {or instance, the following two rules:
y € F(x)} + R(F(x),y)

[) WwWom -
G Xy, LT AT

The symbol F is the defined symbol of the first rule; and S that of the second. The symbols R

i0

and F are determinants of the two rules.

To define the notion of stratification, we use the auxiliary concepts of "total” and “partial”
determinants of a rule. We say that an occurrence of a determinant predicate P is partial in a
rule if that occurrence arises in a positive literal. Similarly, the occurrence of a determinant func-
tion F in a positive literal t, € F(t,...,t) is said to be partial. A determinant is partial (in a rule)

if all its occurrences are partial; a determinant is total otherwise.

For instance, consider the rule:
x € F(G(y)) <y € H(x), R(x,y), = S(v,3), y € H'(H’(x))
In that rule, F is the defined symbol. The symbols R and H are partial determinants, and the
symbols S and G total determinants. The symbol H’ has one total and one partial occurrence,

and thus is a total determinant.

The distinction between total and partial determininant is quite natural. To derive a new
atom using the previous rule it suffices to know some partial information on R and H (i.e., R(x,y)
and y € H(x)). On the other hand, S has to be completely known to be able to assert S(y,z).

Similarly, H’(x) must be completely known.

Intuitively, if Y is defined by the rule, and X is a total determinant, then X must be “com-
pletely defined” before Y. This is denoted by X < Y. If X is only a partial determinant, then X
must be defined no later than Y. This is denoted by X < Y. For each program P, a marked

graph G, is constructed as follows:
. the nodes of Gy, are the predicate and function symbols of P,

. there is an edge from X to Y if X < Y, and

. there is a marked edge from X to Yif X < Y.

We are now ready to define the condition for stratification:
Definition: A program P is stratified iff the associated graph G, has no cycle with a marked edge.
Remark: We have defined stratification of programs using both negation and data functions. As
we shall see, negation van be simulated using data functions. We could have presented

stratification only for data functions, and derived that for negation.

11

The stratification of the program induces an order of evaluation of the predicate and func-

tion symbols as follows:

Proposition: Let P be a program, and Q the set of predicate and function symbols of P. Then P
is stratified iff there is a partition
Q=Q,U..uUQ,
of Q such that
XY, X€eQ=>:ji<jYEQ)and
X<Y,X€EQ=>71j(i<jYEQ).

The partition of symbols induces a partitioning of a program in strata. For each Q = Q, U
. UQ, let P=P U..UP_ where for each i
P, = {r € P | the defined symbol of r is in Q,}.
It is assumed in the following that such a partitioning is assighed to each stratified program.
Indeed, one can show [ABW] that the choice of that partitioning is not relevant. A program with

a single stratum is called monostratum program, and a program with several is called multistrata

program.

To conclude this section, we illustrate the previous definitions with an example:

Ezample: Consider the following four rules:
r,=y € F(x) < R(xy),
;= S(x,F(x)) < R(xy),
r,=x € F(y) « 8(x,Y),y €Y,
r=x¢€ F(y) « S(y,F(x)).
The program {r r.} is stratified. A corresponding partition is {R,F} U {S}. Similarly, {rr,} is

stratified.

IV. FIXPOINT SEMANTICS OF STRATIFIED PROGRAMS

In this section, the semantics of stratified programs is defined using a canonical, minimal and

causal models.

12

The following three well-known concepts are used:
* anoperator T is monotonic if I C J implies that T(I) C T(J);
. Tis a fizpoint of T, if T(I) = L; and
. Iis a pre-fizpoint of T, if T(I) C 1.

With each program P, we associate an operator T, defined as follows:

Definition: Let P be a program, and I an interpretation of P. Then a closed term A is the result

of applying the rule A’ — L1"'°’Lm with a valuation 01 if

e I | 0L foreachi€ [1.m], and

® either A’ =P(t,,..t Jand A = P(oltl,...,oltn),
orA’=[t, €F(t,...t)], and A= [0t € F(0t,...0t).

The operator T, is defined by:

To(I) = { A | A is the result of applying a rule in P with some 6}.

For a program P, T, is not monotonic in general. For instance, consider the program P con-
sisting of the single rule Q(F) <. Then
Tp({t € FY = {Q({1})} £ {Q({1,2})} = T({1 E F, 2 € F}).

The following proposition links the notion of model of P to that of pre-fixpoint of Tp

Proposstion IV.1: Let P be a program, and M an interpretation of P. Then the next two state-
ments are equivalent:
e Mis a (minimal) model of P,

e Mis a (minimal) pre-fixpoint of T,

Proof: Tt is clearly sufficient to prove that M is a model of P iff M is a pre-fixpoint of Tp.

M is a model of P,
iff for eachrulerin P, M '= r, :
if for each rulerin P, if A is the result of applying r with 0M, then A belongs to M,

if TpM) C M. [

13

The next proposition relates the notion of “causal” model to that of fixpoint of T|. We first

define the concept of causality [BH].

Definition: A model M of P is said to be causal if for each A € M, there exist a rule rin P, and a
valuation 8,,, such that A is the result of applying r with 8,

The next proposition is a straightforward consequence of Proposition IV.1.

Proposition IV.2: Let P be a program, and M an interpretation. Then the next two statements are

equivalent:
e M is a (minimal) causal model of P,

e M is a (minimal) fixpoint of Tp,.

Proof: It clearly suffices to show that M is a causal model of P iff M is a fixpoint of Tp
M is a causal model of P,

ifft Tp(M) C M (model of P}, and M C T,(M) (causality),

ifft M= Ty(M),ie, M is a fixpoint of Tp,. []

Monostratum programs are first considered. For these programs, a model can be obtained
by repeated application of the corresponding operators. This motivates the use of the classical

notion of powers of an operator T:
TTo(I) =1,
TT(n+1)(1) = T(TTn(D)) U TTa(1),

TTw(l) = G TTn(1).
n=0

We will prove the following result:

Theorem IV.1: Let P be a monostratum program. Then for each I,

o Tplw(]) is a minimal pre-fixpoint of Tp containing I.

. Tplwiw) is o minairal fixp int of To
This recult shovs that 'I‘Pfcﬂ((p: ce ba devead =7 2 canorical model of the monostratum

program P since by Proposition V1.2, it is a minimal causal model of P.

14

To prove that result, we will use three properties of monostratum programs. But, first, we

introduce some notation which allows us to consider particular subsets of a given interpretation.

Notation: Let I be an interpretation, and X a set of predicate and data function symbols. We

denote by IIX the following subset of I:
Iy = {P(a)...a) EI|PEX}U {[a, € F(a....a)] €EI| F € X}.

To prove Theorem IV.1, we shall show that monostratum programs are “growing”, “X-

finitary” and “stable on X" for some X.

Definition: Let P be a program and X a set of symbols. Then:
(1) Tgis growing [ABW] if for each interpretation L Jand Msuchthat ICJCMC TPTw(I),
then T (J) C T (M).

(2) Tpis X-finstary if for each sequence (L) of interpretations such that for each n (0<n), I C

) 0o
I, and In | x=I | x» then T (L_{) I)C L‘(j) To(L),
n= n=

(3) Ty is stable on X if for each I, (To(D))} C Ij,.

The proof of Theorem IV.1, can be found in the appendix. Indeed, it is shown there that for
some X, monostratum program are X-finitary and stable on X (Lemma A.2), that they are grow-

ing (Lemma A.3); and for each operator T with these three properties, and for each interpretation
L

() T(TTw(1) & TTw(l), and
(b) TTw(l) € T(TTw(I)) U I (Proposition A.1).

Theorem IV.1 is then a consequence of these results (see Appendix).

Theorem IV.1 does not hold for multistrata programs. Indeed, the operator corresponding

to a multistrata program is, in general, not growing as shown by the following example.

Ezample IV.1: Consider the program:
' 1€EF «,
2€F —,
P(F) «.

15

Let I={1 €F},J={1 €F, 2 € F}. One canshow that T,(I) = {1 EF, 2 € F, P({1})}, and
Tp(J) = {L € F, 2 € F, P({1,2})}. Thus, I CJ C Ty(I), and Ty(I) & Tp(J). Therefore T, is

not growing.

To prove Theorem IV.1, the X-finitarity is used. In [ABW], besides the growing property,
finitarity is used. Finitarity corresponds here to (o-finitarity. It should be noted that monostra-

tum programs are not, in general, finitary as shown by the example:

Ezample IV.2: Consider the one-rule program:
P(F) «

where F is a O-ary function which returns a set of integers. Let (I) be the sequence such that L

= {li € F| i < n}. Then fj T(1) = {P(¢),P({0}),...P((0..n]),...}; and T(G 1) =

n=0 n=0
oo)
{P([0..c0])}. Then T(|Y 1) € (U T(1). In fact, the program is {F}-finitary.
n=0 n=0

Now consider multistrata programs. Intuitively, the stratification guarantees a locality pro-
perty {ABW] which permits us to view them as a sequence of monostratum ones. Indeed, with

each stratified program, P = P, U.. UP_, a sequence T,s-.y T, of operators is associated. The fol-

lowing construction is used:
. KO = (p, and
e K =TJw(K,_) for eachi € [1..m].

The sequence T,,...,T , of operators has the locality property which allows to conclude:

Theorem IV.2: Let P be a stratified program. Then Km, defined as above, is a minimal fixpoint of

m
U T.. Thus K is a minimal causal model of P.

i=0

The proof of Theorem IV.2 can also be found in the appendix.

This is the main result for COL programs. It is interesting to note that negation can be
simulated using data functions. Let P be a predicate. The following program gives an equivalent
form of - P,

t € F(t) « P(t),
At F(t)) <,

18

Q(t) + A

It is easy to see that Q(t) is equivalent to — P(t). Consider the stratification condition imposed
by the previous program. From the first rule, P < F; from the second, F < A, and from the
third, A < Q. As a consequence, P < Q which leads to the classical notion of stratification for

negation.

V. DISCUSSION

In this section, we briefly consider some applications and extensions of the language. More pre-

cisely, we illustrate the following points:

() procedural data;

(i) heterogeneous databases (functional and relational);
(iii) semantic database models; and

(iv) evaluation techniques for datalog queries.

During the presentation, we encounter various extensions of the language which are left for future

research.
V.1 Procedural Data

One of the reasons for considering a functional database model versus a relational one is to
remove the dichotomy between data and queries. The removal of that dichotomy is also the
motivation for introducing procedural fields in Postgres [S]. However, if the procedural fields solu-
tion is interesting as being an extension of the popular relational model, it certainly lacks the
elegance of the functional solution. We believe that COL presents the advantages of both
approaches by first being a relational extension, and also by making explicit use of functions to

handle procedural-like data. The purpose of this section is to briefly investigate this issue.

Procedural data is introduced in [S] in order to blur the dichotomy between data and
queries. Queries can be stored in the database in particular fields (called procedural fields). When

the corresponding data is needed, the queries are activated.

Consider the database schema:
. R(employee, manager, {hobby}),
S(employee, {phone}).

“Suppose that *Pe company policy is thal managers can also be reached as Sheir employees phone

numbers. The relation S can be defined intensionally using a function PHO, the facts:
5555 € PHO(John), 6666 € PHO(Peter), 7777 € PHO(Tom)...
and using the rules:
w € PHO(z) « R(y,z,X), w € PHO(y),
$(y,PHO(y)) «.

To continue with the same example, some facts are known on relation R:
R(John, Peter, {chess,football}), R(Peter, Max, {bridge})...
Suppose that it is also known that employee Tom is managed by Peter, and does not have any
hobby but the ones of his boss. Then one might want to store the fact:
R(Tom, Peter, HOB(Peter))
where the HOB function is defined by:
x € HOB(y) < R(y,z,X), x € X.

The data functions therefore brings a lot of flexibility. The query R(John,Peter,X)? is answered
by a simple access to the database, whereas the query R(Tom,Peter,X)? can be translated to the
query x € HOB(Peter)? (if a lazy evaluation strategy is chosen). Furthermore, an update of
Peter’s hobbies will implicitly modify Tom’s ones.

It should be noted that the above program is not stratified. Indeed, HOB > R because of
the statement on employee “Tom”, and R > HOB because of the HOB defining rule. However, it
is clearly possible to give a semantics to such programs. Intuitively, one has to consider a partial
order of a set of atoms and terms. For instance, such an order would impose:

R(Peter, Max, {bridge}) < HOB(Peter) < R(Tom, Peter, {bridge}).
This extension of the stratification is related to the local stratification in the sense of Przymusin-
ski [P].

To conclude with this example, assume that it is known that Tom always has for hobbies
the hobbies of ki hen one miglht store the fact:
R(Tom, Peter, HOB_BOSS(Tom))
where the HOB_BOSS function is defined by:

x € HOB_BOSS§(y) « R(y,z,X), x € HOB(z).

The above program is also not stratified. Indeed, it is not even locally stratified according to [P].
The complex structure of facts should also be taken into account. For instance, two objects, say
4 and B, may be >oth intezsionally definec w:ih a subodject of each one of shem Cepenaing oz a

subobject of the other.

18

V.2 Heterogeneous databases

We show how to integrate a relational database, and a functional one into a COL database. It is
also possible to use a similar approach to define heterogeneous views when relations and functions

are considered, and to restructure a relational database into a functional one, or conversely.

The main problem encountered in this context is that functional database models like F QL
[BF] or Daplex [Sh] allow monovalued functions. A not too clean solution is to represent them
using multivalued ones and enforce a oneness constraint. A more interesting solution is to extend
the language with monovalued data functions. Rules like

' X = Fl(y) +— R(x,y), and
x = F(y) + R(xy), y = H(x)

have to be considered. The first rule yields inconsistency if in the extension of R, the first attri-
bute does not functionally determine the second one. This can not be the case in the second rule.

In both rules, the derived function may be only partially defined.

We now present an example with multivalued functions only. Consider the following two

databases:

(a) A RELATIONAL DATABASE:

SHOW(film,theater,time)
PLAYS(actor,film)
LOCATION(theater,address)

(b) A FUNCTIONAL DATABASE

CASTING: film —— actor
LOCATED: theater — — address
EXHIB: film — — theater, time

The two database can be integrated, for instance, in a COL database consisting of one func-

tion and one predicate:

(c) THE INTEGRATING COL DATABASE

The schema consists of the following:
GLOB_THEA (theater, address)
GLOB_INFO: theater —— film, time
GLOB_FILM(ilm,{actoz})

The integrating program is as follows:

GLOB_THEA(t,a) + LOCATION(t,a)
GLOB_THEA(t,a) «— t € theater(), a € LOCATED(t)

a € ACTSIN(f) < PLAYS(a,f)

a € ACTSIN(f) < a € CASTING(f)
GLOB_FILM(f,ACTSIN(f)) < PLAYS(a,f)
GLOB_FILM(f,ACTSIN(f)) + f € film()

[f,h] € GLOB_INFO(t) < SHOW(f,t,h)
[f,h] € GLOB_INFO(t) « [t,h] € EXHIB(f)

V.3 Semantic Database Modelling

The field of semantic database models (see, [HK] for a survey) has been primarily concerned with
structures and semantics, and with notable exceptions like Daplex, language aspects have not
been studied in depth. The COL language presents the advantages of dealing with complex
objects, and of handling both data functions, and data relations. A consequence is that the

language is more suited than other languages in the context of semantic database modelling.

In this section, we consider an example taken from the model IFO [AH1], and investigate

what is still missing in the COL language to make it a language for the IFO model. The IFO

model has been chosen here because it incorporates most structural aspects of semantic database.

models: it is an object-based model, with aggregation (tuple constructor), classification (set con-
structor), functions, specialization and generalization. Furthermore, the IFO model has been for-

mally defined, which simplifies the investigation.

A first difficulty that is encountered comes from IFO nested functions. In IFO, the result of
a function can itself be a function. Since this is a very peculiar aspect of IFO, we do not consider
this feature here. We concentrate on an example given in [AH1] without nested function. The
schema is shown in Figure V.1. We present a corresponding COL database, and then discuss the
extensions of the language that need to be considered, and the limitations of the COL representa-

tion:

ABSTRACT TYPES are represented by basic domains:

L..11
nun

car

person

20

PERSON

OWNS VEHICLE

MCTOR

BOAT
LI1CENSE
MENUFACTURER StRIAL=
Figure V.1: an IFO schema
motor
manufacturer

CONSTRUCTED TYPES are represented by base objects:
MOTORBOAT(hull,motor)
CAR-ID(string,integer)

FUNCTIONS:
OWNS: person — {[hull,motor],car}
C-ID: car — [string,integer]
M-ID: motor — [manufacturer,string]
H-ID: hull — string
PASSENGER-CAPACITY: [hull,motor] — integer
PASSENGER-CAPACITY: car — integer

NAME: person — string

21

Some problems are posed by limitations of COL that were already mentioned:

e the type VEHICLE (i.e., cither a MOTOR-BOAT or a CAR) can not be described, which
yields a typing problem for the function PASSENGER-CAPACITY.

. some of the functions are monovalued.

As mentioned above, these problems can be overcome by considering simple extensions of the
COL language. The introduction of names instead of the use of the numbering of tuple fields

would be a simple modification of the language that ‘would bring it closer to the IFO model.

Perhaps a more fundamental problem is that there is no explicit way of formulating ISA

relationships. An extension of the language in that direction should be considered.
V.4 Evaluation of Datalog Queries

It is not our purpose here to explain another technique for evaluating datalog queries. We only
want to hint that the COL language provides a nice formalism for studying such questions. We
briefly consider the method of [GM]. Their proposal is to rewrite the relational system of equa-
tions used in a datalog query as a functional system of equations. Consider the famous Ancestor
example:
ANC(x,y) + PAR(x,y)
ANC(x,y) «+— PAR(x,z), ANC(z,y)
Let us introduce the following three rules:
x € Fp,p(y) < PAR(x,y)
x € Fyoly) &« x € Fp,0(y)
x € Fuly) & x € Fp,0(2), 2 € F y)-

Now if the query ANC(x,Tom)? is given, one can compute instead F,nc(Tom) (ie., answer the
query x € F ANC(Tom)?). In other words, a relational equation has been transformed into a func-
tional equation:

Fune = Foun * Fran » Faxe

where "+” stands for union and “ . " for the composition of multivalued functions.

In another proposal for evaluating datalog queries [B+], namely the magic sets approach,
partic!ar terms called "grouping terms” are used. It is easy to see that these terms correspond to

particular derived data functions.

22

VI. CONCLUSION

The paper presents a language to manipulate complex objects based on recursive rules. The
novelty is the use of data functions. The semantics of COL ;;rogra.ms is defined as a canonical
causal and minimal model using a sequence of fixpoint operators. In that sense, the semantics is

constructive in nature.

We illustrated the use of the language in various database contexts: heterogeneous data-
bases, semantic modelling, procedural data, and evaluation of datalog queries. This suggested
extensions of the language: single-valued functions, explicit union of types constructor, structural
stratification. Besides these issues which were just sketched in the present paper, other important

questions are raised:
. the role of inheritance in the language, and

. updates for COL databases.

Last but not least remains the issue of an efficient implementation. There has been a lot of
work on nested relations and complex objects. Few of them have so far been followed by an
efficient implementation (e.g., the Verso system at Inria [V], and the Aim project at IBM Heidel-
berg [D]). We believe that the fixpoint semantics of COL programs makes such an implementa-
tion feasible. Indeed, the operators which are described in Section 4 can all be expressed in the

algebra of complex objects of [AB].

REFERENCES

|AB] Abiteboul S., and C. Beeri, On the Manipulation of Complex Objects, abstract in Proc.
International Workshop on Theory and Applications of Nested Relations and Complex
Objects, Darmstadt (1987)

[ABi] Abiteboul, S., and N. Bidoit, “Non first normal form relations: an algebra allowing data

- restructuring”, in Journal of Computer Systems and Science (1988),

[AG] . Abiteboul, S., and S. Grumbach, COL: a Language for Complex Objects based on Recur-
" sive Rules, abstract in Proc. International Workshop on Theory and Applications of

Nested Relations and Complex Objects, Darmstadt (1987)

23

[AH1)

[AH2

[ABW)
[B+]
[BH]
[BK]
(Be+]
[BH]
[BF|

(D]

[FT]
[GM]

(G]

HK]

Abiteboul S., and Hull, R., "IFO: A formal semantic database model,” Proc. ACM
SIGACT/SIGMOD Symposium on Principle of Database Systems (1984), to appear in

ACM Transactions on Database Systems.

Abiteboul S., and Hull, R., “Object restructuring in semantic database models,” Proc.
Intern. Conf. on Database Theory, Roma (1986) to appear in Theoretical Computer Sci-

ence

Apt, K., H. Blair, A. Walker, Toward a Theory of Declarative Knowledge, Proc. of
Workshop on Foundations of Deductive Database and Logic Programming (1986)

Bancilhon F., et al, Magic Sets and Other Strange Ways to Implement Logic Programs,
Proc. ACM SIGACT/SIGMOD Symposium on Principles of Database Systems (1986)

Bidoit, N., R. Hull

Bancilhon, F., and Khoshafian, S., “A calculus for complex objects, Proc. ACM
SIGACT/SIGMOD Symposium on Principle of Database Systems (1985).

Beeri, C., et al., Sets and Negation in a Logic Database Language (LDL1), Proc. ACM
SIGACT-SIGMOD Symposium on Principle of Database Systems (1987)

Bidoit, N., R. Hull, Positivism vs. Minimalism in Deductive Databases, proc. ACM
SIGACT-SISMOD Symposium on Principles of Database Systems (1986)

Buneman, P., R.E. Frankel, FQL - a Functional Query Language (preliminary report)
proc. ACM SIGMOD conf. on Management of Data (1979)

‘Dadam, P., History and Status of the Advanced Information Management Prototype,

Proc. International Workshop on Theory and Applications of Nested Relations and Com-
plex Objects, Darmstadt (1987)

Fischer, P., and Thomas, S., Operators for non-first-normal-form relations, Proc. Tth

COMPSAC Chicago,(1983).

Gardarin G., C. de Maindreville, Evaluation of Database Recursive Logic Programs as

Recurrent Function Series, proc. ACM SIGMOD conf. on Management of Data (1986)

Van Gelder, A., Negation as Failure Using Tight Derivations for General Logic Pro-
grams, Proc. of Workshop on Foundations of Deductive Database and Logic Program-

ming (1986)

Hull, R., R. King, Semantic database modeling: Survey, applications, and research
issues. U.S.7. Computer Science Technical Report (1986) to appear in ACM computing

surveys

24

(HY]

9]

3s]

Ko}

(K]

(N]

P]

(s8]

[s]

[Sh]

vl

Hull, R., C.K. Yap, The format model: A theory of database organization. Journal of
the ACM 31(3) (1984)

Jacobs, B., on Database Logic, Journal of the ACM (1982).

Jaeschke, B., H.J. Schek, Remarks on the algebra of non first normal form relations,
Proc. ACM SIGACT/SIGMOD Symposium on Principle of Database Systems, Los
Angeles (1982)

Kobayashi, 1. "An overview of database management technology,” TR CS-4-1, Sanno

College, KAnagawa 259-11, Japan, (1980).

Kuper, G.M,, Logic Programming with Sets, Proc. ACM SIGACT/SIGMOD Symposium
on Principle of Database Systems (1987)

Naqvi, 8.A., A Logic for Negation in Database Systems, Proc. Workshop on Foundations
of Deductive Databases and Logic Programming ed. J. Minker (1986)

Przymusinski, T. C. On the Semantics of Stratified Deductive Databases and Logic Pro-

grams, to appear in Journal of Logic Programming

-Schek H., and M. Scholl, the Relational Model with relation-valued attributes, in Infor-

mation Systems (1986)

Stonebraker M., Object Management in Postgres using Procedures, in the Postgres
Papers, UCB report (1986)

Shipman, D., The Functional Data Model and the Data Language Daplex, ACM Tran-
sactions on Database Systems. (1981)

Verso, J., (pen name for the Verso team), Verso: a Database Machine Based on non-1NF

Relations, Inria Internal Report (1986)

25

APPENDIX

In this appendix, Theorems IV.1 and IV.2 are proven.

To prove Theorem IV.1, we first show that each monostratum program is growing, X-

finitary and stable on X, for some X. To do that, we use the following technical lemma:

Lemma A.1: Let J and K be two interpretations such that Iy = le for a given set X of symbols,
and 0, and 8, two valuations with § % = 0,x for each variable x. If t is a term such that each

function symbol occurring in t belongs to X, then 8t = 6, ¢.

Proof: The result is obvious if t contains no function symbols. Now consider t = F(t’x’“"tu) where

Fisin X and t,5-.t, contain no function symbol. Then
O F(t,...t) ={x][x€ F(0 ..., 0t)] € 3}, by definition,

= {x | [x € F(0,..., 8t)] € I, }, since F is in X,
= {x|[x € F(0t,..., 0t)] € K|}, since Iy = Ky,
={x|[x € F(s,,..., Ot)] € K|y}, since t,...,t_ contain no function symbol,
= {x | [x € F(Ot,,..., Ot)] € K}, since F is in X,
= 0KF(t1,...,tn).

By induction of the imbrication of function symbols, 8 St = 0Kt for each term t containing only

function symbols in X. []

We now consider X-finitarity and stability.

Lemma A.2: Let P be a monostratum program, and X the set of symbols in P which are not

defined in P. Then T, is X-finitary and stable on X.

Proof: Consider first stability on X. For each interpretation I of P, TP(I) contains only atoms that

are built from a defined symbol. Thus (T5(I))l, = ¢ C Ily, so T} is stable on X.

We next prove that Ty is X-finitary. Let (I) be a growing sequence of interpretations such

00
that Z\ =T | forln. L.t 0= J " andlet A € T,(J). Te conclude the proof. it suffices to
=0

26

show that A € Tp(1,) for some k. Since A € T,(J), A is the result of applying a rule r : A’ «—

Lj..,L, in P with a valuation 0 5 For each k, let 9mx = 0Jx for each variable x. We shall prove

T

that A is the result of applying r with om for some k.

Let X be the set of symbols that are not defined in P. Clearly, Jly =T |y for each k. Let ¢,
€ F(t,...,t,) or P(t,...,t) be an atom in rule r, and let i € [1.n]. Each function symbol G
appearing in ¢, is a total determinant, and thus is not defined since P is monostratum. Since J |x

= L |y Opt, = 0.t, by Lemma A.1. Thus

(+) O,t, = 0t for each atom t, € F(t,,...,t) or P(t,...,t) in rule r, and each i € [L..n].

Let j € [1..m]. Since A is the result of applying r with 8, J E BJL,.. We prove that for k

large enough, I |= 601 L;. We distinguish four cases:

(1) L; = P(t,,...,t). Then, 0JLj € J. Thus there exists an integer k(j) such that for all k > k(j),
6,L, € I, By (+), 0,1, = 6,1, for all k > k(j). Thus for all k > k(j), f,L, € I, ie.,
L = elij'

(2) L;=[t; € F(t,....t))]. Then [0, € F(0,t,,..., 0t)] € J. Then there exists an integer k(j),
such that for all k > k(j), (0, € F(6,..... 6,¢)] € L. By (+), for all k > k(j),

[Out; € F(Ogby-s05t)] € L, ie, T, |= O,L,.

(3) L;= - P(t;,..st,). Then 9JP(t1,..., t) & J. Then there exists an integer k(j) (k(j) = 0), such
that for all k > k(j), 0,P(b,,st) & L. By (+), 8,P(tet,) = O,P(t,,erst,), for all k.
Thus for all k 2 k(j), 8, P(t,,....t) € L, iee, I, = 6L,

(4) The last case is treated similarly.
For each j in ({l.m], and each k > k(j), L |= 0Iij. Let k = sup(k(j)), then

L E 0L, /\ -+ /\ 8L, . Let A, be the result of applying the rule r with 0, By (+), A=
A, Thus A € T,(1). []

‘We also have:

Lemma A.3: If P is monostratum, T, is growing.

27

Proof: Let P be a monostratum program. Let I, J, M be interpretations such that IC JC M C
T1w(I). We prove that if A € T (1), then A € T (M).
Suppose that A € Tp(‘])‘ Then A is the result of applying the ruler : A’ «— L ,...,.L in P

with a valuation 0 5 Let 0M be a valuation such that BMx = ﬂ_rx for all variables x.

Let X be the set of symbols that are not defined in P. Clearly, Ily € J|, C M|y -
(TpTwD)ly = Iy Let t, € F(t,...t) or P(t;,..,t) be an atom in rule r, and let i € [1..n].
Each function symbol G appearing in ¢, is a total determinant, and thus is not defined since P is
monostratum. Since J|y = My, 0Mt‘i =0 t; by Lemma A.1. Thus

(+) 0Mti = 0Jti’ for each atom t, € F(tz""’tn) or P(t,,...,t) in rule r, and each i €
[1..n]. '

We prove that M f= 0MLi for each i. Like in the previous lemma, there are four cases. We
__consider here the last case only. The others are left to the reader.

(4) Let L, = — [¢, € F(ty..,t)]. Since A is the result of applying the rule with 0J, I E
L. Thus [0t € F(Ot,..0%)] & J. Thus, by (+), 0,8, € F(Oybyns Oyt)) = 108, €
F(0t,-0t)] ¢ 3. Let B = (04, € F(fytymy Oyt)] Since B ¢ J, B ¢ J|y = Mjy. Since the
literal is negative, F is a total determinant of P. Thus F is not a defined symbol of P (P is
monostratum), i.e., F € X. Hence B ¢ M. Therefore, [9Ml:x € F(0Mt2,..., HMtn)] EM,ie, M l=
L.

1

In each case, M lz 9MLi. Let A” be the result of applying rule r with 0M. By (+), A” =
A.Thus A € T, (M). []

The following proposition will be essential in the proof of Theorem IV.1.

Proposition A.1: Let T be an X-finitary, stable on X, and growing operator. Then for all I,
(3) T(TTw() C TTw(1), and

(b) Ttw(l) C T(TTw(I)) UL
Proof: First consider (a). Since T is stable on X, A
(TT(a+1)(D)ly = (TTa(D)lx = (TTO(D)lx

Thus the sequence (TTn(1)) is growing and (TTn(I))|; = (TT0(1))|y. By the X-finitarity of T,

28

() T(L) TT a() € L) T(T1n().

n=0 n=0

Thus, T(TTw(I)) = T(G TT n(1))

n=0

C () T(Ttn() by (+)

n=0

Now consider (b). Let A € TTw(I). Then either A € I, or there exists n 2> 1such that A €
TTn(I). Thus either A € I, or there exists n 2 0 such that A € T(TTn(I)). Since I C TTn(l) C
TTw(l), and since T is growing, T(TTn(I)) € T(TTw(I)). Thus A € T(Ttw(I)) UL]

Theorem IV.1, which exhibits a minimal (pre)-fixpoint of T, is a straightforward conse-

quence of Lemmas A.2, A.3 and Proposition A.1.

Theorem IV.1: Let P be a monostratum program. Then for each I,
o TpTw(I) is a minimal pre-fixpoint of T}, containing I.

) T,Tw(¢) is a minimal fixpoint of T,

Proof: By Lemmas A.2 and A.3, Tp is stable on X, X-finitary, and growing. By definition,
TpTw(I) contains I. Thus, by Proposition A.1 (a), Tplw(1) is a pre-fixpoint of T, containing I.
By Proposition A.1 (b), T,tw(¢) is therefore a fixpoint of Tp.

Now consider the minimality. Suppose that there exists an interpretation J which is a pre-
fixpoint of T such that IC J C TpTw(I). To conclude the proof, it suffices to show that TpTw(I)
clJ.

First, T,T0(I} = 1 C J. Suppose that TpIn(I) C J for some n. Then I CTIn() CJC
TpTw(l). Since T} is growing, T,(T,1 n(I)) C To(J3) € J. Thus Tel(n+1)(1) = To(Tpn(1) U

TpTn(I) C J. By induction, T lw(l) = G Tpeln() C I [
. n=0

Arbitrary stratified programs are now considered. First recall the notion of iterative powers

29

of a sequence of operators, and the locality property [ABW).

Definition: Let Tl,...,Tm be a sequence of operators. The iterative powers of that sequence

w.r.t. an interpretation I are defined by:
. K,=1, and
¢ K =T,Jw(K,,) for each i € [1.m].
The sequence of operators T,...T, is local, if for each I and J such that I C J C K.,
T,(J) = T,(J N K,).
Let P = PU..U P be a stratified program. With the first stratum, we associate an

operator T ; with the second one, an operator Tz; and so on. Then we have:

Lemma A.4: Let T,;.-,T,, be the sequence of operators corresponding to a stratified program P =

P U..U P . This sequence is local.

Proof: First suppose that T,(J) d T,(J N K)) for some i. Let A be in T,(3) - T(IN K). Then A
is the result of applying some rule r in P. Since JNK,; C J,and A ¢ T,(IN K,), the application
of the rule uses a fact B not in J N K,. Suppose that B = [b, € F(b,,..,b)]. (The case B =
P(b,,...,b) is similar). Since B is used in the application of r,
(i) F is a determinant of r in P,.
Since B is in K- Ki, B is the result of the application of a rule r’ in Pj for some j > i. Thus
(ii) F is the defined symbol of a rule r’ in P, forj > i.

Clearly, (i) and (ii) together contradict the stratification condition on P, U.. U P;_;. Hence,
T,(J) € T,(J N K)). The reverse inclusion is proved in a similar way. 0

Theorem IV.2 will be a straightforward consequence of the following proposition:
Proposition A.2: Let T1""’Tm be a local sequence of operators such that for each i € [1..m], T, is
growing, X-finitary and stable on Xi, for some X,. For each instance I, let (K‘) be the iterative

owers of T T wrt. I. Th
powers of 1,,..., 1, wrt. L

m m
® By definition, (|_J T)J = | (T}).
i=1 i=1

30

(1) (CJ T)K, C K, and

i=1

(2 K C (G T)K_ UL

i=1

Proof: Let I be an interpretation. Recall the result of the Proposition A.1: if T is growing, X-
finitary and X-stable for some X,
() T(TTw(I)) C TTw(1), and
(b) TTw(l) € T(TTw(I)) U L

m m
(1) (U T)K, = |J TK_, by definition,

i=1 i=1

m
c U T\K,, by locality,
i=1

C UK, by (a),

i=1

CK,.

(2) Conversely,
K, = TmTw(Km_l), by definition,
CTXK U K, . . by (b),
m
C (U TK) U I, by induction,
i=1

. m
- (U TK,) U I, by locality,

=1

m
= (U T)K,, U I, by definition. []

i=1
We now conclude:

Theorem IV.2: Let P = P U.. UP_ be a stratified program, and Tl,...,Tm be the corresponding
operators,
> '/‘ = ”,, a,nd

0

* K =T]lw(K,) for each i € [1..m].

m
Then Km is a minimal fixpoint of |_J Ti. Thus Km is a minimal causal model of P.
i=0

m
Proof: By Proposition IV.2, it suffices to show that K, is a minimal fixpoint of U T By
' i=0
Lemma A.4, the sequence of operators is local. Thus, by Proposition A.2,
m
1) (UTK,S K,
i=1
m
2 K_C(U T)K_.
i=1

m
Therefore, K, is a fixpoint of [_J T,. It remains to show the minimality.
. i=0

. m
Let J be a pre-fixpoint of U T,. We prove by induction on k that
i=1

(*)if J C K, then K, C J.

For k=0, K, = ¢ C J. Suppose ("‘) is true for a certain k (first induction hypothesis). We prove
by induction that :

(**) T, Ti(KY €3,
For j = 0, it is by hypothesis. Suppose it is true for a certain j (second induction
hypothesis). By (**), K, C T, Ti(K) CINK,,, C T, Tw(K,). Since T
(+) Typy (T TED) € T,y OO K.

k41 18 growing,

Hence, T, T(+1)(K,) = T, (T,,,T§(K) U T, Ti(K,), by definition,
CT, +1(Tk +1Tj(Kk)) U J, by second induction hypothesis,
C T, (0N K,,,) U J, by (+),

T,4(3) U 3, by locality,

C J, since J is a pre-fixpoint of Tyirr

Thus (**) holds for all j- By induction, (*) holds for all k. In particular, for k = m, if Jis a

m ‘
pre-fixpoint of |_J T, such that J C K, then K C J which concludes the proof. []
i=1

Imprimé en France
par
IInstitut National de Recherche en Informatique et en Automatique

