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The Calculus of Constructions
Thierry Coqﬁand and Gérard Huet

INRIA

Résumé

Nous présentons le Calcul des Constructions, un formalisme d’ordre supérieur approprié au développement
de preuves constructives dans un style de déduction naturelle. Chaque preuve est une A-expression,

typée avee les propositions de la logique sous-jacente. En effagant les types on obtient un A-terme

pur, qui représente 1'algorithme associé & la preuve. La mise en forme normale de ce A-terme
correspond 4 1'élimination des coupures. '

Nous pensons que la correspondance de Curry-Howard entre les propositions ¢t les types est
un guide conceptuel important pour Informatique. Dans le cas des Constructions, nous obtcnons
un language fonctionnel de trés haut niveau, avec une notion de polymorphisme appropriée au
dévcloppement d’algorithmes modulaires. La notion de type comprend la notion usuelle de type
de donnée, mais autorise aussi bien 'expression de spécifications algorithmiques arbitrairement
complexes. ' .

Nous développons la théorie de base d'un Calcul des Constructions, et prouvons un résultat de
normalisation forte impliquant la terminaison des calculs, et la cohérence de la logique. Finalement,
nous suggérons diverses extensions possibles.

Une version préliminaire de ce papier a été présentée au Colloque International sur les Types
de Sophia-Antipolis en Juin 1984.

Abstract

We present the Calculus of Constructions, a higher-order formalism for constructive proofs in nat-
ural deduction style. Every proof is a A-expression, typed with propositions of the underlying logic.
By removing types we get a pure A-expression, expressing its associated algorithm. Computing
this A-expression corresponds roughly to cut-elimination.

Tt is our thesis that the Curry-Howard correspondance between propositions and types is a
powerful paradigm for Computer Science. In the case of Constructions, we obtain the notion of
a very high-level functional programming language, with complex polymorphism well-suited for
modules specification. The notion of type encompasses the usual notion of data type, but allows
as well arbitrarily complex algorithmic specifications.

We develop the basic theory of a Calculus of Constructions, and prove a strong normalization
theorem showing that all computations terminate. The logical consistency is obtained as a corollary.
Finally, we suggest various extensions to stronger calculi. ’

A preliminary version of this paper was presented in June 1984 at the International Symposium
on Semantics of Data Types in Sophia-Antipolis.
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Introduction

The Calculus of Constructions is a higher-order formalism for constructive proofs in natural de-
duction style. Every proof is a A-expression, typed with propositions of the underlying logic. By
removing types we get a pure A-expression, expressing its associated algorithm, Computing this’
A-expression corresponds roughly to cut-climination. It is our thesis that (as alrcady advocated by
Martin-Lof [36]) the Curry-Howard correspondance between propositions and types is a powerful
paradigm for Computer Science. In the casc of Constructions, we obtain the notion of a very
high-level functional programming language, with complex polymorphism well-suited for modules
specification [8]. The notion of type encompasses the usual notion of data type, but allows as
well arbitrarily complex algorithmic specifications. We develop the basic ‘theory of a Calculus of
Constructions, and prove a strong normalization theorem showing that all computations terminate.
Finally, we suggest various extensions to stronger calculi. :

1 The abstract syntax of terms

Our term structures are inspired by the Automath formalisms. A term is a A-expression, where
variables are typed with types which are themsclves terms of the same nature. Lambda-abstraction
is written (Az : N)M. The name z is of course completely irrelevant, and belongs only to the
concrete syntax of the term. Abstractly, this binding operator is unary. Occurrences of z in the
concrete syntax of term M will be replaced by de Bruijn’s indexes [4], i.c. integers denoting the
reference depth of the occurrence. Thus the string (Az : M)(Ay : N)((z y) z) represents concretely
the abstract term A(M,A(N, (2 1) 1)). That is, the integer n denotes the variable bound at the
nth binder upward in the term. As usual in combinatory logic we write (M N ) for the application
of term M to term N (for a survey of the )-calculus with this notation see [4], or [1]).

We have a second binding operator for representing products: [z : A1M where A is a (type)
term denoting the domain over which z ranges. The same convention holds for this operator. Thus,
the string [z : Al [y : B](z y) represents concretely the abstract term [A1LBI1(2 1).

Our term algebra is completed by a constant *, which plays the role of the universe of all types.
In Automath languages, * is written prop or type. There is no analogue (in this versnon) of the
term 7 of Automath which represents the common type of both prop and type (see de Bruijn, 6]).
Here, in the spirit of the so-called “Curry-Howard isomorphism”, * must be thought of as the type
of all types, and the type of all propositions. However, note that there is no circularity here: * is
not of type *, though we shall see that this system is powerful enough to share many features with
systems possessing a type of all types (but still with a normalisation property [16]).

Terms formed solely of products over # are distinguished and called contexts. They are the
types of logical propositions and proposition schemas, all other terms being called objects. We
shall thus see that there are two kinds of types: the usual ones (which are certain objects, and
more precisely the objects of type +) and contexts, which are in a way “types of types”, and whose



role is to support full polymorphism. A

Because of the binding operators, our term structures do not form a free algebra, We must
cnsure that in [z : A1M the variable z may occur in M, but not in A. To do this, we now define
precisely the set A" of terms legal in a context of depth n.

Definition. We define the set of terms as:
A=AUA
where A, is the sct of objects (or individual types) -
| A, = U,.EQA?
and A, is the set of cozite:.(ts (or logical types)
| A, = Up3oAj

where the A} are the sets generated by the following inductive rules

* €A} " universe
[z: MIN€A? if M €A™ NeArH! quantification
and A? are the sets generated by the inductive rules
keAl if 1<k<n ' varsables
[z: MIN € A" if M €A™, N e AP : product
(Az : M)N ‘G AP if M eA”, N eArt! abstraction
(M N)EAP if M,NeA? application

and
A" = AJUAL.

The closed terms are the terms in A%, legal in the empty context *. We shall usually view
contexts as lists of terms, with quantification the list constructor. A context I' has an associated
length |T'| defined by:

|*| =0
[z: M3IA| = 1 + |A|
Nowif I' € A7 and A € A withn = ]I‘f, we define the concatenation I'; A as the context in AJ'
defined as A ifT' = *and as [z: M]A'if T = [z: MII' and A' = I';A. Finally, if T € A9

and M € A" with n = |T|, we use the notation I'[z : M] for the closed context T; [z : M]+.
Thus a closed context T' of length n > 0 may be written as :

I' = [24:Tpl[Zp—1:Tpad - [21: T4l

with T; € A®*, (The justification for this numbering is that in this context the de Bruijn index 1
refers to variable z;). '

We shall generally use meta-variables T', A for contexts and A, B, M, N, P,Q for terms in general
(i.e. objects and contexts). However, T; will denote the i-th element of context I' as defined above,
and this may be an object or a context. 4



Object. terins will serve to denote logical propositions, as well as individual and functional terms.
The latter may be thought: of as proofs of their types, according to the Curry-Howard isomorphism
[26). In particular, we shall interprot (Az : M)N as a proof of [z : MIP when N is a proof
of P under hypothesis M. Hence [z : MIN can be thought of as the universal quantification
(Vz : M)N as in the polymorphic A-calculus [24,40]. But it can represent also the product (ITz :
M)N. We adopt a uniforn notation for the abstraction over what is usually viewed as “proofs®
(corresponding to an introduction rule of natural deduction), and the abstraction over what is
~wsually viewed as “terms” (corresponding to functional abstraction). In the same way, we adopt a
uniform notation for application, denoting both modus ponens and functional application. More
explicitly, we consider that the A-notation, which was originally used for building terms of higher-
order logic [10], is also very well-suited as a notation for proofs, and our formalism tries to reflect this
fact. Note that our class of terms is almost identical to the one considered in Martin-Lf’s original
theory of types [32], but our syntactic treatment is closer to that of the Automdth languages, and
particularly to Jutting’s [29].

Formally we need a relocation operation, which replaces. every free variable & of a term M in
A" by k + 1, obtaining a term M™ in A"*!. Formally, M* is defined as (M) where ¢ is defined
recursively by:

&i(s) = » )
§i(lz: MIN) = [z: &(M)1&ira(N)
éi(k) = k if k << and k+ 1 otherwise
&i((Az : M)N) = (Az: &(M))&iv1(N)
&((M N)) = (&(M) &(I)).

Before giving the type inference system, we need one more notation. Assume that T is a
context of length n: I' = [Ty} {Ts-1]...[T'1]. For any variable k bound in T, ie. 1< k<n,
we define I'/k as add(k,Ts) where we define recursively the operation add by add(O M) =M and
add(i + 1, M) (add(¢, M))*. Basically, I'/k is T} “scen” in context T _

A general comment on our notations: we use de Bruijn indexes for a rigorous and complete
presentation of our rules, and we prefer them to the usual solution of Curry with renaming of
bound variables. But we never nced them in the “concrete” syntax used in the presentation of the
rules of construction, so these can be rcad in the usual way. For simplicity of notations, we shall
still write Az - N for (Az : M)N if the type M of z is determined from the context.

2 A first attempt at a construction calculus

We are now ready to define the calculus. It is an inductive definition of two relations. The first
one, I' - A, is a binary relation between contexts. The second one, I'\- M : P, is a ternary relation
between a context and two terms. We ensure that, when T is a context of length n, if T - A we
have A€ A7, and f ' - M : P, we have M € A? and P € A™.

Intuitively, I' A means that the context A is valid in the (valid) context ', and T+ M : P
means that, in the valid context T, M is a well-typed term of type P. Here contexts are terms
which are types, but are themselves non typable. For instance, * is not of type *, and actually, *
has no type at all. In the terminology of Martin-Lof, we have thus two kinds of “judgements”. One
is the judgement that a context is valid, and the other that a term is the type of another term. In
particular, T' I * says that the contextT is valid. We may think of I' - M : A as saying that in the
context I', M is a well-formed proposition schéma over a list of parameters declared by A. Finally,

3



we may think of '+ M : P, where P is an ohject, as saying that, in the context of hypothesis T,
M is a well-formed proof of proposition P. This terminology is consistent, since we shall sce that
if T+ M : P, where P is a term, then T'H P :x. Weabbreviate s+ - A ast-Aand s M : P as

FM:P.

2.1 The inference system of constructions

Under this intuitive interpretation, all the following rules appear'natural. We first give the rules
for construction of valid contexta: ‘

b
T+A
Tlz: Al -+
THFM:»
Tlz: M)t =
Next we give rules for product formation:

I'z:M]EA
TH[z:MlA
Tle:M] + My:+
T F [z: MiIM3:+ .
Finally we give rules corresponding to the variables, abstraction and application:

' »

—_— < . .
T F 1T/ (t<irp variable
Plo: M) - My: P abatraciion
T F (Az: Mi)Ma: [z: M1] P
T'-M:[z:P1Q TFHN:P ..
application

'+ (MN): [N/z]Q

In the last rule [N/z]1Q denotes the term obtained by substituting the term N for the inde)'c 1
in the term Q. This operation may be formally defined without difficulty [4].

2.2 Discussion

Some remarks are called for, since the extreme conciseness of this formalism may be an obstacle
for its understanding. What is the purpose of such a system? _

The main point is that these simple rules give us a complete presentation of both the higher-
order logic and the higher-order functional system of J.Y. Girard. This system prodives a very
concise notation for proofs in higher-logic presented in a natural deduction framework, while at
the same time it can also be viewed as a description of a type-checker for a programming language
with a powerful class of types. Note that we have in this system a uniform presentation for terms,
proofs and types. :

It is important to note that this kind of system contains a “built-in” notion of realisability, since
the notations for proofs are precisely thie A-terms. Since it is possible [31] to give a translation
of Topos Theory into Church’s calculus, we obtain in this way a notion of realisability for Topos
Theory. But our formalism is more general [16].



Syntactically, there are two kinds of types: the contexts, and the terms of type +, which we
shall eall propositions. The rules of type formation express that these two classes are closed under
product formation. One can sce the types which are terms of type * as the expression of the
Proposition-as-types principle: in this formalism, we identify a proposition (terms of type +), with
its associated type of proofs. Here, it is useful to think about Martin-Lof’s system ([34]) with
one unjverse: the term Uy of Martin-Lof’s system, which represents the type of all small types,
i3 the analogue of our *. But what is new here, is that the sct of all “sall” types is closed by
products over all types. For instance, in Martin-Lof's system, [A : UplA is of type Uy and not of
type Uy. Here, [A : ¥]1A is of type . Thus, although our calculus appears to be close to the one
of Martin-Lof, we encompass the non-predicative calculus of the Principia [48] with the axiom of
reducibility, as well as the second-order calculus of Girard-Reynolds [23,40].

Let us make this point more precise. We adopt the following abbreviations for the arrow: if z
~ does not appear free in M then we write M — N for [z : M1N. Also weuse the abbreviation VA-B
for [A: *] B. It is then straightforward to translate the system of Girard-Reynolds in our notation.
For example, the generic identity, written (Aa) - (Az : @) - z by Reynolds, becomes here Aa - Az - z.
The type of this term, which is written (Aa)(a — a) by Reynolds, is here [a : #](z : ala, or,
with the previous abbreviations, Ya - @ — a, that is, we infer F Aa-Az-z: [a: *][z: ala.

2.3 The need for conversion rules

This formalism is entirely self-contained, since even its linguistic aspect (the traditional notion of
well-formed formulax) is axiomatised within it. The A-abstraction is used in particular for forming
propositional schemas, which could in turn become arguments of such schemas for higher-order
reasoning. We necd now to complement this basic formalism with rules allowing for instantiation
of these schemas, that is conversion rules. :

Indeed, problems appear when one tries to translate the third-order (and higher) aspect of
Girard’s system. Note that these higher-order terms did not appear in Reynolds’ system, but are
present in the work of McCracken [37]. For instance, if we try to internalize our abbreviation of
the arrow as a definition, we define — as the term AA - AB - [z : A]1B of type VA -VDB - x. But
this is not sufficient: if ¢ is of type ((— A) B) and u of type A, then our rules do not allow the
application of ¢ to u. What is lacking here is a rule of type conversion: ((— A) B) is B-convertible
to [z : Al B, and so, one wants to say that ¢, of type ((— A) B), is also of type [z : Al B.

We are thus going to extend our previous calculus with conversion rules. In the terminology of
Martin-Lof, we introduce another kind of judgement M = N, whose intuitive meaning is that the
terms M and N denote the same object. There are many possibilities for doing this, and the one
presented here deals only with conversion rules at the level of types (and not at all levels, as in
[15]). This presentation has the advantage that the proof of decidability of this inference system is
easier. :

3 The calculus with conversion rules

~s

We thus add to the previous calculus another kind of sequent, of the form I' F M = N, where
B is a context and M .and N are terms. We try to formalise the notion of “logical” conversion
betwceen types.



3.1 The conversion rules

Definition. = is the smallest congruence over propositions and contexts containing f-conversion,
i.c. the relation defined by the following inductive rules:

'-A

TFA= A
THFM:A '
TFM = M 4 (#)
'FM & N
TFN =M

THrM N THFN=2P
TFM =P

'R =P T:P1F-M = M
I't[z: AIM; 2 [z: RIM;
TP 2P T:Pl-M = M; Tlz:P)F-M;: A :
TF (hz: P)M; & (Az: P2)Mg (+)

TH(MMN):A THM = M,

TF(MN) = (M N) (*)
THF(MN):A THFN =N, : (#)
TF(MN) = (M Ny)
IM'fz:PJFM:A THN:P (+)
TF((Az: P)M N) = [N/zIM °

the last rule being the most important (note that we restrict ourselves to the reduction of “logical” ‘
redexes), and we finally add a rule of type conversion:

'M:P THFHP = Q

‘ TEFM:Q ’
With these rules of conversion, we obtain what may be called the “restricted” system of con-
structions (by opposition to the system of [15], where the conversion is allowed at all the levels).

One advantage of this system is the fact that the decidability of all “judgements” can be proved
indcpendently of the normalisation theorem. A

Definition. The restricted calculus of constructions is the typed system defined by the rules of
the previous section and the previous rules of conversion. The (full) calculus of constructions is
the typed system defined by the restricted calculus where the starred rules are replaced by the
following rules: '

THFM:N
T-rM =M
TP =2 P Tlz:PlJFM = M I'lz: Pl]+M: N
r|—(/\z:P1)M1 = (/\E:Pz)Mz
TH(MN):P TFM = M; TFN = N
I‘"(MN) = (MlNl)

T{z:Al-M:P THN:A
TH((Az:A)M N) = [N/zIM

6



where we allow f-reduction over arbitrary A-terins (and this is the syqtom presented i in [18]).

Example. W(- want to define the intersection of a class of classes on a given type Ay. A natural
attempt is to take (where we omit types for legibility):

Cinter = Aa. Az.[P: Ag— ] (a P)— (P z)

80 that (inter a) is of type Ag— * whenever a is of type (Ap— *)— #. Assume that ng is a given
term of type (Ag— #) — #, Py is a given term of type Ag — * and we have a proof py of type (g Py).
We shall build a proof of the inclusion of (inter ag) in Py. Let = : Ag and h : (inter ag z). We
have to build with py, =, h, Py, ap a term of type (s z). -

Intuitively, b which is of type (inter o z) is also of type [P : Ag— +](ag P) — (P z) (by
“dohmtxon of inter), so that the answer must be the term (B Py pp). We have applicd here a
conversion rule. Let subset be the term AP - AQ - [z : Ag) P(z) —Q(z) of type [P : Ag—+][Q:
Ag — +]*. We can infer that the term Apg-Az-Ah.(k Py py) is of type (ag Py) — (subset (inter ag) Po).
This example shows that the rules of type conversion are absolutely needed as soon as one wants
to develop mathematical proofs (note that this example can be developed in the restricted calculus
as well as in the full calculus). The need for conversion rules is equally emphasized in [35] and [43].

3.2 A few properties of this calculus

In the following statements, the meta-variable E denotes an arbitrary judgement (which may be
of the form A, M : P or M = N). All these lemmas are valid for the restricted calculus as well as
for the full calculus. First, we need some lemmas which are provable by induction on derivations.

Lemma 1. If T + E, then ' I #, and more precisely, every derivation of I’ FE contains a
subderivation of A I x for all A a prefix of .

Lemma 2. IfT'{z: PIA+ Eand T+ M : P, then I'[M/z]A - [M/z]E.
Lemma 3. IT'FM:PandTTHFM=N, thenT'- N : P.
Lemma 4. KT-FM: N, anlesanobJect thenT'H N : #, andlfI‘I-M A, thenI‘F—A

Thus, the only types are propositions and contexts, and the type of a valid term is a valid term.
Finally, we may show that types are unique, up to conversion:

Lemma 5. I T~ M : Ny and '+ M : Ny, then T + N; = N,.
All the proofs are straightforward and given in full in [15).

Definition. Let T be a context such that T' - *, then a I'-proposition, or T-type, is a term M such
that ' F M : . A I'-context is a context A such that I' - A. Finally, a I‘-proof or I'-functional,
is a term M such that there exists a I-type P such that ' M : P

For the restricted calculus, we can state directly:

.Proposmon The relation I' - E between contexts and judgements is decidable in the restricted
calculus of constructions.

The proof in all details is rather long, but the main idea is simple, and its development straight-
forward. One defines first the notion of reduction 1> associated to our notion of conversion as:

'-M > N THN p P
"TFM p P

7



I'z:PI+M > N
TF(z:PIM b [z:PIN
Tz:P1FM b N Tlz:PIFM:A
I'(Az:P)M b (Az:P)N
Tlz:PIFM:x THPBPQ
'tlz:PIM b [z:QIM
IMNz:PIFM:A THPDB>Q _
TkAz: P)M b (Az: Q)M .
T[z:P1+A THPBQ
TH[z:PlIA b [z:Q]A
THF(MN):A TFM > M
I'-{(M N) > (M N)
'(MN):A THN p N
I'(M N) > (M Ny)
I'iz:Pl-M:A TFHN:P
TH((Az: P)M N) > [N/zIM’
Then the usual argument of normalisation for the (simply) typed A-calculus applies, with the
notion of complexity of a term defined as follows.

Definition. The logical rank §(M) of a term M is defined by the inductiie‘r\iles:
1. §(M) = 0, if M is an object ' '
2.6(x) =1
3. §([z : MIT) = maz(6(M)+1,6(T)).

Lemma 6. If T'+ M = N, then §(M) =6(N). .
This lemma shows that all the types of a constructed object have the same rank, and it allows
the definition:

Definition. Let T' I ((Az : P)M N) : A be a constructed (logical) redex. We definc the complexity
of the redex, as the rank §(P). The complexity of a construction I' - M : N is then defined as the
multiset of complexities of all its logical redexes.

Note then that this complexity decreases by innermost reduction, whence the existence of a normal
form, and the decidability of the conversion relation. The normalisation property of > entails the-
decidability of T - E.

Theorem. Given I' and M, it is decidable whether or not there exists a term N such that
T'+ M : N. Furthermore, if the answer is positive, we can compute cffectively such an N.

The proof is an induction on the sum of the length of M and the length of T, as in [32].

The reduction rules above correspond to the notion of instantiation for predicate variables (see
[47] for a more traditional presentation). Strong normalisation also holds, and this is also provable
analogously to the simply typed A-calculus (for example, see [44]).

For the full calculus, the decidability. property still holds, but its proof is harder, since we nced
the normalisation property for all constructed terms (since arbitrary proofs can appear in the types,
see 15]). .



4 Stripping_

We shall now show how to cxtract from a given proof (i.e. a given functional) its associated
pure (non-typed) A-term which represents in some way its computational contents. All this is a
generalisation of the realisability concept [30], but we use A-terms instead of Gédel’s codes for
recirsive functions, This can be done for the full calculus as well as for the restricted calculus.

First we develop the syntactic theory of ordinary A-calculus in a way which is consistent with
our notations.

4.1 Untyped A-calculus

We define the set A" of A-expressions generated by n vfl.'C(: variables by the following inducﬁve rules:

ke if 1<k<n * variables
Az-Nel" if Ne A+l abstraction
MN)el if M\Nei" . application

As before, the name z associated with the abstraction operation is a pure dummy which is not
part of the abstract structure.

4.2 The context contraction map

Let T' - # be a well-formed context. We shall distinguish in I' the quantifications over contexts from
the quantifications over objects, since only the latter will be considered free variables of stripped
formulas. The quantifications over contexts are used solely at compile-time, for polymorphism
type-checking. ‘ ‘

Definition. The number of parameters, or arity, ar and the canonical injection jr : ar — [T| of
a context I' are determined by the following inductive rules (confusing n with {1,...,n}):

.= 0 4= Idp.
I¥r = Alz : M1, then ifMisacontekt, we take ‘
| ar = ap, (k) = ja(k)+1,
and if M is an object, we take ‘
ar = ea+1, (1) =1, g(k+1) = ja(k)+1.

4.3 Untyping

Definition. if I' - M : N, and N is an object, we define the stripped algorithm vp(M) € A*" by
induction on M:

" 1. XM = k,wetakevpr(M) = j{l‘(k).

2. IfM = (M M), weknow that T - M : Py and T'+ M; : P,. If P, is an object, we take
vr(M) = (vr(Mi) vr(Mz)), and if P; is a context, we take (M) = vp(M;) (we simply
forget all type information, which is now viewed as a comment in the algorithm).

9



3. 0M = (Az: P)N,‘wv know that A F-N : Q, with A = T'[z: P], and @ an object. Now if
P is an object, wetake vp (M) = A z.va(N), and if P is a context we take vp(M] == va(N).

We shall usually write #(M) instead of vp(M) when the context T is clear.

This A-term v(M) may be thought of as the computational contents of the proof M. The
intuitive meaning of the previous translation rules is then that the propositions are comments of
programs, and that those programs behave in a uniformn way with respect to these comments.

5 An interpretation of constructions

We frst need some notations: let I be the set of all closed A-terms, built on a spccial constant
named ().

Definition. We say that a subset A of [ is saturated if, and only if, '

1. €4,
2. if by, ..., by are strongly normalisable, then (0 b;...b,) € A,
3. a € A implics a stronglj normalisable,

4. if b is strongly normalisable, then

((b/z]a by.. bs) € A= (Az.a b by... b)) €A

Now, let U be the set of all saturated subsets of J.

Definition. f A € Y and F € I — U, then the dependent product TI(A, F) of A and F is the
set {t€]|Vz€A(tz)e F(z)} o '

Intuitively, the clements of I are the programs and the elements of U the types. In the previous
definition, F is a dependent type. ‘ .
We may then check that U has the following closure properties: "

Lemma 7.  is closed under intersection of non empty families and under dependent product.
The introduction of the special constant €} is needed in the proof of these properties.

What follows is a realisability interpretation [30], which is very close to the one defined by Tait

[45]. . .

5.1 The functionality of a term

Definition. We define the functionality p(M) of a term M as follows. If M is an object, we take
(M) = I. For contexts, we take p(x) = U, and p([z : PIT) = p(P) — p(I), the set of all
functions from p(P) to p(T).
This definition holds for the restricted calculus. In the full calculus, we would define p([z : PIT)
as p(P) — p(T), if P is a context, and if P is an object, as the set of all functions f from I to
©(T') such that f(¢) = f(u) if t and u are B-convertible. :

The following lemma is true for both the restricted and the full calculus:
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’

Lemma 8. If ' M = N then (M) = o(N).

Definition. If I' I * is any valid context, T = [z, : An)... [z : A)), then the environment
associated to T is the product G(I') = p(An) X «++ X (Ay).

5.2 Interpretatlon of objects

Let T+ M : N be a derived sequent. We shall interpret it as a function pp(M) : §(T) — cp(N )-
There are two cases, according to whether N is a context or not. _
When N is not a context, let us consider the pure A-term vr{M). It has ap free variables, and

may thus be interpreted as a function vp(M) : I®" — I, which simply substitutes its actual argu-

ments to the correspounding free variables. Furthermore, to the previously defined type forgetting
operation jr corresponds the projection mp : $(I') — 7. We then define pr(M) as vp(M) o wp.

When N is a context, we define pp (M) by induction on the derivation of the sequent I' - M ©N
as follows. ‘

¢ product formation: T' - [z : M1]M2 * results from I'[z : Myl F My : +, Let A =T'[z:
M,;]. We have two subcases according to whether M) is an object or not:
subcase 1: M is an object (and we have T' F M, : #), then by induction we can compute
f = pr(M;) and g = pa(M;). We then have f: §(I') = U and g : (T') x I — U and we
define pr([z : M11M3) as the function from @(I') mapping a to II(f(a), g(a)) .
subcase 2: Mj is a context, then by induction we can compute f = pa(Mz), so that
J:8(T) x (M) —-U. We then define pp([z : M{]1M;) as the function from F(I') mapping
a to N{f(a,z)| z € p(My1)}.

o variable: we haveT 1 : I‘/l with.{ < |T'|. Then, pr(M) is simply the pro_]ectlon mapping
(zrn :xl) to ;.

e abstraction: T'F (Az: M)My : [z : M) P results from I'(z : M;] F My : P by abstraction.
By induction, we can compute f = pa(Ma) (where A = I'{z : M;]), which is a function from
B(T) x p(M1) to p(P). We then define pr((Az : M;)M,) as the application from @(T') to
@(My) = ©(P) mapping a to the function mapping z to f(a,z).

o application: T (M N): [N/z]Q results from FFM:[z:PlQandT+ N: P. By in-
duction, we have defined pr(M) : 3(T') = (p(P)— p(Q)) and pp(N) : 3(T') = p(P). We then
define pr((M N)) as the application from @(T') to ¢(Q) mapping z to pr(M)(z, pr(N, z)).

We do not take the conversion rules into account a.nd this is justified by lemma 8.

Example. The sequent - [A: *][z: AJA: « is interpreted as {t € ] |[VA€ UVz € A (t z) €A}
and the sequent - AA.Az.z : [A: «][z: A1 A is interpreted as the untyped A-term Az.z.

Lemma 9. Let M and N be objects such that I' - M = N. We have pr(M) = pp(N).

This lemma holds for the restricted calculus. Similarly, in the full calculus, if T' - M 2 N, either
M and N are both proofs, in which case pr(M) and pr(N) are two fS-convertible A-terms, or else
M and N are both propositions (or proposition schemas), in which case pr(M) = pr(N),
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5.3 Interpretation of contexts

To each context T' F +, we shall associate an inclugion D(T') < @(T') by induction on the formation
of 't x '

e case 1: | #, we take D(T') = §(T') = L.

e case 2 : I'lz: M) I », we have T' - M : %, and so by the previous part, we have already
defined pr(M). By mductmn we have alroady an inclusion D(T) «— go(I‘) We take
D(T[z : M) = {(a,2) |a€ D(T) A zepr(M) a)}.

e case 3 : T'[z : Al F *, we have by induction an inclusion D(I') < @(I') and we take
D(I‘[z Al) = {(a,z) |a € D(T) A z€ p(A)}=D(T) x go(A) ‘

Example : [A: ][z : A] b * is interpreted as {(A,z) €U x I | z € A},

5.4 Consistency

We can now state the principal theorem, whose proof is a straightforward (but somewhat tedious)
structural induction and which holds in the rcstncted and in the full calculus

Theorem : fT'H M : P, and '+ P : + then for all z in D(T'), the pure A-term pr(M, z) is an
element of the saturated set pr(P z). -

Example : We have [A: #]1[z : Al F 'z : A, then, with T' = [A4: +][z : A], we have D(T') =
{(A,z)e U x I|z€ A} and [A:+][z: Al Fz: Aisinterpreted as f: U x I — I mapping
(A,z) to z. Similarly [A: *][z: A - A: + isinterpreted as g: Y x I - U mappmg (4,z) to
A. We see that f(4,7) € g(4,z) if (4,z) € D(T).

Corollary 1. If - M : N and N is an object, then p(M) is a strongly.norma]isable pure A-term
(where p is an abbrevm.tlon for p.). .

It is sufficient to note that p(M) is an element of p(N), by the previous theorem, and p(N) belongs
to U by construction. By the definition of U, we see that p(M) is strongly normalisable.

Definition. A proposition - P :  is inhabited if, and only-if there is a term M such that - M : P.

Corollary 2. The Calculus of Constructions is consistent, in the sense that there exists a propo-
sition which is not inhabited.

The intuitive meaning of this statement is that the calculus does not prove all its well-formed
propositions. Indeed, consider the term N = [A: *]A. We havel- N : x, and the special constant
) appears in all the terms of p(IV), which is the set consisting of all strongly normalizable terms
normalizing to Q2 or to a term of the form (£ by ... b,). But if F M : N then 2 does not appear in
the term p(M), hénce the corollary.
_ The realisability interpretation we have presented is syntactic in nature. However, it is consis-
" tent with the set-theoretical intuition of interpreting M : P as M € P. Still, the functional spaces
M — N are not interpreted as the full function space; but only as sets of definable algorithms,
closed under the operations corresponding to the syntactic operators. We know from Reynolds’
work that a complete set-theoretic semantics cannot exist [41].

Other interpretations of the calculus are possible. For instance, the Boolean interpretation,
where each proposition is mapped to 0 or 1 = {0}, and the proofs are mapped to 0, is simpler and
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suflices for proving the cousistency. In some sense, this is the “proof-irrelevance” interpretation of
classical logic. )

It is also possible to interpret the calenlus in domains such as Pw, where cach object (proposition
or proof) is mapped to an clement of Pw, in such a way that propositions become closures [37].
However, such models also provide an interpretation for logically inconsistent systems (with Type:
Type) [7,2]. Thus, such interpretations fail to capture the essential feature of the calculus.

5.5 Extracting programs from proofs

Every proof construction A - M : P corresponds to an algorithm va (M). Intuitively, this algorithm
obeys proposition P considered as its specification, under the hypothesis on its ap inputs described

by A. This algorithm, a pure A-expression in A*4, always terminates for well-typed values of its
inputs. This is the main limitation of our calculus as far as its programming language character
goes. However, ahinost all partial recursive functions are definable in the calculus. For instance,
all total recursive functions which are provably total in higher order arithmetic are definable, as
shown in Girard [23]. They correspond to the stripped proofs of the proposition nat — nat, for
the appropriate type nat = VA(A — A) — (A — A).

As another example, we may consider the. partial recursive function defined as:
f(n) =if n=0o0r 1then 0else if cven(n) then f(n/2) else f(3 n+1).

This function is easily definable in our calculus, as a proof of [n : nat]l(D n) — nat, with the
domain D defined as the proper smallest predicate preserving termination of f, that is (D n) is: -

[P: nat—+1(P 0)— (P 1)~ ({u : nat] (P u) — (P 2u)) — ([u : nat] (P 3u+2)— (P 2u+1)) - (P n).

Note that here nothing tells us that f is total on non-negative integers. If some day a proof
of that fact is known, we shall get f as an algorithm in net — nat by feeding it this proof as the
(D n) argument. This example is especially simple, since the domain argument is redundant for
the computation. For more complicated examples, the domain argument may be needed, since its
proof may describe the recursion structure.

Of course the above discussion on recursion extends to inductive definitions on any data type.
Note that non-predicativity is needed here for the definition of such inductive predicates. By
contrast, Constable and Mendler [14] must extend the basic PRL system with recursive types.

We may thus consider our calculus as a general formalism in which to develop programs consistently
with their specifications. Our logic is strong enough to articulate arbitrarily complex algorithmic
specifications, as well as the more mundane standard data-types found in usual programming
languages [18]. -

.6 Variations on the basic calculus

6.1 A system with normal types

It is important to clearly distinguish between the presentation of the construction calculus for
a metamathematical study and its presentation for an implementation and the development of
proofs and programs in this calculus. The presentation we have chosen here is the best suited for
the proofs of the mathematical properties of the calculus of constructions. But once we have these
properties, it is possible to derive other presentations of the system. For example, since we have the
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normalisation property [1'5], it is possible to present the full calculus in the following way, where
 N(M) denotes the normal form of the term M: '

Sl
T+A
Flz: N(A) F =
TFM:=» :
Tlz: NM)]l F=+
Tlz: M1FA
THlz: M1A
I‘[.’L':Mﬂ [ Mg:*
T F [z: Mi).My: =
T F »
S T
Tlz: M1 F My: P
T'F (Qz: M)My: [z: M]P
THM:[z:P1Q TFN:P
T + (M N): N([N/z1Q) .
This presentation, by putting systematically types in normal form, avoids the conversion rules

and thus seems a bit simpler (and it is the one used in [19]). But this system does not seem to be
well suited to a metamathematical study. -

(@< variable

" abstraction

application

6.2 Confusing abstraction with product & la Automath

The calculus has three levels and two binding operators. At the level of contexts, only the product
binding is allowed. At the level of proofs, the only binding is the A-abstraction. The two bind-
ings may appear together only at the level of propositions, but in a special order: a sequence of
"abstractions followed by a sequence of quantifications. Thus we could confuse the two bindings,
replacing
' (Azy: Py)---(Azk: Pe)[Ziq1: Peg1d o [za: PA)P

by
(z1:P1]-+- [zk: Ped o [Zpp1: Pey1l - [zn: PP,

where ¢ separates the abstractions from the quantifications. Finally, it may be useful to confuse
the propositional schema [z : A] e P with its universal closure o[z : A]1P by using an ambiguous
notation without e. This has some notational advantages, and the implementation described in
[18] used this facility. This allows in particular the denotation by one term of several concepts: a
propositional schema with free variables and its universal closures. This can be seen as a facility
for overloading the meaning of the types in the calculus. We refer to the Automath literature for
this question, especially [21], where such facility is called “type-inclusion”.

[
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7 Towards a reasonable user interface

7.1 Introducing constants

The first step toward provulmg, a usable systom consists in defining combinators which abbreviate

definitions. These constants are given, in a context T', with a definition which is an object term

M, and a unique name. We. check before entering the constant in the theory that T' - M: A

(propositional constant) or I'+ M : N (proof constant). Later on the type checker retricves the type

of each constant by looking it up in the theory tables. This permits the saving of space (by sharing

commonly used constructions) and time (by not re-checking similar constructions). These constant

definitions can be internalized in the language by the “let” construct, where let z = M1 in My
abbreviates ((Az : P)M2 M) (where P is the type of M;). We can thus get “local” constants at

any context depth. -

No extension of the theory is required to explain the calculus with constants. The only problem
is to implement an absolute naming scheme, orthogonal to de Bruijn’s indexcs considered so far,
while preserving a notion of static scope. This problem is the logical analogue of the problem of
linking scparately compiled modules in a programming language. We do not comment further on
this issue, but we rcmark that from a practical point of view this facility is crucial, since it would
be impossible to effectively realize any significant proof without constants. Adding constants is
here the analogue of going from single-line Automath to full Automath books.

7.2 Synthesis of implicit arguments

The next step in providing the user with a realistic system in which to develop proofs is to reduce
his burden of polymorphic instantiation. Many propositional arguments are redundant, since they
may be inferred automatically as sub-components of types of further arguments. Thus a certain
amount of type synthesis is possible without any non-deterministic search. Let us give a trivial
example. In the following discussion, we shall confuse abstractions with products. :

If one wants to define composition (i.e. the cut rule of propositional logic) in the basic calculus,
we have to define the constant:

Comp «— [A:+1[B:+1[C :+1(f: A— Bllg: B — Cllz: Al (f z)).

This is very cumbersome, and if one assumes that Comp is always used with all arguments up to g
there is a lot of redundancy, since the actual arguments corresponding to A,B and C are nccessary
parts of the types of the actual arguments corresponding to f and g. The crucial observation is
that certain parts of the terms will always have residuals in every reduction of every substitution
instance of the term. This determines in the normal forms of types rigid skeletons in which one
may access sub-components by pattern-matching. For instance, in A — B, i.e. [u : A]1B, we can
use the whole term as a pattern in the free variables A and B. This method relies on the variant
explained above of keeping types in normal form.

The notion of rigid skeleton was defined in [27] in the context of a unification algorithm for
typed A-calculus. Let us recall this notion. Let

= [ug: P) - [up: Pul(z Ny -+ Np)

be a term in normal form (in this discussion, A-abstractions are treated in the same way as prod-
ucts). Let V be a set of variables. We call rigid occurrence of M relatively to V any member of the
following set of positions in M. First, we take the rigid occurrences in P; relative to VU{uy, ..., ui—1 },
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for ¢ = 1,...,n. Then, if p = 0, the oceurrence of the head variable =, and if p > 0, and when
reW =Vu{u, v Un }, the rigid occurrences in Nj relative to W, for 5 = 1,...,p. Now let z be
any variable. We say that M determines z iff z appears in M at a rigid occurrence relative to 0.

We are now able to explain how to declare combinators of the calculus givenr with an arity of
explicit arguments, whose types determine automatically implicit arguments which will be auto-
matically synthesized. In our example above, we would write:

Comp{A:+}{B:+}{C:+}[f: A—Tllg:T = Cl « [z: Al(g (f z)),

where the curly brackets indicate the implicit arguments. Now the combinator Comp may be
invoked with only its explicit actual arguments, like in Comp(F, G). In the general situation, a
declaration of a combinator with arguments u; : P; will be legal iff for cvery implicit ¢ there exists

an argument j > ¢ such that P; determines u;. It is not mandatory that j be itself explicit, since
the synthesis of implicit arguinents may be iterated (from right to left).

Remark. It is possible to gencralize this method, by computing recursively whether some func-
tional argument determines some of its parameters. For instance, consider:

C—[P:A—+1lz: Allh:(Pz)]---

The occurrence of z in (P z) is not rigid. However, if the actual first argument Py of a given
application (C Py zg hg) is of the form [u: A1 M such that M has a rigid occurrence of u, then zg
may be synthetized from the type of hg; i.e. rigidity may be inherited. However, it is not yet clear
how to specify such iterated synthesis in a clearly understandable way, since the notion of implicit
argument is not bound to the definition of combinator C' anymore, but rather varies dynamically
with every use of C. A possibly useful restriction would be to impose in the definition of C' that
certain arguments ought to determine certain of their own parameters, using a syntax such as:

CIP: {u:A}+1{z: A}lh: (P z)] —--

This is in a way a natural extension of restrictions of A- calculus expressxblhty at the proposxtlon
level, such as Church’s use of AI-calculus.

Note that the synthesis of implicit arguments corresponds exactly to the mathematical practice.
For instance, in category theory, one writes Id4, but f o ¢ is not annotated with objects, since the
arrows f and g determine the proper composition from their domains and co-domains.

Finally, we stress that a certain sophistication in concrete syntax, i.e. in the way new notations may
be associated to concepts by the user in the course of the development of a theory, is crucial if one
wants to mechanize mathematical concepts beyond the attempts of Frege, the Principia and even
Automath. Hopefully modern computer technology will help, and dynamically extendable parsers
and complex window managers seem to be necessary components of user interfaces to programming
and proving environments [13]. Let us just mention one proposal [19] for concrete syntax definition
of combinators given with arities, which fits nicely with the above algorithm for synthesis of implicit
arguments. ’

7.3 Concrete syntax

Since we now accept combinators with arities, we might as well endow them with concrete syntax.
A straightforward device for declaring arbitrary mixfix notation is to a.llow the declaration of
combinators by patterns:

pattern — term,
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1)

where pattern is an arbitrary sequence of conerete strings, implicit argument declarations {z: M},
and explicit. argument declarations [z : M]. Standard methods such as precedence declarations
may complement this basic mechanism to resolve amblguxtws For instance, we would now allow

_ the declaration:

{A:*}{B.:*}{C:t}[f:A—vl‘]o [g:T'—=Cl« [z:A)(g ([ 2)),

and be able to write in the usual manuer FoG. Examples of development of mathematical notions
along those lines are presented in [19]. :

More ambitiously, we may imagine incorporating progressively theorem-proving capabilities to
what is initially an interactive proof-checker. We may synthesize whole constructions by systematic
scarch of possible combinations of given sets of combinators. Such tacticals may be programmed

/in the meta language of the system, in the tradition of LCF [25] or Pearl [13]. This will offer a

powerful help to the mathematician, who will be able to concentrate on the global proof strategy,
i.e. on the proper ordering of lemmas, without losing time over the combinatory headaches of the
technical proofs.

8 Possible extensions

The first extension is to add operators with special rulés of conversion and reduction. For instance,
we can add pairing, disjoint sums, integers, booleans as pnmltlves As an example, let us add the
special coustants int : *, with 0: int, S : int — int and

ec: [P:int — +]1(P 0) — ([u: int](P u) — (P (S u))) = [n:int](P n),

with the conversion rules:

T-P:int—»* Thra: (PO) TFHf:[u: mt](I’u) (P(Su))
Tt (rec Pa f0) =

THPiint—s TFa:(PO) TFf:[u:int](Pu)— (P(Su)) Thn:int
I't(rec Paf(Sn)) = (fn(rec Pa fn))

The normalisation proof of [24] still extends to this calculus. It is even possible to add a fixpoint
operator (only to the restricted calculus if one still wants the normalisation property for the type-
checking). This calculus appears then as a direct generalisation of h1gh-leve1 functional languages,
such as Ponder [22]. .

Another possible extension is suggested by the connectlon with the calculus of Martin-Lof. We
have seen that our * can be thought of as the first universe Up of Martin-Lof, but with the property
that [A : Upl A, for example, is still of type Up. It is then natural to try to extend the calculus of
constructions with a universe hierarchy Uj,... such that * is of type U, which appears to be the
type of all contexts, Uy is of type Ua,... This is possible, but with great care if one wants to preserve
the normalisation property. In particular, it results from [24], that the normalisation property is
lost for the natural attempt of adding the rules:

THF=x
Plz: U]k«
THA
T+A:U,
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I‘[.’L‘ : 1\'11] = M2 M U]
Uk [e: M(IM, : Uy
Another possibility is to add the rule T F # : #, for every valid context. T Girard [24] shows that
this calenlus does not-have the normalisation property (sce also [16]). However, it may be nscful to
consider this calenlus as a type systemn for programming languages (see [7]), but the Curry- llow.'u'd
paradigmn scems to be lost forever then, since all propositions become provable.
A satisfactory rule for extended product is obtained by replacing the third rule above by:

THM:U; Tlz:MIFM:U
I‘F[:ﬂ'MﬂMz‘Ul,

and similarly for higher universes. We then add the correspun(hug couversion rules (sce [16] for a
complete presentation). ~

Let us say that an object is predicative if it is defincd by a quantification over a type which
does not contain this object. In this sense, the calculus of construction allows the formation of
non predicative notions. For instance, the polymorphic identity is not predicative since it can be
instantiated over its own type.

There is a tcnsion between a purcly logical language based on the Curry-Howard correspon-
dance, and the power of expression of sct theory. It is legitimate to use impredicative quantification
inside the logical language, but if we want to complement it with a set-theorctic hicrarchy, this
latter part must be strictly stratified.

Conclusion

We have proposed a Calculus of Constructions and shown how to use it to derive pure strongly
normalisable A-terms. This calculus blends together earlier proposals of de Bruijn [6], Martin-
Lof [32], and Girard [24]. Its syntax is closest to the Automath languages. In somc scnse, this
calculus is the “universal functional system”, in the spirit of “Curry’s program” [43]. A prototype
implementation of the calculus has heen implemented at Inria. Numerous examples of mathematical
proofs expressed in the Calculus of Constructions, and machine-checked on our implementation,
are given in {19]. We hope that this calculus will be useful for future developments of programming
environments, where programs will bc developed consistently with logical propositions expressing
in one unified formalism data types, correctness assertions and inter-modules specifications.
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