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RESTRUCTURING HIERARCHICAL DATABASE OBJECTS!

RESTRUCTURATION D’OBJETS HIERARCHIQUES
DANS LES BASES DE DONNEES

Serge Abiteboul Richard Hull?
LN.R.LA. Computer Science Department
Domaine de Rocquencourt  University of Southern California
78153 Le Chesnay Los Angeles, CA 90089-0782
FRANCE USA

16 Janvier 1987

Abstract: A class of hierarchical structures arising in Database Systems {complex objects) and
Office Information Systems (forms) is studied. Two formalisms for restructuring are presented.
The first focuses on a class of algebraic operators based on rewrite rules, and the second on struc-
tural transformations which preserve or augment data capacity. These transformations are
related to a subclass of the rewrite operations which is closed under composition.

Résumé: Une classe de structures hiérarchiques utilisées dans les systémes de gestion de bases de
données (objets complexes), et dans les systémes d’information en bureautique (formulaires) est
étudiée. Deux formalismes pour restructurer 'information sont introduits. Le premier s’appuie
sur une classe d’opérateurs algébriques fondés sur des régles de réécriture; le second sur des
transformations structurelles préservant ou augmentant la puissance des structures de données.
On montre une correspondance entre ces transformations structurelles, et une sous classe des
opérations de réécritures fermée sous composition.

! An extended abstract of this paper appeared as [AH2].
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1. INTRODUCTION

A recent trend in the database field is to consider hierarchical data structures. Hierarchical
data structures are central in the non-first-normal-form relational model [ABi,FT,RKS,SP...],
and have been studied under the name formats [HY], and complex objects [ABe,BK]. These
structures also arise naturally in semantic database models offering aggregation, grouping,
and generalization [AHl,HK,HM,SS]. In fact, forms in Office Information Systems are simi-
lar kinds of structures [PFK,SLTC,T]. The purpose of this paper is to develop tools to

manipulate typed hierarchical objects.

The focus of the paper is on typed hierarchical objects obtained using:
. tuple constructor (aggregation),
e  set constructor (grouping), and
*  union of types (generalization).

These objects and their underlying types are similar to those found in [HY,K,AHI]. Most
other investigations have considered data structures involving the first two constructors only.
The use of the third constructor allows to handle sets of objects of possibly different types.
(In [BK], sets of objects of possibly different structures are considered without emphasizing

the use of strict typing. ) Another novel feature of the model is the utilization of particular

constants which can serve as nonapplicable nulls

a
....... adilalily a wi

other finite domains.

One of the major research problems facing the database field is to understand how to
manipulate hierarchical structures. Languages were already presented for typed objects built
using the first two constructors [ABe,ABi,FT,J,KV,SP...]. Most of these investigations have
focussed on operations to extract (selection/projection), or to combine information
(union/difference), providing very limited capabilities for manipulating the structure of data
(nest/unnest). The first theme of the paper is the presentation and study of an operation
(called “rewrite operation”) which (1) handles objects built using the three constructors, and
(2) permits the specification of complex structural manipulations. We present some basic

results on rewrite operations, and exhibit the subclass of “simple” rewrite operations which is

The second theme of the paper is to study the problem of data restructuring. -In virtu-

ally all database models, it is possible to represent essentially the same data in different
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ways. This notion of “data relativism” arises in a variety of contexts like database integra-
tion, view construction, form modification. It is thus crucial to understand data relativism
at a fundamental level [H1,HY,HM], so that systems can effectively translate between alter-

native data representations.

Our study of data relativism is based on local structural transformations of types. Some
of these transformations preserve data capacity, and lead to a characterization of “structural
equivalence” which generalizes results of [HY]. Other transformations provide ways to aug-
ment the data capacity of a type. The effect of all these transformations can be achieved
using only simple rewrite operations. If a user specifies the restructuring of the database
using a sequence of transformations as defined here, the system can compute the new data-
base state using a single rewrite operation (since simple rewrite operations are closed under

composition).

The paper is organized as follows. Types are presented in Section 2 together with their
corresponding objects. Section 3 introduces the rewrite operations, and a normal form for
these operations. In Section 4, we show that the class of simple rewrite operations is closed
under composition. Results concerning structural equivalence are presented in Section 5.
Finally, augmentation is studied in Section 6. (A key lemma for Section 4 is proved in
Appendix A. Motivating examples for the restrictions imposed on simple rewrite operations
are gathered in Appendix B. Sketches of proofs for two results in Section 5 can be found in
Appendix C.)

2. TYPES AND OBJECTS
The purpose of this section is to motivate and formally define types and objects.

We first present an example concerning two versions of information that might be
stored in a personnel database. Consider the two templates shown in Figure 2.1. The struc-
ture of these forms is described by the types shown in Figure 2.2. Speaking roughly, a
"type” is a tree with certain kinds of nodes. All leaf nodes of a type correspond to “basic
types”. This includes such types as “alpha”, “9-dig”, etc., and also some special type which"
has a one-element domain denoted by 1 (with a subscript). There are three kinds of internal

nodes. Intuitively, x-nodes correspond to the tuple constructor; #-nodes correspond to the




Last Name: ) Last Name:
First Name: N First Name:
SS: SS:
Sex: (M/F) If applicable, military position:
If male, military position: Married:(Y/N)
If fémale, names of children: Names of children:
Married:(Y/N) If applicable, maiden name:
If married, maiden name: Sex: (M/F)
Form 1 Form?2

Figure 2.1: Two templates for a personnel database

set constructor; finally, +-nodes correspond to the union of types (or ‘marked union) con-
structor.

Types as described here generalize the notion of “format” [HY], and the types of [AH1]
to include basic types with one-element domain. As we shall see, these types can be used to
represent nonapplicable nulls, and finite domains. Furthermore, they play an important role
in our study of restructuring.

As mentioned in the introduction, types can serve as a formal model for representing
data structures used in various disciplines. First, types subsume the family of form struc-
tures considered in Office Automation Systems [PFK,SLTC,T]. Furthermore, as indicated in
the example, this model provides the possibility of faithfully representing forms in which
different parts are to be filled out under different circumstances. (On the other hand, as
described here the model does not directly incorporate the occurrence of dependent fields,
such as one field which is to be the sum of two other fields). Also, types can be used to
model classes of objects arising in Semantic Database Models [AHI,SS,HK,HM] which incor- ,
porate aggregation, grouping, and generalization. Finally, it should be noted that the struc-
tures of non-first-normal-form relations correspond to types in which tuple and set construc-
tors alternate.

We now present the formal notions of type and object.
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Figure 2.2: Types for Form1 and Form2

We assume the existence of infinite sets doml,...,domn,... of atomic values called the.

domains. These sets are all countable and pairwise disjoint. We also assume the existence

of a particular atomic value, denoted 1, which is not in dom, for any i. The set {1} will

serve as the unique one-element domain.

We also assume the existence of an infinite set of symbols called attributes, which will be
used as labels for the domains. To distingish between infinite and one-element domains,
attributes with infinite domains are denoted with letters from the beginning of the alphabet;
and attributes. with one-element domain are denoted 1 with subscripts (e.g., 1, lyes...).
Finally, we assume the existence of an infinite set of symbols called tokens which contains

the set of attributes.

We use a syntactic representation for types where: square brackets ([,]) correspond to
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‘tuple constructors, braces ({,}) correspond to set constructors, and angle brackets (<,>)

correspond to union of types constructors. Formally, we have:

Definition: A type is an expression recursively defined as follows:

o if A is an attribute, A:dom, is a (basic) type for each i,

o if 1;is an attribute, 1:{1} is a (basic) type, |

o if P is a non-attribute token, P,,...,P are distinct tokens, and T,=P:t ,..., T =P :t are
types, then P:{T,}, P:[T,,.,T ], and P:<T;...;T > are also types.

If P:t is a type, then the expression t is called a structure (i.e., a structure is a type deprived

of its outermost token).

When domains are understood, we omit them from the specification of types. For

instance, if it is understood that the domain of A and B is dom,, we can use the expression
P:<Q:[A,B];1;> to denote the type P:<Q:[A:dom ,B:dom |;1:{1}> (since the domain of 1 is
by definition {1}).

In the following, we assume that the order between tokens in a tuple or union of types
constructor is irrelevant. For instance, we do not distinguish between the types
P:<Q:{A:doml,B:doml];1f:{1}> and P:<1f:{1};Q:[B;duml,A;doml]>. This motivates ait
alternative definition of types based on trees. Leaves of the trees denote atomic types, and
are labelled by attributes. Internal nodes correspond to applications of the constructors, and
are labelled by non-attribute tokens. Formally, we have:

&

Definition: A type is a rooted tree (V,E) where V = V+ uV,uVv, VU V, is the disjoint
union of +-nodes, *-nodes, x-nodes, and basic nodes such that

(i) a node is a basic node iff it is a leaf, and

(i) each *-node has exactly one child.

The nodes of a type are labelled by tokens with the following restrictions:

(iii) a node is assigned an attribute iff it is a leaf, and

(iv) distinct siblings (i.e., distinct children of the same node) are assigned distinct tokens.

A domain is assigned to each leaf with the restriction that the one-element domain is



assigned to each leaf labelled 1, for some f.

The trees in Figure 2.2 correspond to the types in Figure 2.3 below. Note that some
tokens are omitted in Figures 2.2 and 2.3. We will freely omit tokens when not necessary to
the presentation.

It should be clear that this notion of type subsumes the concept of relational database

schema. An example of relational database schema viewed as a type is given in Figure 2.4.

Form1:
| last_name,
first_name,
ss#,
sex: < male: military position;
female: | children: {child name},
married:
< 1y,imaiden name > | > |
Form?2:
[ last_name,
first_name,
ss#,
MP: < Iyas military position >,
married: < lyes; 1.>,
children: {  child name }, .
MN: < 1ga maiden_name >,
sexe: < lmale; 1female > ]

Figure 2.3 -




database:
[ ' supplier:
[ last_name, first_name, sno, address | }
part:
{ [ pnum, name, price | }
supply: 4
{ [ sno, pnum, quantity | }o]

-Figure 24
With each type, we associate a set of objects in the following way:

Definition: For each type T, the set of objects of type T, denoted obj(T), is defined recur-
sively by:

o For each attribute® A, obj(A:dom)= {A:a | a in dom;}, and for each index f,
obj (1:{1})= {11},

e obj(P:T,,...T ])= {P:[0,,..,0 ] | O, € obj(T,) for each i in [1..n]},

e obj( P:{T.’})z {P:{0,,...,0,} | O, € obj(T") for each i in [1..n]}, and

o obj(P:<T,;..sT >)= {P:<OJ.> | O; € obj (T;) for some j in [1..n]}.

The set obj(T) is called the domain of T. If P:o is an object, then o is called the value of
P:o (i.e., a value is an object deprived of its outermost token). '

To illustrate the previous two definitions, we now give examples of objects, and their
corresponding types:

(1) P:<B:13> and P:<R:[B:23, B’:23]> are objects of type P:<B;R:[B,B’]>.

(2) P:[Q,:{R:[B:13,B"7,B":105}, R:(B:7,B*:13,B":13] }, Q,:{}] is an object of type
- P:{Q,: { R: [B,B’,B”] }, Q,: {S:[C,C"] }]

(3) P:{}, and P:{1;:1} are the only objects of type P:{L}.

(where it is assumed that obj (B)= obj (B’)= obj (B”) is the set of natural numbers.).

In our formalism, the convention of including tokens in objects is very strict. An advan-

tage is that by inspection of an object, its type can (almost) be determined. This will turn to




be useful in our study of restructuring. Some other investigations may want to relax this
constraint. On the other hand, new constraints on the naming convention may be intro-
duced for query purposes, e.g., enforcing that two distinct nodes should be assigned distinct

tokens.

When the type is understood, and an implicit ordering of siblings assumed, we can sim-
plify the syntactic description of objects. For instance, the object of (2) can be written as
[{[13,7,105], [7,18,13]}, {} ]. |

3. REWRITE OPERATION

In this section, we introduce the rewrite operations on typed objects. These operations will
be essential to our study of restructuring. We also exhibit a “decomposed form” for rewrite
operations, and prove that every rewrite operation can be transformed into a decomposed

one.

"In order to manipulate data, we need a powerful operator. We use a notion of rule
(inspired by the rules of [BK]|) to describe how an object should be “rewritten”. Indeed, a
rewrite operation will be defined using several rules, each rule corresponding to some particu-

lar shape that can be taken by the operand.

We assume the existence of an infinite set var of symbols called (unconstructed) vari-
ables. Intuitively, variables will be place holders for values. The analogue for objects are the

“terms” that are now defined.

Definition: For each type T, the terms (of T) are recursively defined by:

(i) each object of type T is a term of T,

(i) if T = P:t for some structure t, and x is an unconstructed variable, P:x is a term of T,

(i) if T = P:[T,,...,T ] is a type, and X, a term of T, for each i in [I..n], then P:[X ,.. X ] is
a term of T,

(iv) if T = P:<T;..;T > is a type, and X; a term of T; for some j in [L..n], then P:<X;> is

a term of T, and

3 Note that we distinguish between the value a, and the object A:a.



(vy if T = P:{T’} is a type, and X a term of T’ for each i in [1..n], then P{X,..X } is a

term of T.
If P:v is a term, then v is a variable (unconstructed if v is in var, constructed otherwise).

Note the strong analogy between (1) objects and values, (2) types and structures, and
(3) terms and variables. (See Figure 3.1.) Note also that the definition of terms permits
their specification with components of arbitrary granularity. For instance, P:x,
P:[Q,:y,Q,2, and P:[ Q: {R:u ,R:u,}, Q,:z] are terms of type
P Q;: {R: [B,BB”] },Q,: { $: [C,C’] } ]

object A:[B:12,C:7] F:{D:0,D:7,D:12}
value [B:12,C:7] {D:0,D:7,D:12}
type A:[B:int,C:int] F:{D:int}
structure | [B:int,C:int] {D:int}
term A:[B:x,C:y] Fix
variable [B:x,C:y] X
Figure 3.1

Given a type S, a term X of S, and a variable y appearing in X, a straightforward
unification of X and S assigns* a structure t, toy. The structure t, will be called the struc-

ture of y w.r.t. X and S.

Rewrite rules will be used to specify object manipulation. We first present simple exam-

ples which show how rules can be used to perform simple selections and projections.

Example 3.1: Consider a type consisting of sets of Form1 as in Section 2. The following rules
can be used on such forms:

renaming:

4 Some problems arise if the variable y appears more than once in X. If the various occurences of y correspond to the same structure
t, then y is assigned that structure. If this not the case, the structure of y wr.t. X and S is undefined. We do not consider that case in the
following.
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[last_name:x, first_name:y, ss#:z, sex:w| — [nom: x, prenom:y, ss#:z, sexé:w]
ss# of persons with first name mary: 4
[last__name:x,ﬁrst_name:’mary’,ss#:'z,sex:w] — SS#:2
persons with identical first and last names:
[last_name:x,ﬁrst_name:x,ss#:z,sex:w] — [last__na.me:x,ﬁrst_name:x,ss#:z,sex:w]
maiden_names (of married females):
[last_name:x,ﬁrst_name:y,ss#:z,sex:<female:[children:u,married:<maiden_name:v>]>]
— [last_name:x,maiden_name:v]

names of females with first name ’mary’ having ezactly one child:

‘ [last_name:x,ﬁrst_name:’mary’,ss#:z,sex:<female:[children:{child:u},married:v]>]

— last_name:x

Omitting certain tokens, the same queries are:
(x,¥,2,t] — [nom:x,prenom:y,ss#:z,sexe:w]
[x,’mary’,z,w| — z
[x,x,2,w] — [x,x,2,w]
[%,5,2,<[u,<v>]>] - [x,v]
[x,’mary’,z,<[{u},v]>] — x

In the previous example, one rule is used to specify an operation. It is possible to use
several rules to treat different options resulting from alternative structures of the operand as

illustrated by the following example.

Ezample 3.2: Suppose that we want for each person, the set of children of that person. In
our base of forms, males are not allowed to “have” children. Thus, one rule will be required
for males, and one for females:
r, = [x,y,z,sex:<military_position:u>] - [x,{}]
1, = [x,y,2,5ex:<female:[u,w|> | — [x,u]

The “rewrite expression”, rew(r,, r,), will define a query on the database. ]

We now formally present the rewrite rules and rewrite expressions. Other motivating

examples are given afterwards.

Definstion: Let X be a term of type S. Rewrite rules and rewrite expresstons from X are
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defined recursively in the following way:

(i) if y is a variable of structure t w.r.t. X and §,
(i-a) X — P:y is a rule from S to P:t,
(i-b) if p is a rewrite expression from Q:t to T’ (and hence, t has set structure), X —
p(y) is a rule from S to T,

() (ii-a) if X—Y,...,X—>Y  are rules from S to T,,...,T , respectively, then X—P:[Y,,....Y | |
is a rule from S to P:[T,,...,T |,
(ii-b) if X—Y is a rule from S to T, for some i in [1..n], then X—P:<Y> is a rule from §
to P:<T,;..;T >,
(ii-c) if XY ,...,.X—Y  are rules from S to T’, then X——»P:{Yl,...,Yn} is a rule from S
to P:{T},
(ii-d) if X—Y,,...,.X—>Y are rules from S to T, and T is a set type, then X—Y u..uY,
is a rule from S to T.

A rewrite expression from S=P:{8’} to T=Q:{T’} is an expression of the form Q:rew(a)

where A is a set of rules from S’ to T°.

The previous definition enforces several restrictions on the form of rewrite expressions.
For instance, consider the type S = P:[A, B:{C}]. Then the expression A:{C:y} — E:y is not
a rule from S since the left-handside does not correspond to S. On the other hand, the

expression rew(r,r’) where
D.I
i -‘

"
il

el -
Y] VK
. r’ = P:{]Ax,Biy] — Ciy

is not a rewrite expression from S since the right-handsides of the two rules conflict; one

A ae-
AK,

mappingg to C:dom,, and the other to C:{doml}. Roughly speaking, if a set of rules yields a

rewrite expression then (1) their left-handside can be “unified”; and (2) their right-handside
can be “unified”. "

Suppose now that X — Y is a rewrite rule, and P:rew(A)(z) occurs nested in Y. Then

for each rule Z — W in A, each unconstructed variable occurring in W necessarily occurs in

Z.
The semantics of rewrite rules and expressions is given by the following definition:

Definition: An assignment is a partial mapping o from var to val (i.e., o maps variables into

12



values). The mapping is extended to terms, and rewrite expressions in the following way:

(0) - «(0)= O for each object O,

(1) «
(2) aP[X ]) P:[a(Xl),...,a(Xn)],

(
(A:x)= A:a(x) for each A and unconstructed variable x,
(

() a(P:<X>)= P:<a(X)>,
(
(
(

(4) aP{X }) P:{a(Xl),...,a(Xn)},

() (X u..uX )= ofX,)u..ua(X ),

() oPrew(a)(x))= P:{a(V) | U=V € 4, and o(U) € o(x)},
Now we have:

Definition: Let p = Q:rew(A) from S, and O=P:0 be an object of type S. Then the effect of p
on O is defined by
#(0)= Q:{A(V) | for some g, and U—>V in A, A(U) in o}.

We now present four examples of rewrite expressions. The first example illustrates the
use of several rules to obtain different treatment of alternative structures resulting from the

union of types constructor.

Ezample 3.3: Consider Forml and Form2 of Section 2. It can be shown that a lossless map-
ping from sets of forms 1 into sets of forms 2 is obtained using the rewrite operation
rew({r,,r,,r,}) where
r,= [x,y,2,<MP:w>] —

[x,y,z,<MP:w>,<1n°>, {},<1NA>,<1mle>]
1,= [x,y,z,<female:[v,<1,>]>] —

[x,y,z,<1NA>,<1no>, v, <L, ><1 >]

female

r,= [x,y,2,<female:[v,<maiden-name:u>|>| —

[x,y,z,<1NA>,<1 <> V,<u>,<1 >|

female

& Let Pio, and Pio, be two objects of type A: {T}. Then the union of P: o, and P:o, is defined in the obvious manner, i.e., P: o, U
Pio, = Pi{o, U o?)

13



The second example presents the utilization of union of rewrites.

Ezample 3.4: Consider the following two types:
pers:{R:[emp, male:{name}, female{name}|}
L)

pers:{R:[emp, children:{ child:[name, sex: <[ ot emare™ 1}
which might be used to store each employee along with his/her children differentiated by

sex. We now give a rewrite expression which maps objects of the first type into objects of
the second in the natural manner.

Pmale= Te€W(name:w — [name:w, sex:<] .. >

Premale= TeW(name:w — [name:w, sex:<[, . >])

p= rew([emp:x, male:y, female:z] — [emp:x, childrenzp . (v) U pgp 10 (2)])
The third example presents the use of rewrite rules in a nested way.

Example 38.5: Consider the following two types:
company:{ dept:[dname, pers:{R:[emp, male:{name}, female{name}]} }
comp:{ dept:[dname, pers:{R:[emp,children:{child:[name,sex:<lmale;lfemale>]}]}
which might be used to store, for each department, each employee along with his/her chil-
dren, differentiated by sex. We now give a rewrite expression which maps objects of the first
type into objects of the second in the natural manner. (The corresponding mapping is data
preserving.)
rew([dname:u, pers:v] — [dname:u, pers:p(v)])
where p is as in the previous example.

The last example illustrates the use of composition of rewrite expressions.

Ezample 3.6: Consider a type consisting of sets of Forml as in Section 2. Suppose that we
want to distinguish “mothers”, i.e., females with at least one child. Then this can be com-
puted using p . p’ where

p= rew([x,y,x,<female:[z,v]>] — [x,0"(2)])

for p”= rew(child_name:w — 1), and

p'= rew(x{1}] = (1], [x{}] = [x1]).

We now turn to a result showing how rewrite expressions can be put into a certain nor-

mal form called “decomposed”. In particular, we show that for each rewrite expression

14



Pirew(a), there is an equivalent rewrite expression Pirew(A’) such that all rewrite rules in A’

are decomposed.
The notion of decomposed has the following particularly simple definition:

Definition: A term X is decomposed if each unconstructed variable occurring in X is either
(a) atomic; or
(b) aset variable whose structure is not {1;} for any f.

A rewrite rule X — Y (or expression p) is decomposed if the premise of each rewrite rule

occurring (possibly nested) in X — Y (or p, resp.) is decomposed®.

Speaking roughly, a rewrite rule X — Y is decomposed if the term X (and all premises of
nested rewrite rules in Y) makes explicit choices concerning which branch of each +-node to
take. To articulate this more formally, we introduce two important notions. The first

allows us to focus on the part of a type T lying “above” its #-nodes. (See Figure 3.2.)

Definition: The *-frontier of a type T is the set of nodes of T containing all leaves, and *-

nodes of T which are not (proper) descendants of a *-node.

The second provides a natural partitioning of the domain of T to “choices” made at the

+-nodes above the x-frontier, and at nodes with underlying structure {1}. (See Figure 3.3.)

Definition: For a type T, a choice tree of T is a (partially labelled) subtree T’ of T such that:
(i) each +-node occurring in T’ above the *-frontier of T has exactly one child in T’

(i) each x-node p occurring in T’ above the #-frontier of T has as children in T’ all of the
children that p has in T;

(iii) for each *-node p in T’, the subtree in T’ below p is precisely the subtree of T below p;
(iv) each *-node with a 1-child is labelled in T’ by either {} or {1} (indicating that the

value associated with this *-node is {} or {1}, respectively).
The domain of a choice tree T’ of T, denoted obj (T°’), is the collection of objects’O € obj (T)

whose internal structure corresponds to T .

6 Note that if a rewrite expression p is decomposed, then each unconstructed variable occurring in the consequent of any (possibly
nested) rewrite rule in p is atomic or a set variable whose structure is not {1} for any f.
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It is clear that if Tl,...,Tn are the choice trees of T, then the collection
{obj(T,),-..,0bj (T,)} is a partition of obj(T) into disjoint, non-empty sets. To illustrate
this last remark and the previous definitions, consider the type:

T = A:i<B:[C,D:{D’}E[;F:<H;L[J:<K:{K"<K,,K,>};L>M:<N:{1 };0>|>>. |
One can show that the #-frontier of T is {C,D,E,H,K,L,N,0}. (See Figure 3.2). The choice
trees of T are:
A:<B:[C,D:{D’},E|>;

A:<F:<H>>;
A:<F:<L[J:<K:{<K ,K,>}> M:<N:{1}>|>>, N marked by {};
A:<F:<L[J:<K:{<K K,>}>M:<N:{1}>]>>, N marked by {1.};
A<Fi<L[J:<K:{<K K,>}>M:<0>]>>;
A:<F:<[J:<L>M:<N:{1_}>]>>, N marked by {};
A:<F:<L[J:<L> M:<N:{1 }>]>>, N marked by {1 }; and
A:<F:<L[J:<L> M:<O>]>>.

(One of these choice trees is shown in Figure 3.3.) Clearly, their corresponding domains are

disjoint.

/ Caolao\s

D

Kt K2

...... Figure 3.3: a cholce tree
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The following result is easily verified:

Lemma 3.6: If a term X over S is decomposed, then there is some choice tree S’ of S such
that {a(X) | o an assignment} n obj (S) € obj (S’). []

We now have:

Lemma 3.7 (Decomposition Lemma): If X — Y is a rewrite rule from S to T then there is
ann > 1 and a set {X; - Y, | i € [1..n]} of rewrite rules from S to T such that

(i) each rule X; — Y, is decomposed;
(i) for each object O’ € obj (P*:{S}), rew(X — Y)(0’) = rew({X; — Y, | i € [1.n]})(0’); and

(iii) for each i € [1..n], there is a distinct choice tree S; of S such that” {a(X,) | « an assign-
ment} N obj (S) S obj (S,).

Thus, each rewrite expression is equivalent to a decomposed rewrite expression.

Proof: Let X — Y be a rewrite rule from S to T. We can assume inductively that each rule
occurring within a rewrite expression of Y is decomposed, and that the collection of variables
occurring within nested rewrite rules of Y is disjoint from the collection of variables occur-
ring at the outermost level of X or Y. We now present an iterative construction for replac-
ing unconstructed variables in X which violate the definition of decomposed by less complex
unconstructed variables (or possibly {} or {1:1}). In this construction, we begin with the
set {X — Y} and generate sets Ay, A,,.... These will have the property that rew(4,)(0) =
rew(X — Y)(O’) for each object O’ € obj(P’:{S}). If at some step some rule in A, is not
decomposed, we replace that rule by a set of rules according to the construction now
described.

Suppose that U — V is a rewrite rule in A, from S to T, and that w is a variable occur-

ring in U which violates the definition of decomposed (i.e., w is unconstructed and: either it

is of structure {1} for some f, or it is not atomic nor of set type.) Three cases arise:

a) Suppose w is a variable of structure [Plzsl,...,Pn:sn]. In this case, let w; be an uncon-

structed variable of structure s; for i € [1..n], and form U, — V, from U — V by replacing all
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occurrances of w by [P :w,,...P:w |. It is easily verified that for each object O € obj(8S),
there is an assignment a such that o(U) = O iff there is an assignment « such that o (U)) =
O; and in this case a(V) = «,(V,). It follows that for each O’ e obj (P’:{S}), rew(U —
V)(0’) = rew(U; — V)(0’). Letting &, = A, - {U = V} u {U, - V,}, we now have
rew(A,)(0) = rew(a,,)(O).

b) If w is of structure <P1:sl;...;Pn:sn> then let w; be an unconstructed variable of structure
s; for i € [1..n], and construct rules U, — V,, i € [1..n], from U — V by replacing each occur-
rance of w by <P;iw;>. It is clear from the construction of the U/s that the families {a(U)) |

« an assignment} are disjoint. Also, it is easily verified that for each object O e obj (S),

there is an assignment o such that «(U) = O iff there is some i and some assignment o; such
that o,(U;) = O; and in this case a(V) = «,(V,). It follows that for each O’ € obj (P":{S}),

rew(U — V)(0’) = rew({U; — V; | i € [1.n]})(0°). Letting o, =4, -{U—V}u{U ~ \Z
| i € [1..n]}, we have rew(a,)(O’) = rew(4,,)(0’).

c) If w is of structure {1;} for some attribute 1,, let w, = {} and w, = {1:1}. As in part
(b), U, for i = 1 or 2 is constructed from U by replacing all occurrances of w by w. Ifw
does not occur as the variable of a rewrite expression of V, then V, and V, can be con-

structed as in part (b). Suppose now that w does occur as the variable of the rewrite expres-
sion Qirew(Z)(w), where £ = {Xj — Yj | j € {1.m]}. Then Xj mus

€ [1..X], and Y; is a constant or a term whose only variable is z for each j € [1..m]. In this

+ L1
v o

b T i Fasw oanalh d
€ i41 O 41424 107 Sala

i
case, when constructing V, replace Q:rew(z)(w) by Q:{}; and when constructing V, replace
Q:rew(z)(w) by Q:{Y’},...,Y’ } where Y’ is the result of replacing the variable in Y, (if any)
by 1. It is easily verified that setting Ay =8, -{U=V}u{U -V, U, - V,} satisfies

the conditions of the construction.

It is clear from the construction that in the final family A = {X, — Y, | i € [1..n]}, each

rule is decomposed. Thus (i} holds. It is also clear that for each O’ € obj (P:{S}), rew(X —
Y)(O’) = rew(4)(0’). Thus (ii) holds. Parts (b) and (c) ensure that if i # j then {a(X) | @

an assignment} n {a(Xj) | @ an assignment} = @. Since each X, is decomposed, this and

Lemma 3.6 implies that for each i, there is a distinct choice tree S; such that {a(X,) | a an
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assignment} N obj(S) C obj(S;). Hence (iii) also holds. ‘The second sentence now follows

easily from the definition of effect of rewrite expressiéns. ]

At first glance, it appears in the above construction that for each i, there is a (not neces-
sarily distinct) choice tree T, of T such that {a(Y;) | o an assignment} n obj(T) < obj(T,).

The following example illustrates that this need not be the case.

Ezample 3.8: Let S = P:{Q:<A;B>} and T = R:{L;}, and consider the rewrite rule -
Piw — Rirew(Q:<A:x> — 1:1)(w).
On a given object O of type S, this rule yields R:{lle} if there is an object of type A in O,

and yields R:{} otherwise. This rule is decomposed, but there is no choice tree of T which

contains {a(Y) | « an assignment} n obj (T). []

To conclude this section, we make two briefs remarks on (a) the design of a general

query language for objects, and (2) the omission of tokens in terms.

e A calculus in the style of [J,ABe,RKS]| can easily be designed for typed objects. An alge-
bra in the spirit of [ABe| can be obtained by adding to the rewrite operations binary
operations like union, intersection, difference, and cross product; and unary ones like
power set, and set collapse. To obtain the power of the calculus with this algebra, we
believe that dynamic constants such as in [SS] or [ABe| should be. used. This would
involve the possibility of using in the rules of an embedded rewrite operations variables

from the outer levels.

e Some unexpected power comes from allowing the omission of tokens when they are
implicit from the context. Consider the two types:
P:[P;:<A;B;>,..,P :<A ;B > ], and
Q:< Q:[ALA, LA LA
Q,: (B A, A, LA

an:[Bl,B2,...,Bn_1,Bn] >
where n is some positive integer. Then objects of type P can be rewritten into objects

of type Q using the rule

7 if unconstructed variables were strictly typed, the condition would simply be {&(X,) | & an assignment} C obj (s,
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[ <x;>500<x,> | = < [xppe0x ] >

. . . . . n ,.
However, a precise expression of this transformation would require 2 different rules.

4. COMPOSITION OF SIMPLE REWRITE OPERATIONS

In this section, we introduce the “simple” rewrite operations. These operations will turn out
to be central to our study of restructuring in the next two sections. We show that simple

rewrite operations are closed under composition.

Speaking intuitively, the premise of an arbitrary rewrite rule acts as a filter, discriminat-
ing between objects which match the pattern of the premise and those that don’t. In a sim-
‘ple rewrite expression, premises have very limited ability to discriminate between objects.
Specifically, the most refined test that such premises can make is whether an object
corresponds to a given choice tree or not. This intuition is realized formally by restricting
the premises in a syntactic way, e.g., requiring that no repeated variables occur, and that no

constants other than 1 occur.

It is convenient in this section to focus on individual rewrite rules, rather than rewrite

expressions. Before providing a formal basis for this, we make a few intuitive remarks.

Suppose that X — Y is a rewrite rule from S to T (where S need not be a set type).
Speaking intuitively, if O € obj(S) and a is an assignment such that o(X) = O, then X - Y
associates o(Y) with O. If X is arbitrary, there may be more than one a such that o(X) =
O, in which case more than one value o(Y) is associated with O. As we shall see, this never
occurs for simple rewrite rules, and so, each simple rewrite rule will define a (partial) single-

valued function.

For technical reasons, it is convenient to include special rules of the form X — 0, where 0
indicates the undefined value. This is needed to ensure that simple rewrite rules are closed

under composition. For example, consider the rule A:w — Q:<A:w> mapping A:dom, to
Q:<A:dom;B:dom >; and the rule Q:<B:iy> — B:y mapping Q:<A:dom,;B:dom > to
B:dom,. Then, the composition of these two rules is A:w — 0, which always yields the

undefined value. Formally we have:
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Definition: A (generalized) rewrite rule is defined as in Section 3, except that the following is
added to part (i):

(i) X - 0 is a rule from S to T, for any type T.;

and each expression Y,Y,,...,Y occurring in part (i) of that definition is not permitted to be

.
At the level of rewrite expressions, rules X — Q do not affect results. More specifically,

Defirution: Let p = P:rew(A) from S, and O be an object of type S. Then the effect of » on
O is defined by
{8(V) | B an assignment, U — Vin A, V # 0, and A(U) in O}.

We now define the family of simple rewrite rules and expressions:

Definition: A simple rewrite rule is a rewrite rule X — Y (where Y may be Q) such that

() The only explicit set construction in the premise of any (possibly nested) rewrite rule is
over a type of form P:{1.};

(i) No constants appear in the premise of any rewrite rule, except possibly 1;
(i) There are no repeated variables in the premise of any rewrite rule; and

(iv) If U — 131 occurs in a (possibly nested) rewrite rule for some 1, then U is of type 1
for some 1.

A rewrite expression p is simple if each rewrite rule occuring in p is simple.

Because simple rewrite rules do not permit non-trivial explicit set construction in the

premises, it is easily verified that

Lemma 4.1: If X — Y is simple from S to T, and if O € obj (S), then there is at most one
assignment o such that o(X) = 0. []

This permits:

Definition: Let X — Y be a simple rewrite rule from S to T. Then [X — Y] denotes the par-
‘tial function from obj(S) to obj (T) where, for O € obj(S), [X — Y](0) = oY) if Y # Q and
there is some assignment a such that o(X) = O; and [X — Y](O) is undefined otherwise.
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If two expressions f and g denote the same partial function (i.e., for each object O e
obj (S), either both f(O) and g(O) are defined and f(O) = g(0), or both are undefined), we
say that f is equivalent to g, denoted f = g.

We show that simple rewrite functions are closed under composition in two stages, first
considering simple rewrite rules, and then simple rewrite expressions. (Examples are given in
Appendix B which show that each restriction in the definition of simple is needed in order to
ensure that simple rules are composable.) The next result deals with the composition of

decomposed, simple rewrite rules. Its proof is rather involved, and relegated to Appendix A.

Lemma 4.2: If W — X from S to T and Y — Z from T to U are decomposed, simple rewrite
rules, then there is a simple rewrite rule W — Z such that (W — 2] = [W - X].[Y - Z].

Using this, we now have:

Proposition 4.3: Let p, be a simple rewrite operation from R, to R, 41 for each i in [L..n].

Then there exists a simple rewrite operation p such that Py owee 0Py = p-

Proof: Clearly it suffices to show that there is a simple rewrite function p such that Py Py =
p- Suppose now that p; = Q:rew(a) maps P:{S} to Q:{T}, and p, = Rirew(X) maps Q:{T}
to R:{U}. It is easily verified that if the construction of the proof of the Decomposition
Lemma is applied to a simpie rewrite rule, then it yieids a set of simpie rewrite ruies. Thus,
without loss of generality we may assume that both A and £ contain only decomposed, sim-

ple rewrite rules.

Let A ={W, - X, |ie[l.n]}and = = {YJ. — Z; | j € [1.m]}. By Lemma 4.2, there are
expressions zi,j such that W, — 7. is a simple rewrite rule and [W, — Zij] = [W, - X]] a[Yj
— Z;) forie [1.n] and j € [1.m]. Let T = {W, — Z;;lie[l.n],je[l.m] and 2,70} It
easily follows that R:rew(T) is a simple rewrite expression from P:{S} to R:{U} such that
Rirew(T) = (Q:rew(a)) .(Rirew(z)). []

It should be clear from the definition of rewrite operations that each rewrite operation
can be computed efficiently using parallelism. A consequence of the above proposition is

that sequences of simple rewrite operations can also take full advantage of parallelism.
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5. EQUIVALENCE PRESERVING TRANSFORMATIONS

The last two sections of this paper focus on restructuring of types. In particular, natural
local transformations on types preserving data capacity (Section 5), and augmenting it (Sec-
tion 6) are introduced. A fundamental result in this section (Theorem 5.3) states that the
equivalence preserving transformations are “complete” in a formal sense. In both sections,

the semantics of transformations are expressed using “simple” rewrite operations.

As noted in the introd}ucti‘on, data “relativism” refers to the phenomenon that two data-
base schemas may hold essentially the same data. This arises in the important areas of user
view definition, schema evolution, and schema translation. Previous work on data relativism
[ABi,AABM,HM,H,HY,MB] suggests that an intuitively appealing formalism for comparing
the data capacity of two structures can be based on local structural manipulations. This is
substantiated in particular by results in [HY], which show that a family of 6 transformations
and their inverses are “complete” for proving equivalence of information capacity between
types (for which all domains are infinite). The results of this section generalize these results
to include one-element domains, and relate them to the simple rewrite operations. The aug-
mentations of the next section appear to provide a natural generalization for these transfor-

mations to increase the data capacity of types.

Before embarking on the formal development, we present a simple example which indi-
cates how local manipulations might be applied in the context of database schema evolution.
The example involves the two related types shown in Figure 5.1, which might be used to
represent family units in some culture. Assume for a moment that in this culture, a family

unit consists of either an adult female, or a married couple. (Unmarried adult males in this

(a) | ®)

Figure 5.1: The Polyandry Example
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culture have no “legal” status). The type shown in part (a) can represent family units under
this assumption: objects of this type consist in either a female or an ordered pair, with first
coordinate a female and second coordinate a male. Suppose now that a new law has been
enacted within this culture, which allows women to take more than one husband. Then the
type in part (b) can be used to represent family unit. It is clear in this case that existing
data stored in the structure of (a) can be translated into the structure of (b). This raises the
question of whether the type (a) can be transformed into the type (b) using a sequence of
capacity preserving and augmenting manipulations. As shown in Figure 5.2, the answer to
this question is affirmative. (Note that the first four transformations here preserve data
capacity.) Furthermore, as implied by Theorem 6.3, the correspondmg mapping on objects is

realized by a single simple rewrite operation.

We now define nine structural transformations on types. As we shall see, these transfor-
mations preserve the data capacity of types. The transformations are presented in five
groups; the first three of these are essentially trivial, while the latter two are more provoca-
tive. The transformations are first defined as they occur at the root of a type, and then gen-
eralized to permit their occurrence at an arbitrary node of a type. Three simple examples of

these transformations are shown in Figure 5.3 below.

Definition: The capacz'ty'preserving transformations (cp-transformations) are as follows®:

Renaming cp-transformations:

F % gﬁ%f’ =>F
A M

F M F F M F lF M

(a) (b) () (d) (¢) -

Figure 5.2: Structural transformation of a type which utilizes 1 types

8 The result of 2 ¢

icular, siblings of a given node must have distinet tokeus. We do not
consider here this detail. '
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>S5, §; S5
1 Sz T LhT T,
collapse ® © through ®

(a) (b)

Figure 5.3: Examples of cp-transformations

(i) B:t is obtained from A:t by renaming.

Simple x cp-transformations:

(i) replace P:[T,,...,T, ,Q:[S,,...,S ]T1+1’ ,T | by
PiT e, Ty S 1oeesS s Ty oo Tl

(iii) replace Q:[T] by T;

Simple + cp-transformations:

(iv) replace P: <T; 1,Q <8,;...;8 >;Ti+1;"';Tn> by
P:<T;..;T,. 1,S ,Sm,Tk+1,...,Tn>;

(v) replace Q:<T> by T;

Rising + cp-transformations:

(vi) replace P:[T,,...,T, ,Q:<S,...,.8_> s Ty T,] bY
P:<Q:[T,,...,T, ST Tn],...,Qm[Tl, TS s T e s Tpl>s

(vii) ‘replace P:{<Tl;...;Tn>} by P:[Q:{T,},-,Q,:{T };

cp-transformations with 1:
(viii) replace P:[T,,...,T, ,1:1,T,

P:[Tl T1 1’T1+1’ Tn];

i+12 Tn] by
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(ix) replace P:{1:1} by P:<1,:1;1,:1>;

Suppose now that S is a type with a node p and the type R.below it, that R’ is constructed
from R using a cp-trahsformation, and that S’ is constructed from S by replacing R by R’ at
p. Then S’ is the result of applying an cp-transformation to S, written S — S’. The reflexive,

transitive closure of — is denoted by —*. []

With each of these transformations, one can associate a one-one, onto function from
objects to objects. The corresponding functions are called restructuring functions. The

semantics of most restructuring functions should be obvious. For instance,

e  transformation (vi) maps an object P:[0,,Q:<R,:0’>] to the object P:<Q,:[0,,R,:0"]>;
and

e transformation (ix) maps the object P:{} of type P:{1:1} to P:<1;:1>, and the object
P:{1;:1} to P:<1,:1>.

Most of the restructuring functions are realized by a simple rewrite rule, as illustrated by
parts (a) and (b) of the next example. In the cases of transformations (iv), (vi) and (ix), a
family of simple rewrite rules is needed, as illustrated in part (c) of the example. In these
cases, the family of rewrite rules is "consistent”, in the sense that they operate on the

domains of distinct choice trees. If an cp-transformation occurs within a type with *-root,

Ezample 5.1: Consider the cp-transformations of Figure 5.3. They are realized by the follow-

ing rewrite rules.

(a) [[(x.¥l]2] = [xy.2];

() x = [ 2,(x), £y(x), pyfx)] where
Q, is the root token of T, for each i and
p1= 1ew(<Q :v>—-v),
p,= rew(<Q,:v>—v), and

py= 1ew(<Q,:v>—v); and

() {}-1;1,and {1}-1,1.
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The straightforward proof of the following result is omitted.

Theorem 5.2: Let R and S be two set types such that R — S (resp., S — R), then there is a
simple rewrite operation p which is a bijection from dom(R) to dom(S). Furthermore p

defines the same mapping as the restructuring function from R to S (resp., the inverse of S

~R). []

The next result of this section implies that the application of cp-transformations is
essentially Church-Rosser, transforming each type into a “normal-form” type which is unique
up to relabelling of nodes. For this, we need two definitions: the first defines the normal

form for types; and the second allows us to “ignore” the internal names in types.

Definition: A type S is in normal form if:

a.  there is at most one +-node in S, in which case the root is the +-node and it has more
than one child;

b.  1;is not a child of any #-node or x-node for any 1

c.  no child of a x-node is a x-node; and

d. each x-node has more then one child.

Definition: Two normal form types S and T are isomorphic (up to renaming), denoted S =

T, if § can be transformed to T using only renamings. -

The next result states that the application of the cp-transformations is essentially

Church-Rosser. (This generalizes results of [HY]; a proof is sketched in Appendix C.)

Theorem 5.3: Let S be a type. Then there is a type T in normal form such that § —* T,
Furthermore, if T, and T, are normal form types such that § —* T, and S —* T,, then T,

=T,. Also,if R is a type such that S —* R, then R —* T. []

We now present two notions for comparing data capacity of database structures that
were introduced by [HY], namely absolute dominance and equivalence. We will use these
concepts to prove the “completeness” of our cp-transformations, thereby generalizing results
of [HY] for formats.
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Intuitively, absolute dominance roughly captures the intuition that natural database
transformations should not “invent” data values. (See [H1] for more motivation.) To for-

mally define this notion, we first define the “active domain” of objects.

Definition: If O is an object, the active domain of O, denoted by act(0), is the set of all
atomic elements occuring in O. Also, if T is a type and X is a set of atomic elements, then
obj y(T) denotes {O € obj (T) | act(0) C X}.

We now have:

Definition: Let S and T be types. Then
e S is dominated by T absolutely, denoted S < T (abs), if there is some k such that for

each finite set X satisfying® |X n dom;| > k for each dom, appearing in S or T, |obj x(8)]
< |objy(T)]; and

o  Sis absolutely equivalent to T, denoted S ~ T (abs), if S < T (abs) and T < S (abs).
As a simple example, we note that P:[A:dom ,B:dom ] < Q:{A:dom,} (abs).

We now present a characterization of absolute equivalence between types which demon-
strates that (i) the collection of the nine cp-transfofma.tions and their inverses is “complete”
for absolute equivalence (Theorem 5.4), and (as a result) (ii) virtually any natural notion of
equivalent data capacity is identical to it (Corollary 5.5). These generalize results of [HY],
and their proofs are sketched in Appendix C.

Theorem 5.4: Let S, and S, be two types. Then S, ~ 8, (abs) iff there is some normal form
type T such that S| —* T and §, —* T.

It follows from Theorems 5.3 and 5.4 that rewrite operations are “complete” for absolute
equivalence. Also, it is decidable whether two types are absolutely equivalent (although it
appears that testing this is co-NP). Perhaps the most important implication of Theorem 5.4
is the following, which implies that essentially all notions of capacity equivalence for types
are identical to absolute equivalence.

9 This condition is included to prevent certain combinatorial technicalities from having an impact.
L]
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Corollary 5.5: Let xxx-dominance be any reflexive, transitive binary relation on types such
that

a. ifS—TorT— S, then S < T (xxx), and
b. if S < T (xxx) then S < T (abs);

and let xxx-equivalence be defined from xxx-dominance in the natural manner. Then S ~ T
(xxx) iff S ~ T (abs).

6. STRUCTURAL DOMINANCE

In this section, we define “structural dominance” (and “structural equivalence”), an intui-
tively appealing notion of dominance between types. This notion is based primarily on the
transformations introduced in the previous section, together with three new transformations
which augment data capacity. We prove that the new transformations also correspond to
simple rewrite rules in a natural manner. We conclude (Theorem 6.2) that any finite

sequence of transformations corresponds to a single simple rewrite operation.

To begin the formal development, we define the three data augmenting transformations,
here called “augmentations”, and use them to define the general notion of structural domi-

nance.

Definition: The three augmentations on types are defined as follows:

(x) replace P:<T;..;T > by P:<T;..;T ;| > for some d¢

(xi) replace P:< | ;...; 1 > by A.

(xii) replace P:<T;| > by P:{T}.

For types S and T, write S => T if one of the following holds:

(@ S=T,orT — 8§, or

(8) T is the tree obtained from S by replacing a subtree S’ of S by one augmentation of S’.

The relation =* is the reflexive, transitive closure of =>. Finally,
o S is structurally dominated by T, denoted S < T (struct), if S =>* T; and
o S is structurally equivalent to T, denoted S ~ T (struct), if S < T (struct), and T < S

(struct). []
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A straightforward application of Theorem 5.4 shows that for each S and T, S ~ T (abs)
iff S ~ T (struct).

With each of these transformations, one can associate an (augmenting) restructuring
function. The semantics of these functions is now briefly presented:
(x) is the identity ;

11> to A:a, for each i in [1..n], and some distinct values a;,...,a, in dom(A);

(xi) maps P:<
and

(xii) maps P:<O> to P:{0}, and P:<| ;| > to P:{}.

We now state the easily verified result that each restructuring function is realized by a

simple rewrite expression:

Theorem 6.1: Let R and S be two set types such that R => S, then there is a simple one-to-
one rewrite operation p from obj(R) to obj(S). Furthermore , defines the same mapping as
the restructuring function from R to S. 0

Using Proposition 4.3, it follows that:

Theorem 6.2: Let R and S be two set types. IfR < S (struct) (i.e., R =>* §), there exists a

one-to-one simple rewrite expression p from R to S. ]

It remains open whether the converse of this result holds.
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APPENDIX A

In this appendix, Lemma 4.2 is proved. The lemma is restated here for the reader’s conveni-
ence.

Lemma 4.2: If W — X from S to T énd Y — Z from T to U are decomposed, simple rewrite
rules, then there is a simple rewrite rule W — 2 such that (W — 2] = [W - X].[Y - Z].

To prove Lemma 4.2, we perform an induction on the “ *-height” of the type T:

Deﬁnition: For a type T, the *-height of T, denoted ht(T), is the maximum number of *-
nodes in any branch of T.

For the induction, we assume now that k > 0 and state the following:

Inductive Assumption: If W — X from S to T and Y — Z from T to U are decompésed sim-
ple rewrite rules and ht(T) < k, then there is a decomposed simple rewrite rule W — Z from
S to U such that (W — Z] = [W - X].[Y - Z].

Note that if k = 0, then this is a vacuous assumption.

To advance the induction to types T whose *-height is k, we prove four lemmas. Speak-
ing roughly, the first three lemmas perform an induction on the structure of X above the #-
frontier of T, and the last lemma performs an induction on the structure of Z above the -

frontier of U. We state all four lemmas first, and then present their proofs.

Lemma A.1: Suppose that W — X from S to Tand Y — Z from T to U are decomposed,

51mp1e rewrite rules such that
@ BH(T) =k;
(b) Zis of basic type or a rewrite expression

(c) X is of basic type.
Then there is a. variable Z such that [W — Z] = [W — X].[Y - Z].

Lemma A.2: Suppose that W — X from Sto T and Y — Z from T to U are decomposed

simple rewrite rules such that
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() ht(T) =k;
(b) Z is of basic type or a rewrite expression; and

() X is a rewrite expression.
Then there is a variable Z such that [W — Z] = [W — X] .[Y — Z].

Lemma A.3: Suppose that W — X from § to T and Y — Z from T to U are decomposed,
simple rewrite rules such that

(a) ht(T) = k;

(b) Z is of basic type or a rewrite expression.

Then there is a variable 2 such that [W — Z] = [W — X].[Y - Z].

Lemma A.4: Suppose that W — X from S to Tand Y — Z from T to U are decomposed,
simple rewrite rules such that

(a) ht(T) = k;

Then there is a variable Z stch that [W — Z] = [W = X] .[Y - Z].

In the following proofs, we generally assume that S = Pis, T = Q:t and U = R:u, and
that W = P:w, X = Q:x, Y = Qiy, and Z = R:z.

Proof of Lemma A.1: Suppose X = Q:x is of basic type. Then T = Q:t where t = dom, or 1.

It follows that z = y or z is a constant (possibly of a basic type other than T). Ifz =y, set
Z = R:xx, and otherwise set Z = Z. It is easily verified that W= 2] = [W - X].[Y - 2]

[

Proof of Lemma A.2: Let T = Q:{T’} and suppose that X = Q:rew(a)(w’), where w’ is a
variable occurring in W of type P:{S’} and A = {W, — X, | i € [L.n]}. Note that ht(S’) <

k. Because Y = Q:y is of set type and Z is either of basic type or a rewrite expression, it fol-
lows that Z is either a constant or a rewrite expression. In the former case, setting 2 = 7
satisfies the lemma.

Now suppose that Z is a rewrite expression. Then U = R:{U’} for some U’, and Z =

j
| there is a variable Z . such that [W. — 3 J= (W, — X] JV - 7j]=
1, 1 i,j

Letting T = {W, - Z,; | i€ [l.n] and j € [1.m]} it easily follows that [P’.w -
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Rirew(r)(w’)] = [Pw’ — Qrew(a)(w’)] .[Q:y — Rirew(s)(y)]. It now follows that the
lemma is satisfied by setting Z = R:rew(T')(w’). []

For the proof of Lemma A.3, we need the following easily verified result (proof omitted):

Lemma A.5: If X — Y from S to T is simple and decomposed, then there are choice trees S’
and T’ of S and T (resp.) such that

e {a(X) | a an assignment} n obj(S) = obj(S’); and
e {a(Y) | a an assignment} n obj(T) < obj(T’). []

Proof of Lemma A.3: For this lemma, we are assuming that T is an arbitrary type with =-
height k, and X = Q:x is an arbitrary term (constructed from W) over T, but Z = Rz is still
assumed to be of basic type or a rewrite expression. To prove the result, we essentially per-

form an induction on the structure of X.

For the basis of this induction, we must consider the cases where (a) x is a single vari-
able, (b) x is a constant of basic type, (c) X is a rewrite expression, and (d) X is 0. In case
(a), since W — X is decomposed, x is either of basic type or of set type. If it is of basic type
then Lemma A.l guarantees that there is an appropriate Z. If it is of set type, then T =
Q:{T’} for some typé T’, and y is a variable of set type. Letting Z be the result of replac-
ing all occurrances of y in Z by x now satisfies the lemma. Case (b) is handled by Lemma
A.1, and case (c) is handled by Lemma A.2. Finally, if X = Q then setting Z = Q satisfies

the lemma.

Before embarking on the induction, we address the special case (which arises only if k =

1) where T is of type Q:{1,} for some 1, We argue first that there is no rewrite expression

occuring in X. [For suppose that some rewrite expression appears in X, say rew(a’)(-).
Since T is of type Q:{1}, the right-handside of rules in A’ must be 1:1. Since [W — X] is

simple, the left-handside must also be of the form 1.:1 by (iv) of the definition of simple.
Thus w’ is of type {lg}, which contradicts (b) of the definition of decomposed.] It follows
that x is formed from the values {} and {11}, combined using zero or more applications of
the U operation. Also, because [Y — Z] is decomposed, Y = Q:{} or Y = Q:{1:1}. We crn-
sider two cases. First, suppose that {141} does not occur anywhere in X. If Y = Q:{}, then
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setting Z = Z satisfies the lemma, and if Y = Q:{lf:l} then Z = Q satisfies it. In the
second case, {1;:1} occurs somewhere in X. Thenset Z = Zif Y = Q:{1;:1} and set Z = g

Y = Q).

Turning to the induction, we must now consider the cases where X is built using a pro-
duct construction, a union of types construction, a set construction, or a set-union (u) con-

struction.

Suppose now that X = Q:[Xl,...,Xn] where X; = Q.:x, is of type T,forie [l.n]. Thus T
= Q:[T,,...,T ], and because [Y — Z] is decomposed, Y = Q:[Yl,...,Yn] for some terms Y, =
Qv i € [1.n]. By assumption, either Z = R:z where R is an attribute token and z is either

a variable or a constant, or Z = R:rew(Z)(z’) for some unconstructed set variable z’.
Because Y — Z is simple, if z (or z’) appears in Y then it appears in at most one of the terms

Y,. Thus, let i be chosen so that z (or 2z’) occurs in Y, if it occurs in Y at all. By the induc-

tive assumption, because X, is simpler than X, there is some Z’ such that W— 2= [W-
X .[Y; - Z).

At first glance, it would seem that (W — X].[Y - Z] = [W — XJ o[Y; — Z] always
holds. A subtlety here is that it is possible that [W — Xl oY, — Z] yields a value on an

object O in {a(W) | o an assignment} but that [W — X] .[Y — Z) does not. By Lemma A.5,
since each of the rules [W — Yj] and [Vj — 7] is decomposed, the image Yj is the domain of a

choice tree of TJ., and the image Xj is a subset of the domain of a choice tree of Tj. If there
is an integer j € [1..n] with j # i such that the choice trees of Xj and Yj are different, then [W
— X;]-[Y; = Z] = [W - q], and more generally, [W — X].[Y — Z) = [W - q]. Thus, we
define Z so that Z = Q if there is some j [1..n] with j # i such that the choice trees of X
and Yj are different, and Z = 7’ otherwise. It is now easily verified that this choice of %

satisfles the lemma.

Suppose now that X - Q:<X’> where X’ = Q’:x’ is of type T’. This implies that T =
Q:<T;..;T, > for some types T,...,T and T, = Q’:t, for some particular i € [1..n]. Further-

more, Y = Q:<Y’> where Y’ is of type Tj for some j € [1..n]. Two cases arise, depending on

1 1 B . > L I > o ~chacnn an
whether 1 = jornot. If i = j, let Z be chosen so

i#j,let Z =0q. This satisfies the lemma.

that [W = Z] = [W - X’] [V’ — Z]; and if

<% | of & iz
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Suppose now that T = Q:{T’} and that X = Q:{X,,....X} for some n > 0. Because we
addressed the possibility that T has type Q:{1;:1} above, we assume here that T’ is not of
type Q:{lle} for any 1. Because Y — Z is simple, this implies that y is an unconstructed

set variable, and that Z is either constant (in which case set Z = Z) or Z is a rewrite expres-

sion R:rew(Z)(y). For the latter case, suppose that © = {Y; = Z;|j e [1.m]}. For each pair
i,j there is a term zi,j such that (W — Zi’j] = [W - X °[Yj - Zij]' It is now easily verified
that setting Z = R:{Z; | i € [L..n] and j € [1..m], and Z;, # 0} satisfies the lemma.

Finally, suppos'e that X = X, u ... u X. As in the previous paragraph, Z is either con-

stant or set valued. If Z is a constant, set Z = Z. Otherwise, Z = Rirew(Z)(y) for some .
By the inductive assumption, there are variables Z, such that [W — Zi] = [W - X [Y -

Z) for i € [1..n]. It is now straightforward to verify that Z = Z,U ..U Z_satisfies the con-

ditions of the lemma. []

Proof of Lemma A.4: We now assume that T has #-height k, that X is arbitrary, and that Z
is arbitrary. We prove the lemma by inducting on the structure of Z.

For the basis, we must consider cases where Z is a basic constant, a basic type variable,
a rewrite expression, or 0. The first three of these are taken care of by Lemma A.3, and the .

last is satisfied by setting Z = Q.

Referring to the definition of rewrite expression, we must now consider the cases where 7
is build using a product construction, a union of types construction, a set construction, or a

set-union (U) construction. Suppose now that Z = R:(Z,,...,Z ] where 2, is of type T, for i €
[1..n]. Suppose inductively that for each i, Z, has the property that [W —- 2] = [W -
X] .[Y = Z]. It is now easily verified that setting Z to be R:[Z e Z ] satisfles the lemma.

Suppose now that Z = R:<Z’> where Z’ is of type T’. Assuming that Z’ has the pro-
perty that [W — 2’] = (W — X].[Y = 2’ It is now easily verified that setting % to be

R:< Z’> satisfies the lemma.

The cases where Z = R:{Z,,...,Z } and Z = Z, U ...u Z are handled similarly. []
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APPENDIX B

In this appendix, we exhibit examples to show that each restriction in the definition of sim-

ple is needed in order to ensure that simple rules are closed under composition.

a) Violation of (i). Let S = P:{P:<A:dom;C:dom,>}, T = Q:{A:dom,}, and U =
R:{R’:[A:dom,,B:dom |}. Let W — X from S to T be

P:w — Qirew(P:<Aiy> — Avy)(w)
and let Y — Z from T to U be

Q:{A:y,Az} — R:{R’[A:y,B:z],R’:[A:z,B:y]}
Thus, W — X has the effect of selecting from an object O € obj(S) those elements of type
P:<A>; and Y — Z yields a value only on one and two element objects. It can be shown
that there is no rule W — Z such that [W — Z] = [W - X].[Y - Z].

Suppose now that 8’ = P”:{S}, T’ = Q”:{T} and U’ = R”:{U}. It can also be verified
that there is no finite set A of rewrite rules from S to U such that R’:rew(a) = (Q":rew(W —
X)) «(R%:rew(Y — Z)). Speaking intuitively, a set A which satisfies this equation is

A= { P:{P’:<A:y1>,P’:<A:y2>,P’:<B:zl>,...,P’:<B:zn>}
— R:{R’:[A:yl,B:yI],R’:[A:yz,B:yl]} | n>0},

but this set is infinite.

-

b) Violation of (ii). Let § = P:{P:<A:dom ;B:dom,>}, T — Qi{Aidom,}, and U =
A:doml; and let a, be a fixed element of the domain of A. Let W — X from S to T be
P:w — Qirew(P’:<Au> — Aw)(w);
and let Y — Z from T to U be
Q:{A:a} — Aca,
Then [W — X].[Y — Z](O) is defined only if O contains the object P’:<A:a,> (and an arbi-
trary number of objects of type P’:<B>). As above, it can be shown that there is no rule W

— Z such that [W — Z] = [W — X].[Y — Z]. Alsos there is no finite set A such that rew(a)
= rew(W — X) .rew(Y — Z).

In this example, the set constant Q:{A:a } is used. The result on composition would still

NS I B A S . S [N ~ ~ 1 i 1
nolid il simple rewrite rules were permitted to have constants of basic types in premises.
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¢) Violation of (iii). Let

S = P:[P’:{K:[A:dom,,B:dom,|},P”:{K:[A:dom ,B:dom,|}],

T = Q:[Q"{K:[A:dom,B:dom,|},Q":{K:[A:dom,,B:dom,]}],
and U = R:{K:[A:dom,,B:dom,]}. Let W — X from S to T be

P:[P%w, ,P"iw,| — Q:[Q":w,,Q":rew(K:[A:x,B:y] — K:[A:y,B:x])(w,)]
and let Y — Z from T to U be
Q:[Q’:z,Q”:z] — R:z.

Speaking informally, [W — X] .[Y — Z](P:[P”:w ,P":w,]) yields a value only if Ty (W) = wy.
Because this condition cannot be expressed in a single rewrite rule (even if repeated variables

are permitted), it follows that there is no rule W — Z such that [W — Z] = [W = X].[Y —
Z]. Furthermore, there is no finite A such that rew(a) = rew(W — X) .rew(Y — Z).

In this example, a repeated variable of set type is used. The result on composition would
still hold if simple rewrite rules were permitted to have repeated variables of basic type. (In

that case, construction of the rule W — Z might involve a unification of such variables.)

d) Violation of (iv). Let S = P:{P:<A;B>}, T = Q:{1,}, and U = R:i<1;1,>. Let W —
X from S to T be

P:w — Qrew(P:<Aiv> — 1.:1)(w)
and let Y — Z from T to U be

Q:{} - Ri<1 21>

In this case, W — X tests for elements of type A. It returns {1} if there is at least one such
element and {} otherwise. Then Y — Z maps {} to <1,:1>, and is undefined otherwise.
Again, there is no rule W — Z such that [W - Z] = [W — X].[Y — Z], and no finite set A
such that rew(A) = rew(W — X) . rew(Y — Z). ]
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APPENDIX C

In this appendix, proofs for Theorems 5.3 and 5.4 are presented. These are straightforward

generalizations of results of [HY] to incorporate the one-element domains (1) introduced in

the present paper. For this reason, only sketches of the proofs are provided here.

Before demonstrating Theorems 5.3 and 5.4, certain functions on the natural numbers
called “characteristic functions” are associated to types. In particular, Proposition C.2 below
states that the characteristic functions of two normal form types are (essentially) equal iff

the two types are isomorphic. The characteristic functions are defined by:

Definition: Let T be a type, and let dom,,...,dom, be a listing of (infinite) domains which
includes all (infinite) domains occurring in T. The characteristic function of T (relative to

the listing dom,,...,dom, ) is the function!® ap: N kK N defined recursively by:
(2) if T = P:dom, then ag(x,,...x,) = x;;

(b) if T = 1.1 for some 1, then arp(Xg X)) = 1
(© I T =P{T;,.. T, then ag(x;peX) = I a (x,);

(a) if T = P:<T1;...;Tn> then "‘T(Xl"“’xk) = E"‘T,-("p'“»"k);

. =1

—
D
N

ifI1 T = P:YT )} then a(x.....x.) = exnla
L T\ 177 ks LA
Suppose now that T is a type over domains doml,...,domk, that X is a set of atomic ele-

ments, and that x; = [X n dom,| for each i € [1..k]. Then it is straightforward to show that

lobj x(T)] = aq(x,,....x,).

Notation: If o« and g are functions from N¥ to N, then o & B if there is some n such that

a(X55%,) = B(X,,...,%,) Whenever X, 2 n for each i e [1..k].

The significance of the characteristic functions is given by the following easily verified
result:

10 ve nY . . oy -. - . . 0
“"Here IN denotes the set of naturai numbers.
"Forn € N, exp(n) denotes 2”.
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Lemma C.1: For types S and T, S ~ T (abs) iff ag & ag. []

We now state:

Proposition C.2: Let S and T be normal form types. Then S is isomorphic to T iff ag ¥ ar.

This proposition is proved after a series of four lemmas. The first three of these focus on
the class of normal form types which have no +-node and which involve only one infinite

domain.

Definition: Let dom, be a fixed (infinite) domain. Then a type T is special if
() T is in normal form;
(i) T has no +-node; and

(i) The only infinite domain occurring in T is dom,.

Note that if T is special, then the characteristic function of T can be viewed as a func-

tion over one variable.

The first lemma used in the proof of Proposition C.2 provides a basic description of the

characteristic functions of special types. (The straightforward inductive proof is omitted).

Lemma C.3: Let T be a special type. If ht(T) = 0, then aj(x) = x™ for some m > 0. If
ht(T) > 0, then

ap(x)= xmx‘exp(aTI(x) + ot ap (x)
for some n > 0, some m > 0, and some special types T, with ht(Ti) < ht(T) for each i €
[1..n], and with ht(T,) = ht(T) - 1. ]

To compare characteristic functions of special types we use:

Notation: If o and g are functions from N to N, then a < g if there is some n such that a(x)

< p(x) for each x > n.

Using Lemma C.3, it is easily verified that:
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Lemma C.4: If S and T are special types with ht(S) < ht(T), then for each g € N, gag < ap.

O

We now show that the characteristic functions of special types are totally ordered by <: '

Lemma C.5: Let S and T be special types which are not isomorphic. Then either gog < ap
for each g € N or ga < ag for each g € N.

Proof (sketch): This is proved using an induction on max[ht(S),ht(T)]. If they have different
*-heights, the result follows from Lemma C.4. Suppose that they have the same *-height r.
If r = 0, the result is easily verified. If r > 0, by Lemma C.3, we know that

_ as(x) = xkxexp(as 1(x) + ..+ aS,(x))
for some | > 0, some k > 0, and some special types S; with ht(S,) < ht(S) for each i'e [1..k],
and with ht (S1) = r - 1; and analogously
ap(x) = xmxexp(aTI(x) + ot ap (x)).
By the inductive assumption, we can assume without loss of generality that the types

SpsSy and T,,...,T are listed in decreasing order under < of their characteristic functions.

The lemma is now demonstrated by considering the different ways in which S and T are
non-isomorphic: either there is some i < min[k,n] such that S;#T,ork #nandS§ =T, for

each i < min[k,n]. []
Using a similar argument to the above, it now follows that:

Lemma C.6: Let S and T be normal form types whose only infinite’ domain is dom,. If S and

T are not isomorphic then either ag < aporap < ag []

Proposition C.2 is the generalization of the above lemma to types involving more than

one infinite domain.

Proof of Proposition C.2 (sketch): Let S and T be normal form types, and doﬁ11,...,domk be a
listing of the domains occurring in S or T. If S and T are isomorphic then clearly ag & ap.
For the converse, suppose that ag ¥ ap. Let n be the maximum out degree of all x-nodes of

S or T. Following [HY], construct S’ and T’ from S and T by replacing each occurrance of
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domi by the structure {P:[Ql:doml,...,Qn_H:doml]}. Now S’ and T’ are special and g, & a,
so by Lemma C.6, S’ = T’. It follows from the construction of S’ and T’ that S = T as
desired. []

Proposition C.3 ensures that two absolutely equivalent normal form types are iso-
morphic. The following result shows that any type can be transformed into a normal form

type using the cp-transformations.

Proposition C.7: Let T be a type. Then there is no non-terminating sequence T =
T T, sTys... such that T; - T, , for each i > 0.

Proof: Following [HY], we recursively define a function o from types to N as follows:
() if T = P:dom, for some dom,, then ¢+(T) = 4.

(i) ifT=1p1 for some 1,, then o(T) = 4.

(i) if T = P:[T,...,T,], then o(T) = exp( I o(T),)).

1=1

(v) if T = P:<T;..;T >, then o(T) = 2x( 334(T)).

(v) if T = P{T,}, then'? o(T) = hyp(o(T,)).

As in [HY], it is straightforward to verify that ¢(T) < o(S) whenever S — T. (In particu-

lar, this holds for the two cp-transformations involving 1.) The proposition now follows. ]
We now have:

Proof of Theorem 5.3: Let S be a type. Note that if a type is not in normal form, then an
cp-transformation can be applied to it. From this and Proposition C.7, it follows that there
is a normal form T such that S —* T.. Suppose now that T, and T, are normal form types
such that § —=* T and § —=* T,. Then T, ~ S ~ T, (abs). By Lemma C.1 and Proposition
C.2, it follows that T, is isomorphic to T, as desired. Finally, suppose that S —* R. Let T’

be a normal form type such that R —* T’. Then S —* T’, and so T and T’ are isomorphic.

Thus, T’ =* T by renaming cp-transformations, and by transitivity, R —* T as desired. []

12 The hyperezponentiation function is defined recursively by hyp(0) = 1 and hyp(i+1) = exp(hyp(i}).
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Proof of Theorem 5.4: Let S| and S, be types. If there is a normal form T such that S, —¥
T and S, —* T then clearly S; ~ S, (abs). For the converse, suppose that S, ~ 8, (abs).
Let T, be a normal form type such that S, =* T, for i = 1,2. Then T, ~ T, (abs). It fgllows
from Lemma C.1 and Proposition C.2 that T, is isomorphic to T, and so T, —* T, by

renaming cp-transformations. Letting T = T, now satisfies the theorem. []
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