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ABSTRACT

Verso is a database management system developed at INRIA. The main characteristics of the system are the
following:

1) on-the-fly filtering is used for both unary (selection. projection). binary operations, and for
updates. The filter is realized by a finite state automaton-like device.

2) data is physically organized hierarchically to take advantage of the power of the filter.

3) the user interface is based on a non-first-normal-form extension of the relational model. An alge-
braic language. and 3 screen interface are proposed.

This three aspects are closely tied. They form the basis for the originality. and the performance of

the Verso database system. The version of the system discussed in the present paper has been implemented
in Pascal and C under Unix on an SM90 computer. Performance studies are briefly mentioned.

RESUME

Verso est un systéme de gestion de bases de donnees développé 4 1'INRIA. Les caracteristiques principales
du systéme sont les suivantes:

1) 1l'utilisation d’un mecanisme de filtrage par automate d'etats finis. implante prés du disque. Ce £il-

trage permet d'exécuter efficacement non seulement les operations unaires (selection, projection ).
mais encore l'insertion. la suppression et certaines operations binaires.

2) les donnees sont organisées physiquement suivant une structure hierarchique, pour tirer profit de 1laz
puissance du mecanisme de filtrage.

3 1‘interface utilisateur est fondee sur un extension non sous premiére forme normale (1NF) du modél.
relationnel. 1'usager dispose actuellement d‘'un langage de commandes algebriques et d'une interfrc:
plein écran plus agréable, Ever.

Ces trois points trés etroitement lies font de Verso un systéme performant et et original. La versin:
du systéme Verso présentée ici a ete developpée autour d'une configuration SM90 en Pascal et C sous Unzx.
Des etudes de performances sont briévement presentees. )
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I. INTRODUCTION
The VERSO project was started at Inria. in the early eighties, with the following objectives in mind:

- Justify the approach consisting in reiegating some tasks to a processor close to ‘the mass storage
device under the convenqional-assumption that Database Management Systems (DBMS) are 1/0 bound.

- Check that an automaton-like mechanism for this on-the-fly filtering capability is well adapted to
query processing.

The major motivation behind such an architectural approach is to increase the performance of a rela-
tional pBEMS.  Although . the usefulness of on-the~-£fly filtering has been widely accepted
[CLS.OSS.SL,LSZ.ERT.Ro.Bab.IDM]. no filter has been included in a complete DBMS design to our knowledge.
Our intention was therefore to develop a fully relational system that would use the above filtering con-
cept.

To take full advantage of the filter. data is not physically stored as flat files but as a hierarchi-
. cal structure called the Verso-file. This physical organization strongly suggests a logical organization
of the data into non first normal form (non 1NF) relations called Verso-relations or V-relations. Indeed,
several researchers have studied this concept of non 1NF relations [AB. BRS, FT, FK, Mak. SP]. 1t should
also be noted that this notion arises naturally in the context of semantic database modelling [AH. HY].
However, the Verso system is to our knowledge the first running system based on non 1NF relations.

The query language is algebraic. -All algebraic operations (except for one, namely restructuring) are
performed by the filter. This filter can be viewed as a finite state automaton (FSA) which scans sequen-
tially one or two input buffers. and writes the result of the operation on an output buffer. The restruc-
turing operation jnvolves some sorting., and can not be realized uniguely by the filter. The pertérmance
of the system thereby depends heavily on the performance of the filter. and on its connection to the rest
of the system.

The version of the system presented here. runs under the Unix operating system. Prototypes have
already been experimented on a 68000 based multiprocessor machine, the SM90. Most of the code is written
in Pascal. A specialized hardware processor was first designed to realize the FSA filter. This hardware
processor. connected to the mass storage as well as to the central bus is in charge of data transfer and
data filtering. Later on, the hardware filter was abandoned and replaced by a standard disk exchange
module including an Intel 8086 processor on which filtering is implemented by software.

Except for the use of a filter. and for the model of Vv-relations. the Verso system is a quite stan-
dard system: .

- The data is stored in relations contained in databases. An atomic piece of data is a string of
attributes of arbitrary length. ) '

- A tree structured master index is used. Secondary indexes are not implemented.

- Concurrency is offered via the concept of transaction. and managed using two phase locking.

- Mechanisms for handling crash recovery are provided. ) :

- Data consistency is enforced within the context of y-relation. No other constraint mechanism is
provided.

- There is no security mechanism installed in the system.

April 10. 1986 9
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The paper is organized as follows. In Section IX. the Verso data model is presented. Section III
deals with the architecture of the system. The user interfaces are presented in Section IV. In the last
section. the performance of the (software) filter is discussed and compared to that predicted for the

I '1:

This paper only gives an overall description of the system. The reader who is interested by descrip-
tion of specific aspects can refer to the following material: : : .

- A discussion of the Verso files. and of FSA filtering [BS. BRS]

~ The system architecture [Bs., S]. . .

- A formal presentation of the model together with some theoretical results on V-relations {AB., Bi].

- Performance evaluation and measures [GS. G. S. DRS].

- The description of the index mechanism [Mo]. and & performance evaluation of the size of the index
{P1].

- Theoretical results on updates in [V], and the foundation of a relational interface in [Bi].

- The description of the Ever interface [Pal. ’

April 10. 1986



II. THE VERSO MODEL

In this section. we describe the Versoc data model. We first describe the data structure called v-
relation. We then present the Verso algebra. A formal presentation of the model. together with some
basic results on V-relatioms can be found in {(AB, Bi]. :

I1.1 THE V-RELATION

In the Verso data model, the data is organized in non~1NF relations called V-relations. In a v-relation.
the values of scme attributes are atomic whereas the values of other attributes sre V-relationas of simpler
structure. An example of v-relation is given in Figure II1.1.

(COURSE ( STUDENT (GRADE) *)* (BOOK y*)

| Bourbaki |

comp. | =zaza } | Ullman |
sci. | mimi | | Delobel-adaiba |
wemmmecmme=====-== | Gardarin |
phys. | zaza i a1}
| ¢ il
| L
Figure II.1

This example describes information about courses. In each course. there are students. These students
have grades for those courses. In each course, there are required books. Intuitively. this can be viewed
as a relation (or table) with three columns: course, enrolment. literature requirement. The entries in
the course column are atomic. The entries in the two other columns sre relations of simpler structure.

Note that:

(1) There is no book required in the physics course. Thus V-relations handle null values (of this partic-
ular type at least) in a simple manner. As a consaguence of this, some queries which are typically com-
plicated to express in the relational model are simple selections in this model. An example of such a
query is: ) X

» Give all the students with no grade in CS101 *

(2) The data is naturally organized in a hierarchical manner. (It is possible to speak of the grades of a
student in a course.) Furthermore this hierarchical data organization indhces some implicit connection
petween attributes. For instance. in this example. there is a connection between books and students
through course. This has some interesting consequences both at the logical and the physical levels.

April 10, 1986
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At the physical level: the implicit connection corresponds to a join between what would be stored in
a relational model as two relations [COURSE, STUDENT]. and [COURSE. BOOK). Thus. queries which would
involve a join of these two relations would be computed just by a seleqtion in the Verso data model

thereby improving performances. e

At the logical level: to ask queries like "Who are the students who have a given book"”. a user would
typically have to specify an access path in the pure relational model (to specify which join has to
be realized). This is not required in the Verso data model.

To specify the structure of a V-relation. a format is used. The concept of format is the analog of
the notion of relational schema. .

Formats are strings defined recursively in the following manner.
Definition: If X' is a finite string of attributes, then (X)* is a (flat) format. If X is a finite string
of attributes, f_.... £ are some formats for n positive, then (X £ £_ ... fn). is a format. We also

n , 2
require that the same attribute does not appear twice in the format.

Examples of formats:

(COURSE ( STUDENT (GRADE) *) * (BOOK) *) *
(FILM FRENCH_TITLE(ACTOR)* (FESTIVAL(AWARD)*)*(DIRECTOR CITIZENSHIP)*)*
(WINE COUNTRY(PRODUCER ADRESS DEGREE PRICE )}*)*

Given a format. we can define V~relations over that format, as follows:

Definition: If £ is a flat format, then a V-relation over f is a set of tuples over f with atomic entries.
If £= (A ...An fn+1"-£ )*. then a tuple over f is a tuple such that

- for 1=1 to n. the entry is atomic, and

- for i=n+l to m, the entry is a V-relation of format !1.
A V-relation over f is a set of tuples over f.

Typically., a V-database will consists of several V-relations.

I1.2 THE V-ALGEBRA

A simple algebra can be defined for V-relations. The reader has to keep in mind that V-relations were
introduced primarily to solve some of the performance problems of the relational model. In designing the
algebra. we had two requirements:

~ the operations had to be mathematically sound,

- they had to correspond as much as possible to operations that could be implemented by the filter.

~ Indeed, we shall see that all operations but one can be computed by the filter. The unique “expen-
sive” operation is restructuring. This operation involves some sorting. Thus the complexity of main
memory computation is restricted to a unique module. namely the sorter.

The algebra consists of unary and binary operations. The unary operations are projection. selection.
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and restructuring. The binary ones are join. union. and difference.

We ghall describe the operations mainly by examples.

Projection: Consider the V-relation of Figure IX.1. Its projection over (COURSE (STUDENT)*)* is given' in
Figure II.2. '

( COURSE ( STUDENT )* )*

Figure 11.2

The result of a projection is required to be also a V-relation. Therefore, a format £ can be pro-
jected on a set X of attributes if the string obtained by deleting from £ all attributes in X. and remov-
ing empty parentheses. and the corresponding stars, is a format f£°. For instance. the projection of
(COURSE (STUDENT)* (BOOK)*)* on the attributes COURSE STUDENT is legal, whereas its projection on STUDENT
BOOK is illegal.

Selection: The selection is more complex than the classical relational selection since it takes advantage
of the richer structure. Together with classical conditions like "STUDENT= toto", it allows conditions
like "exists a STUDENT". and "does not exist a STUDENT".

Selections are built using elementary conditions. An elementary condition over an attribute A is an
efpression of the form: A=a, Ada. A<a, Ad=a, A<(=a A<>a for some constant a. A condition is a boolean com-

bination of elementary conditions.

Here are some examples of selections.

Example 11.1: Consider the flat format f = (DATE GRADE)*. One can select grades greater than B using the
condition: GRADE! > “B". One can make more complicated selections on the same format: ’
(GRADE! >"B" or ¢’D") and (DATE! > "1985/8/25")

Example I1.2: Consider now the format fz- (STUDENT(DATE GRADE)*)*. We can select the information on a
particular student.

STUDENT! = "toto”"
We can also use a selection of the Example II.1 to built a query on V-relations of format tl

STUDENT! = toto
( (GRADE! >"B" or <"p*) and (DATE! > ~1985/8/25") )

The result will give, for the student toto. all of his grades greater than B or smaller than D

April 10, 1986




obtained in an exam more recent than Aug, 25th 1985. R relation over format f_ consists of tuples with
two entries. The first entry is atomic and contains the name of a student. The second entry is a V-
relation of format f_ . The selection of Example II.2 is used on that second entry.

Example 1I.3: As shown in the previous example, local selections can be used. The result of these 1local
conditions can be forced to be empty or non empty. For instance,

STUDENT!
exist ( GRADE! > “B” or < "D" )

Intuitively. ( GRADE! > "B” or < "D" ) indicates what selection to realize on the second entry of the
V-relation. The term "exist” indicates that only those tuples with non empty second entry (after selec-
tion) should be kept. The result therefore contains the names of all students. and their grades (greater

than B) if they got a grade greater than B.

We now explain the meaning of the exclamation marks. An exclamation mark indicates which attributes
are to be projected in the result. They can be used simply as an alternative way of specifying projec-

tion.

Example II1.4: For the format fz. the following selection realizes the projection over STUDENT GRADE.
STUDENT! ( GRADE! )

However., they can be used in more clever waya For instance., consider the selection.

STUDENT!
( GRADE! ) ( GRADE > "A™ ) ( DATE < "1985/8/25" )

Here, GRADE is used with multiple roles: the GRADEs that are printed (which are not restricted), and-
the GRADEs which are compared to "A" which are used to restrict the set of STUDENTs of interest. The
result of that selection gives all the grades of students which have a grade larger than "A", and have an
exam before Aug. 25th 198S5.

Example II.5: We finally present a more complicated example which demonstrates the possibilities of the
selection. Consider the format

£f3= (COURSE ( STUDENT ( DATE GRADE )* )* ( PROF )* ( TA )‘)'.
and the query:

"for each class taught by Martin. give the names and grades of all students which got an A in that
class if there is no TA for that class”

In the Versoc algebra. this can be done directly by a selection: .
COURSE!

( STUDENT! ( GRADE! ) exist ( GRADE > "A" ) )

( PROF = "Martin” ) not_exist ( TA ).

Now, consider the relational algebra. Suppose the data is stored in four relations CS, CSDG. CP and
CTA. The query will typically involve: ’

April 10, 1986



- several projections (e.g.. CTA on COURSE. or CSDG on COURSE, STUDENT. GRADE).
- some selections (e.g.. PROF= Martin., and GRADE= A).
- a difference: to obtain the class with no' TA.

- joins to combine the partial results.

The next operation deals directly with the structure of data since it allows to transform one struc-
ture into a different one. ’ ’

Restructuring: Consider a v-relation of format film(actor)*. For each film, the actors of this film are
grouped. Now. we may want to organize the data differently. For instance. we may want for each actor. the
list of films whers they played. This is done by the restructuring opsration. In Figure II.3, an instance
over film(actor)* is given, together with its restructuting according to .actor(film)*.

FILM : { ACTOR )* ACTOR ( FIIM )'
Purple Rose | W. Allen | W. Allen | Purple Rose |
| M. Farrow | | Manhattan |

- o = v o " - - - -

Manhattan | w. Allen | M. Farrow | Purple Rose |

- - o > - - - - -

Broadway | |

- Figure 1X.3

Two remarks have to be made about restructuring:
- When restructuring data, some information may be lost.

- Even if loss of information is tolerated (which is typically the case of queries). some restructur-
ing operations have no meaning. For instance, it is not possible to restructure a flat relation (A B
C)* into (A(BY*(C)™)*.

A thorough study of lossy. and lossless restructuring of V-relations is presented in [AB).

We now turn to binary operations. There are essentially three binary operations: join (%), union (+).
and difference (-). These binary operations can not be applied to arbitrary V-relations. The two v-
relations must be compatible. Intuitively. a format can be represented by a tree. Two formats are compa-
tible if their tree representations are sybtrees of the tree representation of another format (the result-’
ing format). For instance.

(A(B)*)* and (A(C)*)* are compatible. Also,

(A A'(B(D)*)(E E'"(F)*)*(G G’ )*)}* and (A A*(B(H)*(I)*)*(E E*)*")*
are compatible: their tree representations. and a tree representation of a possible resulting format are
shown in Figure XI.4. On the other hand.

(A A')* and (A(B)*)* are not compatible, and

(A(B)*)* and (B(A¥))* are not compatible.

April 10. 1986
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A-A- A—a' A—A’

/TN /\ NN

' B E-E’ G-G'

AT

Figure II.4

Union allows to “add" the information of two instances. Join allows to "combine” the information of
two instances. Finally, difference is used to withdraw the information of one instance from the informa-
tion in another one. In that sense, these three operations can be seen as generalizations of the (pure)
relational operations of union. join (and intersection)., and difference.

Again we shall nof present formally these three operations. We illustrate their effect through exam-
ples. Consider the instances I.J and K in Figure II.S5(a). Some binary operations on these instances are
shown in Figure II.5(b) and (c).

(FILM ( ACTOR )*)* (FILM ( ACTOR )*)* (FILM ( DIRECTOR)*)*
Purple Rose " | W. Allen | Purple Rose | W. Allen | Purple Rose | W. Allen |
| M. Farrow | D L T —————a- -————
R Manhattan | D. Keaton | Manhattan | W. Allen |
Manhattan | W. Allen | e ————— —m——— mececcccne———
R Broadway | W. Allen | Police | . pialat |
Broadway | ) B e = eececccccecow-
Instance I . Instance J Instance K

Figure II.5 (a)

(FILM ( ACTOR )*)* (FILM ( ACTOR )*)* (FILM ( ACTOR )*)*
Purple Rose | W. Allen | Purple Rose | W. Allen | Purple Rose | M. Farrow |
| M. Farrow l - - - -
............. Manhattan | | Manhattan | W. Allen |
Manhattan | Woe Allen | eeecmemdeecees ccccccneaas -
| D. Keaten | Broadway | |
Broadway | W. Allen |
X+J I*J I-3

Figure IXI.5 (b)
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(FILM

( ACTOR )* (DIRECTOR)")*

|H.M.l.cn|||l.l:u_..n|~

( ACTOR )* (DIRECTOR)*)*

Purple Rose Purp.lo Rose | W.: Allen | | w. Allen |
| M. Farrow| -=--=s====oc ’ A Pan:ov| -------- “——ae

Manhattan | W. Allen | | w.Allen | | w. “Atlen | | V.Allen |
' D ‘ ton| | o. Keaton] ............

Brodway | . m.len | { |

Police | | | M. Pislat]

Ie+K ) » I*K

' gigure IX.5 (¢)
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IIX. ARCHITECTURE

We first present the hardware architecture, then we give an overall description of the VERSO DBMS.

III.1 HARDWARE ARCHITECTURE

The version of the system presented here runs on the Unix operating system and has been experimented on a

68000 based multiprocessor machine, SM90. ﬁ .
68000 | CPU V24
SM bus
M : EM ] FILTER
SCSI ' SCSI

: Figure IIX.1 : Hardware architecture

As shown in Figure IXI.1, the VERSO machine includes the following components, which share the cen-
tral bus., the SM bus:

a) a central processing unit(CPU) including a Motorola 68000 processor, its local memory and a memory
' management unit;

b) a RAM memory:

<) an exchange module (EM) interfacing with s disk hosting the Uni£ system and the programs:

d) an user interface (V.24 or Ethernet):

e) another EM interfacing with another Disk where the databases are stored. Filtering is implemented on

this EM.

The CPU is in charge of the user interface, the high level DBMS layers (to be described below) and
the filter's control: it sends to the filter data transfer and filtering commands.
The filter internal structure is depicted on Figure III.2:

An Intel 8086 processor shares a local bus with an Intel 8089 processor acting as a Direct Memory
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8089 - 18086

local bus

RAM | LM

SM bus

aa———————

Pigure 11X.2 : Filter architecture

Access (DMA) between the disk controllier and an 128 Kbytes RAM local memory (LM). Memory M is shared
among the Intel processors (local access) and the CPU {global access through the SM bus). Memory LM hosts
buffers (data to be filtered and filtering results) as well as filtering code swapped in from the disk at
the beginning of a session. The 8086 processor is in charge of filtering and data transfers between the
disk and memory LM.

The CPU accesses memory 1M for i) sending commands to the filter, ii) reading filtering results anﬂ
4ii) inserting data into the database.

The last component on the jocal bus is an EPROM memory in which a real time system and low level
tasks are stored.The wain “gystem" tasks are the interaction with the CPU and the disk input/ocutput tasks.
Filtering is implemented by means of 6 tasks written in Pascal and developed from an HP64000 development
system.

III.2 SOFTWARE DESCRIPTION

In terms of functionality, Verso is a fairly standard system: it offers data definition. search and mani-
pulation. transaction management. concurrency control and recovery and simultaneous access from separate

sites .

The three latter functions will only be roughly sketched, since classical solutions have been chosen
for those problems. The interested reader is referred to {B+] for more details.

As usual, 8 transaction is a sequence of requests (Verso commands. see Section 4). The systeﬁ accepts
interleaving of requests issued from different transactions, but requests are sequentially run. In order
to improve the global throughput. pipelining of requests on a single CPU is under study.

A regular two-phase locking protocol is used. together with deadlock prevention. Physical locking
has been chosen with granularity of one block (one disk track). However the index is locked only for the
duration of the index request (and not until the end of transaction., as for a regular data access). The
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concurrency control algorithm is based on the shadow system{L]: each transaction processes 'its work in a
shadow area: updating is done through an address translation mechanism and does not necessitate any actual

rewriting on the disk.

We will describe in more details the data search and manipulation functions.

The Verso system consists of three layers:

1) The highest level is the V-relational level (see Section II): the objects seen at that level are the
V-relations and the schema. There are four types of V-relations: input. output, temporary and base
V-relations. The schema contains the description (format) of all V- relations. The operations at that
level were described in Section II.

2) The second level is the file level: the objects defined at that level are Verso files or physical
representations of V-relations and the non-dense Index which permits to locate data. A file is
characterized by a name and a list of block addresses. All files are completely sorted in lexico-
graphic order. Files are then partitionned into blocks. Each block corresponds to a disk track (8 or
16 Kbytes). which is the smallest addressable unit. The index structure will be described in Section
I11.2.2. The operations at that level are:

i) index manipulation in order to locate a V-relation,

ii) selection/projection, insertion., deletion into/from a file (corresponding to a unary operation
on V-relations):

iii) binary operations on files (corresponding to a binary operation on V-relationms):

iv) file sort (corxresponding to restructuring. see section 2). We use a merge-sorting algorithm:
once each block has been sorted, blocks are merged. This merge is a file union performed in linear
time by the filter. ’

3) At the lowest level, we find a block characterized by its address. There are two kinds of operations

at the block level: filtering (see section I11.2.3) and internal sort of a block. As mentionned ear-
lier. this operation of complexity NlogN is not performed by the filter.

IXII.2.1 Query processing
Let us take the example of the V-selection to illustrate query processing through . the three 1layers as
well as the splitting of tasks between the CPU and the filter.

A V-selection is submitted to the system. At the first level. given the V-relation name ,the schema
is searched to get the V-relation format. Two operations are then performed:
i) compile the query into an FSA to be loaded into the filter memory (LM):
ii) search the index in order to get a subset of the blocks of the V-relation that have to be filtered..

The result of this index search is a list of one or more block addresses.

The above processing is performed by the CPU. Once the FSA corresponding to the query has been loaded
into memory LM, the CPU initiates filtering: it sends to the filter together with a selection command a
list of block addresses if the source file corresponds to a temporary or base relation. Furthermore. the
CPU sends a list of target block addresses where to store the filtered data if the target file corresponds

April 10. 1986
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to a target relation of type pase or temporary. In the case where the source (target) relation is of type
input (output) the blocks are written (read) one after the other into (from) memory LM upon the filter
demand.

To summarize. v-relation operations are performed by the CPU. including transaction management and
concurrency coantrol. The CPU is also in charge of Index operations, as well as FSA generation and loading.

The filter is in charge of file and block level operations on data (except internal sort of a block).
Binary operations can also be performed in linear time since the files are sorted: indeed, if both source
relations have "compétible' formats (see Section II.2). there exists a FSA like mechanism which allows to
scan both source relations one byte at a time in order to perform union or join or difference.

I111.2.2 Index structure

Recall that all V-relations are sorted and partitioned into blocks. The master index is a non dense index

'ﬁpich stores for each block. the whole smallest tuple of the block (and not its key) followed by the block

hddress; However the stored information is compacted through a trie structure we now describe. The result-
ing index is small enough to be maintaingd in RAM memory. It is shown in [Pl]‘that under reasonable
assumptions in the case of a 300 Megabytes file. the average index is approximatively 100 Kbytes.

In order to describe the index structure, we take as an example the flat V-relation (TOWN. NAME} with
two attributes, and assume it is stored as a file of size 3 blochks, such that the first tuples of each
block are respectively ATLANTA. JOHN: PARIS., ANNE and PARIS. MICHEL. To this set of tuples corresponds the
following trie :

O )-0)-0)-)—(D)—)-o 1) W ) T @) T I

PIA RII S * A‘
»-0O-0-0-0-0-O

We assume that the attribute values are bounded by a spec{al character "*" and all tuples are pre-
ceded by "#". To each leaf of this trie. we append a block address.

To keep the amount of information minimal to distinguish two blocks we prune the linear subtrees of
the TRIE (except the block address) :
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This tree may be linearly represented as follows :
#(A & Bl PARIS * (A & B2 M & B3)) |
where each time a node has more than one child we add parentheses and the special character "&" 1ndi¢ates

a leaf node.

The index has been first implemented by means of the above linear representation of the pruned trie
in order to be able to perform each index operation using the FSA filter. A FSA was exhibited for each
(seatcﬁ and update) index operation. However update operations turne: out to be rather complex and cumber-
some. A tree representation of the pruned trie structure - although a bit less compacted - was then pre-
ferred (Mo]. Index operations are implemented by classical tree operations.

III.2.3 Filtering

Recall that the filter sequentially scans a source buffer and writes into a target buffer the relevant
data. In the case of insertion or binary operations, two source buffers are concurrently scanned. Three
processes are pipelined: the operations of (i) loading the sequence of source blocks, (ii) filtering these
blocks and (iii) unloading the resulting blocks either onto disk or to the user.

There exists two pools of buffers. The loader sequentially loads source blocks into buffers requested
from the source pool. Once a block has been loaded. filtering may proceed on that block concurrently to
loading of the following block. Once a target buffer is full, the unloader can unlcad this buffer while
filtering resumes on another target buffer requested from the target pool.

The FSA filtering principle has been thoroughly described in [BS]. It was shown in [BS.S] that an
automatonlike device is sufficient to perform on the fly the V-algebra operations. In ithe case of binary
operations, the V-relation formats must be compatible. We give below a sketchy description of the filter-
ing principle for the selection/projection operation.

Filtering is based on data recognition by a FSA. Given a request for an algebraic operation and the
V-relation format. a compiler generates an automaton to be loaded into the filter's memory LM.

Then the filter scans the V-relation in the source buffer one byte at a time. Before reading a char-
acter, the automaton is in a given state. To the (state, character) couple corresponds a next state and an
output function. Roughly speaking, the latter consists of the updating of the register BAR where to write
the next character.

~ In the case of hardware filtering [B+]. a cycle of the filter starts when, in a given state, a char-
acter is read. The filter's memory is a 256-line (256 states) by 256-~column (256 bytes) matrix. The
{current state, current character) couple addresses a word in the matrix which contains the next state
plus the output function to be interpreted and run before going to the next state. '

In the case of software filtering {S]. the source buffer is not anymore scanned one byte at a time:
during a cycle. an entire attribute value is scanned. There are three types of cycles: (i) if the
corresponding attribute value has neither to be projected nor to be compared to one or several values.
then the attribute value is just skipped: (ii)the attribute value is compared to a set of values and it is
possibly written into the Target Buffer: (iii) the attribute value is just copied from Source Buffer to
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Target Buffer.

two source buffers are concur:éntly scanned. The filter analyzes

In the case of a binary operition.
nd possibly writes one character into the Target Buffer.

a character read in one of the two buffers a
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IV. THE USER INTERFACES

In this section. we present various user interfaces available in the Verso Ssystem. We first describe the
command language VERSO. This language is used as the unique language of communication between the syatem,
and the rest of the world. Indeed. other interfaces can be viewed as “translation modules " between more
user friendly interfaces and the VERSO language. We then present the full screen interface which is
oriented toward non sophisticated uleis.,or simply users which want to use the system, and not be used by
the system. Finally. we briefly describe a Pascal extension which allows calls to the database system.

IV.2 THE COMMAND LANGUAGE

We just give a brief description of the compand language. A complete description can be found in {VERSO] .

A command starts with an integer which identifies the user (site) dissuing the command. (The site
number is generated by the system.) This integer is followed by an integer 1dent1t¥ing the transaction
humber if the command is given from a particular transaction. For instance,

> 12 3 validate: (* transaction 3 in site 12 is validated *)
> 12 stop: (* the site 12 is leaving the db system *)

Most commands must be given from within a transaction., A transaction is a sequence of commands issued
from a given site with the same transaction number starting by a "start” command, and ending with a "vali-
date” or "abort” command. The command "return” allows to abort only part of a transaction if abort steps
were previously used. We now illustrate thege concepts by an example of transaction.

> 12 3 start:

> el ’ (* partl *)

> 12 3 step:

b {(* part2 *)

> 12 3 step:

> e (* part3 *)

> 12 3 return 2: (* return two steps backwards: part2 and part3 are aborted ¥)
> 12 3 validate: (* only partl is validated *)

In the command language. a V-relation is specified by its name, and the database to which it belongs.
For instance.

cinema.newntilm (* V-relation film in base cinema *)
temp. xsdwe (* V-relation xsdwe in base temp *)

The data definition language allows the creation of a new base.the creation of a new V;ralation
(specifying its format). the modification of the format of some existing V-relation. or consult the
schema. One can modify the structure of an existing V-relation by renaming some attributes. or adding some
new attributes. Examples of these various commands are now given. (For the sake of simplicity. the site
and transactions numbers are omitted when not necessary to the presentation.)

> create_base cinema:

> create cinema.film (film (acteur)*(directeur)*)*;
> rename cinema.film acteur:actor. directeur:director:
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> consult cinema.¥:

verso: base cinema

M

film : (£4ilm (actor)*(director)*)* .
redefine cinema.film (film (actot)'(director)'(produ@er)')':

> consult cinema.*;

verso: base cinema

£ilm : (£4lm (actor}'(directot)'(ptoducgr)')'

The processing is done by a uniqgue command which assigns to a target relation the 7Tesult of some
algebraic operation on one or two source relations. The operations are essentially the operations
describped in Section IX.

>

consult cinema.*:

versco: base cinema

director @ film{director)®

actor : film(actor)*
films . director{film)¥
(* projection *)

>

assign s.rl := cinema.actor ( £ilm ):

(* restructuring *)

>

assign cinema.film := restructure cinema.actor:

(* selection *)

> assign s.r2 := cinema.actor such that

film! exist_pas ( actor="D. Hoffman® ):

{* join *)

> assign s.r3 := cinema.actor * cinema.director:

(* union ' *)

> assign s.r4 = cinema.actor < cinema.director:
(* difference *)
> assign s.r5 = cinema.actor - cinema.director:

Insertion and deletion are offered for database updates. One may insert a tuple. and delete one or
more tuples according to some complex conditions. We now give examples of insertions and deletions :

>
>

insert cinema.actor £ilme"Kramer vs Kramer®”, actor="D. Hoffman":
delete cinema.films such that director="Truffaut” or «"Godart”:

Some other commands are of course available which are neither in the DDL nor in the DML. These com-
mands allow among other things to:

communicate with other users of the database system.
enter some debug modes.

call an on-line manual.

escape to a Unix shell.

exit the system.

1V.2 THE SCREEN INTERFACE EVER

In this section we present the EVER interface. A complete description can be found in (Pa].
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EVER is a multi window screen interface tailored to answer the various needs of a dialogue with the
Verso system. In particular, four modes are offered:
~ a mode for command edition,
- a mode for selection/projection edition,
~ & mode for data edition, and
- a mode for format edition.

A transaction is associated to each window. (In particular, the user can work on two separate tran-
sactions in separate windows). In the command mode. EVER gives the user more flexibility by offering the
full power cf a text editor. Perhaps the most useful aspect of this mode is its guidance of the user in
the tedicus task of specifying the commands. When necessary, the system switches automatically to some
other modes. For instance, if the user indicates that he/she wants to create a new relation. the system
goes into the format edition mode.

In the format mode, a format can be very easily specified. The normal moves in text edition (forwara,
backward. upward. and downward) are replaced by moves in the format (i.e. & tree) : move to the parent, to
the first child., to previous or next brother.

The data mode allows to have direct access to the data in a V-relation. It can be used for browsing
through data, or for updates. The major difficulty of browsing in this context is that there is no res-
triction in Verso neither on the length of atomic values, nor on the number of attributes, nor on  the
depth of the format. It is typically the case that the screen is not large ehough to represent the data.
Two choices are thus made:

length of atomic values: On the screen. a buffer of finite length is allocated for each atomic entry of a
given attribute. If the value does not fit in that buffer, only part of it is represented on the
screen. The user can access the remaining information by scrolling in the buffer.

complexity of the format: if EVER can not fit everything in a window, it chooses to represent some projec-
tion of the V-relation of interest. The user can of course override this choice. and prefer a dif-
ferent projection from the one chosen by EVER.

In the data mode. the user can use search (forward and backward) for a given value. Insertion and
deletion can be performed directly on the data. In the case of insertion, the inserted data is kept by
EVEK. and sent to Verso when the user "writes" the V-relation. In fact, except for the particular nature
of the data. the editing of a V-relation ressembles the editing of a text in a conventional editor like Vi
or Emacs.

A last mode., the selection/projection mode. is entered when the user wants to perform one such opera-
tion on a V-relation. The projection is defined first. The specification of the selection is then similar
to the input of data in a V-relation. The only difference is that conditions are entered instead of

values. 1In that respect. the specification of a selection in Verso is done like in query-by-example [z).
IV.3 THE V-PASCAL INTERFACE

In this section. we present an extension of Pascal. V-Pascal [Mai]., which combines the advantages of the
Verso system. and that of the Pascal programming language [PASCAL].
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The V~Pascal interface uses the.notion of relational skeleton. Given a Verso format f. the relational
skeleton R is the relational :schema which can represent the same information. For instance. consider the
format f= (£ilm(aétot)'(diréctot)‘)'. fts corresponding skeleton is the relational schema R= (£ilm, film
actor. f£ilm director}.

Programs in V-Pascal.ate.compiled:into conventionalipascal programs with calls to a Verso library.
since Pascalv does not allow the direct use of complex data structures like v-relations, the treatment 4s
done one flat tuple at a time. In. fact, the Pascal program can work with the relations of the skeleton.
These relations are viewed .as ordered. The Pascal program has access to the information contained in
these relations using some functions -(get_first, get_next, get_previous,...).

The V-Pascal interface has been tested on a pa:ticular»applicat;on. Some agregate functions not pro-~
vided by the Versc system.were needed in the application. V-Pascal could realize them quite easily. V-
Pascal has also been used to evaluate some alternative join algorithms.

A pure relational interface i3 under .study. Like V-Pascal, it will use extensively the notion of t;i-
mat skeleton. The theoretical foundations of such an interface are exhibited in [Bi]. It is shown there
that an arbitrary relational query q ‘to R can be translated into a Verso query q' on f. Some optimization
on the resulting Verso query based on a tableau technique is also proposed in [Bi].
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V. PERFORMANCE

Two prototypes of filters were realized for the VERSO system. In the first prototype. the data access
function was implemented by means of dedicated hardware. In the current prototype. filtering is imple-
mented by software on an Intel 8086 processor. The performance evaluation work presented in this sgection
focusses on the problem of choosing between these two competitive approaches for implementing a performant
relationsl DBMS.

At the time where the performance study was started no real life measures were available ¢ modelling
was used for evaluating the filter's response time to a query in both architectures. Such studies were
uzefnl %6 help the designers in their choice of the best parameters within each architecture. These stu-
dies are reported in [G,GS.S]. However when comparing the two architectures, the software filter turned
out te provide an acceptable performance although inferior to that of hardware filtering.The latter
approach then appeared as deceiving compared to its design complexity. One of the conclusions of the study
reported in [G] was that the hardware filter's power is badly utilized.

Later on, when the VERSO system was operational with a software filter. two types of measures were
performed.

a) 10 relational queries were run on a real life database provided by the french ADI agency. The data-
base volume was of the order of 1.5 Mbytes. The database was stored on a SMbytes disk. The only
measure performed was the query response time.

b) The filter was then tested against a benchmark adapted from that designed at the University of

Wisconsin  [Bit] and whose objective was to allow the comparison between several research prototypes
and industrial products.

Currently only the selection/projection operation has been thoroughly evaluated with this benchmark.

The main conclusions on software filtering design drawn from this measurement experiments are
presented in Section V.1 and compared to the predictions reported in [GS]. Measures of the hardware filter
are not yet available: a comparison between the (measured) software filter's response time and the
{predicted) hardware filter's response time is attempted.

A comparison between the Verso system and other DBMS is presented in Section V.2. As a basis for the
comparison of the response times,
- we restricted ourselves to the selection/projection operation. and
- we use the figures reported in {Bit].

Measurement on other operations (e.g. join) as well as a comparison with other DBMS is under study.

Section V.3 addresses the issue of the performance improvement provided by relegating filtering tasks

to a separate processor.

V.1l FILTER'S RESPONSE TIME
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The response time was measured as the time elapsing between a CPU command {once the FSA has been loaced)
and the "end of giltering” acknowledgment by the exchange module. Using the same benchmark as in ([Bit]. a
10 000 tuples relation was taken as a source relation, where each tuple is 182 bytes long (the relation of
size i.82 Moytes is stored on 185 blocks). The Source Relation has 14 attributes. The measurement reported
in I{DRS } thoroughly studies the influence of the number of attributes projected. the number of attributes
included in the selection criteria. etc. We only present here the case where all attributes are projected
and the gquery is.: € ({ x where c_ is the first attribute and x ranges between 1 and 10 000 (c_ is a key).
we reatrict our atteﬁtion to the case where the target relation is an output relation and therefore is
read by the CPU. since ¢ is the tirst attribute, only a subset of the 185 source blocks were selected by
the index and were scanned by the filter (1 if x = 10, 185 if x = 10 000). ‘

Y¥.1.l Response time

The filter's response time is plotted versus X in Figure V.1

The response time is linear in x. i.e. in the number of bytes scanned., If the query is wvery selec-
rive {x < 100, i.e. less than 1 per cent of the tuples are selected), the response time is of the order of
1 second. On the contrary. scanning the whole relation would require more than 7 minutes.

7.1.2 Cycle time

Recall.the filter sequentially scans the source data. While the hardware filter scans the source data one
byte at a time, this is not true anymore for the software filter. Indeed the time spent on an attribute
value depends on whether this attribute is to be projected or compared to a given value or just skipped.

pDefine the cycle time to be the time spent by the filter scanning one byte. With the hardware filter.
this time denoted by T may be considered as a constant independent of the query and predicted to be equal
to 506Ys. On the contrary with software £iltering the cycle time has a significant variance. By extension,
we call in the latter case cycle time. the ratio of the response time over the number of scanned bytes.
For the above query. the cycle time denoted by 7; is equal to 300 WUs.

tn (GS ]. T_ was predicted to be of the order of 3 to S “% ' The descrepancy between the measure of

7 and the rather optimistic prediction in [GS] may be partly explained as follows : the current filter's
prgtotype has been written in a poor pascal and runs on a 5MHz Intel 8086 microprocessor. By using a fas-

ter microprocessor and writing the code in a more performant pascal (with critical sections written in

assembly language). one should increase the performance by one order of magnitude : T =30 s.
. . S
Vv.l.3 Hardware versus Software Filtering
Wwith the software filter, filtering a block takes a significantly longer time than reading it from (writ-

ing it onto) disk : the processes of'loading.runloading a block a;e:idlg most of the time ; 1/0 time is
"hidden” behind filtering time jtself and the response time is appréximately.the filtering time itself.

with hardware filtering. on the contrary. the filter itself is idle'part of the time waiting for a
block to be read from (written onto) disk. The response time then isuapproximately the time to transfer
data between disk and memory [GS).
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Figure V.1

Denote by TD the time to tranafer a byte from disk to memory : with the current SMD disk interface

connected to the hardware filter (10 Mbytes/s) TD' = 800 ‘Ys (see [G .GS] for a detailed study of the
hardware filter).

Then a reasonable estimate of the ratio of software filter's response time over hardware filter's
response time is the ratio R » Tg/ T For the above selection query, R=< 37 !

Recall however. no measures are yet available for the hardware filter and the above value of 7'n is
probably rather optimistic.
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In summary. the VERSO hardware filter should be extremely faster (more than 20 times faster) than an
optimized version of the current filter implemented by means of an "off-the-shelf"” processor. This is in
contradiction with the modelling study reported in [GS]. In this study the predicted performance of the
goftware filter was rather optimistic.

V.2 COMPARISON WITH OTHER pBMS

Por this experiment. the global response time to a selection query initiated by the user at ' the terminal
was measured with the Verso system and compared to the response time provided for the same query by the
tollowing systems: the commercial version of the INGRES DBMS [St]. the relational DBMS ORACLE (Version
3.1) . the research database machine DIRECT (De] and the IDMS00 database machine [IDM].

We followed the experiment reported in (Bit}]. using the same database and selection queries for the
Verso system. The response time figures for the above 4 DBMS were taken from (Bit, Tables 1. 2., and 31. We
give below the main cbaracteristicg,gt the experiment. For more details, the reader is reported to the
above reference.

The four systems were implemented on Vax 11/750 computers except for the IDM500 machine whiéh was
connactea to a PDP 11/70_host. Observe that those computers have more powerful processing units than the
§M90 machine on which the Verso system is implemented. However precise evaluation was not available for
comparing the power of a Vax 11/750 CPU to the Intel 8086 processor.

The selection queries were run on a 10.000 tuple relation where each tuple 15v 182 byté long. The
response time (in seconds) presented in Tables V.1, V.2 and V.3 represent an average'timé 5ased on.a test
get of ten different gueries with three selectivity factors: .01%. 1% or 10% of the source ' tuples were
gelected. The relation is sorted on the first attribute is a key and a non dense index is constructed on
this key. .

Note that the relation is g1at and then is not adapted to evaluate the advantages of the Verso data crgan-
jzation. In particular the compaction of data may significantly decrease the response time.

Table V.1 presents the response time when in the selection criteria there is neither ¢ nor. any
attribute corresponding to a dense index. On the contrary. Table V.2 gives the response time to arauery
including c_: a search through the non dense index restxicts the number of tuples to be evaluated. Table
V.3 reports a variant of the experiment of Table V.1 where the result tuples are to be displayed on the
user's screen (the display time is omitted).

One can draw a number of conclusions from the results presented in these tables. Wwithout index
(Table V.1) the response time provided by the Verso system is independent of the selectivity factor since
the entire relation is sequentially scanned whatever the selectivity factor is. Compared to the other sys-
tems, Ver;o’s response time is rather large: the main ceason for this is that the filter's 8086 processor
is very slow. )

On the contrary. when using a non dense index (Tables V.2 and V.3 ), despite the mediocrity of the 8086
processor. the Verso system provides an acceptable response time although superior to that of iINgres of
IDMS00. the extracost incurred in displaying the results is very small.

V.3 PARALLELISM BETWEEN CPU AND FILTER

1f both Source and Target Relations are stored on disk. ance the filtering command has been delivered to
the Filter. the CFU is idle for other tasks.
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Selectivity
System 1% 10 %
" C -INGRES 38.4 53.9
ORACLE 1942 230.6
IDM 21.6 23.6
DIRECT 43 46
VERSO 192 192
Table 9.1 ¢ Selection wiﬁhout index
Selectivity
1% 10 %
System
C ~INGRES. 3.9 18.9
ORACLE 16.3 130
IDM | 1.5 3.7
DIRECT 43 46
VERSO 6 26

Table V.2 : Selection with index

With the current architecture of the VERSO system, requests are sequentially run. Then while filter-
ing is under process, the CPU is totally idle. unless the machine is shared by other non-DBMS users.

Relegating filtering to a separate processor has however several interests :

1) gg-ggg-g;x filtering: Filtering is much faster when implemented on a .dedicated unit, if the latter is
faster than the CPU. This is certainly true when dedicated hardware is used (see above). However, no
measures are yet available for the Verso system. in order to prove filtering would be much slower if
implemented on the CPY.

2) Multifilters: Another simple extension to the current architecture would be to use several “off-the-
shelf” filters for answering the same query. Such a Single Instruction Multiple Data (SIMD) approach -
often proposed [De,LSZ,LK] assumes data are split on several disk units, each disk unit being inter-
taced to a filter. With such an approach, the decrease in response time should depend on the query
and on the disk allocation strategy.
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Selectivity 0.01 % _ "
System (1 tuple) ,
C - INGRES 0.9 ' 5
ORACLE ' 2.5 .' 27
oM 0.7 2.7
DIRECT 46 | 49
VERSO 2.3 6.5

Table V.3 : Selection with index. display on the screen

Multiinstructions: The above approaches increase the global throughput (measured in number of

fequests per unit of time) by decreasing the query response time. There exists a complementary
approach, namely that of accepting into tlie system several requests at a time. This can be done by
éipélininq the varicus stages of a request execution on a single CPU. The simplest way of pipelining
requests, is that. when the filter processes a request. the CPU processes another one. We currently
équy such an improvement of the VERSO system. Another more ambitious approach for running several
}ééﬁelts at a time is to utilize several CPU's (say one for each request). This approach has been
gbi;owed in some research prototypes [BHK.S+.Gamma] and announced in recent commercial products such
as Teradata’s database computer {Sh] or japanese and french products [AC. K+l.
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V1 SUMMARY

This paper was devoted to the presentation of the Verso database machine. prototypes of which run. %

under the Unix operating system on a 68000 based machine, the SM90. With respect to wmore classical
relational DBMS designs, VERSO major novel features are the following:

1) It includes a filter implemented on a separate processor close to the mass storage device. This
filter is in charge of all algebraic operations except for restructuring. This automaton-like mechan-
ism is extremely well adapted to processing of both unary, and binary cperations. Furthermore. the
filter is also hsed for providing fast updates.

2) Data is organized in non IN¥ relations. This allows to combine the advantages of the relational model
(e.g.. ‘an algebraic language). and the possibility of hierarchical data organization. To our
knowledge. the Verso system is the first rumning system based on non 1NF relations.

The first objective of the VERSO project was to Justify the approach consiasting in relagating filter-
ing to a fast processor close to the mass storage device. For that purpose. a specialized hardwvare pro-
cessor was first designed to realize the filter. For cost snd portability reasons. this processor was then
abandoned and replaced by an Intel 8086 microprocessor on which filtering was implemented.

The first response time measurements clearly show that the VERSO system is not faster than commercial
systems such as ORACLE or INGRES. The main reason is that the 8086 microprocessor on which filtering was
implemented is slow. By using dedicated hardware for filtering, one should gain at least one order of
magnitude on response time. However, standard microcomputers have a performance that increases rapidly
with time. For that reason. following {BD], we believe that the use of "off~-the-shelf" components for
filtering should be preferred to a time-consuming and costly design of dedicated hardware.

Besides. this first experience with a non 1NF model is quite promising. Verso users seem to adjust
quite fast to those more complex structures. For instance. it turned out that although the Verso language
was not intended to be user friendly. it didn't require too much practice to be capable of writing even
complex gqueries in that language. Not surprisingly, the screen interface EVER has been quite an improve-
ment for users.
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