N

N

Non first normal form relations:An algebra allowing
data restructuring
Serge Abiteboul, Nicole Bidoit

» To cite this version:

Serge Abiteboul, Nicole Bidoit. Non first normal form relations:An algebra allowing data restructuring.
[Research Report] RR-0347, INRIA. 1984. inria-00076210

HAL 1d: inria-00076210
https://inria.hal.science/inria-00076210
Submitted on 24 May 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00076210
https://hal.archives-ouvertes.fr

-CINSAE T 0RO TSDU VAL

N©° 347

RENO RN S TN

NON FIRST NORMAL

FORM RELATIONS:

AN ALGEBRA ALLOWING :
DATA RESTRUCTURING f

{ R
h &
] 3
3 H
B ¢

€

g
5 i
koS

3
2 .
2 £
- R
A \
) — i
B A

N |
. Serge ABITEBOUL ,
waal | Nicole BIDOIT |
{ Novembre1984¢ |

NON FIRST NORMAL FORM RELATIONS :

AN ALGEBRA ALLOWING DATA RESTRUCTURING

Serge ABITEBOUL
and .
Nicole BIDOIT (*)

Institut National de Recherche en Informatique ct Automatique
78153 Le Chesnay Cedex, France.

December, 1985,

(*) Current adress : Laboratoire de Recherche en Informatique, Universite Pari=-Sud, 91405
ORSAY, France.

Abstract

A database model based on non first normal form relations {s presented.
A key feature of the model is an algebraic query language allowing data
" restructuring. A natural connection between instances in this model and,
in the relational model under the Universal Relation Scheme assumption
is investigated.

Résumé

Un modéle de base de données utilisant des relations non sous premiére
forme normale est présenté. Un aspect essentiel du modéle est 1'existence
d'un langage algébrique de requéte autorisant la restructuration des
données. On présentera aussi un 1ien natural entre les instances de ce
modéle, et les instances relationnelles satisfaisant le Postulat du
Schéma Universel.

ND?AI{!&"? RECUPERE ET RECYCLE

INTRODUCTION

Several .investigators have stressed that the first normal form (INF) condi-
tion [Co] is not convenient for handling a variety of database apblications [Mak,
K, Mac]. The first purpose of this paper is to present a database model, namely,
" the Verso model, where data is organized in non iNF relations. The values for
some attrib'utes in a Verso instance are atomic whereas the values for other
attributes are simpler Verso instances. As we shall see, this recursive definition
of the data structure induces a hierarchical organization of :the data. It should
be noted that the notion of hierarchical data organization has been captured in
some form by at least two other models [IMS, HY]. The advantage of our
approach is that, by using relation as underlying structure, we are able to
preserve some of the positive features of the relational model, for instance a

simple algebraic query language.

As mentioned earlier, the first major theme of this paper is to formally:
present the data structure and operations in Verso. In a Verso schema, some
dependencies (very similar to Delobel’s Generalized Hierarchical Dependencies
[D]) are ﬁnplicitely specified. Therefore, some semantic connections among the
attributes are implied by the choice of a Verso schema. Furthermore, the opera-
tions that we propose on Verso instances take advantage of these semantic con-
- nections. In parlicular, some queries which would typically require joins in the
pure relational model can be expressed by a selection in the Verso model remov-

ing the need for the user to specify access paths.

The second major theme of the paper is the investigation of some key issues
raised by this data organization. First, data restructuring is studied via the
notions of schema equivalence and dominance. Necessary and sufficient condi-
tions for schema equivalence and dominance are exhibited based on some ele-
mentary schema transformationg#] Also, a natural connection between Verso
‘instances and relational database instances satisfying the Universal Relation
Schema Assumption [FMU, MW] is investigated. This ellows us to (1) give an
interpretation of the operations in terms of (pure) relational operations, and (2)

[#] The notion of data restructuring is studied in
depth by Hull and Yapp [HY] for a very large class of
hierarchical data structures. By opting for a more
restricted model, we are capable here to develop an
algebra which incorporates restructuring.

measure the power of the Verso operations by proving that they are “complete”.

Non 1INF relations have recently attracted a lot of attention. A model is
introduced in [Mac] which describes some data structures very similar to the
ones presented here. However, the access language exhibited there is quite
weak, and in particular does not allow data restructuring. An algebra for non
INF relations of non necessarily hierarchical structure is also proposed in [SS].
Other aspects of non normalized relations have been studied in [AMM, FK, FT,

KTT, JS, SP].

1. PRELIMINARIES

In the following, we assume that the reader is familiar with the relational model.
In this section, we briefly review some well-known concepts, and present the

notation used throughout the paper.

We assume the existence of an infinite set U of attributes, and for each A in
U, of a set of values called the domain of A and denoted dom(A). A relational
schema is a finite set of attributes. Let V be a relational schema. A tuple v over V
is a mapping from V into AiLrijdom(A) such that v(A) is in dom(A) for eack Ain U.

A (1NF) relation over V is a finite set of tuples over V. The set of tuples over
V is denoted tup(V), and the set of relations rel(V). The relational operations of
union, intersection, difference, join, projection, and selection are respectively
denoted U, N, —, *, m, and select[c] (where C is an elementary condition of the

formA<ea Aa, A> a, for some Ain U and a in dom(A)).

A relational database schema is a finite set of relational schemas. A rela-
tional (database) instance r of some relational database schema R is a mapping
from R such that, for each X in R, r(X) is in rel(X). A relational instance satisfies
the Universal Relation Schema Assumption {URSA) iff r(X)2my(r(Y)) for each X, Y
mRand X Y.

In the paper, we also consider finite strings of atiribules. Let A;-- - A, be a
finite string of attributes. An ordered tuple x over A; - - - A, is an clement of the
cartesian product dom(A,) X - - - X dom(A,).. The set of ordered tuples over some

string X is denoted Otup(X).

For each string X of attributes, the corresponding set of attributes, i.e., {A |
A in X} is dencted set(X). For each ordered tuple x over X, the corresponding
tuple over set(X) is denoted map(x). Note that map(x) is a mapping.

In general, A, B ... denote attributes, a, b, ... values, V, W, X, Y, ... relalional
schemas (or finite strings of attributes), v, w, x, y, ... (ordered) tuples, R, S, ...
relational database schemas, and r, s, ... relational database instances. We also
use the classical convention of writing XY for the union of two sels X and Y of
attributes, or for the concatenation of two strings X and Y of attributes.

2. THE MODEL

In this section, we present the data structure of the Verso model {namely,
the Verso instance) using the auxiliary concept of formatl. We then inlroduce five
unary operations (extension, projection, selection, restriction, and renaming),
and five binary ones (union, intersection, difference, join, and carlesian pro-
duct). As we shall see, Verso instances offer a generalization ol relalional
instances. Furthermore, some of these operations generalize relalional opera-
tions.

Let us first consider an example. A departmenl consists of a sel of

COURSEs, the BOOKs for each course, the STUDENTs in the course, and their
GRADEs. We can represeﬁt an instance of a departmcent like in Figure 1(a).
Intuitively, a departiment can be considered as a relalion over Llhree allributces,
say COURSE, A; and A, The values in dom(COURSE) arc alomic whercas Lhe
values in dom(A,;) and dom(Ap) are simpler Verso instances. lel us make lwo
- remarks. The first one is that, in the example, there is no book required in the
physics course. (Thus, null values of the type *“does not exist” can be

represented in a Verso instance). The second remark is thal an implicil

connection is assumed between the attributes STUDENT and BOOK through the
atiribute COURSE.

In order to formalize Lhe notion of Verso instance, we need the auxiliary con-
cept of format. Intuitively, a format specifies the underlying structure of a

Verso instance.
Definition : A format is recursively defined by:

(1) Let X be a finite string of attributes with no repeated attribute, then X is a
(fat) forrat over the set of attributes occuring in X, i.e. set(X), and

(2) Let X be a non empty finite string of attributes with no repeated sttribute,
andf;, .. ., f, some formats over Yy, . . ., Yy, resp., such that the sets set(X),
Y,, ..., Y, are pairwise disjoint, then the string X (fl)‘- - (fn)* is a format
over the set set(X)Y; - - - Y. '

- - - - e e S e e m e W Sk A e

math toto 4 b |
l 8 | ' g ‘ COURSE

zaza | | [STUDENT][BOOK]
Phys Tulu |9 | Ll format g

(a) (b)

- Figure 1 - Format and Verso Instance.

-7-

For instance, f = COURSE STUDENT GRADE is a flat format over {COURSE,
STUDENT, GRADE}, and g = COURSE(STUDENT{(GRADE) ") *(BoOK)" is a format over
{COURSE, STUDENT, GRADE, BOOK].

In the following, A denotes the empty string. (By definition, A'is a format.)
Also, if f =X (f,) ‘...(fn)* is a format, and f; = A for some i, then we identify f and
* * * *
X(f1) o.(fimp) (Fiep) ()
In the following, we shall use a directed tree representation for formats. The

tree representation of the format g is given in Figure 1(b). Other examples of
formats are given in Figure 2. Let f = X (f,) *...(fn)‘ be a format. Then X is called

the root of {, and each f; a branch.
We are now able to formally define the Verso instances.

Definition: Let f be a format. The set of all (Verso) instances over I, denoted
inst(f), is recursively defined by:

(i) if f= X, and X is non empty, then I is in inst(f) iff I is a finite subset of
Otup(X), and

) if £=X () (6 iy . . . 1, non empty, then I is in inst{f) iff

(a) Iis a finite subset of Otup{X) x inst(f;) x - - - x inst(f,), and
(b) if <ul;,....I;> and <ud;,...,J> are in I for some u,
[COURSE TEACHER | [COURSE_TEACHER]
{ BOOK] [STUDENT GRADE] [STUDENT] [BOOK
]
COURSE TEACHER(BOOK)* (STUDENT GRADE)* COURSE TEACHER(STUDENT&GRADE)*)*
(BOOK)

' - Figure 2- Tree Representation of Formats.

I, oy Iny d4, -, Jp then §; = [for each iin [1..n].

In the previous definition, we assume for (ii) that the formats fj, . .. ,f, are
non empty. Now, if f=X (f,)‘.‘.(fn)‘k with f; = A for some i, and [;#A for j # i, then
by convention, we identify f with g =X (fj)‘,..(f'_,) ‘(fiﬂ)*...(fn)‘, and the set of all
iristances over f is obtained from the previous definition by: inst(f) = inst(g).

Intuitively, the (i) condition states that I is atormnic over the attributes in X,
and not atornic over the “attributes' f,, . .. ,f,. The (ii) condition forces X to be
a key. It is clear that the mathematical notation for Verso instances is cumber-
somme and not really readable. Therefore, in the following, instances will be
represented using the ‘“bucket’” technique of [P] (See Figure 1(a)).

In the relational model, a database schema consists of several relational

schemas. Similarly, we have :

Definition: A Verso database schema (] is a finite set of formats. A Verso data-
base instance o of the schema (1 is a mapping from 2 to . .Uninst(f) such that o(f)
m

is an instance over f for each f in (1.

We now introduce an inclusion relation on Verso instances. Intuitively, an
instance over some schema f is included in another instance over the same for-
mat f iff all the information contained in the first instance is also contained in

the second one. Formally, we have:.

Deﬁﬁition: Let f be a format. Let I and J be two instances over [. Then 1 is

included in J (or J contains I}, denoted I < J, iff :
(i) iff =X, X non empty, then1¢J, and
(i) iff=X (fl)* ce (fn)*,fl, ..., 1, non empty, then :

V <ul; - I>inl, 3<ul, - - - J,> inJ such that]; < J; for each iin [1..n].

We shall use this inclusion relation and set operalors to present the opera-
tions on Verso instances. We first present the unary operations on Verso

instances. To do that, we need the auxiliary concept of subformat. Intuitively, g
is a subformat of f if the tree representation of g can be obtained by pruning
some terminal subtrees of the tree representation of f. Formally,

Definition: Let f be a format. Then a subformat g of f is recursively defined by:

(i) For eachf, Ais a sublormat of f,

) ff=X (fl)*...(fn) * and gy, . . - ,8n are respectively subformats of f), .. ., fj,

then X (gl)*...(gn)* is a subformat of {.

Let f and g be twe formets such that g is a subformat of f. Then, intuitively,
it is possible to represent the information content of an instance over g by an
instance over . Indeed, the extension of an instance J over g to {, denoted J, is
simply obtained by ‘‘padding’’ at each level with empty instances. We do not for-
mally define the exteusion operation but illustrate the concepts of subformat

and extension by the following example.

Example 2.1: The format g = COURSE(STUDENT) (BOOK) " is a subformat of the
format 1 = COURSE(STUDENT(GRADE)") (BOOK)*(TIME ROOM)". The directed
trees associated with { and g are represented in Figure 3, together with an

instarice J over g, and its extension 7 over f.
Note that in particular, each format f is a subformat of itself.

We now present the projection. Let I be an instance over f, and g a subfor-
mat of f, then the result of the projection of I over g is simply obtained by
removing all the subinstances in I corresponding to subtrees of { which are pro-

jected out.

We propose two equivalent definitions of projecticn. (The proof of their
equivalence is straightforward, and therefore omitted.) The first one uses the

extension operator, and the inclusion relation on instances.

Definition: Let { and g Be two formats such that g is a subformat of f, and g #A.
Let I be an instance over f. Then the projection of I over g, denoted I[g], is the

greatest instance over g whose extension to{ is included in L.

COURSE (STUDENT)* (BOOK)

math toto , b1 !
Tulu b2
Phys | 3]

COURSE (STUDENT (GRADE) ™)™ (BOOKS (TIME ROOM)™

e L Lk s R e e

phys

instance J over g

3

instance Jf over f

STUDENT

COURSE

tree representation of g

COURSE

{ STUDENT|

[BOOK|

[TIME ROOM|

iGRADEI

tree representation of f,

- Pigure 3 - Subformat and Extension.

In a constructive and equivalent way, we have:

. * * # *
Definition: Let f =X (f;) ...(],) , f;,f, non empty, and g =X(g,;) ...(gn) be
two formats such that, for each jin [1..m], g, is a non emply subformat of f; fer
some i in [l..n]. Let I be an instance over [. Then the projection of I over g,

denoted I[g], is recursively defined by:
J<ul, - - - I;>€l, such that

-
I[g] = {<uJ1 o Im> iy in[1.m], J; = lilg;] where g;is a subformat of f; |

An example of projection can be found in Figure 4.

Note that the projection as presented above does not generalize the rela-
tional projection. Indeed, for a flat format X, the only projection which can be

performed is the projection over X, i.e., the identity mapping. However, it is
shown in Section 5 that arbitrary projections cam be performed wusing

-11-

restructuring (presented in Section 4), and projection as defined here.

The third unary operation is the (Verso-)selection. This operation is more
intricate than the relational selection since it takes advantage of the richer
structure of Verso instances. In this section, we introduce a simple version of
the selection. (A more powerful selection will be presented in Section 5.) In

order to do this, we need the auxiliary concept of a condition on a sequence of

* %
COURSE(STUDENT(GRADE)) COURSE(STUDENT)*
math zaza . ; math zaza '

lulu
lulu 1 10 toto
| 9
music |
toto L15 b

_ e T phys rick
music , !zoe .

phys rick L 4 |

zoe | I—

Instance I *
T COURSE(STUDENT) (1)

COURSE(STUDENT(GRADE)*)* COURSE(STUDENT(GRADE)*)*
math llu“’ 110 J math lzaza~r—:41
toto |15 | | phys |zoe . ___ |
S1(1) S2(1)

- Figure 4 - Projection and Selection.

-12-

attributes.

Definition: Let X be a sequence of attributes. Then the conditions on X are

obtained in the following way:
(1) each elementary condition on A for some A in X is a condition onX, and

(2) if C, and Cy are conditions on X, then (C;ACy), (C;vCz), aud (-~C,) are condi-

lions on X.

The notion of satisfaction of a condition by an ordered tuple is defined in the
straightforward way. Let C be a condition on X, and x an ordered tuple over X.

Then x satisfies C is denoted x &= C.

We now define (the simple version of) the selection.

Definition: Let f = X (f;)*...(_fn)* be a format for some n= 0, {;, . . . ,f, non empty,
and I an instance over {. Then a (Verso-)selection S over f is an expression of the
form: S=X:C(e(Sy), ..., eSSy) where:

(a) Cis a condition onX,
(b) for eachiin[1..n], S;is a selection over fj, and

(¢) for eachiin[1..1], e is a symbol in {3, A, ?} (F is read “exists”, Z “"does

not exist”’, and ? *‘does not care”).

A selection defines an operation in the following way :

Definition: Let f = X (fl)*..‘(fn)* be a format for some n = 0, with f,, .. ., I, non
empty, and I an instance over f. Let S=X:C (eyS;), ..., e,(Sy)) be a selec-
tion over f. Then the result of S applied to I, denoted S(I), is the instance over {
defined byl#]:

I d<uly - > inl, ukC, and
S(I) = | <uS;y()..Saln)> | for eachiin [1..n], S;(I) kg

[#] Si(Ii)Fei iff Si(Ii)#¢ if Ej=3, and SI(II)=¢ if Ej'—'a.

..13_

We now give an example to illustrate the previous definition.

Example 2.3: Let { = COURSE(STUDENT(GRADE)")". Consider the two queries : -
Q;: Give the list of math students who got a grade larger than 10, and
Qz: Give the courses in which some student is registered and did not get any

grade for this course.
The query Q, is expressed by the expression of selection:

S; = COURSE : COURSE=math

(? (STUDENT : (-J(GRADE : GRADE=10)))).

The query Qs is expressed by the expression of selection:

S, = COURSE :

(3(STUDENT : ((GRADE)))).

Examples of applications of these two queries are given in Figure 4.

We now present the fourth unary operation, namely restriction. For the sake
of simplicity, we shall only consider restrictions on the "root’ of the format. It is

clear that our definition can be extended to capture more powerful restrictions.

Definition: let f = X(f;)*‘..(fn)‘ be a format for some n = 0, with I}, .. . ,f; nen
empty, and I an instance over f. A restriction on [is an expression of the form
restricty-p where A and B are inX. The result of restrict,.p applied to], denoted
restricty-g(I) is defined by :

restricty=p(I) = { <uly - 1> | <ulp- - - L> inl, and u(A) = u(B) §.

An illustration of the previous definition can be found in Figure 5.

The definition of the last unary operation, namely renaming, is straightior-
ward and thus omitted. An example of renaming can be found in Figure 5.

Clearly, the operations of selection, restriction, and renammg applied to

instances over flat format correspond respectively to the relational selection,

~-14 -

*
(PHONE BACK-UP-PH)

EMP EMP (PHONE BACK—UP;PH*
serge | 3537 aase | Nicole |3329 asa9 |
Nicole gggg gggg FranCois[3§?gw"§§2?uMJ
FrancoislB329 33%?«]
Instance J reStriCtPHONE=BACK-UP—PH(J)
EMP (p1 P2)"
Serge | 3537 3468 |
Nicole 3468 3537
3329 3329’
Francois|3329 3329 |
rename

EMP(P1 p2)" (J)

- Figure 5 - Restriction and Renaming.

restriction, and renaming.

We now introduce five binary operations (union, intersection, difference, join,
and cartesian product). For all these operations (except for the cartesian pro-
duct), we propose two equivalent definitions: the first ones use the inclusion rela-
tion on Verso instances, and the second ones are consiructive definitions. The
equivalence of these alternative definitions is straightforward, and can be found

in [Bi].

-15-

We start by presenting union, intersection, and difference of Verso inslances
over identical formats. We shall then extend these three operations to instances

over not identical but “‘compatible’ formats.

The operation of union allows to "“add’ the information contents of two
instances. Intersection “extracts” the information common to two instances.
The third operation, namely difference, “‘substracts” the information contained

in an instance from the information contained in another one.
Definition: Let f be a format, and I, J two instances over f. Then : .

The union of I and J, denoted I @ J, is the smallest instance defined over {

containing I and J.

The intersection of I and J, denoted I (D) J, is the greatest instance defined

over f contained in I and J.

The difference of I and J, denoted 1(®J, is the smallest instance defined over
f such that its union with J is equal to I®J (i.e., (IO DI = IDJ).

It is easily seen that I©)J is included in L.

Examiples of applications of these three operations are given in Figure 6.

We now give constructive definitions for the three operations. First the
union.

Definition: Let f be a format, and I, J two instances over {. Then the union of T

and J is the instance over f, denoted I@J, recursively defined by :
(i) if f =X, X non empty then I®J =1IuJ, and

i) iff=X (fl)* e (fn)*, f1, ..., I, non empty, then :

<uly - - Ip>in] and
I®I = <u(;®I;) - I,DI> <ul;- - p>ind

<uly - -I;>inl, and
vicuy o In> g0 T <udy o I gd

-16 -

COURSE (STUDENT)™ (BOCK) ™

- - - e - -

math toto b1

Tulu b2

phys J l b3
instance I

COURSE (STUDENT) * (BOOK) *

- - -

math toto

Tulu

zaza
phys toto l l b3 l
music | ' [l

instance I ®J

- Pigure 6 - Binary Operations. -

COURSE (STUDENT) ™ (BOOK) ™

- - e - - = - - " - -

phys l ' 'b3

instance I(:)J

COURSE (STUDENT)™ (BOOK)*

- = . v -

math zaza
Tulu | |
music | . l
phys | toto| ~l b3_J
instance J
COURSE(STUDENT BOOK)
math [toto| 'bl
b,

instance I ®J

U{<uJ1" Jn>

<qu v
Vi ...

-Jp> ind, and

I, <uly - LT

The constructive definition for the intersection is given by:

Definition: Let f be a format, and [, J two instances over f.

Then the intersection

of I and J is the instauce over f, denoted I0)J, recursively defined by :

.
(38
"\T’t,

~17-

(i) iff =X, X non empty, then I®J =1nJ, and

(i) iff =X . (8) gy, non empty, then :

. <uly:--I>inl, and
IO =1 <ul;®J).. ,O)> <ud, - I>ind

The constructive definition for the difference is given by:

Definition: Let f be a format, and I, J two instances over {. Then the difference of
I and J is the instance over f, denoted 1®J, recursively defined by :

(i) ff=XthenI®J=1-1J, and
(i) iff=X (fl)* S (fn)*,fl, ..., I non empty, then :

: <uly---I,>in],
107 ={<u(l;®J).. .(,OI> | <uly - - - I> ind, and
for some i, [OJ#¢

, <uly - - I>»inl, and
ul<ul - > IV, In <udy - s dp>Ed

Note in the example of Figure 6 that the physics COURSE disappeared
whereas the math COURSE is still in | & J. This result from the condition
“LOJ; # @' which is true for math and not for physics.

As mentioned earlier, these three operations will be extended Lo deal wilth
instances over different but compatible formats. To do that, we present the

notion of format compatibility.

Definition: Let f and g be two formats respectively over the sets V and W of attri-
butes such that VnW # ¢. Then f and g are compatible iff there exists a format h
over VUW such that f and g are subformats of h.

It can be easily shownt that an alternative definition is:

~18-

Definition: Let f and g be two formats respectively over the sets V and W of at tri-
butes such that Vn'W # ¢. Then f and g are compatible iff there exists a format b’
over VN W such that h’ is a subformat of {f and g.

Note that if f and g are compatible, then there is one and only one format h'
over V N W which is a subformat of both f and g. This unique format is denoted

fag.

Now in order to “‘add” (respectively, “intersect’’ or ‘‘substract”) the infor-
mation contained in an instance Jover i, and an instance J over g (f and g compa-
tible), it suffices to extend I and J to a format h such that f and g are both sub-
formats of h, and then to use the union (respectively, intersection, difference).

The umnion, difference, and intersection according to h are respectively
denoted @y, On On Thus, I®H = PO, IO = PO, and IOy = PO .

The fourth binary operation, namely join, is directly defined on instances
over compatible formats.It allows to ‘‘combine’’ the information contents of Lwo

instances.

Definition : Let f and g be two compatible formats respectively defined over the
sets of attiributes V and W. Let h be a format over VUW such thal [and g are sub-
formats of h. Let I and J be two instances over f and g respectively. Then the join
of I and J according to h, denoted ‘[@hJ, is the greatest instance defined over h,
included in I@®y,J whose projection on fAg is equal to I[fag] @ JI[fAg].

Or, in an equivalent way :

Definition: Let f and g be two compatible formats respectively defined over Lhe
sets V and W of attributes. Let h be a format over V U W such Lhal f and g are
subformats of h. Let I and J be two instances over f and g respeclively. Then the
join of T and J according to h is an instance over h, denoted I@hJ, recursively
defined by :

-19-

(i) ifh =X Xnonempty (thusf=g=h =X) then I®,J =1 nJ, and

@) fh=Xh) (b)) hy....h, mnon empty, f=X() (L), and
g=X (gl)*‘..(gn)*, where for each i, f; and g; are subformats of h;, then :

J<ul; - - - > in !, and <uJ, - - - J;> in JP such that
Ki = L@y Jy if fic # A, gic # A,

I®hJ= <uK1 ' ”Kn> .KkZIkiffk # A, Bk EA,
Ke=Jiffe = A g # A,

To illustrate the previous definition, two instances ovar compatible formats
are given in Figure 7, together with their join according to the format h =
COURSE(STUDENT) "(BOOK) .

Note that if f and g are identical formats, the join definition coincides with
the intersection definition. The last binary operation, namely cartesian product,
is different from the preceding ones in that its first operand is required to be an

instance over a flat forma'.

Definition: Let I = X, X non empty, be a flat format and g a format over Y such

that XnY = ¢. Let I and J be two instances over { and g, respectively. Then the

cartesian product of | and J, denoted I&)J , is the instance over X(g)‘ defined by :
I®J = f<ud> [uin 1.

Note that if f and g are both flat formats, then I X J, and J x| are different.
So the cartesian product is not cornmutative. Nevertheless, we shall see in Sec-
tion 4 that the semantics asscciated with I X J, and J X I are identical. An exam-

ple of cartesian product is exhibited in Figure 8.

It should be also noted that the restrictions of union, intersection,
difference, over flat formats correspond respectively to the relational union,

intersection, difference.

A Verso query is obtained by combining the five binary operations (union,
intersection, difference, join and cartesian product), the four unary ones (projec-

tion, selection, restriction and renaming) plus an operation which will be

-20-

COURSE (STUDENT)™
math toto
|zaza !
gym (mimi |
phys | |
"instance I"

COURSE (STUDENT)™) (BOOK)™

toto
zaza

math

phys | | |bq]

“instance 1{(» J"

COURSE (STUDENT) ™ (BOOK) ™

math toto
zaza

gym {mimi | | |

music , } ib3j

s || [l

"instance 1(®),J"

COURSE (BOOK) ™

"jnstance J"

COURSE (STUDENT)™ (BOOK) ™

math toto
zaza

gym |mimi | ||

“instance IC% J"

- Figure 7 - Compatibility and Binary Operations.

-21 ~

UNIVERSITY DIR. COURSE(STUDENT(GRADE‘)*)*
ORSAY Mr X math toto 10
l 5 ’

phys zaza 9]

"instance I" "instance J"

UNIVERSITY DIR. (COURSE(STUDENT(GRADE)*)*)*

-— - - -

ORSAY Mr X. {math toto 10
l 5 '

phys | zaza | 9 |

"instance 1()J"
- Figure 8 - Cartesian Product.

presented in Section 4, namely restructuring. Together, these operations will be

shown to be complete in Section 4.

3. URSA INTERPRETATION OF THE VERSO MODEL

In this section, we exhibit a strong connection between format instances,
and relational database instances satistying the Universal Relation Schema
Assumption (URSA). We also give an “‘interpretation’” of the Verso operations in

terms of classical relational operations.

~-22 -

In order to do that, we need the notion of format skeleton. Intuiﬁvely, the
format skeleton of a format f is the relational database schema which describes,

in a non hierarchical way, the structure of instances over {.

Definition: Let f be a format. Then the format skeleton of f, denoted Skel(f), is
the relational database schema recursively defined by:

(i) if f =X, X non empty, then Skel(f) = { set(X) }, and
(ii) iff =X (fl)‘...(fn)*,' fy, ... ,I, non empty, then :
Skel(f) = {set(X)} U { set(X)Y | Y in Skel(f;), for some iin[1..n] .

/

For example, the fcrmat skeleton of COURSE(STUDENT) *(BOOK)* is the rela-
tional database schema { {COURSE}, {COURSE, STUDENT}, {COURSE, BOOK3 |.
. Using these format skeletons, we are now able to ““describe” a format instance

by a relational database instance.

Definition: Let f be a format, and I an instance over {. The instance skeleton of I,
denoted skel(l), is the relational database instance over Skel(f) defined by:

(i) if f =X, X non empty, then skel(I)(set(X)) = { map(u) luinI{, and
(i) ff=X (fl)‘...(fn)*, 1;, ..., 1, non empty, then
skel(I)(set(X)) = { map(u) | <ul; - - - ;> in 1 for someI,, ... ,1I, }, and

skel((set())= __ JI o ap(W) * skel(i)(Y)
1 n

for each i, and each Y in Skel(f;).

Note it the previous definition that map(u) * skel(];) is a relational join
operation, and since set(X)nY = ¢, it can also be seen as a cartesian product.
However, in the present paper, we use the symbol X to denote crdered cartesian
product only. Figure 9 exhibits the instance skeleton of the instance of Figure 1.

We established a correspondance between formats, and relational database
schemas (Skel), and between instauces over formal and relational database
instances (skel). It is clear that (1) not all relational database schemas

COUR. COUR. STUD. COUR. STUD. GRADE COUR. BOOK
math math toto math toto 4 math b
phys math zaza math toto 8 math ¢
phys 1lulu phys Tulu 9
phys toto phys toto 6
phys toto 9

- Pigure 9 - Instance skeleton.

correspond to some formats, and (2) even if a relational database schema R
corresponds to a format f, not all instances over R correspond to instances over

£

We shall characterize the *‘good” (in this context) relational database sche-
mas (Theorem 3.1) and the ‘“‘good” relational database instances (Theorem 3.2).

We first concentrate on relational database schemas.

Theorem 3.1: [Ba2] Let R be relational database schema. Then R is a format
skeleton iff :

(1) R is clesed under intersection, and

(2) foreach XinR, { X nY|Y in R} is totally ordered by inclusion!#].

We now characterize the relational database instances which are also

instance skeletons.

Theorem 3.2. Let [be a format, and R= Skei(f). Let r be an instance over R. Then

the following two assertions are equivalent:

(1) r= skel(I) for some I over {, and

[#] A set S is totally ordered by inclusion if for each Z,2'in S, ZC 2 or 27 C Z.

() r satisfies the URSA.

Proof: For the sake of readability, we use the same notation for an ordered tuple
and for the corresponding tuple defined as a mapping.

We first prove that (1) => (2). The proof is done by induction on the cardinal-
ity of Skel(f), denoted #(Skel(f)).

If #(Skel(f))=1 then (1) => (2) since (2) is always true. Suppose that (1) =
(2) for all f such that #(Skel(f))<m. Let f=X (f.l)*...(fn)* be a format with
#(Skel(f))=m. Let r be an instance over Skel(f) such that r= skel(l) for some 1
over . Let Z,, Zy be in Skel(f) with 2;CZ;. Then Z,=set(X)Y; for some Yp#¢$. Then
Y, is in Skel(f;) for some j. Two cases arise:
(a) Z, = set(X). Then,

r(Zy)=ful<uly---Ip>inl{2ful <ul; - I;>inland [#¢ § = my (r(Z;))

Therefore r(Z;) 2 my (r(Z3)).

(b) Zy = set(X)Y, for some Y, in Skel(f;) for some i Since Z; C 7, it is easily
seen that i=j and Y; C Ys. By the induction hypothesis, #(Skel(f;))<m, and
thus skel(I)(Y;) 2 ny,(skel(I)(Y)) for each instance I over ;.

r(Z,) = Y u *skel(T(Yy)

<uly - Ip»int

* . 's
<~uIl . UIn> inI u TrYl(Skel(Il) (‘5 2))

* 7. 3
2 7y, . ~L-)In> - skel(.‘)(Yz)J

2 '"Ylse’r.(X)(r(ZZ)) = "Zl(r(ZZ))-

Thus r(Z;) 2 mg,(r{Zz)) in each case. Hence r satisfies the URS4, so (1) =

(3).

-25-

To prove that () => (1), it suffices to exhibit for each r over R satisfying the
URSA, an instance I over f such that r=skel(I). Indeed, we now present a recur-

sive algorithm which computes such an instance.

Algorithm 3.1:
Input : a format f, and an instance r over Skel(f) satisfying the URSA.

Output : I(f,r) a Verso instance defined over {.
begin
if { = X then I{f,r) = fu | uin Otup(X) and map(u) in r{X) {.
iff=X ()" .. then
begin
for each x in r(set(X)) and i in [1..n] ,
letC= e gt(x)[A = x(A)], and
let r(i,x) be the relational database inslance over Skel(f;) defined by:
r(1,x)(Y) = ny [selectie)(r(set(X)Y))] for each Y in Skel(f;) then
) = | €ultr (120 Wi)> | oot .2 map(e
end
end

One can easily prove by induction thal r=skel{I{{,r}}. Hence (2) = (1) which

concludes the proof. o

By the previous theorem, skel is a mapping from instances over f into rela-
tional database instances over Skel(f) satisfying the URSA.. Therefore, it would be
interesting to characterize Verso operations on instances in terms of relational

operations on relational database instances.

Indeed this is the purpose of our next result. In order to prove it, we need

some notation and one lemma.

Notation : Let r and s be two relational database instances vver the same data-
base schema R. Then r ¢ s iff r(X) ¢ s(X} for each X in R. Also rus is the relational
database instance over R defined by (rus)(X) = r(X)us(X) for each X in R. Finally,

rns and r—s are defined in a similar way.

The lemma that we shall use relates containment of Verso instances to con-

tainment of the corresponding instance skeletons. Formally, we have:

Lemma 3.1 : Let { be a format, and I, J two instances over f. Then I<J iff
skel(I) ¢ skel(J).

Proof : First suppose that I=<J. Then by inspection of the definition of an
instance skeleton, it is clear that skel(I) ¢ skel(J).

Now suppose that skel(I) ¢ skel(J). Then by inspection of Algorithm 3.1 we
have: [= I(f,skel(I)) = I(f,skel(J)) =J. ThusI</J. o

We are now ready to characterize Verso-operations on format instances in
terms of relational operations on the corresponding relational database

instances.

Theorem 3.3: Let f,g be two compatible formats, and h a format such that f and
g are subformats of h. Let I and J be instances over f and g respectively. Let
r = skel(I?) and s = skel(J"). Then:

(1) skel(I®yJ) = rus,
() skel{I®nJ) = rns,
(3) skel(I©nd) is the smallest URSA-instance over Skel(h) containing r—s, and

(4) skelI®y) is the greatést URSA-instance over Skel(h) contained in the
instance t over Skel(h) defined by:

(a) t(X) = r(X)ns(X) if Xe Skel(f)nSkel(g).
(b) Y(X) = r(X) if XeSkel(f)—Skel(g),
(e) YX) = s(X) if X eSkel(g)—Skel(f), and

(d) t(X) = ¢ otherwise.

Proof : (1) By definition, I®;,J contains I and J& By Lemma 3.1,
skel(I@yJ) 2skel(®) =r and skelI@yJ) D skel(Jh) =s. Hence (+)

..27..

skel(I®yJ) 2 rus.

v Since r and s are URSA insances, it is clear that rus is also an URSA
instance. By Theorem 3.2, rus = skel(K) for sorne formal instance K over h. By
Lemma 3.1, "< K and /"< K. By definition of union , '@J" < K. Hence (++)
skel(I ®yJ) ¢ skel(K) = rus. By (+) and (++) rus = skel(I®4J).

(2) is proved in a similar way.

(3) Let T={ t | tis an URSA instance over Skel(h) containing r-s | Con-
sider then to:tQTt' By Theorem 3.2, skel(I®3J) is an URSA instance over

Skel(h). Since (IOp)) D =IDJ , skel(IOyI)us = rus. Thus skel(IGy)) 2 r-s.
Hence tpC skel(I®yJ]). Clearly, to is an URSA instance. By Theorem 3.2,
to = skel(K) for some format instance K over h. Also, r—s ¢ ty. Thus rus C tgus.
Therefore '@ < K@JP by Lemma 3.1. Since to C skelIOy)), K< 1Q,J by
Lemma 3.1. Hence K@< (O =@ Thus KON =1P@JIL By
definition of the Verso difference, I&,I< K. Since K<1©3J and IO =<K,
K = 1©yJ. Hence skel(I®}J) = skel{K) = tq, that is the smallest URSA instance

over skel(h) containing r — s.

(4) Let t, be the greatest URSA instance over skel(h) contained in t. By
Theorem 3.2, t; = skel(K) for some format instance K overh. Since t; C t € rus,
K<I®;d by (1). Clearly, K[fag]=I[fag] ni[iag]. Thus (1) K=<I®J by

definition of join.

By Theorem 3.2, skel(I®,J) is an URSA instance. Clearly, skel(I®J) ¢ t.
Thus skel(I®,J) ¢ t,. Therefore (1) I®,J = K by Lemma 3! 1.

By (1) and (11), I®yJ = K which concludes the proof of the theorem. o

As shown in Theorem 3.3, it is possible to characterize the binary Verso
operations on format instances in terms of relational operations on the
corresponding database instances. Furthermore, a constructive characterization
can be obtained. This construclive characterization can be found in [Bi] and
allows to compute skel(I®y)) , skel(I®y)) , skel(IO,J) and skel(I®,J) from
skel(I) and skel(J) where [and J are instances over { and g respectively, f and g

-2B-

compatible and subformats of h. Finally, it is also possible o characterize unary
Verso operations on format instances in terms of relational operations on the

corresponding relational database instances (see [Bi]).

4. Data restructuring

In this section, we introduce the last unary Verso operation, namely restruc-
turing. This operation allows one Lo modily the dala structure used to store
information. When transforming an instance over some format g into an instance
over another fermat f, we may loose some information. In order to study this, we
first formalize the notion of information contained in an instance. We then
define the data restructuring operation based on a principle of minimumn loss of
information. We then characterize the properties which must be satisfied by f
and g to allow data restructuring of all instances over g into instances over f
without loss of information. Finally, we study the dependencies that some
instances over some format g satisly, so that date restructuring according to

some format f is possible without loss of information.

We first try to capture the semantics of Verso instances using the notion of
“facts”. In this context, a fact is a tuple, and it is also the elementary unit of

information.

Two basic operations on sets of facts are considered. They are: the closure

under projection and under join.

Definition : Let H be a set of facts. Then the closure of H under projection,

denoted TI(H), is defined by : |
[(H) = { my(x) | x in HnTup(X) for some Xand Y ¢ X {,

and the closure of H under join, denoted *H , iz defined by:
For each n = 0, let H, be obtained by: ~

= Hy;=H,

47

-20 -

= Hiyy = {x*y | x€H, yeH;, x and y joinable §.

Then *H = ._g Hi'

1

Now, given a set of facts, it seems reasonable to deduce new facts by projec-
tion of known facts. The closure under join is already more arguable. For
instance, if ‘“‘toto” is taking ‘‘math’” and ‘‘math’ is taught by “Miss Jones", you
do not want to conclude that "Miss Jones' is teaching ‘‘math” to “‘toto’”. The
semantics that we are going to associate with format instances states that the
“legal’’ joins are omly the joins of tuples in the instance skeletons. More for-
mally, we have:

Definition : Let [be an instance over the format {. Then the set of facts associ-
ated with I, denoted fact(l), is defined by:

fact(l) = II(* (Z o §f<e1(f) skel(1)(Z))) .

The previous definition is illustrated in Figure 10 where the set of facts

associated with the instance I of Figure 1 is given.

The notion of set of facts associated with a formatl instance is used now to

present the last unary operation, namely restructuring.

<math, toto, 4, b>, <math, toto, 8, b>

<math, toto, 4, g>, <math, toto, 8, o>

<math, toto, 4>,..., <math, 4>,..., <4>,
<math, toto, g>,.-., <math, g>,..-, <@>,
<phys, 1lulu, 9>, ..., <phys, 1ulud, «e-, <9>,...

- Figure 10- Facl(l).

Definition : Let { be a format. Let J be an instance over some format. Then the
result of restructuring J according to f, denoted restruct[f](J), is the greatest[“ﬂ
instance I defined over f such that fact(I) ¢ fact(J).

To illustrate this definition, we present in Figure 11 an instance J over the
format COURS’E(STUD.ENT GRADE)'k and the results I; and Iy of restructuring J
. according to f; = COURSE(STUDENT(GRADE)*)* and f; = STUDENT GRADE
(COURSE)*. Note that the instance I; contains the same information than the
instance J, but since no STUDENT is registered in the music COURSE in J, the
fact that there exists a music COURSE, has been lost in I,.

Now the following problem arises : Let J be an instance over some format g,
and let { be a format. Is restruct; a non-loss operation for J? In other words, is

fact(J) = fact(restruct(J)) ?

We first adress the case when it is always possible to represent an instance

over g by an instance over f, i.e. restructyy is non-loss for all instances over g.

In order to do that, we need a way to compare the representative power of

formats. Formally:
Notation : Letf be a format. Then SAT(f)= { fact(I) | I in Inst(f) }.

Definition : Let f and g be two formats. Then f is dominated by g, denoted f < g ,
iff SAT(f) < SAT(g). Also f and g are equivalent, denoted f=g , iff f<gand g=<1
(i.e. SAT(f)=SAT(g)).

Intuitively, f is dominated by g iff each instance over f can be represented by
an instance over g containing the same information. Two characterizations of
format dominance are now presented. The first one (Lemma 4.1) is based on pro-
- perties of the corresponding format skeletons. The second one (Theorem 4.1) is
based on some elementary format transformations. We now present the first

characterization of format dominance.

[#] It is clear that there exists a finite number of instances I such that fact{I) < fact(J).
Then restruct[f](J) is obtained by union of these instances.

31

%
COURSE(STUDENT GRADE)

toto 10

math
toto 5
lulu 3
music | |

phys 1 toto 10 |

Instance J

COURSE(STUDENT(GRADE)*)* - STUDENT GRADE(COURSE)*
math ttoto rlO” toto 10 | math
..... Rl | phys !

I lulu L3_” toto 5 | math 5
music |_ | lulu 3 math !
phys | toto 10|
restruct[fl](J)= I1 restruct[fz](J)= 12

- Figure 11 - Restructuring.

Lemma 4.1 : Let { and g be two formiats. Then f < g iff Skel(f) ¢ Skel(g). Thus [=g
iff Skel(f) = Skel(g).

Proof : First suppose that f < g. Let X be in Skel(f). For each A in X, let ¢p and d,
be two distinet values in dom(A). Let s be the relational database instance over
Skel(f) defined by:

for each A in X, x(A) = cp or x(A) = d, ,
(1) sX) =1 x for some AinX, x(A) = da

(2) s(Y) = my(s(X)) f Y X, and

(3) s(Y) = ¢ otherwise.

It is clear that s is an URSA instance over Skel(f). By Theorem 3.2, s is an

instance skeleton. Hence TII(*(v s(Z))) is in SAT(f). Hence
ZeSkel(f)

H("(Z & . s(Z))) = I(s(X)) is in SAT(f). Since f=<g , SAT(f) € SAT(g), so there
Edbkel{!

exists an instance skeleton r over Skel(g) such that ITI(s(X)) = II(* (zEst) l(g)r(Z))).
€,

Let x be in s(X). Then x is in II(* (zésfel(g)r(z)))' Thus there exists a sequence

Zy, . . ., Zy of attribute sets in Skel(g), and a sequence z,;,...,2, of facts such

that z;€Tup(Z;) for each j and x = my(;‘ z;). Suppose that X is not one of
j=1l.n

Zy, . . ., Zy. Clearly, for each j, zjéﬂ(s(X)), so Z; C X . Let %o be the tuple over X
defined by x5{A) = c, for each A inX. Note that xe#II(s(X)). For eachj, let 7/ be a
tuple in s(X) such that Trzj(xo) = nZ’(zj'). (Such a tuple clearly exists by construc-

3 ” = * .I : M * - - . -
tion of s). Hence xg = mx(j=1“an }is in II((ZEle‘)el(g)r(Z))) [I(s(X)). Thus xq is in

s(X), a contradiction with the definition of s. Hence X is one of Z,, .. . ,Z,. There-
fore X is in Skel(g). Thus Skel(f) ¢ Skel(g).

Now suppose that Skel(f) c Skel(g). Let H be in SAT(f). Then

H=11(*{ v _ skel{I)(Z))) for some instance I over {. Consider Lhe relalional
ZeSkel(t)

database instance s over Skel(g) defined by :
(8) s(X) = skel(I)(X) if XeSkel(f)nSkel(g),

(b) s(X) = o mx(s(Y))if XeSkel(g)—Skel(f), and

YeSkel(f)
(¢) s(X) = ¢ otherwise

By Theorem 3.2, s is an instance skeleton over Skel(g). Thus s = skel(J) for some

instance J over g. It is easily seen that H = TI(* (Z s l(g)skel(J)(Z))). Hence H is in
€nke

SAT(g). Therefore SAT(f) ¢ SAT{g) and sof<g. o

In order lu present the second characterization of format dominance, we
exhibit three format transformations. These transformations are presented in

their elementary versions and then generalized.

-33-

Definition

- (a) Let f=X (fl)‘...(fn)*. andg=Y (gl)*...(gn)‘, f1,....fn &1.--..8p NON empty, then g
is obtained from f by elemnentary root permutation iff :
(i) f; = g; for each iin [1..n], and
(ii) set(X) = set(Y).

g is obtained from f by elementary branch permutation iff :
(i) for each iin [1._.11], there exists j in [1..n] such that g; = f;, and
(ii) X=Y.
(b) Let f=XY (£,)"...(£)" and g=X (Y (1,)"...(1)")" then g is obtained from f by ele-

mentary compaction.

Now a root permutation on a format f is obtained by applying elementary
root permutations to components i of =X (fl)*...(fn) *. Branch permutation and
compaction are obtained from elementary branch permutation and elementary
compaction in a similar manner. Figure 12 exhibits a sequence of these three -
transformations together with the extension defined in Section 3.

We are now ready for a second characterization of format dominance and

equivalence (The proof follows easily from Lemma 4.1).

Theorem 4.2: Let f and g be two formats. Then f = g iff g can be obtained from {
by a finite sequence of root and branch permutations. Also {<g iff g can be
obtained from f by a finite sequence of root and branch permutations, compac-

tions and extensions.

Even if { is not dominated by g, some particular instances over [are
representable by instances over g without loss of information. That is because
those particular instances satisfy some constraints on top of the constraints that
are implied by the format . We now define two kinds of dependencies which are

going to capture these constraints.

In order to do that, we need the following notation.

[UNIVERS.]
COURSE] |
Vroot permutation * [BOOK] [STUDENT [HOUR
UNIVERS. C ' GRADE r
| | |
l?TUBf%;/\i%ﬁﬁwﬂ extension
||
erLch permutation [UNIVERS]

l
COURSE

STUDEN

compaction

COURSE UNIV. (STUDENT)*(BOOK)™

math Orsay 'toto | b
Tlu

phys Orsay |mimi | [

UNIVER. (COURSE (BOOK) *(STUDENT (GRADE) *)* (HOUR) *)*

o - - . - -
- = e v v e o e o n -

Orsay | math |b | toto | L
Tulu | I
phys || mimi | | L |

- Pigure 12 - Format transformations (Part I and II)

~-35-

Notation : Let H be a set of facts, X a relational schema and R a relational data-

base schema. Then :
= Hjx={x| xeHntup(X) , and

" Hr= gt

Now we have:

Definition : Let R be a relational database schema, 7 = ZURX and H a set of facls.
€n

Then *R denotes the schema join dependency (SJD) associated with R, and H
satisfies *R, denoted H & *R , iff Hz = (* [Hir])z

Also 3 R denotes the schema existence dependency (SED) associated with R,
and H satisfies I, denoted H & 3R, iff H = I(Hr).

An example is now given to motivate the use of the word “existence” for
name of the second kind of dependency in the above definition.

Example 4.1: Consider the formats f = COURSE(STUDENT)* and g =
STUDENT(COURSE)‘ , and the instances I, J of Figure 13. Then J = restructg(l),
and fact(J) = fact(I)—f{<phys>]. When restructuriné I, we lost the '"‘phys.”
COURSE because there is no STUDENT registered in this COURSE in L In other
words, we lost some information because fact(l) 5 3f ECOURSE,STUDENT; i

The next result uses the previous dependencies to characterize the sets of

facts which are representable by instances over a given format.

- Theorem 4.3: Let { be a format and H a set of facts. Then H can be represented
by an instance over f (i.e. there exists an instance I over f such thatH = fact(I))

iff:

»

-36 -

*
COURSE(STUDENT)

math toto
lulu
zaza

music | toto
lzaza '

s

phys | —

Instance I

*
STUDENT(COURSE)
toto math
lmusic]
lulu lmath I

zaza math
lmusicl

J= restrictg(I)

- Figure 13- Existence Dependency.

(i) H & *R for each RcSkel(f), and

(ii) H & 3S where S = § YLEJRY | for some RcSkel(f) § .

Proof : First suppose that H can be represented by some instance I over f. Then
i) = : H=TI(* e . = . in Hy.
fact(i) = H. Thus: H =TI g(estle](f)sk D(X))). Let Z XLEJRX Let u be in Hy

Clearly, u = x;RuX where uy is in skel(I)(X) for each X in R. Hence u is in * [Hg].

Therefore uis in (*[Hg])jz. Thus Hjz < (*[Hgl);z. A similar argument shows

that the converse inclusion is also true. Hence H £ *R , and so (i) is verified.

By definition of S,

CT(H;) = (I (I(*(u)skelm‘oom).s

XeSkel(f

=I(C (XESfel(r)

skel(I)(X)))s)

-37-

T G FHeI000))

= H.
- Therefore, H & 38, so (ii) is verified.

Now suppose that HE*R and HE JS. Let r be the relational database
instance over Skel(f) defined by r(X) = Hyx for each X in Skel(f). It is easily seen
that r is an URSA instance and by Theorem 3.2, there exists I instance over f
such that r = skel(I) and fact(I) = H. Hence H can be represented by an instance

over { which concludes the proof. =

Now we have:

Corrolary : Let f be a format. Then restructyy is without lost of information for

an instance 1 iff :
(i) skel(I) & *R for each RcSkel(f), and

(ii) skel(I) = IS where S = EYgRY | for some RcSkel(f) 3. ©

Restructuring is the last operation of the Verso algebra. Together with the
five binary operations, and four unary ones already presented they are as power-
full as the relational algebra. More precisely, we have :

Theorem 4.4: Let I be a Verso schema, such that Skel(f)nSkel(g) = ¢ for each f
and g in . Let R = fgXSkel(f) be the corresponding rélational database schema.

Then for each relational query o over R, there exists a Verso query g (with flat
target format) over I, such that a(r) = map(g(J)) for each instance I over ¥ and

relational database instance r = skel(/) over R.

Proof : (Sketch) The base relations of r can be obtained from / using a Verso
selection followed by a projection. The relational projection, restriction, selec-
tion, renaming, union, difference, intersection and cartesian product are simu-
lated respectively by the Verso projection, restriction, selection, renaming,
union, difference, intersection and cartesian product. The restructuring may be

- 38 -
necessary in order to apply these operalions. o

Remark 4.1: The relational join can be realized using other relational opera-
tions (renaming, cartesian product, restriction and projection), and thus can be
simulated using the corresponding Verso operations. However, a simpler and
more natural way to simulate the relational join is to use a restructuring fol-
lowed by a Verso join. This remark is illustrated in Figure 14. In order to do a
relational join of r; over {COURSE STUDENT} and rp over {COURSE BOOK}, r, is
restructured according to COURSE(STUDENT) ‘, rz according to COURSE(BOOK)*.

Then a Verso join is performed.

COURSE STUDENT COURSE BOOK
math toto math b1
math zaza math b2
phys Tulu music b3
phys mimi phys b4

math toto b1
zaza b2
phys Tulu
mimi |b4

- Figure 14 - Simulating the relalional join.

-39 -

5. Kxpressive power of Verso selection

In the previous section, we showed that the Verso operations are ‘'complete”
(i.e. they are at least as powerfull as the relational operationé). In this section,
we discuss the expressive power of the selection. We then introduce an extension
of the selection, and exhibit a very large set of relational queries which can be

simulaled by a *'super’’-selection followed by a projection.

We first present a query which would typically require a join in the relational
model but can be simply expressed by a selection in the Verso model.

Example 5.1: Consider the format f = COURSE(STUDENT)¢(EXAM-DAY)*. Now
consider the query : “'What are the COURSEs taken by the STUDENT toto which
have an EXAM-DAY on November first ? . In the relational model, there would
typically be two relational schemnas {COURSE STUDENT{ and {COURSE EXAM-DAY}
and the query would require a join operation. This query can be answered by the

Verso selection :

S=COURSE :(J(STUDENT :STUDENT = toto),

J(EXAM-DAY :EXAM-DAY = November1st)).

Indeed, some very natural queries like “Give the list of COURSEs with no
known EXAM-DAY ? " can be answered by a Verso selection whereas they would

require the use of difference in the pure relational model.

We now propose a simple extension of the Verso selection which dramatically
increases its power. Let wus consider the f{ollowing query on
COURSE(STUDENT(GRADE) *)* . "'Give the list of COURSEs, STUDENTs and GRADEs:
such that toto got an A in the COURSE and a STUDENT (not necessarily toto) got
an F in the COURSE”. It should be noted that this query is complicated by.the
fact that they are several roles for the same attribute, namely STUDENT. Typi-
cally, such a query would require several joins in the classical relational model.

What we mean by such a query is in fact two selections on GRADE, say
S; = GRADE : GRADE = A and S; = GRADE : GRADE = F.

-40 -

Now we need two selections on STUDENT(GRADE)* :
S,' = STUDENT : STUDENT = toto (3(S,)),and

So’ = STUDENT : (3(S2)).
The first one filters toto if he got an A, and the second one any STUDENT who got

an F. Now we can express our query by :
S=COURSE : (2(S) | 1 3(S,), (S2)) where S is the identity on
STUDENT(GRADE)". - ‘

It should be noted that this is not a selecticn as defined in Section 2. Intui-
tively, when we perform such a selection on an instance [over
COURSE(STUDENT(GRADE)")", for each element <ul,> of I, we perform Sy and S’
on I; "in parallel” and we write I (ie. S'(I1,)) iff Sy'(I;)#¢ and Sy'(I;)#¢ . Note

that, in this case, S, and Sy’ are used exclusively as conditions.
We now formally define the “super’’-selection.

Definition : Let =X (fl)*...(fn)*, f;,...f, non empty, be a format for some n= 0,
and I an instance over f. Then a super-selection S over { is an expression recur-
sively defined by :

(a) if S is a selection over {, then S is a super-selection over {, and

(b) Fori=1..n, let S; be a super-selections over f; and S; be a finite set of expres-

sions of the form €'(S') where e'e{ 3, 4 { and S is a superselection over ..

Then the expression S=X : C(ey(S)) | S;,. .., ex(Sy) | S,) where C is a

condition on X, and for i=1...n, g&{ 4, E ? { is a super-selection over .
The corresponding operation is defined by :

Definition : Let f=X (fl)*...(fn)*, f;,....f, non empty, be a format for some n= 0
and S=X :C(eS;) |5y ... ,e45,) | Sp) a super-selection over 1. Then the
result of S applied to !, denoted S(I), is the instance over f defined by :

-41 -

<ul - L>inLukC,
S(1) = { <uS;y(1y)...Sp(ly)> [foralliin[1..n], §;(;) & e; and
S'(I) E € for each e'(S) in 5;

It turns out that the super-selection can easily be expressed using the Verso
selection, projection and join. To prove this, we need the following lemma.

Lemma 51: Let f=X (fl)*...(fn)* be a format and
S=X:C(e;(S))]Se(S) | SjufeSe), en(Sy) | Sp) a super-
selection over 1. Then for each I in Inst(f) : S(I) = S(N®y(S"(D[X]) where :

S =X :C(ey(S)) IS&8) | Si...,en(Sy) | Sy).and

S'=X : C(2(Idy), .., 2(1d;_).eo(So), 21dy,). .., 2(1dp)).

Proof : LetI be an instance over f. Let J = S(I) and K = S'(()®yS"(D)[X]). Then w
is in J iff w = <uS,(I;) - - - Su(I,)> for some <ul; - - - I,> in I satisfying

(i) ukC,

(if) for each jin [1..n], Si(I) ey,

(i) for each jin [1..n] and €'(S") in §;, S'(I}) k €', and
(iv) Solly) E eo.

"Hence w is in J iff @ is in S'(I) and w[X] is in S"(I). Therefore w is in J iff @ is in

K which concludes the proof. ©

Using Lemma 5.1, one can easily show :

Theorem 5.1: For each super-selection B, there exists a Verso query 8’ com-

posed exclusively of selections, projections and joins such ﬁlat B=F.

We now present a large class of relational queries which can be simulated
using a super-selection followed by a projection. Intuitively, these queries are all

the queries obtained using relational selections, joins and projections such Lhal
the projeclions do not violate the underlying structure of the corresponding

Verso instance.

Theorem 5.2: Let f be a format, R = Skel(f) the corresponding relational data-
base schema. Let q be a (relational) selection-projection-join query on R such
that every projection in q is a projection on some union of attribute sets in R.
Then there exists a Verso query q' consisting of a (Verso) super-selection followed
by a (Verso) projection, such that q' is equivalent to q.

Proof : (Sketch) The proof is done by induction on the depth of q. As mentioned
in the proof of Theorem 4.4, the base relations can be obtained using a Verso
(simple) selection followed by a Verso projection. Thus the Theorem is true for

queries of depth 1.

Now let q; and gy be two relational queries respectively equivalent to S,(f,]

and Sp(fz] where [f;],[fz] are Verso projections, S,,S; are Verso super-selections.

Three cases have to be considered :

(a) Let q = mx{q;) where X is the union of attribute sets in R. Clearly, X must be

U Y. Then there exists a subformat g of {; such that
YeSkel(f;)

Thus 7x(q)) =q is equivalent to (S,[f;D)[g]. Since

also included in

X=_ u Y
YESkel(g)
(811D [e] = Silg). q = my(q,) is equivalent to a super-selection followed by a

projection.

(b) Let g= select|¢g)(q;). Then some extra conditions can clearly be introduced
in S, to obtain S such that q = select¢)(q;) is equivalent to S[f,].

(c) Let q = q4*qz. Clearly, f; and f, are subformats of f. Thus there exists a sub-
format g of f such that Skel(g) = Skel(f;)uSkel(f,) . Since we allow in a
super-selection several se\}ections to occur on the same sub-instance con-
currently, we can combine the selections used to build S, and S, to obtain a
super-selection S such that q = q;*qz is equivalent to S[g].

SV

We now illustrate the previous theorem.

Example 5.2 : Consider the query : "'List all COURSEs attended by both the STU-
DENTs toto and lulu, and for each of these COURSEs, list the STUDENTs in that
COURSE”'. This query corresponds to the following relational query over the data-
base schema R = {COURSE, STUDENT} : |

TeoURSE, STUDENT(R) * TcoursESelect{STUDENT = toto](R)* Teourseselectstupent =) (R).

This relational query can be decomposed as follows :

q; = [COURSE STUDENT],

Gz = selectsTunant = toto) (A1),
93 = meourse(e) .
Qs = seleclsTupeNT = rawi(91)
95 = Tcourse(da),
Qs = g3*qs, and
Qv = q1*ds-
We now follow the construction sketched in the proof of the theorem to
obtain an equivalent Verso query formed of a super-selection followed by a pro-
jection. Let g be the format COURSE(STUDENT)* . For eachi i in [~1..?], Q; defined

below is equivalent to g;.

Q; = (COURSE(3 (STUDENT))[g],
Q2 = (COURSE(I} (STUDENT :STUDENT = totn))[g],
Qs = (COURSE(3 (STUDENT :STUDENT = toto))[COURSE]
Q4 = (COURSE(3] (STUDENT : STUDENT = lulu))[g],
Qs = (COURSE(3 (STUDENT : STUDENT = lulu))[COURSE],
J(STUDENT :STUDENT = toto),| . . . ,
Qg = (COURSE(?(STUDENT : l{S(STUDENT 'STUDENT = Iulu) }-)) [COURSE], and

o | J(STUDENT :STUDENT = toto),
Qr = (COURSE(?(STUDENT : ||3(STUDENT :STUDENT = lulu) |) /-

REFERENCES

[AMM]
H. Arisawa, K. Moriya, T. Miura, ‘‘Operations and Properties on Non-First-

Normal-Form Relational Databases’, Proc. Inter. Conf. on VLDB, Florence,
1983, pp 197-204.

[Bal] A
F. Bancilhon & all, ‘‘Verso : A Relational Back End Data Base Machine”,

Proc. Inter. Workshop on Database Machines, San Diego, 1982.

[BaZ2]
F. Bancilhon & all, “Les V-Relations : Definitions, Modifications, Interroga-

tion', Tech. Notes VERSO 1, 1982.

[Bi]
‘N. Bidoit, “'Un Modele de Donnees Relationel Non Normalise : Algebre et
Interpretation'’, PhD. Thesis, Orsay University, Paris South, 1984.

[BRS]
F. Bancilhon, P. Richard, M. Scholl, '‘On Line Processing of Compacted Rela-
tions"”, Proc. Inter. Conf. on VLDB, Mexico, 1982, pp 263-269.

[Co]
E. F. Codd, A Relational Model of Data for Large Shared Data Banks'’, CACM
13,N°8, 1970, pp377-387.

[D]
C. Delobel, “Normalization and Hierarchical Dependencies in the Relational
Data Model”, ACM Trans. on Database Systems, N°3, 1978, pp 201-222.

W

[FMU] 4
R. Fagin, A. Mendelzen, J. Ullman, ‘A Simplified Universal Relation Assump-

tion and its Properties”, Trans. on Database Systems, N°3, 1982, pp 343-
360.

[FT]
P. C. Fisher, S. J. Thomas, ‘'Operations for Non-First-Normal Form Rela-

tions’’, Proc IEEE COMPSAC, 1983, pp 464-475.

[FKI
R. Furtado, L. Kerschberg, ‘‘An Algebra of Quotient Relations”, Proc. ACM

Sigmod Conf., Toronto, 1977, pp 1-8.

[HY]
R. Hull, C. K. Yap, ‘The Format Model : A Theory of Dalabase Organization”,

JACM 31 : 2, April 84, pp 210-226.

[1MS]
Information Management System/360, Version 2, General Information

Manual, IBM form # GH20-0765.

[J8]
G. Jaeslike, H. J. Scheck, "Remarks on the Algebra of Non First Normal
Form Relations’’, Proc. ACM SIGACT-SIGMOD, PODS Los Angeles, 1982, pp

124-138.

-[K]
I. Kobayashi, “An Overview of the Database Management Technology', Tech.
Report TRCS-4-1, Sannoc College, Kanagawa 258-11, Japan, 1980.

[KTT]
Y. Kambayashi, K. Tanaka, K. Takebs, ‘"Synthesis of Unormalized Relations

Incorporating more Meaning'’, Information Sciences 29, 1983, pp 201-247.

[Mac]
I. A. Macleod, ‘A Model for Integrated Information Sytems”, Proc. Inter.

Coni. on VLDB, Florence, 1983, pp 280-288.

[Mai]
D. Maier, ''The Theory of Relational Databases’’, Computer Science Press,
1883.)

[MW]
D. Maier,- D. Warren, ‘'Specifying Connections for a Universal Relation
Scheme Database’, Proc. SIGMOD, 1982, pp 1-7.

[Mak]
A. Makinouchi, “A Consideration on Normal Form of Not-Necessarily-

Normalized Relation in the Relational Data Model”’, Proc. Inter. Conf. on
VLDB, Tokyo, 1977, pp 447-453.

[P] .
P. Pauthe,"”EVER, un editeur pour V-relations”, These de Troisiéme cycle,
Université d'Orsay, 1985. '

[SP]
H-J. Scheck, P. Pistor, “Data Structures for an Integrated Data Base
Management and Information Retrieval System’’, Proc. Inter. Conf. on
VLDB, Mexico, 1982, pp 197-207.

~-47 -

[Ss]
H-J Scheck, M. H. Scholl, *‘An Algebra for the Relational Model with Relation

Valued Attributes’’, Draft, 1984.

[U]
J. D. Ullman, "Principles of Database Systems”, 2nd Edition, Computer Sci-

ence Press, 1982.

[v]
A. Verroust, “‘Characterization of Well-Behaved Database Schematas and
their Update Semantics”, Proc. Inter. Conf. on VLDB, Florence, 1983, pp

312-3=1.

Imprimé en France
par
IInstitut National de Recherche en Informatique et en Automatique

Y

1)

