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Natural Semantics on the Computer

D.Clément, J.Despeyroux, T. Despeyroux, L. Hascoet, G. Kahn
Sophia-Antipolis, June 1985

Abstract

Defining semantics of programming languages with the help of structural
axioms and inference rules has been advocated by Plotkin. We call the method
Natural Semantics and show that it can be implemented on the computer. Several
examples in static semantics, translation and dynamic semantics are worked out
in full. They show the power and elegance of the method, as well as its intuitive
appeal.

- All examples discussed in this paper have beer mechanically translated into
running programs. Hence Natural semantics seems a strong candidate for building
semantically-based programming environments.

Résumé

G. Plotkin s’est fait I’avocat d’une méthode de définition sémantique des lan-
gages de programmation & l'aide d’axiomes et de régles d’inférence structurels.
Nous donnons & cette méthode le nom de Sémantique Naturelle et nous montrons

qu’elle peut éire implantée sur ordinateur. Nous traitons en détail plusieurs ex-

amples concernant des spétifications de sémantique statique, de traduction et de
sémantique dynamique. Cés exemples mettent en valeur la puissance, I’élégance
et 'aspect intuitif de cette approche.

Tous les exemples traités dans cet article ont 6té compilés et sont exécutables.
Par suite, il semble que cette méthode de Sémantique Naturelle puisse servir de
fondement pour un systéme dérivant intégralement un environnement de pro-
grammation d’une simple description sémantique.
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Natural Semantics on the Computer

D.Clément, J.Despeyroux, T. Despeyroux, L. Hascoet, G. Kahn

INRIA Sophia-Antipolis
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Abstract

Defining semantics of programming languages with the help of structural
axioms and inference rules has been advocated by Plotkin. We call the method
Natural Semantics and show that it can be implemented on the computer. Several
examples in static semantics, translation and dynamic semantics are worked out
in full. They show the power and elegance of the method, as well as its intuitive
appeal. :

All examples discussed in this paper have been mechanically translated into
running programs. Hence Natural semantics seems a strong candidate for building
semantically-based programming environments.

INTRODUCTION

The formal description of programming languages has developed along two general
lines: attribute grammars —to specify static semantics and translations— and denotational
semantics —mostly to specify dynamic semantics. Both formalisms, while extremely useful,
have their deficiencies.

The major deficiencies of attribute grammars are:

Specifications based on attribute grammars often result in heavy — seemingly very low
level — notations.

Attributes are attached to single tree nodes rather than tree patterns; as a consequence
structural information obscures atiributes:

The formalism seems more appropriate for static calculations tha,n for dynamic exe-
cution.

Semantic analysm of attribute grammars is dxfﬁcult due to the low level of the formal—
ism.

The major deficiencies of denotational semantics are:

- For static semantics, denotational semantics equations are clumsy and the ways to
specify tree traversal are not very elegant.

- It seems difficult to describe parallel constructs in the dynamic semantics of a lzmguage

- Pure denotational semantic deﬁmtxons may result in overspecification.

This research has been partially supported under ESPRIT, Project 348
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- In this context, this program fragment has this type.
- In this context, this program fragment can be translated into that program fragment,.
- In this context, this program fragment allows transition from thijs state to that state,

The method, for historical reasons, is called Structural Operational Semantics. We prefer
to call it Natural Semantics because of its intuitive appeal and its Natural Deduction
flavor. It retains the best aspects of earlier methods:

- Semantics is defined recursively on the structure of the formalism (as is the case in
denotational semantics).
- The definition is declarative (BNF, Attribute Gramma.rs,_ Predicate logic).
- Pattern Matching, Unification, Overloading are used intensively.

Furthermore, the method exhibits progress on several kej' points:

The definitions are short, readable, elegant. With some typesetting effort, they look
very intuitive.
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‘putation). :

- Interfacing a definition of this kind With recursive semantic equations or abstract
algebraic specifications seems feasible. _ :

- Static semantics and translation can easily be expressed.

- Specifying concurrent behaviour is reasonably easy and natura].

1. A computer formalism



The numerator of a rule is again an unordered collection of predicates. Intuitively, if all
of them hold, then the denominator, a single predicate, holds. More formally, from proof
trees of the numerators, we can obtain a proof tree of the denominator.

A rule is thus similar to a Prolog clause. But we notice already two differences: the
otdering of the rules does not matter, the ordering of the predicates om the numerator
doesn’t either. On the other hand, the notion of a Prolog variable is identical to the
notion of a TYPOL variable, but for the fact that TYPOL variables are typed.

1.2, Sequénts

. Predicates are divided into two kinds: sequents and conditsons. The denominator of a
rule can only be a sequent. On the numerator, sequents are distinguished from conditions,
and the fact that they usually occur first doesn’t imply any notion of sequencing with
respect to the conditions. A sequent has two parts, an antecedent and a consequent.
Traditionally, we use the turnstile symbol F to separate these parts. The consequent may
have several forms, indicated by various infix symbols. For the moment, we handle only
otte symbol, colon and use it to mean ”has type”, "translates to”, "leads to”. A refinement
‘under consideration will include several distinct symbols.

A rule that contains no sequent on the numerator is called an azsom.

1.3. Conditions

Very often, a rule is subject to restrictions. A variable may not occur free somewhere,
a value must be boolean, some relation must hold between two variables, for example.
Conditions are, for the moment either predefined conditions, or equalities of the form
"variable = term” or conditions that are axiomatized by another set of TYPOL rules.:
Typical predefined conditions are ISVAR (x), ISIN(1x), SAMEVAR({x,y).
Tt is not clear yet what language or languages are adequate to define conditions.

1.4. Actions

Actions may be attached to rules, in a manner that is reminiscent of the way actions
may be attached to grammar-rules in YACC. Actions are triggered only after an inference
rule is considered applicable, and actions may need to get hold of the values bound to
the variables of the rule. An action cannot under any circumstance interfere with the
applicability of the rules. Typical use of actions concern: tracing in various ways the
inference system, emitting and filtering error messages, etc...

It is clear that actions will have to be written in a variety of programming languages,
at various levels of abstraction. Therefore, only the communication mechanism between -
TYPOL and actions has to be defined. This remains to be done.,
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In terms of style, actions should be used with parcimony. For example, when specifying a
translation, it seems far more elegant to axiomatize it rather than have the actions perform
the generation of the output. On the other hand_, in the context of type-checking, it seems
more appropriate to have actions filter error messages, rather than introduce strange type
values to handle various erroneous situations.

1.5. Rule sets

Some structure must be introduced in a collection of rules, if only to separate different
semantic concerns. For example, in a specification of types, one wishes to distinguish

structural rules of consistency, management of scope and the properties of type values. To - -

this end, rules may be grouped into sets, with a given name. Sets of rules may coliect
together rules or, recursively, rule sets. For the moment, no scope has been attached to
this bracketing mechanism. When one wishes to invoke a sequent that is axiomatized in
a set of rules that is not the textually enclosing one, the name of that set appears as a
superscript of the turnstile symbol in the sequent.

Further bracketing is necessary, to group rules that work together. This could appear as
brace, together with some optional name. This name now would be only an annotation.
This situation is similar to Algol-like languages, where we may use both procedures and
anonymous blocks.

1.8. Handling special cases

Rule sets are unordered. That means that, if two rules may apply, we need to find
an intringic reason to prefer one rule over another; Many experiments were needed before
settling on such a rule. Since our method is structural, the sequent in the denominator of
a rule will always, on the right hand side of the turnstile (i.e. in the consequent) contain
a syntactic term. In fact, in the case of a translation specification, there may be several
such terms: then we shall select the leftmost one. Let us call this term the subject of the
rule. If the subjects of al] rules in a rule set are lncompatible, (i.e. they have no common
instances), then only one rule may apply at any time. If two rules have identical subjects,
then the selection of what rule applies is based on their numerators. »

The case of interest is when two rules have compatibie (unifiable) subjects. Consider

whose subjects may be compatible. What is aimed for is the property that there always
be a most specific rule to select. '

To achieve this, we impose on TYP OL programs a "compile time” condition: within a rule
- 8et, the set of subjects should be elosed under unification. In other words, if we think of
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the relation ”¢1 is an instance of £” as an ordering relation, (t1 > ¢) any two compatible.
subjects should have a least upper bound.

If this condition is satisfied, there always exists a most specific rule to apply. In practice,
except when writing pretty-printers, we have found that this compile time constraint in~
duces very rarely the need to add a new rule. On the other kand, the ability to handle
easily special cases is a key factor in the elegance of TYPOL. It is used repeatedly in all
aspects of semantic specifications. , '

1.7. Declarations

A set of rules may contain declarations. These declarations introduce names for the
variables in the set, and give them a type. For the moment this type is just an ideuntifier,

so that variables may be grouped into sets of identical type, i.e. a private type as it is

called usually.

Of particular importance are variables that denote subtrees of a given language L. If a
variable is declared of type L, that means that it stands for a subtree belonging to the
abstract syntax of L. This abstract syntax is in general imported through a use clause.

The declarations are used by the TYPOL pretty-printer, that may assign different fonts
for variables of different types, in accordance with standard mathematical style. They are
also to be used by the TYPOL type-checker. ‘ -

1.8. Use clauses

A use clause serves initially to import all of the abstract syntax constructors of a given
language. This allows identification, in sequents, of the tree patterns, and the checking of
their validity. In fact, as we shall see in the definition of the language KH, an abstract
syntax is a collection of overloaded constructors. So, by extension, a use clause allows to
import any collection of constructors..

Since several use clauses ma}" introduce the same constructor name, means are provided
to rename of a constructor as it is being imported. However, overloading resolution in
TYPOL programs should, we hope, limit the need for this facility.

Identification of languages and of constructor collections is useful for type-checking and
pretty-printing. Indeed, a use clause should also import the pretty-printing rules that
are used for a collection of operators, and these rules should supersede default rales for
pretty-printing general terms. : '

1.9. Overloading

The type-checking rules for TYPOL are still under design. An essential element
however, learned from experience with denotational semantics and other mathematical
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formalisms, is the need to use overloading. This avoids inventing many new, insignificant,
names. .

Overloading is found in two places in TYPOL. First, the turnstile symbol is heavily over-
loaded. Within a set of rules, the turnstile is a reference to the immediately (textually)
enclosing set. A comparable situation would occur in an Algol-like language if one would
not have to name the recursive function that one is in the process of defining. Further-
more, we wish to avoid -a proliferation of names like: check-declaration, check-statement,
check-expression. So we allow overloading of sequents based on the type of the arguments
“occurring in the sequent, whether to the left or to the right of the turnstile symbol.

As a result, we achieve a style of expression that is very compact, but still readable. An
idea of this kind has, to our knowledge, already been put forward by Ravi Sethi, in the
context of Denotational Semantics..

‘The second occurrence of overloading comes naturally with abstract syntax. Coustructors,
by necessity, must be overloaded, if we wish to enforce well-formedness of abstract syntax
trees: an assignment statement, for example, allows expressions on the right hand side,
and a subset of expressions on the left hand side, those that demote locations. Hence
even the simplest constructor, Identifler, must be overloaded, to appear on both sides
of an assignment statement, if we want to have a notion of syntactic types. Fortunately,
resolving this kind of of overloading is completely trivial, as we see later in exemple KH.
But if we allow internal overloading within one abstract syntax, we might as well try to
allow it between two different abstract syntaxes, in the fairly rare case where we deal with
several languages simultaneously, that share a constructor’s name.

1.10. Pretty-printing TYPOL Programs

TYPOL programs are entered in a standard ASCII format, mostly under the MEN-
TOR syntax oriented editor [Mentor]. However, we have built a pretty-printer that gives
a far more pleasant and familiar outlook to these programs. The pretty-printer generates
TeX input, which is then processed by TeX and perused on a high resolution display. In
this way, we can obtain properly computed blank spaces, nice horizontal bars and a choice
of fonts for very little work of the user. '

Variable declarations are used by the pretty-printer. A font is attached as an annotation
to a given declaration. This font is used for all the variables bound by this declaration.
Second, after overloading resolution if necessary, we use separately designed pretty-printers
attached to the modules imported via use clauses. If a pretty-printer has not yet been
designed for a given formalism, then we fall back on a default pretty-printer for abstract
syntax trees. This organization is very modular, and we reap nice benefits of static type-
checking?.

! The need for context-dependent pretty-printers is not specific to TYPOL. It is difi-
cult to obtain a really good pretty-printer for Ada without performing a complete type-
checking.



2. Generating executable code

An initial TYPOL compiler has been designed under MENTOR. This compiler lias
allowed to carry out experiments, but it is still in infancy. The general strategy is to compile
TYPOL to Prolog. A first compiler was written in Pascal. Then it was bootstrapped. The
current compiler is written in TYPOL itself. This strategy is responsible for a very fast
- development, but it has resulted in many insights as well. The Prolog code that obtains
is far from absurdly inefficient. ' '

2.1. Compiling to Prolog

As it is to be expected, every rule is compiled into a Prolog clause!. TYPOL variables
map to Prolog variables, and the denominator maps to the clause head. Each sequent maps
to a predicate, but this mapping is performed, of course, after overloading resolution so
as to distinguish predicates as much as possible at compile time. We also wish to be
independent of Prolog variants that may allow more or less overloading in Prolog itself.
The numerator is compiled as the body of the clause, with actions last since they are
triggered jff the rule applies. To make certain that actions do not interfere, we see that
actions should never fasl. In fact, they should not provoke any special bindings either.
The order in which the sequents and conditions on the numerator of the rule are compiled
should be computed, but this is not done at the present time. '

2.2. Sorting Clauses

In Prolog, the order in which clauses appear is an essential mechanism for controlling
execution. If we want special case rulés to have precedence over general rules, their code
should be appear earlier. The constraint that compatible subjects should have least upper
bounds matches Prolog very well: the compiler just needs to sort the rules topologically {(or
rather the clauses they generate) with respect to their subject, so that special cases occur
first. The Prolog strategy of selecting the first clause that applies will then automatically
choose the most specific rule. :

Another optimisation may be performed by the TYPOL Compiler. Many Prolog inter-
preters use a double hashing strategy: first they hash on the head of the goal to find the
proper collection of clauses to use, then they rehash on the head of the fipst argument, to
try to find quickly which clause in the collection applies. To take advantage of this effi-
cient scheme, we just need to arrange that sequents generate predicates where the subject
appears as the first parameter.

! In fact, extensions to TYPOL that are currently examined require to generate moré
than one clause per rule '



2.3. Pointers to source code

Tree patverns that occur in sequents are compiled into Prolog terms. When executing
a specification, abstract syntax trees are mapped to Prolog terms as well. Execution of
a TYPOL program takes such terms as arguments. For various reasons, we would like
to refer to the source abstract tree. This is the case for example when executing the
specification of a type checker: we want to see exactly where an error has been found.
Another example is when executing dynamic semantics: we want to follow the execution
on the source code.

To handle this problem, a pointer to the abstract syntax structure is kept in the corre-
sponding Prolog term: if f(X,Y) is an abstract syntax tree, its Prolog representation will
be f(n, X', Y'), where X' and Y’ are terms corresponding to X and Y, and n is the address
of the source structure. This pointer value is just carried by Prolog, and no operations
are allowed on it. This strategy makes it possible to refer to the original structure when
writing actions attached to the semantic rules.

3. Examples in type-checking

The notion of types in programming languages is the object of much current research.
From Algol-like languages to Ada, to languages with type-inference like ML or B, there
are many examples in the literature and in computing practice exhibiting great diversity.

3.1. A very small language: PICO

The first language that we study is PICO [Pico).

The PICO type-checker on Fig. 1 illustrates the basic features of TYPOL. There are three
sets of rules: the structural rules on the one hand, the rules to modify and access the
environment on the other. In more complicated typing systems, we will see that a third
group becomes necessary, to provide for manipulation of type expressions.

Consider first the structural rules. From rule (1), three overloadings of turnstile are intro-
duced: to type-check a whole program, to elaborate declarations, to type-check statements.

"} DECLS : & o | SERIES
I begin declare DECLS; SERIES end

(1)

The next three rules exhibit linear elaboration of declarations, as the type environment is
built up progressively. From then on, the environment will not change anymore. State-
ments are checked one by one (rule (6)). Rule (7) introduces a new overloading of turnstile,
to type-check expressions.

‘ aoFID:7 alEXP:r

a b ID := EXP.

(7)
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Both sides of the assignment statement must have the same type. The only remaining non
trivial rule regards the type of an identifier: ‘to find it, the environment is looked up.

The sets DECLARE and VALOF are attempts at specifying the environment in the
same style. Double declarations are not detected. On the other hand, if an identifier is
undeclared, a PICO program will not type-check.

3.2. A standard exainple: ASPLE

This next example, somewhat more complicated than PICO, is still in the tradition
of Algol-like languages, even with an Algol-68 flavour [DKL]. The rules appear on Fig. 2.
Rule (4) is the first unusual rule. It introduces a new overloading for turnstile (declare a -
list of identifiers with a given mode). The mode with which variables are declared is not
exactly the mode that appears in the program text: it is first prefixed by ref, , '

The rule for the assignment statement (rule (9)) shows that the modes of both sides need
not be identical: the rule is subject to a condition. This condition is axiomatized later.

eFID: ek BXP : iy LESS (py,ref py ) .
ek ID := EXP _ ot

9)

Similarly, we cannot write rules (10) (11) (12) without a condition: the language only
demands that the base type of the expression controlling an if or a while statement be
boolean. It is trivial to axiomatize this condition (see set IS_.BOOLEAN) but we cannot
use mere pattern-matching to that end. o '

A similar situation occurs within expressions, since ref operators in excess are 'toleraﬁ;ed‘.
But they vanish from the result type of the expression. Together, the conditions {LESS,
IS.BOOLEAN, RESULT_TYPE) constitute a separate package, specifically concerned
with the manipulation of type expressions for ASPLE. The axiomatization that we give
here shows one possible style, whose merits remain to be evaluated.

3.3. An example with overleading: KH

This language has been designed strictly for the purpose of understanding A.da-like
overloading. The type-checking rules of KH are on Fig. 3. In KH, one may declare variables
of an atomic type, and functions with their signatures. Then the body of a KH program
is a collection of assignments, where an identifier may occur on the left, and an expression
on the right hand side. However, the language exhibits overloading in that redeclaring an
identifier with a different type is legal and meaningful. Statements are well-typed iff there
is a unique way to type them.

‘The basic idea in the type-checker is to write the rules as if overloading did not exist,
and then, instead of considering the environment as a function, make it a relation. The
backtracking inherent in Prolog will sufficé to resolve overloading. '
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Remark: the algorithm that results is not inefficient at all, because the environment is
searched with a pair consisting of an identifier plus a partially instantiated type, due to
rule (13) and (14).
pkID: 7 pHEXP:T
p F ID := EXP

(13)

pFID: () =7 pFLEXP: 7,
pF D(LEXP) : 7

(14)

We see here that unification is an interesting way to accumulate constra,ints on types.

Oue interesting application of KH is in typechecking abstract syntax definitions. An ab-
stract syntax will be naturally presented as a KH declarative part. Overloading is manda-
tory to avoid heavy coercions everywhere. Now checking whether a given term built with
abstract syntax constructors is legal is just type-checking that term with respect to this
declarative part. Note that in fact, any two operators with the same name will always be
declared with the same type of arguments, and only differ by their result-type. As a conse-
quence, resolving overloading will involve no backtracking, and it will be very incremental.

The need for this type-checking algorithm occurs immediately in our context, to check that
the abstract syntax terms occuring in a TYPOL program really denote existing subtrees
in their language. '

Understanding overloading in that manner seems to clarify the distinction between over-
loading and polymorphism: overloading is a property that comes from the definition of
the environment of a language. On the other hand polymorphism is a property of the Zype
ezpressions, that may contain free variables.

3.4. An example with type inference: mini-ML

To assess the robustness of our notation, following [TD] we are now attempting a
more ambitious task: to provide a specification of a central part of the ML language [ML].
ML is a language with two very interesting characteristics from the point of view of types:
polymorphism and type inference. ML typechecking is the object of numerous discussions in
the literature ([DM],[Cardelli], [Reynolds]). As such, it is a natural challenge for TYPOL.
The features of ML retained in this mini language include all functional aspects plus
cartesian products but no lists nor abstract types.

Consider the first set of rules, the set TYPE, which is the core of the type-checking-
specification. Rules (1),(2) and (3) are without mystery. Rule (10) concerns cartesian
products and is easy as well. Rule (9) on conditional expressions is just what one would
expect to write, but it already implies some form of unification since there are repeated
occurrences of the same type variable 7. Rule.(7) just tells that a let construct reduces to
an application whose operand is an explicit lambda-expression, a case handled by rule {5).

Rule (4) shows that the language has type-inference, since the variable (or list of variables)
P is declared with a type r that is a free variable, to be later constrained by further
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unifications.
rEprim  mbE:n

T APEB:r— 1 , (4)
This means that the type of the lambda-expression will contain free variables. Rules (5)
and (6) are really at the core of polymorphism. Rule (5) is a special case of rule (6) hence
it is preferred when applicable. Rule (6) is another fancy use of unification and is a sort
of modus ponens for types. '

Now rule (5) deserves more analysis.

gen '
ThEs:p 7Tk gt TP, 7Tim mHE iy

7k (AP.E)Es 1 1y - (5)
In the case where the operator of an application is an explicit lambda expression, we can
rely on the information gathered on the operand to help in type-checking the operator.
The variable (or variables) bound by X are declared of a type which generalises that of the
operand, with respect to the variables that remain free in the environment. This is done
in rule set GEN. Generalising a type-expression merely consists in tagging its variables
with the gen constructor whenever they occur free in the environment.

Of course, this generalisation cannot be understood without looking at how the types of
identifiers are found in the environment. This is explained in rule (11). Type values found
in the environment may contain tagged variables. Whenever we fetch a type value in the
environment, all of its tagged variables are consistently made into new variables. This is
axiomatized in rule set RENAME.

The management of the type environment in Mini-ML is trivial, but we see that we need two
primitives to manipulate type-expressions. Type expressions may have to be generalized,
and they may have to be renamed. The set FREEVARS is just an auxiliary collection
of rules to compute the free variables in an environment®. ‘

Type-checking of Mini-ML is difficult and rich in lessons for our formalism. While we
succeed in a very dense description, the need to rename a type-expression is probably
linked to some awkwardness in handling quantifiers within type expressions. This is an
area where further study is needed. Still, we have successfully pushed unification into the
meta-gystem, as well as all generation of new identifiers.

3.5. Further examples in typechecking

As already noted, the area of types is a very impdrta.nt subject of current research
in programming languages. We have not dealt with recursive data types or types where
quantifiers occur in a deeper way than in ML. Nor did we look at modules [DMQ). Finally,
ideas linked to type inclusion, such as coercions and inheritance, must also be investigated.

More complex forms of overloading, and in general more complex environment structures
must be studied as well, to gain understanding in what formalism is best suited to describe
them. _ ' ' ‘

! See an interesting and intuitive use of overloading in that set
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4. Examples in translation

Translation from one language to another is in general heavily guided by the structure
of the source formalism. Hence it should not come as a surprise that TYPOL makes
specifying translations easy.

4.1. From sﬁrface abstract syntax to deep abstract syntax

Defining an abstract syntax for a language that has not been designed with one in
mind is not very easy. The desiguer is always oscillating between two contradictory goals:

- Build a natural abstract syntax from the point of 'view of structured editing, and
program transformations. . -

- Stay away from the vagaries of concrete syntax and bring some order to the language,
grouping semantic concepts under the same operators, performing normalizations,
etc... In this way the language’s semantics will be simpler.

In a well designed language like ML, the abstract syntax put forward by the language’s
designers is not adequate for structure editing, because it is too deep, it has lost too much
superficial information that is necessary to reconstruct a reasonably looking program. This
is felt in particular in the area of error messages: diagnostic directed to the user are couched
in terms of the deep abstract syntax, a syntax that the user doesn’t know.

We have come to the conclusion that this dilemma will not go away, and that we must deal
with (at least) two abstract syntaxes: the superficial abstract syntax will be adequate for
structure editing and allow reconstructing the entire program text up to some innocuous
normalizations. Some constructors will disappear from the deep abstract syniaz, as a result
of canonicalization. But some new constructors will also appear as a result of overloading
resolution. We will always specify dynamic semantics on the deep abstract syntax, and
static semantics on the superficial abstract syntax. Translation from superficial to deep
abstract syntax follows usually the rules for type~checking and presents no additional
difficulties. We prefer to discuss translation on examples where the source and target
language are very different.

4.2. Generating code for a stack machine (SML)

We take as a first example the translation from ASPLE (deep abstract syntax) to a.
simple stack machine language (SML) whose semantics is discussed in detail later. The
definition of the translation appears on Fig. 5. Rule (1) shows that elaboration of dec-
larations produces a store, while translation of statements produces some code. Both
components are returned 4s result of the translation. Creation of the store (rules (2) to
(6)) is not very exciting. Rule (7) and (8) show that code for successive statements is
simply concatenated. The intuitive ideas about how to generate code are mapped directly
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to the next rules. Notice that the block instruction limits the scope of labels so that we
never use any other label than 1 or 2. If we had to use arbitrarily many, we could have
relied on our mechanism to introduce free variables to generate labels. With some care,
we could even generate directly relocatable code.

This translation exercise is a pure homomorphism, hence it does not use much of the real
power of TYPOL.

4.3. Generating code for a functional language

Recently, G. Cousineau and P-L. Curien have proposed a very ingenious abstract
machine for the compilation of ML [CAM]. The complete semantics of the machine is
described later. We present on Fig. 6 the translation from Mini-ML to CAM.

The first interesting rule is rule (9) where we see some use of pattern matching. One can
see on that rule that only funciions are allowed to be defined recursively in Mini-ML, a
fact that the type-checker will have verified. Aside from that, rule (8) and (9) have the
same outlook. Rule (11) shows an optimisation of rule (13) for predefined functions, rule
(12) shows another optimisation in the case where an explicit lambda~expression occurs as
the operator of an application. ’

We see in this example that the principle of selecting the most specific rule gives us a form
of optimisation for free.

4.4. A strategy for pretty-printers

Pretty-printers produce text from abstract syntax trees. Most existing pretty-printers
have two defects in our eyes:

- They are specifically line oriented
- Their specification contains information that pertains to the output device.

We believe that a two-pass strategy is more reasonable: the specification of a pretty-printer
should just be a translation from source language to a universal Jormatting language. This
language is universal in the sense that it is independent of the particular language that one
wants to pretty-print, but also because it can be executed on a variety of output devices
with results that are more or less refined. The INTERSCRIPT proposal [Jol] is a language
of that kind, although possibly too ambitious for our purposes.

In that perspective, pretty-printing becomes just a particular kind of translation, which |
should not be in general very hard to specify. Fine tuning of a pretty-printer, however,
will make extensive use of our facility for special cases.
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5. Examplés in specifying abstract machines

6.1. Specifying SML

The specification of the semantics of SML is given on Fig. 7. This specification
illustrates several interesting traits of TYPOL:

- The state of the machine is a pair, represented between angle brackets, of a store and
a stack. All stacking and unstacking appears merely through pattern matches. See
for example rule.(17) for the sto instruction

update
r b z,0:1m

ptsto,<r,p-z-k>:<r,, k>

(17)

or rule (13) for the ldo instruction. The store is accessed through two primitives,
get and update, and these primitives are candidate for implementation in a different
style. Given this, most of the rules are axioms, as it is to be expected in the description
of a virtual machine. , : '

- The only non-trivial part in this example is the treatment of jumps. In SML, jumps
are local to a block, signaled by a block instruction. Hence an environment, mapping
labels to ”continuations” is built upon entry in the block. This style is of course
heavily influenced by denotational semantics. Then when a jump instruction has to
be executed, the continuation is fetched in the environment, and execution proceeds
with that continuation. The best example is provided by the unconditional jump
instruction, ujp, in rule (3).

cont find
p F+ IblL:g pkei,8:8, (3)
p 't coms[ujpL-ec],s: 8

Now, in order not to deal with continuations in instructions that do not alter control
flow, we set up a general rule to describe sequences of instructions, rule (8).

pHcom,s: s pt CoMs, s, : 85 (8)
p F coms[coM - coms], s : 85

Then, all descriptions of jump instructions will be given in rules whose denominator
is a special case of that general rule, and hence supersede it.

This effort at having both a direct and a continuation semantics would becorme useless
if all instructions could provoke a transfer of control, for example by raising an exception.

But as it stands, we feel that this example exhibits once again the usefulness of our style
that allows for special cases.
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5.2. Specifying the Categorical Abstract Machine (CAM)

The complete specification of the machine CAM is shown on Fig. 8. The simplicity
and elegance of the machine is evident from the specification. The state of the machine is
again displayed with angle brackets, and can be thought of either as a register-stack pair,
or as a single stack. Pattern-matching suffices to explain the simple instructions: car,
cdr, cons, push, swap. Notice that it is used not only to mateh the stack but also to
match stack values. There are no jumps, only closures and recursive closures, so that the
sequencing rule has no exception. Conditional branching is simple as well.

 The cur and recf instruction are completely analogous. It is only the semantics of apply
(the app instruction) that will show a difference between closures and recursive closures.
‘There are two rules regarding app. Which one should be used depends on what is on top
of the stack. Both rules extract the code part and they differ only in what environment
this code is executed in. For a closure, the environment of the closure is prefixed to the
- current environment. For a recclosure, the current environment is prefixed with both the
recclosure’s own environment, and the recclosure itself.

As a matter of interest, we show an alternate rule for the recf instruction on Fig 9.
This rule is intuitive and simple, and permits to dispense with recclosure altogether. It
shows even more clearly than before that a knot is being tied in the environment. But
it introduces an infinite term in our definition, something we would like to. av01d for the
moment.

6. Examples in specifying Dynamic Semantics

, Experiments with dynamic semantics are only at a beginning. This is an area of
excellence for Denotational Semantlcs, so we must convince ourselves that the new style
is indeed clearer and easier.

6.1. ASPLE

The dynamic semantics of ASPLE is extremely simple. It is specified on Fig. 10.
Let us make a few remarks, pointing out how to read the TYPOL notation. Rule (1)
tells to start from an empty store, performing declarations then statements. Rules (2)
to (6) show that uninitialized store is being allocated for all identifiers in the program,
regardless of their declared mode. From rule (1) we see that turnstile is overloaded in
three ways (execute a whole program, elaborate declarations, execute statements). Now in
rule (9), defining the assignment statement, we learn of a fourth overloading, to evaluate
expressions. The nexi interesting rule is rule (14) where we see how simply a while
.statement is handled. The deref constructor causes no extra difficulty, because most of
the work is done at type-checking time for ASPLE.
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6.2. Mini-ML

The specification on Fig. 11 is a first attempt at specifying the dynamic semantics of
our applicative language, Mini-ML. Since the only semantic function to define is how to
evaluate an expression, the turnsiile symbol is not overloaded here. The environment is
treated in a slightly different style. Instead of making a separate set of rules to explain how
to add bindings in the environment, we perform these additions directly in the rules. But
we still keep a separate set of rules to describe how to refrieve bindings in the environment.
This different style seems clearer in the particular case of Mini-ML, and more generally
in dynamic semantics. In rule (9) regarding the let construct (the same rule as rule (13))
we see how a new binding is simply prefixed to the environment. Rule (14) shows how to
evaluate an application, when the operator of the application is the result of an evaluation.

prHE,:« pt E, : closure(AP.E, p;) py =env[P— a;p1;p]  paFE:P
A p I EiE; ¢ ,3

(14)

The second sequent on the numerator uses pattern-matching to obtain three components:
the body of the closure, the name of the bound variable and the closure’s environment.

It is interesting to observe that specifying the dynamic semantics of Mini-ML is substan—
tially simpler than specifying its type-checking rules.

7. Remarks on some difficulties

In the course of the discussion of the examples above, we have seen that scvera,l
difficulties remain:

- Our formalism supposes that we have a Prolog with occur-check, or at least that we
can turn on occur-check on some rules. For example in Mini~-ML type-checkmg Az.zz
without occur-check will loop instead of failing.

- Our formalism seems somewhat weak when dealing with values that may contain
binders.

- We need to have more experiments on how to deal with failure: fa.xlure to type-check
failure to execute. This is mostly a pragmatic issue.

- Sometimes we want a functional environment, sometimes we want it to be a relation.
How do we decide whether to generate cuts or not for the structural rules?

- It is clear that Prolog is a good target language from the point of view of gpeed. Shall
we run into problems of storage with large examples?

- Much more rule analysis is needed to generate good code on the one hand, but also

~ to be ready for incremental evaluation mechanisms.
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Figure 1

program PICO.TC Is
use PICO

a,ar,09 : TENV;

r: TYPE;

F DEOLS : & a k- sERIES
I begin declare DECLS; SERIES end

env[l - DECLS : @
I DECLS : o

ak decls] : o

declare
a F X,T:o; o; b DEOLS: g

ab X:T,DECLS : ag

a |- series|]

a kb sTAT o - SERIES
a b STAT;SERIES

akFm:7r ai—EXP:T_
al 1D = Exp

al BXP :int o b SERIES, a - SERIES, _

a I if EXP then SERIES, else SERIES, fi

al EXP :int a b SERIES
a } while ExP do SERIES 0d

valof_
a F idx:r
alidx:r

a b number ¥ : int

a b strings : str

aF EXp, :int a b EXP, :int
o b EXP, + EXP, : int

alEXP, :str ol EXP;:str
a b Exp,||EXP, : str

sat DECLARE is
env]F X, 7 : env[x i 1]

eno[X =+ 1y - ENV] F X, 7 : env[X > 7 - ENV]

ENV X, 7 : ENV,
env[T - ENV] F X, 7 : eno[T - ENV,]

end DECLARE ;
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set VALOTF Is

" end VALOF ;
end PICO.TC

- Figure 1

enviX — 1-ENV]F X 27

ENVEX:7
env[PAIR -ENV]F X : 7
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Figure 2

program ASPLE_NTC is
use ASPLE

€4C0vC10 20,63 : ASPLEENV;
Byt ) B2y pig - ASPLE;

env[] - DEOLS :6 el sTMS
I begin DECLS STMS end

ek DECL : e
el DEOCL : ¢;

el DECL : ¢y e1 - DEOLS : eg
el DECL;DECLS e

e FIDLIST, ref MODE : ¢,
¢l MODE IDLIST : ¢;

declam.
e F idx,p:e

eFidX,p:e

declare

e b idX,pu:e; e; - IDLIST, s : 29
" ek idX,IDLIST, 4 : e;

el sT™
ek sT™

el sT™ el sT™Ms
el sT™M;STMS

eF:ip; ebFEXP:pg LESS(py,ref pg )
el ID = mXP

eFEXP:p  IS.BOOLEAN(u:)  ob sTMs
el if EXP then sTMS fi '

ehEXP:y  IS.BOOLEAN(s:) ckstms, eb ST™S,

* ek HEXP then STMs, else sTMS, fi L

eFExp:p  IS_BOOLEAN (s ) el srMs
e while £xP do sSTMS end

ey
¢l input 1p

eEXP:p
e I output ExXP

type.af
e b+ idx:u
R e e P A
ekFidx:u

el booleanx : Bool

el numberx :int
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Figure 2

o resultdlype
e BXP, : uy 8 EXPy ¢ ig B1, 43 ¢ Uy
e - EXP; # EXP; : bool '
resultiype
ek EXP, : iy e EXPy t g B1y 142 2 Py
e F EXP, = EXP, : bool T
resulttype
e EXP, : 5y e EXP; 1 st Bratha s il

set DECLARE js

e EXP, OPEXP,: i

envf] Fidx,u: envfid X > ]

X#FY EFidx,p:1,

envfid Y = oy Bl Fid X, p : envid Y v gy “Ly)

end DECLARE ;

get TYPE_OF is

end TYPE.OF ;

set LESS is

end LESS ;

set IS BOOLEAN is

end IS BOOLEAN ;

envfidX +—+ p -] Fidx :

Elidx:pu
enu[TYPE - E[ FidX :

Ll T

Fou,M,
F u,ref M,

F bool

b ref M
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set RESULT.TYPLE is

end RESULT.TYPE ;
end ASPLENTC

Figure 2

MM,

b ref M, ,refMs : s

FuMip
Fu,refM:

l_le‘:ﬂ
FrefM,p:p

Fup:p
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'Figures_

program KH TC is
use KH

P01, : ENV;
TyT1,72,73,74 : TYPE;

env[lFDEOLS:p  pl LsTATS
I~ declare DECLS in LSTATS

o decls]] : p

~pFDECL: py n FDEOLS : pg

g+ DECL;DECLS : pg

declare
FTYPE: T p F my,7ip

pFID: TYPE: py

Fidx :idx

b type x : typex

Frrg Forsirg
"(Tl)'-’f:a:(‘rz)—'ﬂ;

Froim

F List{r; ) : list(rs)
F ltypes]] : ltypes]]

. FsTYPE : 7 FLrYyPES: 1y
b STYPE,LTYPES: 7,7y

p I Istats[]

pbSTAT  ph sTaTS
p - STAT;STATS

pFID:7 pFEXP:7
p 1D = EXP

pFm:(n)—1 p}-LExf.:fl

p FID(LEXP) : 7
prHEXP: 7T pFLEXP : 7y
¢ b EXP,LEXP : 7,1y

p b lexps]] : Itypes]
typeof
p F iudx:r
phFidx:r
set DECLARE is
pHID,7 : envfD - 7 - ]

' end DECLARE ;
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set TYPEOF is

end TYPEOF ;
end KH.TC

Figure 8

env[o 1Dy

pFID: 7T

 enu[PAIR- p|FID: 7
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program L.TC is

use L

lezp: Ly

TQ, My A1, 73 ¢ TENV;
10,7,71,73,73,74 : TYPES;
l,h,la :LIST; :

7o = wnstenv()

Figure 4

type
7o F lesp:7  PRINTTYPE(ry)

set TYPE is

abhByey

-l exp

‘7r  true : bool
7 b false : boo!

# + number N : it

kP, 7im mbFE:n
A APE:r— 1

gen
x b orgs7 b P,riay L SNad TRE, ]

b (APEE, 1 1y

7By iy ThEy 1719 — 7

BByt T

7 (AP.E,)E, 1 7
7 hletP =E,inE, : 7

7+ (AP.Es){fix Ap.;,) i 7
7k letrecP =g, inE, : 7

x +E, : bool kBT *hEBsgzt

a - E, then B, elseB, ¢ 7

abFE 7By i1y
ol (E,,E,).:n X 19

typeof rename

k3

F ident X : 7y  rper

Tk P, rwy

T Fidentx : 7

7wy b Pa, 1y iy

end TYPE ;

7 (Py,Ps)y1 X752 g

declare .
7+ idemtx,7:m

Tk ident X, 7 : 7y
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set DECLARE is

end DECLARE ;

set TYPEOF is

end TYPEOYF ;

set FREEVARS Is

end FREEVARS ;

Figure 4

DECLS F X, 7 : decis{X -+ 1 - DECLS) ' (1)
decls[x — r -DEOLS| F X : 7 . (1)
DECLS X :7r 9
decls|pECL - DEOLS] F X : £ . ()

n b ‘li:t'.v&rll sl '
(1)

sl
Tk h'st_'var” ) :
Fr:l . (2)
ISVAR(r:) ISIN(l,r3) :
U7l ) 8)
ISV AR({r:)
{F 7 listvar|r -] . ()
IFnt:l ‘ (6)
{F bool : 1 _ (8)
e gen(r) : 1 _ - (7)
l"ﬂ:h ll}'fgzlg' 8
lbr —ry:ly (&)
lbnh  Lbkn:il )
lF 1 X7y :12
{F decls] : 1 (10)
IFr:ly !y  DECLS : Iy 1
Uk decli[x 7. DEOLS]: I ' (1)
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set GEN is

"end GEN ;

set RENAME is

‘set NEWNAME is

end NEWNAME ;

Figure 4

freevars
Foowsd lFr:n

Thrin
ISVAR(r:}  ISIN(i,r:)
lbrer
ISV AR(r i)

Ik 7 gen(r)

Il wt: it
I+ bool : bool

Ibrimg lbrg:irg

ll-*rl T lTfg —T4

lFr:rg llFrg:ry
ll“Tl XT3 173 X714

b decls]] iy, m
Fr: T1
ISV AR(r 3)

Thrirw

wFint:int, 7
7 b ool : bool, 7

b 15,7y w1 b 790 14,79

b 17— 1g,m

k1 i,y Ty b7yt 14, 79
Cwb X7y i X 1,7

nameof

T F - gen(r):n
Tk gen(r) ir,7

newname
T - gen(r),n:m

m b gen(r) i 7,7

DECLS F X, 7 : decis[X ~ 7 - DEOLS]
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set NAMEOF Is

end NAMEOF ;
end RENAME ;
end LTC

Figure 4

SAMEV AR(x,,X 1)

decls{x, — r - DECLS]F X : 1

DECLS X :r
decls|DECL - DECLS]F X : 7

28
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Figure &

program ASPLE.SML is ‘ .
use ASPLE' renaming program in aspleprogram ;
use SML renaming program fa  sml progiam ;

use STORE

c.€14C0,¢9 + SML;
8,81,83 : STORE;

4o

store[l FDBECLS :2  FsTMs: e
F begin DECLS STMS end : sml_program(c), s

8 decl_s[] )

"skFDECL:s; 4 - DECLS : 8y .
9 DECL; DECLS : ¢4

8 IDLIST : 8
# - MODE IDLIST : 8

allocate
8 F s4dip:ag

BF"idID:h

allocate
# | s4dID: g #y I IDLIST : ¢4

¢ FidID,IDLIST : 84

F stms|] : coms]

FsT™M: ¢y k- STMS : ¢y ¢ = coms|cj;eq)
FSTM;STMS : ¢

FEXP:c ¢ = coms|e; sro(sml.id 1p)]
FidID = EXP : ¢,

- EXP :¢; F STMS : ¢ ¢ = coms(ey; {jp 15e9;1b11]
Fif ExP then sTM™MS fi : block{c)

FEXP:c; FsT™MS, 1 ey b sTMS; ¢ ¢
¢ = comsley; fip 1;¢4; ujp 2; Ibl 1;¢4;1b1 2]
F if EXP then STMs, else STMS, f ; block(c}

FExXP:¢ F STMS : ¢g €= coms[]bll;'cl;ﬂp 2;ca3ujp 1;1b12] _

F while EXP do STMS end : block({c)

FEXP:e €1 = comsc; sread|
IS tinput(EXP,MODE) 1ey

FEXP:c c1 = coms|e; s.write]
[ toutput(EXP,MODE) : ¢;

Fid x : Jao(sml_id x)

FEXP:c ¢ = coms|c; ind)
F deref (ExP) : ¢;
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Figure §

F boolean v : ldci(sml-boolean v) (17)

F sumber ~ : Idci(sml-number v) (18)

operator ) ’ . ,

FBXP, 1 ey F EXPs: g  oPp:op, ¢ = comsfc;;ea;0p,) (19)

F EXP, OPEXP, : ¢

set OPERATOR is

F +: op “adi® _ | (1)

F % :op “mpi® : » (2)

F=: op “equi” _ (3)

F#: op “neqi® , (4)

F and : op “land” (8)

F or : op “or” (8)
end OPERATOR ;
set ALLOCATE is

¢+ SaD : store[sID ++ undef_value - 5] (1)

end ALLOCATE ;
end ASPLE_SML
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Figure @

program L.CAM is
use L

use CAM

€,C14¢3,¢3 : CAM;
prr1.p2 1 ENV;

mullpet b Lexp 1 ¢
Lexp : progroale)

i
-y

gt

5
=
..
o
s
=
s
-

p b numbern : comslquor
o true : coms{guote!foo “trume” )]

o & false : coms|guots{beool “Saboe" }

ACCRRY

gbidenit e

eF B, ey 0 P- By ey o By es ¢ = comy|pushy c1; branch(es, ¢3)]

pFifE, then v, elus Beve

pFE ey plE, g oo w.z;azsé_;;ﬁmﬁ;c;,;srwa'p;cg;cons]
gk f:ﬁl . :

PFEx:cl (pvp)}“.ﬁzt-::g
pbletP o= Bodn o,

(¢, P) F £, : coms{cur{c, )] {o.P) 5,00

gt letyecp

{o,pi e
sk Xpe: coms|curic]l

' tranar.::.cmf_ : .
IS.CONST(k, 3} Pl NN T I ¢ = comsfey ;)
2 b B By oo
pFEL ey (osP) F 1 2 ey ¢ = comaipush; 015 cons;eq)

o {Ap By e, ¢ o

11 4w, ¢3; cons; app)

pFEL pEEsiey ¢ == comsl pus)

Ry Byt e
‘get ACCESS ig

ident X i ident y ¢ conns]

pa b X zeq ¢ =5 poms| odry o)
{e2) -
kX ¢ = comslesr; ¢ |

{pr )b x e
end ACCESS ;

(10)

{11}’

(12)

(1}
2
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Figure 6
set IS_CONST is

I ident “plus”
 ident “minus”
I ident “times”
I ident “etiua.l”

F ident “fat”

- ident “snd”
end IS_.CONST ;

set TRANS_CONST is
- b ident “fst” : car
- ident “snd” : cdr

I ident X : op X
end TRANS_CONST ;
end L.CAM
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Figure 7

program SML.DS is
use SML '

use STORE
z,0,01,p2 : VALUE;
8,8y,89 : STATE;
rr1,73 : STORE;
k:STACK;

prp1 1 ENV;

¢ye1 3 SML;

env[l - coms, <, [I> :
r I program(cowms)

gt coms|],s: 5

cont.find
¢ F  IblL:g ptei,eis

o comsfujpL -cl,e: 8

ple,<r k>0
¢t comslfip L. - ¢], <r, boolean_value “true * . k>

contfind
p F Iblr:g pher,<r k> e

pF coms|fip L - ¢], <r,boolean_value “False * - k> : 5

cont.find '
p b+ IblL:g plher, < k>

pF comsltjp L - c], <r, booleanvalue “true ™ - b + 5

phe,<r, k>
o coms[tip L - c], <r,boolean_valus “alse * - b 1 3

plcom,s: s o ooMs, 8 ! 8,
s+ coms[coM - coms], s : g,

cons.gnv
COMS : gy g1 - coMs, s : gy

p I block{coms}, s : &,

sl nop,s:s
¢ F ldci{sml number ), <r, k> : <r, number_value o k>

¢k ldci(sml boolean ), <r, k> : <r,booleanvalue ¢ - k>

get
r b 9idip:p
# - ldo(smlid in}), <r k> : <r, o k>

update )
r - sidip,p:r

pFsro(smlid D), <r,0 - k> : <7y, k>

ot 1ao(sml.id D), <r, k> : <r,54d 1D - k>
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set CONT.FIND is

end CONT FIND ;

set CONS_ENV is

‘end CONS.ENV ;

set GET is

end GET ;

Figure 7

get
rFa:p

phind,<r,z-k>:<r,p - k>

update
r F oapir

Pl sto,<r,p-z- k> : <ri, k>

eval
F %1,0P,0; 1 0
sk opor, <r, o, o k> <0 k>

ptIblr,e: 8

update suread
r F ozpin F i
pksxead, <r,z- k> : <ri, k>

SWRITE(p )
o & sowrite, <r, 0 - k> ; <r, k>

env]blL 1+ ONT - o] FIblL : coNnT

oL :cont
env[PAIR - p] F L : GONT

- co@[] : envl]

Fcoms : p

F comsflbl L. - coms] : env[blL i coms - g]

FoomMs:p
F coms[com - coms]: o

store[X i o vl x 1

rkx:p
store[VAL - r|F X : o
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set UPDATE ie

end UPDAfl‘E H
end SML_DS

Figure 7

store(X oy - r] - X, 3 : store{X v o3 - 7]

X pirg
store[VAL - r1] F X, p : store[VAL - 1]
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Figure 8

program CAM_DS is -
use CAM

8,81,83 : STACK;
a,f,9,v: VALUE;
pyp1,02 : ENV;

nollvalue  coMS 1 v - §
F program(cowms) : v

st coms|| : o

ek coM: s 8; - coMs : 8,

8 - coms[coMm - coms] : s,
a-st quote(v) :v-s
<a,f>-skcar:a-s
<a,f>-sbkcdr:8-s

a-f-skcons:<f,a> s

eval

[ a,dP,ﬂ:g
<, f>-skopop:g:s

aStpush:a-a- s
a-B-skswap:B-a-s

p o= closﬁre(c"', ?)
p-skcur(c):p -s

£1 = closure(c, <p, p1>)
¢-stref(c):p -s

<p,a>-skc:e

' <closure(c,p),a> -5t app : 8

sko,:e

bool“true ” - s - branch(c;,¢C,) : 8y

s}-c,:Asl

bool“false ” - s - branch(c,,Ca) : 8;

end CAM_DS
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program CAM. DS is
nee CAM

88,8 : STACK ;
a,f,g,v : VALUE;

b 019002 s ENV;

end CAM_DS

Figure 9

null valne - coMs : v -5
F program(coms) : v

8 comsl]: s

s coM: g 81 - coms : 8y
s F coms[coM - coMs| : a5

-S| quote(v) : v -5
<o,f>-slkcar:o-s
<a,f>-skecdr:f8-s

a-fB-stcons:<f,a> s

eval

F a,or,f:g -
<a,f>-shkopopr:g-s

aSkpush:a-a-s
a-ﬂ'sl-swap:ﬂ-a-s
p- st cur(c) : closure{c, p) - s

p- s recf(c) : recclosure(c, p) - s

<pa>-skc:e
<closure{c,p),a> s app : s

<<p, recclosure(c, p)>,a> st c:»

<recclosure(, p),a> Sk app: e

‘S'—clzsl

bool “true ” - s  branch(c,,C,) : #;

S}"Cg:ﬂl

booI “false * - s branch(c,,c,) : ¢;
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Figure 10

program ASPLE. DS is
use ASPLE

use STORE
T,51,29,V,% ¢ VALUE;
8,81,8; : STORE;

store| F DECLS 1 81 8y - STMS : 85
I begin DECLS STMS end

o - decls[] : &

g F DECL : 84 81  DEOLS : 89
8} DECL;DECLS : 89

¢ IDLIST : 4
8 - MODE IDLIST : &y

allocate .
8 +  gddID:g;

et idID : sy

allocate .
¢ F sddiD:s; ey FIDLIST: 8g

e b idID,IDLIST ¢ 89

¢+ stuns] : o

eF STM: 8y 81 F STMS : ag
8 b STM;STMS @ 8

update
e EXP : ¥ 8 F sddiD,v:a

8 id D = EXP : 8

8 I- BXP : boolean.value “true” ek sTMS, : 8
& F if EXP then STMS, else STMS, fi : 8y

8 - EXP : boolean.value “false” 8 F STMS; : 8y
8 I if EXP then STMS, else STMSs fi : 8,

8 F EXP : boolean.value “true” 8 STMS : 8
¢ I if EXP thensTMS fi : #;

8 F EXP : boolean.value “{alse”
e FifExpthensTMsh : 5

s F EXP : boolean_value “true” 8 STMS : g 8, I while ExP dosTMsend : o3
' ¢ while EXP doSTMS end : 84 T ————

& I EXP : boolean.value “false”
et whileexp dosTMs end : o

o . update ‘aread .
el EXP :9idx 8 b+ gddX,v:e  MODB:w

¢ tinput(EXP,MODE) : 8,
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set ALLOCATE ls

end ALLOCATE ;

set UPDATE is

end UPDATE ;

set STORE is

end STORE ;
end ASPLE. DS

Figure 10

¢bExXP:v  AWRITE(y:)
8 I- toutput(EXP,MODE} : ¢

shkidx :sidx

. store .
¢ EXP:9ddX e F sddx:v

8 I deref(ExP) : v

8 F'Boolean X : boolean_value x

¢ I number X : number_value x
eval
o EXP, : 23 8+ EXP, : 29 - 2,,0P,29: 2

¢ F EXP, OP EXP,: 2

¢ I SID : store[s1D +—+ undef value - s

store[S.iD i+ v - 5] - 51D, v, : store[s1p +- v, - s}

S sap, vy :s,
store[V - s] - 51D, vy : store[V - 5,

.gtore[saD — Vv -s]Fsap : v

Sk sdD: vy
store[v - s] - sap : v,
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program L.DS Is
use L

por1s i ENV;
a,f,v: VALUE;

Figure 11

g=sniteenv() pFLEXP:q
FLEXP: o

¢ F numberw : it §
# I true : bool “true”

¢ I false : bool “falge”

valoof .
p I identr: o

plident:: o

2B, : bool “rue” By
pFiE, thenk,elseE, :

o B, : bool “falge” pFHEs: o
sl ifE thenk, elsek, : o

pFE pHEB 2 8
pF (B1yE4) i (a, B)

PHE, envlp o plkE,: 8
ptletP =k, inE,: 4

7 = env[P closure(E,, p;) - o] ke, : 8
p b letrecP = B, inE, 18

pE AP.E : closure()p.E, ?)

eval

pF E, :identop o+ E, 2 (a,f) F a,0P, B9
pFE By iy -

PFE, enw[PHa-p]l-E,:ﬂ
pl— (AP.E:)E; :ﬂ

pFE,: closure(AP.E, py ) P2 = env[P 1+ o p1; 0] pabFE:p

ke, :a

set VAL OF is

p}'E;Ez:ﬂ

envfidentt i~ o - p] Fidentr: o

envlP, + a, P, s B] F idents : 4
env[(Py,Ps)  (c, ) - o] Fident1;
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Figure 11

eny[P, s closure(Es,p1),Ps - closure(Es, p1)]  ident1 : 7

em;[(Pl,P.,) i closure((E,Es), p1) - o] F ident1: 4

plidenti: o
env[p - p| F ident:1: o

end VAL.OF ;
and L.DS
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