N

N

Multi-level,convergent systems:minimizing the
in-process inventory in stochastic environment
C. Libosvar, Jean-Marie Proth, Ph. Varin

» To cite this version:

C. Libosvar, Jean-Marie Proth, Ph. Varin. Multi-level,convergent systems:minimizing the in-process
inventory in stochastic environment. RR-0552, INRIA. 1986. inria-00076002

HAL Id: inria-00076002
https://inria.hal.science/inria-00076002
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://inria.hal.science/inria-00076002
https://hal.archives-ouvertes.fr

Rapports de Recherche

N°® 552

MULTI-LEVEL,
CONVERGENT SYSTEMS :

MINIMIZING
THE IN-PROCESS INVENTORY
IN STOCHASTIC ENVIRONMENT

Camille LIBOSVAR
Jean-Marie PROTH
Philippe VARIN




May, 1986

MULTI-LEVEL, CONVERGENT SYSTEMS :
MINIMIZING THE INVENTORY COST
IN STOCHASTIC ENVIRONMENT

by

Camille LIBOSVAR *
Jean Marie PROTH **
Philippe VARIN*

ABSTRACT

This paper presents a set of flow-control policies for industrial systems
described as networks of processors and buffers.The main results are first
described in the case of a "single processor, single buffer" system facing a
normal distributed demand : for such a system, the replenishment policy that
minimizes the inventory while keeping the probability of going out of stock less
than a given € is presented ; it appears that this policy leads to replenishments
that can be forecasted as normal variables, just as the final demand is...
Hence the possibility to extend the model to multi - level systems.

Itis also pointed out that in a multilevel system, the control parameters €
that measure, for each buffer, the maximal probability of going out of stock can
be computed in order to ensure that the final demand be satisfied with a given
probability and that the global inventory cost be minimized. At last, the
assumptions subtending this model are discussed and adjustment is
proposed for cases of limited capacities. '

* Aluval Pechiney, 38340 zone industrielle de Voreppe.

** INRIA Nancy, Chateau du Montet 54500 Vandoeuvre.
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Introduction :

In a hierarchical production-management system, flow control is generally
achieved in deterministic environment because, at this level, only families of
products and groups of machines are considered and it is assumed that their
stochastic behaviours balance one another and that mean-value forecasts
are enough... The consequence when these forecasts are not very reliable is
that the policy computed does not fit actual needs.

We assume in this paper that a second information on forecasts can always
be determined to characterize their reliability and we present a set of
algorithms defining a flow control policy in stochastic environment. :

The first part is devoted to a descripition of the replenishment policy for a
"single processor , single buffer" system ( that is, the basic module of our
models ) with infinite capacities and normal distributed demands : it is proved
that the replenishments have the same probabilistic characteristics as the
demand, which allows us to generalize this policy to multi-stage systems . It is
also demonstrated that in case of two-stage systems, the safety stock can be
shared between the two levels in order to minimize the global cost, just by
modifying the parameters of replenishment policy at each level.

‘The second one presents the most general formulae describing the policy
previously characterized in case of multilevel and multiproduct systems. The
problems of computation of the optimal parameters of this policy and of
assignment in case of insufficient in-process at a given level are posed.

The third part, at last, discusses the main hypothesis of this heuristic
method ( ie. the demands probability law being assumed normal ) and
presents a pragmatic approach to take limited capacities into account : it is
pointed out that, though they have prooved to give good results in practice,
these algorithms lead to replenishments that cannot be considered as normal
distributed. :




1/ Basic results :

2/ Replenishment policy for a" kernel system " :

If we consider the system consisting.of a mono-product processor and a finished-product
buffer and assume the demand (d) it has to face ( see fig. 1) is normal distributed, then
the replenishment policy leading to the lowest inventory level subject to :

Vt21,Pr(y,n<0)<eg ( which means that the probability of the demand's
exceeding the inventory level has to remain less
than a given parameter € ).

is described by the formulae :
0

N
vi=2 FY(1-8) + @ + ['21%- Vv -yl

vy=F1(1-€) . (%-%,) + Pren +a.t-1

t+N
and leads to the inventory levels : Yun =2 -F'(1-8) - Xa
i

where

- yis the inventory level atthe end of period t.

v, is the replenishment decided at the beginning of period t.

N is the lead-time of the processor, supposed to be constant :if a replenishment
Vi=X occurs at the beginning of period t, then the quantity x of finished
product will become available at the end of period t+N in the buffer.

¢.is the estimate of the demand expected for period t :

— the actual demand will then be d, = @, + a, where a, is the value taken by a
random normal variable of nil mean value and standard deviation o,

supposed to be known ; if i#j then a; and a; are independent.
- Y =Vol+.. + Ow.n? is the standard deviation of the demand cumulated over

periods t to t+N, that is, the demand that has not yet occured and will affect
the inventory level y, , .

- F is the distribution of the standard normal variable : F-! is the reciprocal function.

- The star convention indicates that the values taken by the referred variables are
known when the formula has to be applied ( ie at the beginning of period t ).

replenishment production final demand

——»  PROCESSCR

Vi = Vin ¢, + a;

lead time : N periods

inventory level : Yt

FIGURE 1.
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It appears then that the replenishment will be computed as the sum of three different
terms :

— The first one makes it possible to keep a security margin,-taking into account the
foreseeable difference between demands and forecasts : this margin is set in the first
replenishment to build a safety stock and the following replenishments just modulate it
according to the evolution of the expected quality of the forecast...

e.g. if the standard deviation of the difference between demand and forecast is
constant over-time, then this term is nil in all replenishments but the first one.

— The second one is the forecasted demand for the period during which
manufacturing of the reordered raw material will be completed ;

— The last one takes into account the state reached by the system : in the first
replenishment, this term is equal to the inventory level that would be reached justin N
periods (so the last inventory level that will not be affected by the replenishment v, ) i
demands were equal to their forecasts for the N periods... and in the following
replenishments, this term is equal to the last difference established between demand
and ffchrecast, in order to update the last virtual inventory level that the replenishment will
not affect.

It thereby appears that, besides the first one which is determined by the choice of a
time origin and the. measure of the initial inventory level, the replenishments will be
the sum of a term depending only on the demands-forecast and the value
‘taken by a random normal variable ( i.e. a quantity that is statistically known)

This result demonstrates that it is possible to apply the same replenishment policy to
any level of a multi-stage system consisting in several so-called "kernel systems” in
series : the demands the upper level will have to face are the replenishments decided at
the lower level but the result stated above ensures that they will have the same
f:haraclterisltics as the final demand... and that upper-level forecasts can be inferred from
ower-level's.

b/ comou’tation_of the control parameters in order to minimize the
global inventory cost :

In the replenishment policy described above, the only control parameter is €, i.e. the
upper bound for the probability of going out of stock : its value determines the safety
stock ;. F! (1- € ) which is also the mean-value of inventory level y,,, since ¥ a, is a
normal variable with nil mean value. -

In the case of the two-stage system, there is one control parameter v for the upper
level and one for the lower level : €', and the probability of not going out of stock at the
lower level is : _

Pr(yl>0)= Pr(yy>0/y4\>0)xPr (Y4p>0)
>1-¢ >1-gv
We can then state another controi parameter € for the finished product such that
Vt,Pr(y.<0)<e
and thereafter compute €* and €',since we have established that :

1-€=(1-&')x (1-¢) ie. E=g'. g - (eu+g).

The point is then, with given inventory cost functions kvand k' at the upper and lower
level, to compute the parameters €uand €'in order to minimize the global cost of the

safety stock : »
K=k'(F'(1-€)x );Zt°)+kl(F-'(1-sl)x ;2,‘)
t+N

~ subjectto : g. e -(e+e')=€, where Vije{u,l}, Xu=+ igt (642

( N’ being the lead time at level j and o, the standard deviation of the difference between
demand and forecast for period i at level i)




2/ Generalization to systems modelized as networks of
tandem-workin rocessors and buffers: '

The system is supposed to be described as a sequence of p "levels" - ( the pt )
level has to face the final demand whereas the first one transforms raw material and
has an infinite replenishment capacity ) - each level "I" grouping a number "n(l)" of
mono-product processors and the buffers associated, so that the ithprocessor picks
parts in different buffers of level "l -1" to manufacture products in a given amount of time
corresponding to "N (1,i)" periods and replenishes its buffer :

: ' !

N (1)  N(12) N (-1.3) leadtimes N (--1,n(-1))
level -1
: BUFFER BUFFER | :
(-1,2) (-1,3)
d(-1,) =
n(! [ ¢ —¥
é—f M (L) x v (Ljt) |
N (1) N (,2)| leadtimes N (Ln()) ,

forecasts : fori=1..n() » O(it) & o(ii)

FIGURE 2.

n



a/ Replenishment policy : |

We assume that informations are given concerning the final products (i.e. the
products available in buffers of pt" level ) : ,

Vije {1.2...n(p)} -i.e. for each final product -,
— demands forecasts ¢ (p,j,t).; , With the standard deviations associated :
O (p.j.t) -1 h that are expected for the differences between demands
and forecasts - h is the planning horizon and t is the period index -.

- upper bound of the probability of going out of stock, while facing the final
demand : € (p,j).

~ We also assume that the composition of the products at each level is given by means
of the matrix M : the production of one unit of product by processor i at level | requires
- M(l,j,i) units of product taken in the buffer of the jtrbuffer of level I-1. -

The replenishment policy for the whole system then consists in an iteration of the
computations described above, beginning with the lowest level : once the control
parameters € (l,i) are determined for each buffer - we shall see hereunder how -,-the only
diffel_‘re[mceI with the algorithm suggested above is the need to compute the forecasts at
each level ;

for any Ievell'e‘{p, p-1,...1} and for any processor je {1,2...n(l)} at this fevel,
we will compute the replenishments according to the formulae :

. N('!) 0 * *
SVEL) =F [1-80) Ix £ (Li1) + @ (Lj,1+N(Lj) +t>_31l(P(LLt) i _%(”‘)/ (tLit) -y (13.0)

|band, Vt22 v(jt)=F'[1-€0)]x[E (it - 5 (Ljt-1)] + ¢(I,j,t+N(l,j)) +a (Ljt1)

Hence the demands forecast for next upstream level :

? (1-1,i,1) M(Lij)x v(lj1) and G (-1,,1)=0 whereas Vit>2,

® (-1,ih)

n(h)
=X
]=1
M _ ,
= ?:1 M(LL) x { F-U[1-8 (L) Ix [Z (Lit) - 2 (Lit-1) T+ @ (Lit+N(L) }

and G (F1,it) = V"%: [M(Lij) O (Lit1)]?
j=

with the same conventions as in part one for X :
kN,

Vie{(12..p}, Vie{1,2..n()}, Vte {12...h}, T (L =V ”z“( 20‘ (1i,k))2
k=t

This algorithm makes it possible to compute the forecasts at any level and then the
replenishments that lead to the lowest in-process inventory subject to the conditions
stated by the control parameters € (l,j) chosen ; as the replenishments are computed by
means of the same formulae as in part 1, the inventory levels will have the same
expressions too and the safety stocks will depend on the values given to the control
parameters. Hence the possibility of an optimization. :




b/ computation of the control parameters :

As the safety stocks can be computed according to the same formulae as in part one,
computation of parameters € (1,j) will be achieved on the basis of the same principles as
in the case of the simple two-stage system in order to minimize the inventory cost ; an
additional asumption concerning the replenishment of in-process parts when the
demand from down-stream processors (i.e. the replenishments required in order to reach
the objectives) exceeds the current quantity in stock ( e.g. in buffer (I-1,i)) is required :

we assume that in this case, the parts available in buffer (i-1,i) should be shared
between all the processors that demand them in order that the ratio demand / supply be
the same for all of them ( we shall see that this assignment policy is not optimal). The
replenishments for these processors would then be cut down to the values given by
following formulae :

Vie {1.2..n(}, v, )=v(,jt)-8(-1,it)x] M(,i,j)/ %’, M(,i, k)]

where v (l,j,t) is the replenishment required for the targets to be reached and defined
by the policy previously described, and & (I-1, i, t) represents the lack of components in
buffer (I-1, i ) at the beginning of period t :

S(F1,it) = d(-1,i,t)-[y (F1,i,t-1) + v (}1,i,t-N(-1,i)) ]
nZ(')M(I,i,j)xv(l,j,t) [y (1,0, t1) + v (1,0, t- NQ-1,) ) ]
j=1

Then the probability of not going out of stock for any final part can be computed as
the product of the relative probabilities of not going out of stock for any component,
relative meaning that these probabilities just take into account the randomness of the
demand and assume that the replenishment policy is applied ; we will then state that the
upper bounds 1- £ (l,j) of these probabilities are subject to :

CVie{1.2.n()}, w(p,j)=1-€ (p,j)

where € (p,j) is given as the upper bound for probability of final product j of
going out of stock and matrix Tt is defined by the formulae :
-Vie{1.2.n)}, w1, j)=1-€(1,)
- Vie {23..p},Vie {1.2..n()}, =(L{)=[1-€(j)] x T ®(-1,))

ie {1,2..n(l-1)}
and M(Lij =0

Exactly as we have seen it for the two-stage system, the level of the safety stock for
any processor (l.{) depends on the so-called control parameter € (1,j) and, if it is possible
to determine inventory cost functions k. (y) for all the stocks, then computation of all
these control parameters becomes a rathbr complex problem of non-linear programming
.nat can be posed as :

_ p n(l) _ h )
Min 2 X k;( F-e)) x[Z 2] )
€e My (L) 1 0=t t=1 :

subject to : Vije {1,2...n(l)}, 7(p,j) =1-€ (p.j)
where Myo,1; (P.L) is the set of pxL matrixes with real elements ranging in [0,1]

and L=max {n(l)}.
le{1,2..p}



¢/ actual allocation policy :

As we pointed it out in previous paragraph, the rule stated for allocation in case of lack
of components is nothing but a convenient assumption in order to compute the control
parameters ;.it is however obvious that the actual allocation policy in that situation will
not be based on this rule which can lead to a misusing of insufficient resources :

for example, let us assume that a given component C, is required for production of
parts P, and P, which result re%pectively of assembly of components C, and C, ,
and CQ and C2 . P1 = Co+ i and P2= Co+ Cz res

If the demands of parts P, and P, amount to five units whereas the quantities in
stock are eight units of component C, , five of component C, and three of
component C, , then we notice that the rule previously stated leads to the
assignment of four units of component C, for assembly of each part P, and P, .
However, only three units of P, can be assembled, due to the lack of component
C. ...The optimal policy in this case would have been to assign five units of C, for
assembly of part P, and only three for assembly of part P, .

In any case, when the replenishment policy cannot be applied because of a lack of
components, the assignments will be fixed so as to minimize the difference between
objective and actual replenishments : if , at the beginning of period t, the stocks of
components at level | -1 happen to be too low, then the replenishments v(l, j, t) will.have
to be cut down to v**(l, j, t) while these quantities are computed by means of any linear
programming algorithm in order to achieve :

n(l)
Min X [v(,jt)-v™(jt]

1
subject to :  Vje{1,2..n()}, v*(.it)el0,v(j 1]
and also : Vie{12..n(-1)}, 8=(1,i,t) <0

where 8**(1-1,i,t)=>n:mM i Dx v (i) =Ly (R1, i t1) + v (11,0, t-N(-,) ) ]
j=1

And this assignment policy would ensure the best use of components in case of
shortages ... :

Remarks :

1° This computation will be achieved rather seldom if the probability of going out of
stock is bounded to a low value and only in order that no resource be misused .

2° Computation of the control parameters is achieved according to an equation that
conects them to the probability of going out of stock for final products ; as this equation is
based on a sub-optimal assignment rule, this probability is slightly overestimated in the
computation of the parameters. These ones will then be a little stricter than necessary.

3 All the theory developped above is based on the result which shows that if the
demand is normal-distributed, then the optimal replenishment will be too. Two major
objections can be raised against the implicit assumptions subtending this approach :
first, neither demands nor replenishments can physically take negative values and then,
this approach does not take the finite capacities of processors and buffers into account.




3/ A pragmatic approach in case of finite capacities :

We will examine first in what extent the assumption we have done concerning the
distribution of the demands can be maintained and then how to cope with anticipate
demands increases in case of finite capacities.

a/ truncated normal-distributed variables :

Let us consider an "internal’ demand, that is, for a given buffer, the effect of the
replenishments decided at next downstream level : their theoretical value is normal
distributed but their actual value has to be positive .

We can then state that this latter will be defined by equations :

Vie{12...p}, Vie {12..n()}, Vte {1,2...h}, vz(lit) = Max {0, v(Li,t)}
and we will abbreviate it : va(li,t) = v(l,i,t)*

Hence the actual ditribution of the replenishments values :

.4
(1) Fla)s@-a) .
A

1
'
'
'
'
'
'
'
1
'
'
1

m

a t

where 3 is the Dirac function and parameter 'a’ is nil. This 'pseudo-normal' distribution
is then defined ( in the most general case ) by following equations :

{Vt>a,fa(t)=f(t)
Vt<a,fi{t)=0
and  f(a)=F(a) x5 (0)

where f is the distribution of the normal variable of mean- value m and standard
deviation ¢ and F(a) is its integral over | - « a].Then the probability for a pseudo-normal
distributed variable to take the value a is no longer nil as it would be for any continuous
distribution...

This shows that in considering the demands as normal-distributed whereas they never
take negative values, one systematically underestimates them. Unfortunately, this
‘pseudo-normal’ distribution has not the good properties of the normal distribution - the
sum of two pseudo normal variables is not a pseudo-normal variable... and the policy
developped above cannot be extended to the case of 'pseudo-normal’ distributed
demands, which would be a better model.

We will then go on assuming that demands are normal-distributed, which is a legitimate
hypothesis as regards the problem of negative values of demands as long as the ratio
mean-value / standard deviation is greater than two : the probability for a demands taking
a negative value will then be less than 2.5% ... As the errors on demands estimates are
not cumulative ( computation of replenishments is based on the last inventory level
actually reached ), they will not be of great impact . ' ‘
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Rather than know if the demands are normal distributed or not, the actual problem in
case of finite capacities is in fact how to compute the replenishments in order to take into
account future increases in demands which could require objective replenishments
exceeding the actual capacity : as there is no miraculous solution to such problems, the
only one lies in storing products in prevision of high demands ; our point must then be to
take "long term previsions” ( i.e. not only these N ones concerning the demands that will
take place during the time the replenished quantity is manufactured ) into account in our
replenishment policy . :

b/ forecasting in replenishment policy :

If we consider once more our kernel system under the assumption that demands are
normal distributed, be they positive or not, then we have proved that, at a given point in
time, objective values of future replenishments are functions of next replenishment to be
decided :

u+N u-1 ut
in fact, V>0, Vuzt, vy=X xF'(1-€) + 9,+ T a,- ZV -Yo
i=1 i=1 i=1-N

u+N t-1 t1 u-1 u-1
thatis: v, =X xF'(1-€)+ Zo+Xa"-Tv-Ya-Yv, - Yo .
i=1 i=1 i=t-N i=t i=t

These formulae demonstrate clearly that, at the beginning of period t, when
replenishment v, has to be decided, the values that future replenishments v, will take can
be represented as sums of three different sorts of terms : ‘

- one term is itselfthe sumof (u-t) values that will be taken by the random
normal variables a, ; then its probability law is known. .

- another one is the sum of (u-t) future replenishments and among them, the
replenishment to be decided.

- the remainder is exactly known at that point of time : demands forecasts,
previous replenishments etc.

We will then appply the same type of logic as in part one and compute the minimal
value v, this replenishment v, should take in order to ensure that the probability for
theoretical value of future replenishment v, to exceed the capacity M be less than a
given parameter €, .

This minimal value will be obtained as the value to give to replenishmeht v, in

order that Pr (v, > M) < €, provided that all intermediate replenishments are set to their
maximal possible value, tP\'at is, are equal to the capacity M ( this assumption ensures
that v,“ is actually the minimal value for the inequation to be satisfied ).

We can then state :

Pr(VU>M/ Vt+1 =Vt+2 =...= U'1 =M)
u+N t-1 t-1 u-1 u-1
=Pr(ZxF'(1-€)+Z0+ Za™~ T v'- Za- Ivi-y,)>M]
i=1 i =l i=1-N i=t i=t
u-1 u+N t-1 t-1

=Pr{ Za < (XZ,xF'(1-g)+ Xo+ Za*~ Xv -y, -(u-t)xM‘-v,]
i=t j=1 i=1 i=1-N
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As the probability law of variables a, is known and the right term of the inequality is the
sum of constants and unknown v, , the minimal value v\ to give to v, in order that this
probability remain less than g,, can be computed as :

u+N t-1 t-1
W= ZUx P (1-gy)+ S xF'(1-€)+ Yo +Xa’ Tv - Yo - {(ut)xM v
i=t  i=1  i=1-N

where SV = ¥ 62+0,,2+... + 0,2
(we state that 3,=0 if u < t and we observe that v,! is then equal to the objective value for
v, , according to the policy defined in case of inﬁnlte capacities, that is, in cases when
there is no need to take future demands into account...) :

and the value to give to replenishment v, will be : v@ =[Min {M, I}A;«Dg r{‘Vtu Y1
U=1, t+1, ...

where h is the horizon of the problem (i..the number of forecast periods ).

The same method can be applied in case of limited storage capacity S : replenishment
v, is fixed so that sorobability for inventory level y,  to be negative remain less than € : in
the same way, v,> can be computed in order that probability for Yi.n 1O exceed S remain

less than gg ...
t-1 t+N t-1 t+N
Yen =Yo + EV.“'Z(P,'{EG,'-Za,}+Vt %
i=1-N i=1 i=1 =t
t-1 t+N t-1 t+N
Hence: Pr(y, n>S) =Pr ({y,+ X v* - 3 ¢-{Xa"+Xal}+v]>S)
i=1-N i=1 i=1 it
t+N t-1 t+N t-1
=Pr(Xa <[v+y+ T Vv -2o-3%a" -S])
jat i=1-N i=1 i1
t+N t-1 t-1
and {Pr(yt+N>S) <&} & {v,> [ 2 x F'(1 -€g)+ L o+Xa’+S- T vy, 1}
i=1 i=1 i=1-N
e {v,> vS} »

The replenishment at the beginning of period t will finally be computed as :

I
V@ =[Mn {M, Max (v}, vS}]* |
u=tt+1,.. h i

That means in particular there is no legitimate reason for any replenishment to be
considered as a normal-distributed variable ; this is however the hypothesis we will keep
when dealing with multi-level systems : even if it is not, the demands inferred at each
internal level by the replenishments decided at next downstream level will be supposed
to be normal for computation of upstream replenishments ... because it is the only way to
compute them and because the method has prooved to give good results when applied

hive ! 4
¢ a computsr assembly plant .




Conclusion :

In the end, the approach presented in this paper can be considered as a
cross between mean-value analysis techniques for systems modelled as

queuing networks and dynamic programming methods to solve such

problems as inventory planning, in deterministic environment :

In fact, the scope is the same as for the first class of algorithms, the
assumptions on demands are restrictive too and valuation of the proposed
policy in case of limited capacity systems must be achieved by means of
simulation techniques ( valuation parameters could be for example inventory
level mean value, service to client rate actually reached... ).

On another hand, the hierarchical level concerned is the one of'

flow-control, that is, the same level as for the second class of techniques
evoked, and the entities modelled will be groups of machines and product
families rather than parts and machine tools, the main difference consisting in
the probabilistic approach of the criterion to optimize.
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