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Théorie de l’élimination en codimension un et
applications

Résumé : Dans ces notes, nous présentons une approche algébrique pour calculer la partie
de codimension un d’un idéal d’élimination d’un système de polynômes homogènes. Elle
repose principalement sur le calcul d’invariants dits de MacRae que nous obtiendrons en
termes de déterminants de complexes. Dans un premier temps des résultats essentiels de
la théorie de l’élimination sont rappelés puis les invariants de MacRae et les déterminants
de complexes sont introduits. Le reste de ces notes illustre cette approche au travers de
deux exemples: le résultant de Macaulay de n polynômes homogènes en n variables puis
le calcul de l’équation implicite d’une hypersurface paramétrée en utilisant les syzygies de
cette paramétrisation.

Mots-clés : Théorie de l’élimination, systèmes de polynômes homogènes, résultants,
déterminants de complexes, calcul formel, implicitation d’hypersurfaces rationnelles.



Elimination theory in codimension one and applications 3

In these notes, we present a general framework to compute the codimension one part
of the elimination ideal of a system of homogeneous polynomials. It is based on the so-
called MacRae’s invariants that can be obtained by means of determinants of complexes.
Our approach mostly uses tools from commutative algebra and is inspired by the works of
Jean-Pierre Jouanolou [22, 23, 25] (see also [31] for a similar point of view).

We begin with some basics on elimination theory. Then, in section 2, we introduce the
MacRae’s invariant and the so-called determinants of complexes that will allow us to compute
this invariant. The rest of these notes illustrates our approach through two examples: the
Macaulay’s resultant of n homogeneous polynomials in n variables and the computation of
an implicit equation of a parameterized hypersurface using syzygies. The first one is treated
in section 3 where we follow the monograph [22]. The second one, treated in section 4,
report on joint works with Marc Chardin and Jean-Pierre Jouanolou [7, 4, 8]. All along the
way, we will recall some tools from commutative algebra and algebraic geometry which may
be useful for other purposes.
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1 General framework 4
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2.1 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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4.2 Link with blow-up algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Approximation complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4 Implicitization by means of linear syzygies . . . . . . . . . . . . . . . . . . . . 42

Throughout these notes, all rings will be assumed to be non-trivial commutative rings
with an identity element.
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4 Laurent Busé

1 General framework
Let A be a ring. We consider the graded polynomial ring A[X1, . . . , Xn], with deg(Xi) = 1
for all i, and denote by m its irrelevant homogeneous ideal m := (X1, . . . , Xn). We suppose
given a finitely generated homogeneous ideal I := (f1, . . . , fr) ⊂ m of A[X1, . . . , Xn] and
put B := A[X]/I which is naturally a graded A[X]-module (the grading is with respect to
the variables X1, . . . , Xn).

Observe that f1, . . . , fr are polynomials in the variables X1, . . . , Xn with coefficients in
the ring A. Thus, A may be seen as the ring of the parameters of the polynomial system
f1 = · · · = fr = 0 from which we want to eliminate the variables X1, . . . , Xn. With a
geometric point of view, we consider the incidence scheme (remember that B is graded
w.r.t. the Xi’s)

Proj(B) ⊂ Pn−1A := Proj(A[X1, . . . , Xn])

(this A-schemes inclusion is induced by the surjective map A[X1, . . . , Xn] → B) and want
to “compute” the image of its canonical projection on Spec(A). It turns out that this image
is closed and has a natural scheme structure (see e.g. [13, §V.1.1]); its definition ideal is

A := Ker
(
A = Γ(Spec(A),OSpec(A))

can−−→ Γ(Proj(B),OProj(B))
)
⊂ A

= Ker

(
A→

n∏
i=1

B(Xi)

)
= {s ∈ A : ∃k ∈ N such that mks =B 0} = (I :A[X] m

∞) ∩A
= (I :A[X] m

∞)0 = H0
m(B)0.

(the second equality is because a section s ∈ Γ(Proj(B),OProj(B)) is uniquely determined
by its restrictions to all the open sets D+(Xi), i = 1, . . . , n). Recall that

H0
m(B) :=

⋃
k∈N

(0 :B mk) = {P ∈ B : ∃k ∈ N such that mkP = 0}. (1.1)

All these considerations can be summarized in the following famous

Theorem 1.1 (Elimination theorem) Let K be a field and suppose given a ring mor-
phism ρ : A → K (often called a specialization map). Then, the following statements are
equivalent:

(i) ρ(A) = 0.

(ii) There exists an extension L of K (i.e. L is both a K-algebra and a field) and a non-
trivial zero1 of I in Ln.

1A zero of the ideal I in Kn is an element ξ ∈ Kn such that φ(P )(ξ) = 0 for all P ∈ I, where φ := ρ⊗A
A[X] : A[X]→ K[X] is the extension of the map ρ to polynomials in the Xi’s. The element (0, . . . , 0) ∈ Kn
is called the trivial zero, since it is always a zero of I in Kn as soon as I is graded and ρ(I ∩ A) = 0. We
straightforwardly extend these notations to any extension field L of K using the inclusion K ⊂ L.

INRIA



Elimination theory in codimension one and applications 5

(iii) The ideal I possesses a non-trivial zero in Kn, where K denotes the algebraic closure
of K.

Proof. This relatively old result has become an elementary result of the schemes theory; see
e.g. [17, chapter II, theorem 4.9]. A more classical proof can be found in [16]. 2

Therefore, we deduce that the elimination process which we consider consists in the
computation of the 0th graded part of the 0th local cohomology module of B.

Observe that (I : m∞)/I ' H0
m(B) through the canonical map A[X]→ B, and therefore

that this local cohomology module is linked to the saturation of the ideal I (our system of
polynomial equations) w.r.t. the ideal generated by the variables X1, . . . , Xn we would like
to eliminate. By the way, we recall that Proj(B) = Proj(B/H0

m(B)) (which is easily seen in
the open sets D+

Xi
, i = 1, . . . , n): B/H0

m(B) is called the saturated module of B.

We now turn to a description of A in terms of annihilators. For all couple (ν, t) ∈ N2 we
define the A-linear map

Θν,t : Bν → HomA(Bt, Bt+ν) : b 7→ (c 7→ b.c).

By (1.1), it follows immediately that for all ν ∈ N we have

H0
m(B)ν =

⋃
t∈N

Ker(Θν,t). (1.2)

Moreover, for all (ν, t) ∈ N2 we have Ker(Θν,t) ⊂ Ker(Θν,t+1). Indeed, the multiplication
B1 ⊗Bt → Bt+1 being surjective, if b ∈ Ker(Θν,t) then b.c = 0 for all c ∈ Bt+1.

Therefore, noting that annA(Bt) = Ker(Θ0,t) for all t ∈ N (recall that A ∩ I = 0 which
implies that B0 = A), we obtain that

A := H0
m(B)0 =

⋃
t≥0

annA(Bt). (1.3)

where annA(Bt) ⊂ annA(Bt+1) for all t ∈ N. Thus, it would be very useful to know if this
ascending chain of annihilators stops at some point (which is automatic if A is noetherian)
and especially at which level.

Proposition 1.2 Let η ∈ N be such that H0
m(B)η = 0. Then, for all integer t ≥ 0 we have

annA(Bη) = annA(Bη+t) = H0
m(B)0 =: A.

Proof. Let (ν, t) ∈ N2. It is easy to check that if a ∈ annA(Bν+t) then aBν ⊂ Ker(Θν,t). In
particular, since we know that annA(Bν) ⊂ annA(Bν+t), the equality Ker(Θν,t) = 0 implies
that annA(Bν) = annA(Bν+t). But by hypothesis H0

m(B)η = 0. Therefore Ker(Θη,t) = 0
for all t ∈ N by (1.2), which concludes the proof with (1.3). 2

RR n° 5918



6 Laurent Busé

This proposition shows that once the smallest integer η such that H0
m(B)η = 0 (such an

integer is often called the saturation index of B) is computed, then the eliminant ideal A
is nothing but annA(Bη). In the case where this ideal is principal, then one can get both
η and annA(Bη) from a finite free resolution of B: the purpose of these notes is to present
and illustrate such a technique, providing on the way the necessary tools.

2 The MacRae’s invariant
Let A be a ring. The MacRae’s invariant, that will be denoted S(M), of a A-module M
under suitable assumptions is constructed as an ideal of A which describes the codimension
one part of the support ofM . It first appears in this form in [29]. In our (quick!) exposition
we will mainly follow the very nice treatment given by Northcott in [30] for the existence
and properties of this interesting invariant. To compute it, we will use a technique which
goes back to Cayley and is called nowadays the determinant of a complex. We will follow
notes from Demazure [11] for this point, but this subject has been treated in different places
and at different levels: see for instance [14, 15], or [23] and [27] for very general settings.

2.1 Notation and preliminaries
2.1.1 The Fitting invariants.

If φ : F → G is a map of free A-modules, then the ideal detν(φ), where ν ∈ Z, is the image
of the map ∧νF ⊗ ∧νG∗ → A induced by ∧νφ (where G∗ stands for the dual module of G,
i.e. HomA(G,A)). Choosing bases for the free modules F and G, then φ is represented by
a matrix and we see that detν(φ) is generated by the determinants of all the ν × ν-minors
of this matrix, its so-called νth determinantal ideal. Hereafter we make the convention that
the 0×0-matrix has determinant 1; this implies in particular that detν(φ) = A for all ν ≤ 0.

Proposition 2.1 Let M be a finitely generated A-module and let φ : F → G→M → 0 and
φ′ : F ′ → G′ →M → 0 be two finite free presentations of M . Then, for all ν ∈ N we have

detrank(G)−ν(φ) = detrank(G′)−ν(φ′).

Proof. See [30, §3.1] and [12, §20.2]. 2

We can thus define the following invariants of a finitely generated A-module:

Definition 2.2 LetM be a finitely generated A-module. Then, by choosing any presentation
φ : F → G → M → 0 of M , we define, for all i ∈ N, the νth Fitting invariant of M to be
the ideal

Fν(M) := detrank(G)−ν(φ).

The Fitting invariant F0(M) will be often denoted F(M) and called the initial Fitting in-
variant of M .

INRIA



Elimination theory in codimension one and applications 7

Here are some useful properties of these invariants:

Proposition 2.3 Let M be a finitely generated A-module.

(i) The fitting invariants of M form an increasing sequence

F(M) := F0(M) ⊆ F1(M) ⊆ F2(M) ⊆ . . .

Furthermore, if M can be generated by q elements, then Fq(M) = A.

(ii) Given any map A→ R of rings, we have, for all ν ∈ N,

Fν(M ⊗A R) = (Fν(M))R.

(iii) For every ν ∈ N∗ we have ann(M)Fν(M) ⊆ Fν−1(M). Moreover, if M can be gener-
ated by q elements, then

ann(M)q ⊆ F(M) ⊆ ann(M).

(iv) If M is finitely presented2, then each of its Fitting invariants is a finitely generated
ideal of A.

Proof. Again, we refer the reader to [30, §3.1] and [12, §20.2]. 2

We end this paragraph with the very useful McCoy’s lemma:

Lemma 2.4 (McCoy) Let φ : M → N be a morphism between two finite free A-modules
of rank m and n respectively. Then φ is injective if and only if 0 :A detm(φ) = 0. Moreover,
when this is the case we have m ≤ n.

Proof. See [30, theorem 6 and 8] or [36, theorem A.6.3]. 2

2.1.2 The Euler characteristic.

As we will see, this invariant has the property, among many others, to characterize those
A-modules which have trivial annihilators.

Proposition 2.5 Let M be a A-module. Given two finite free resolutions of M

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0,

0→ F ′m → F ′m−1 → · · · → F ′1 → F ′0 →M → 0,

2We will say that a A-module M is finitely presented if it is finitely generated and if its first module of
syzygies is also finitely generated.

RR n° 5918



8 Laurent Busé

we have
n∑
i=0

(−1)irank(Fi) =

m∑
j=0

(−1)jrank(F ′j).

In particular, if 0 → Fn → Fn−1 → · · · → F1 → F0 → 0 is an exact sequence of finite free
modules then

∑n
i=0(−1)irank(Fi) = 0.

Proof. See [30, chapter 2, theorem 19 and 20]. The last point follows immediately from the
first one by taking M = 0. 2

Definition 2.6 Let M be a A-module admitting a finite free resolution

0→ Fn → Fn−1 → · · · → F1 → F0 →M → 0.

Then we define the Euler Characteristic of M as

Char(M) :=
n∑
i=0

(−1)irank(Fi).

The Euler characteristic of M is always a non-negative integer [30, §4.3]. The following
theorem, due to Vasconcelos, characterizes those modules for which the Euler Characteristic
has the value zero (modules which will be of particular interest for us, as we will see later
on).

Theorem 2.7 Let M be a A-module having a finite free resolution of finite length. Then,
the Euler characteristic of M is a non-negative integer and

(i) Char(M) > 0 if and only if annA(M) = 0,

(ii) Char(M) = 0 if and only if annA(M) 6= 0 if and only if 0 :A annA(M) = 0.

Proof. See [34] for the original proof or [30, chapter 4, theorem 12]. Note that, in the case
where A is noetherian, the point (ii) is also equivalent to the fact that annA(M) contains a
non-zero divisor. 2

2.2 Definition and properties
We are now ready to define the MacRae’s invariant of a A-module M having a finite free
resolution of finite length and Euler characteristic zero. We start with the particular case
of interest where M have a finite free resolution of length one.

Lemma 2.8 Let M be a A-module having a finite free resolution of length one,

0→ F1 → F0 →M → 0, (2.1)

and Euler characteristic zero. Then the initial Fitting ideal F(M) is a principal ideal gen-
erated by a non-zero-divisor, that is to say 0 :A F(M) = 0.

INRIA



Elimination theory in codimension one and applications 9

Proof. By hypothesis we have r := rank(F1) = rank(F0) and F(M) is obviously a principal
ideal: choosing bases for F1 and F0 respectively, F(M) is generated by the determinant of
the matrix of the map F1 → F0 in these bases. Then the rest of the lemma is a consequence
of the McCoy’s lemma 2.4. 2

Following Northcott [30], let us call elementary modules those modules satisfying the
hypotheses of the above lemma. The initial Fitting ideal of such modules is thus an invertible
integral ideal3 generated by a non-zerodivisor. We will call it the MacRae’s invariant of M
and will denote it by S(M). Observe that if A is a graded ring, M is a graded A-module
and (2.1) a graded free resolution, then S(M) is an homogeneous ideal and we have graded
isomorphisms (of degree zero)

S(M) '
max∧

F ∗0 ⊗A
max∧

F1 ' A(−d)

where d denotes the degree of the determinant of the map F1 → F0 and
∧max

(−) denotes
the highest non-zero exterior power.

Suppose now given a A-module M such that there exists an exact sequence of finite
length

0→ Kn → Kn−1 → · · · → K1 → K0 →M → 0

where the A-modules Ki, i = 0, . . . , n, are all elementary; we will refer to such sequences as
finite elementary resolutions of M . Then we associate it the invertible fractional ideal

S(M) :=

n∏
i=0

F(Ki)
(−1)i = F(K0)F(K1)−1F(K2)F(K3)−1 . . .

and call it the MacRae’s invariant of M . Observe that this notation encapsulates correctly
the case where M is itself an elementary module, since 0 → M = M → 0 is then an
elementary resolution ofM . Moreover, as indicated by the notation, the formation of S(M)
does not depend on the choice of the finite elementary resolution. This and two other
properties of the MacRae’s invariant are gathered in the following proposition.

Proposition 2.9 Let M be a A-module having a finite elementary resolution. Then, we
have the following properties :

3Let S be the multiplicative closed subset of the ring A whose elements are the non-zerodivisors of A and
set Q = AS , the full ring of fractions of A (if A is a domain, then Q := Frac(A)). We recall that a fractional
ideal of A is a A-submodule I of Q such that there exists a non-zerodivisor a ∈ A with the property aI ⊂ A
and an integral ideal of A is just an ordinary ideal of A (a fractional ideal with a = 1A). Moreover, a
fractional ideal I is said to be invertible is there exists a fractional ideal J such that IJ = JI = A. If such
an ideal J exists, then it is unique and denoted by I−1. For example, if a is a non-zerodivisor of A, then aA
is an invertible fractional (even integral) ideal whose inverse if a−1A.

RR n° 5918



10 Laurent Busé

(i) Suppose given two finite elementary resolutions of M :

0→ Kn → Kn−1 → · · · → K1 → K0 →M → 0

0→ Lm → Lm−1 → · · · → L1 → L0 →M → 0.

Then, we have the equality
n∏
i=0

F(Ki)
(−1)i =

m∏
j=0

F(Li)
(−1)i .

(ii) If we have an exact sequence 0→ M ′ → M → M ′′ → 0 of A-modules, where M ′ and
M ′′ have also finite elementary resolutions, then S(M) = S(M ′)S(M ′′).

(iii) Let S be a multiplicative closed subset of A. Then the AS-module MS has an finite
elementary resolution and S(M)AS = S(MS).

(iv) The fractional ideal S(M) of A is actually an integral ideal of A. Moreover, it is a
principal ideal generated by a non-zerodivisor such that F(M) ⊆ S(M) and it is the
smallest one with this property: if I is a principal ideal of A such that F(M) ⊆ I, then
S(M) ⊆ I.

Proof. See [30, §3.6 and §6.2]. 2

Remark 2.10 Note that the property (iv) implies that any generator of the MacRae’s in-
variant ofM may serve as a greatest common divisor (gcd for short) of any set of generators
of the initial Fitting invariant of M . In particular, when A is UFD, S(M) is generated by
the gcd of a set of generators of F(M).

The property of admitting a finite elementary resolution for a A-module may seem quite
intricate. The following result links this property to the existence of the much more com-
monly used finite free resolutions.

Proposition 2.11 If M is an A-module, then the following statements are equivalent:

(i) M admits a finite elementary resolution.

(ii) M admits a finite free resolution and ann(M) contains a non-zero divisor.

Proof. We refer the reader to [30, chapter 3, theorem 23]. Note that in the following section,
we will show, with a constructive approach, that if M admits a finite free resolution and
Char(M) = 0 then (i) holds (the reverse needs additional hypothesis, for instance A noethe-
rian – see Theorem 2.7); this is the only result that we will use in the sequel of these notes. 2

As a consequence of this proposition, the MacRae’s invariant of a A-moduleM admitting
a finite free resolution and having Euler characteristic zero is defined in an obvious way (by
taking an elementary resolution). In the following section we will see how we can effectively
compute this MacRae’s invariant from such a finite free resolution.

INRIA



Elimination theory in codimension one and applications 11

2.3 A constructive approach
From now on, we assume that the ring A is a domain and we suppose given a A-module M
which admits a finite free resolution of length n ≥ 1

0→ Fn
φn−−→ Fn−1

φn−1−−−→ · · · → F1
φ1−→ F0

φ0−→M → 0 (2.2)

and such that Char(M) =
∑n
i=0(−1)iri = 0, where we put ri := rank(Fi) for all i = 0, . . . , n.

We decompose the complex F• from the left to the right as follows.
We put F (1)

n = Fn and F (0)
n = 0. Since the map φn : Fn → Fn−1 is injective, we deduce

from the McCoy’s lemma that

• Fn−1 splits into F (0)
n−1⊕F

(1)
n−1 where these two free modules have rank rn and rn−1−rn

respectively,

• the matrix of φn is of the form
(
cn
dn

)
with det(cn) 6= 0.

Now, since Im(φn) = Ker(φn−1), we deduce that

• Fn−2 splits into F (0)
n−2 ⊕ F

(1)
n−2 where these two free modules have rank rn−1 − rn and

rn−2 − rn−1 + rn respectively,

• the matrix of φn−1 is of the form
(
an−1 cn−1
bn−1 dn−1

)
with det(cn−1) 6= 0.

We can continue this way and obtain, for all i = 0, . . . , n, that

• Fi splits into F
(0)
i ⊕F

(1)
i where these two free modules have rank

∑n−i−1
j=0 (−1)jri+1+j

and
∑n−i
j=0(−1)jri+j respectively,

• the matrix of φi (i ≥ 1) is of the form
(
ai ci
bi di

)
with det(ci) 6= 0.

Note that since Char(M) =
∑n
j=0(−1)jrj = 0, such a decomposition must end with a

matrix of φ1 of the form
(
a1 c1

)
with det(c1) 6= 0, whereas we started with a matrix

of φn of the form
(
cn dn

)t. It is of course possible to decompose the complex F• is a
similar way from the right to the left.

Proposition 2.12 With the above notation, we have

S(M) =
det(c1)det(c3) . . .

det(c2)det(c4) . . .
.A =

(
n∏
i=1

det(ci)
(−1)i−1

)
.A ⊂ A.

RR n° 5918



12 Laurent Busé

Moreover, if A is graded, M is a graded A-module and (2.2) is a graded free resolution, then
we have graded isomorphisms

S(M) '
n⊗
i=0

(
ri∧
Fi

)⊗(−1)i+1

' A(−d)

where d denotes the degree of
∏n
i=1 det(ci)

(−1)i−1 ∈ A and (−)⊗(−1) := (−)∗, the dual
module.

Proof. We start by building a new complex a finite free modules

0→ F (1)
n

ψn−−→ F (1)
n ⊕ F (1)

n−1
ψn−1−−−→ · · · → F

(1)
2 ⊕ F (1)

1

ψ1−−→ F
(1)
1 ⊕ F (1)

0 → 0 (2.3)

where, for all integer i = 1, . . . , n, the map ψi are defined by the matrix
(

0 Id
0 0

)
, where

Id denotes the identity matrix of the suitable size. This complex is obviously exact (and not
only acyclic). Now, we construct a morphism δ• of complexes from this new complex (2.3)
to the resolution (2.2) of M as follows:

• δn := Id from F
(1)
n = Fn to Fn,

• for i = 0, . . . , n− 1, the map δi : F
(1)
i+1 ⊕ F

(1)
i → Fi = F

(0)
i ⊕ F (1)

i , is explicitly defined

by the square (!) matrix
(
ci+1 0
di+1 Id

)
.

To ensure that δ• is a morphism of complexes we have to check that, for all integer i =
1, . . . , n, we have φi ◦ δi = δi−1 ◦ ψi. Indeed,(

ai ci
bi di

)(
ci+1 0
di+1 Id

)
=

(
0 ci
0 di

)
=

(
ci 0
di Id

)(
0 Id
0 0

)
since φi ◦ φi+1 = 0 for all integer i = 1, . . . , n− 1.

Now, since det(ci) 6= 0 for all i = 1, . . . , n we deduce that δi, with i = 0, . . . , n is injective
(again by the McCoy’s lemma). Therefore, for all i = 0, . . . , n we can define the A-module
Ki := Coker(δi) which is an elementary module. Moreover, for all i = 1, . . . , n, the map
φi : Fi → Fi−1 induces a map ∂i : Ki → Ki−1 and we obtain a third complex (K•, ∂•). In
addition, the surjective map φ0 : F0 → M induces a surjective map ∂0 : K0 → M . Let us
summarize the situation with the following commutative diagram:
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0

��

0

��

0

��

0

��
0 // F (1)

n
ψn //

δn

��

F
(1)
n ⊕ F

(1)
n−1

ψn−1 //

δn−1

��

· · ·
ψ2// F (1)

2 ⊕ F
(1)
1

ψ1 //

δ1

��

F
(1)
1 ⊕ F

(1)
0

//

δ0

��

0

��
0 // Fn

φn //

��

Fn−1

φn−1 //

��

· · ·
φ2 // F1

φ1 //

��

F0
φ0 //

��

M //

||

��

0

0 // Kn = 0
∂n=0 //

��

Kn−1

∂n−1 //

��

· · ·
∂2 // K1

∂1 //

��

K0
∂0 //

��

M //

��

0

0 0 0 0 0

From the above constructions we get that all the columns and both first top lines in this
diagram are exact. This implies that the third line is also exact (use for instance a clas-
sical long exact sequence of homology) and therefore that the complex (K•, ∂•) is a finite
elementary resolution of M . By definition of the MacRae’s invariant of M , we deduce that
(observe that F(Kn) = F(0) = A)

S(M) = F(K0)F(K1)−1F(K2) · · ·F(Kn−1)(−1)
n−1

=

n−1∏
i=0

F(Ki)
(−1)i .

But by construction, we have for all i = 0, . . . , n− 1, an exact sequence

0→ F
(1)
i+1 ⊕ F

(1)
i

δi=

 ci+1 0
di+1 Id


−−−−−−−−−−−−−→ Fi = F

(0)
i ⊕ F (1)

i → Ki → 0 (2.4)

from we deduce that F(Ki) = det(ci+1).A, which completes the proof of the first assertion.

Now assume that A,M and (2.2) are graded. Then it is easy to see that the new complex
(2.3) is also graded, as well as the above big commutative diagram. It follows that we have
for all i = 0, . . . , n− 1, graded isomorphisms

F(Ki) '
max∧

(F
(1)
i+1 ⊕ F

(1)
i )⊗

max∧
(Fi)

⊗(−1)
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14 Laurent Busé

We deduce the following graded isomorphisms

S(M) '
n−1⊗
i=0

(
max∧

(F
(1)
i+1 ⊕ F

(1)
i )⊗

max∧
(Fi)

⊗(−1)

)⊗(−1)i

'
n−1⊗
i=0

(
max∧

(F
(1)
i+1 ⊕ F

(1)
i )

)⊗(−1)i n−1⊗
i=0

(
ri∧
Fi

)⊗(−1)i+1

'
n−1⊗
i=0

(
max∧

(F
(1)
i+1 ⊕ F

(1)
i )

)⊗(−1)i⊗(
max∧

F (1)
n

)⊗(−1)n n⊗
i=0

(
ri∧
Fi

)⊗(−1)i+1

'
n−1⊗
i=0

(
max∧

F
(1)
i+1

)⊗(−1)i n⊗
i=0

(
max∧

F
(1)
i

)⊗(−1)i n⊗
i=0

(
ri∧
Fi

)⊗(−1)i+1

'
n⊗
i=0

(
ri∧
Fi

)⊗(−1)i+1

(observe that F (1)
0 = 0 by the construction of the decomposition of the complex (2.2)). 2

2.3.1 S(M) as a greatest common divisor

We know that S(M) is the smallest principal ideal which contains the initial Fitting ideal
F(M); in other words, S(M) is the codimension one part of F(M). It follows from propo-
sition 2.3(iii) that the associated primes of F(M) are exactly the associated primes of
annA(M). More precisely, if A is a UFD ring and if P1, . . . , Pr denote the irreducible
factors of a gcd of a system of generators of F(M), then P e11 P e22 . . . P err is a generator of
S(M) where ei denotes the “multiplicity” of S(M) over A/(Pi). We refer the reader to [17,
chapter I, proposition 7.4] or [28, chapter V, §2] for the concept of multiplicity for modules.

3 The Macaulay’s resultant
The Macaulay’s resultant corresponds to the situation presented in section 1 where r = n,
that is to say when the number of homogeneous polynomials equals the number of homoge-
neous variables one wants to eliminate. In such case, the resultant (or eliminant) ideal turns
out to be principal and one of its generator can be obtained as a MacRae’s invariant (under
suitable hypotheses). The purpose of this section is to prove these results. But before, we
need to introduce important tools from homological algebra.
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Elimination theory in codimension one and applications 15

3.1 Koszul and Čech complexes
In this section, we quickly review two standard constructions of homological algebra: the
Koszul and Čech complexes. We will use them very often in the rest of these notes. Of
course, there are many places where one can learn about them.

3.1.1 The Koszul complex.

Let A be a ring. For any element x ∈ A we define its homological Koszul complex as the
complex

K•(x) := 0→ K1(x;A) = A
(x)−−→ K0(x;A) = A→ 0,

where the only non-zero map is the multiplication by x in A. Now, given a sequence
x := (x1, . . . , xn) of n elements, its homological Koszul complex is

K•(x) := K•(x1)⊗ · · · ⊗K•(xn).

Another way, may be more explicit, to define this Koszul complex is as follows: let Ki(x)
be the exterior power ∧i(An). Then, if {e1, . . . , en} denotes the canonical basis of An,
K0(x) = A and for all p ∈ N∗

Kp(x) =
⊕

1≤i1<···<ip≤n

Aei1 ∧ · · · ∧ eip .

Moreover, the differential map dp : Kp(x)→ Kp−1(x) sends a basis element ei1 ∧ · · · ∧ eip to

dp(ei1 ∧ · · · ∧ eip) :=

p∑
k=1

(−1)k+1xikei1 ∧ · · · ∧ êik ∧ · · · ∧ eip .

It is immediate to check that this defines a complex, that is to say that dp−1 ◦ dp = 0 for all
p.

If M is a A-module, then we define the homological Koszul complex of the sequence x
over M by K•(x;M) := K•(x)⊗AM = K•(x;A)⊗AM. For all integer p we will denote by
Hp(x;M) the pth homology A-module of the Koszul complex K•(x;M).

Proposition 3.1 With the above notation,

(i) The ideals annA(M) and (x) of A annihilates all the homology modules of the Koszul
complex K•(x;M).

(ii) If x is a M -regular sequence4, then Hp(x;M) = 0 for all p ≥ 1.

4 this means that for all i = 1, . . . , n the element xi is not a zero-divisor in M/(x1, . . . , xi−1)M .
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16 Laurent Busé

Proof. For the first point, it suffices to check that for all integers p ≥ 0 and j = 1, . . . , n,
and all x ∈ Kp(x;M) we have

dp+1σ
j
p(x) + σjp+1dp(x) = xjx,

where the map σjp : Kp(x;M) → Kp+1(x;M) sends the basis element ei1 ∧ · · · ∧ eip to the
element ej ∧ ei1 ∧ · · · ∧ eip .

To prove the second statement, we proceed by induction on n. If n = 1, then we have
H1(x1;M) = Ker(M

×x1−−→ M) = 0. Now, assume that we have proved (ii) for all integer
1, . . . , n − 1 and put x′ := (x1, . . . , xn−1). It is easy to check that we have the following
exact sequence of complexes:

0→ K•(x
′;M) ↪→ K•(x;M)

π−→ K•(x
′;M)[−1]→ 0

where K•[−1] is the “left translation” of K• (i.e. Kp[−1] := Kp−1 and dp[−1] := dp−1) and
the A-linear map π sends a basis element ei1 ∧ · · · ∧ eip to ei1 ∧ · · · ∧ eip−1 if ip = n, or 0
otherwise. This exact sequence gives rise to the long exact sequence of homology groups (we
leave to the reader the explicitation of the connecting map)

· · · → Hp(x
′;M)

×(−1)pxn−−−−−−→ Hp(x
′;M)→ Hp(x;M)→ Hp−1(x;M)→ · · ·

which immediately shows, with the inductive hypothesis, that Hp(x;M) = 0 for all p > 1.
To finish the proof, we examine the right end of the long exact sequence:

0 = H1(x′;M)→ H1(x;M)→ H0(x′;M)
×xn−−−→ H0(x′;M)→ · · ·

Since x is assumed to be a M -regular sequence, then the map on the right is injective and
it follows that H1(x;M) = 0. 2

Remark 3.2 The statement (ii) becomes an equivalence in the graded or local case. More
precisely, if either

• A is a graded ring, M is a graded A-module of finite type and all the xi’s are homo-
geneous element with positive degree,

• A is a local noetherian ring (A,m) and for all i = 1, . . . , n we have xi ∈ m,

then x is a M -regular sequence if and only if Hp(x;M) = 0 for all p ≥ 1, if and only if
H1(x;M) = 0. As a corollary, this proves that, under the same assumptions, x is a regular
sequence independently of the order of its elements.

Note that if A is a graded ring, then the Koszul complex K•(x;M) inherits straightfor-
wardly of this grading. For instance, if A is a Z-graded ring and the elements x1, . . . , xn
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Elimination theory in codimension one and applications 17

are homogeneous of degree d1, . . . , dn, respectively, then the Koszul complex is graded by
K0(x;A) = A(0) and, for all p ≥ 1,

Kp(x;A) =
⊕

1≤i1<···<ip≤n

A(−di1 − · · · − dip).

Here, A(ν) denotes the twist by ν of A, i.e. A(ν)t = Aν+t for all (ν, t) ∈ Z2.

3.1.2 Generic polynomials.

Let k be a ring and P1, . . . , Ps be the homogeneous generic polynomials of degree d1, . . . , ds,
respectively, in the homogeneous variables X1, . . . , Xn:

Pi(X1, . . . , Xn) :=
∑
|α|=di

Ui,αX
α ∈ C := k[Ui,α : i = 1, . . . , s, |α| = di][X1, . . . , Xn].

Lemma 3.3 If s ≤ n then P1, . . . , Ps is a regular sequence in the ring C.

Proof. For all i = 1, . . . , s we distinguish the particular coefficient Ei := Ui,(0,...,0,di,0,...,0) of
the monomial Xdi

i of the polynomial Pi. Then, all the remaining coefficients Ui,α form a
regular sequence, and Pi ≡ EiXdi

i in the corresponding quotient k[E1, . . . , En][X1, . . . , Xn].
Now, in this quotient it is easy to see that the polynomials Fi = Xi − Ei, i = 1, . . . , s, form
a regular sequence. The corresponding quotient is then isomorphic to k[X1, . . . , Xn] where
Pi ≡ Xdi+1

i , i = 1, . . . , s. These later form also obviously a regular sequence. We conclude
by using remark 3.2 which says that being a regular sequence does not depend on the order
of the elements. 2

Corollary 3.4 Grading the polynomial ring C with deg(Ui,α) = 0 and deg(Xj) = 1,
the Koszul complex K•(P1, . . . , Ps;C) provides, for all s ≤ n, a finite free resolution of
C/(P1, . . . , Ps).

In other words, we have the exact sequence

0→ C(−d1−· · ·−ds)
ds−→ · · · d3−→

⊕
1≤i<j≤s

C(−di−dj)
d2−→

s⊕
i=1

C(−di)
d1−→ C → C

(P1, . . . , Ps)
→ 0.

In particular, the kernel of d1 equals the image of d2; therefore (h1, . . . , hs) ∈ Ker(d1) if
and only if there exists (. . . , Fi,j , . . .) ∈

⊕
1≤i<j≤s C(−di − dj) such that d2(. . . , Fi,j , . . .) =

(h1, . . . , hs), that is to say if and only if

M

 P1

...
Ps

 =
(
h1 · · · hs

)
where M is a skew-symmetric matrix (i.e. tM = −M), namely M := (Fi,j)1≤i,j≤s (this last
equivalence is easily checked by noting that d2(Fi,jei ∧ ej) = Fi,jfjei − Fi,jfiej).
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3.1.3 The Čech complex.

Let A be a ring, x := (x1, . . . , xn) a sequence of elements in A and M a A-module. The
Čech complex of x over M is the cohomological complex C•(x;M) whose terms are defined
by

C0(x;M) := M and Cp(x;M) :=
⊕

1≤i1<···<ip≤n

Mxi1xi2 ...xip
for all p = 1, . . . , n.

The differentials dp : Cp(x;M)→ Cp+1(x;M) are defined by

d0(m) =

n∑
i=1

m

1
and dp(mi1...ip) =

∑
k/∈{i1,...,ip}

(−1)t(k)φk(mi1...ip),

where it(k) < k < it(k)+1 and φk(mi1...ip) ∈Mxi1 ...xk...xip
. One easily checks that dp+1 ◦dp =

0, that is to say that C•(x;M) is a complex.
For all integer p we will denote by Ȟp(x;M) the pth cohomology A-modules of the Čech

complex C•(x;M).

Proposition 3.5 With the above notation, Ȟi(x;Ma) = Ȟi(x;M) ⊗A Aa = 0 for all a ∈√
(x). Morever, Ȟi(x;M) ' Ȟi(y;M) if

√
(x) =

√
(y)

Proof. See [2, §3.5]. 2

When the ring A is Z-graded, M is a graded A-module and each element xi is homoge-
neous of degree di, then the Čech complex is canonically graded by putting deg( m

(xi1 ...xip )
α ) :=

deg(m)− α(di1 + · · ·+ dip) (the differentials dp are thus all of degree zero).

3.1.4 Local cohomology

Again, let A be a ring, I be an ideal of A generated by a sequence x := (x1, . . . , xn) and M
be a A-module.

Definition 3.6 The pth local cohomology A-module with support in I is the pth cohomology
A-module Ȟp(x;M) of the Čech complex C•(x;M). It will be denoted by Hp

I (M).

Observe that we have, by definition,

H0
I (M) = {m ∈M such that ∃ν ∈ N : xνim = 0 for all i = 1, . . . , n}.

By the proposition 3.5 we deduce immediately that all the local cohomology modules Hp
I (M)

have their support contained in V (I), which explains the name given to these modules. From
the definition, it follows that the functor Hp

I (−) commutes to sums and localization. We
also get, given a short exact sequence of A-modules 0→M ′ →M →M ′′ → 0, a long exact
sequence of local cohomology

0→ H0
I (M ′)→ H0

I (M)→ H0
I (M ′′)→ H1

I (M ′)→ H1
I (M)→ · · ·
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Proposition 3.7 Let t be an integer such that 1 ≤ t ≤ n and define the sequence xt as
(x1, . . . , xt). If xt is a M -regular sequence then Hp

I (M) = 0 for all integer p such that
0 ≤ p ≤ t− 1.

Proof. See [2, §3.5]. 2

Note that the local cohomology modules are canonically graded when A is graded andM
is a graded A-module since in this case we already observed that the Čech complex is itself
graded. Moreover, the definition of local cohomology modules in terms of the cohomology
modules of the associated Čech complex yields immediately the well-known exact sequence

0→ H0
m(M)→M →

⊕
ν∈Z

Γ(Proj(A), M̃(ν))→ H1
m(M)→ 0 (3.1)

since we may identify Γ(Proj(A), M̃(ν)) with Ker(C1 d1−→ C2) (the “gluing conditions”; see
[17, §II.5] for the definition of rings of sections).

In order to put our definition into practice we compute the local cohomology modules
of the graded ring A = k[X1, . . . , Xn] (seen as a graded A-module), where k is a ring, with
support in the ideal m = (X1, . . . , Xn). By the above proposition we know that all these
modules are zero except Hn

m(A). We claim that

Hn
m(A) ' 1

X1 . . . Xn
k[X−11 , . . . , X−1n ].

In particular, Hn
m(A)ν = 0 as soon as ν > −n.

Indeed, an element in Hn
m(A) is the class of an element in AX1...Xn modulo the image of

the differential dn−1 : ⊕ni=1AX1...X̂i...Xn
→ AX1...Xn . Since dn−1 is k-linear, we just have to

determine the class of a monomial Xα1
1 . . . Xαn

n where αi ∈ Z for all i = 1, . . . , n. But such a
monomial is in the image of dn−1 if and only if there exists at least one integer i ∈ {1, . . . , n}
such that αi ≥ 0. Therefore the k-linear map

φ : Hn
m(A)→ 1

X1 . . . Xn
k[X−11 , . . . , X−1n ] : Xα1

1 . . . Xαn
n 7→

{
Xα1

1 . . . Xαn
n if αi < 0 ∀i

0 otherwise

identifies Hn
m(A) to D := 1

X1...Xn
k[X−11 , . . . , X−1n ] (giving it a structure of A-module in the

same time). Moreover, since D is canonically graded, we have a perfect pairing5

Am ×D−m−n → D−n = k : (Xα, Xβ) 7→ Xα+β

5Let R be an arbitrary non-zero commutative ring. A bilinear form or bilinear pairing f : M ×N → K
is a multi-linear function with the additional property: for all a ∈ R,m ∈ M,n ∈ N we have f(am, n) =
f(m,an) = af(m,n). There is a canonical bijection between such bilinear pairings and morphisms of R-
modulesM⊗RN → K. Moreover, there is also a canonical bijection between bilinear pairing f :M×N → R
and morphisms of R-modules F :M → HomR(N,R) : m 7→ f(m,−).

We say that a bilinear pairing f : M × N → K is non-degenerated if f(m,n) = 0 for all n ∈ M
(resp. m ∈ M) implies m = 0 (resp. n = 0). If f : M × N → R is a non-degenerated pairing then
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which induces the duality

Am
∼−→ D−n−m : Xα1

1 · · ·Xαn
n 7→ X−α1−1

1 · · ·X−αn−1n .

Finally, we mention that the local cohomology modules are usually defined as the right
derived functors of the functor H0

I (−), assuming that the base ring is noetherian. It turns
out that our definition of the local cohomology modules encapsulates the usual one, that is
to say it corresponds to the usual one as soon as the ring A is assumed to be noetherian
(see e.g. [2, §3.5] or [36, theorem A.8.3]).

3.2 Definition of the resultant
We take again the setting of the section 1 but assume now that the ring A is the universal
ring of coefficients of the polynomials f1, . . . , fr. More precisely, we suppose given r ≥ 1
homogeneous polynomials of positive degrees d1, . . . , dr, respectively (always in the variables
X1, . . . , Xn, all assumed to have weight 1),

fi(X1, . . . , Xn) =
∑
|α|=di

Ui,αX
α, i = 1, . . . , r.

We put A := k[Ui,α : i = 1, . . . , r, |α| = di] where k denotes a UFD ring. Then fi ∈
C := A[X1, . . . , Xn] for all i = 1, . . . , r. As in the section 1, we consider the ideal I :=
(f1, . . . , fr) ⊂ C, as well as the graded quotient ring B := C/I and put A := H0

m(B)0. The
aim of this paragraph is to prove the

Theorem 3.8 If r = n then the ideal A is a prime and principal ideal of A, the univer-
sal coefficient ring over the UFD ring k. Moreover, it has a unique generator, denoted
Res(f1, . . . , fn) and called the resultant of f1, . . . , fn, such that

Res(Xd1
1 , . . . , Xdn

n ) = 1 ∈ k.

We will closely follow the “preuve élémentaire” given by Jouanolou in [22]. Before going
further into details, we point out that this theorem holds without any hypothesis on the
ring k (except for the unicity of the normalized generator which requires that k is a reduced
ring); we refer the interested reader to the monograph [22] for more details and many more
properties of the resultant.

First introduced by Hurwitz, inertia forms reveal a powerful tool to study the resultant
ideals, notably in the case r = n. We recall that m := (X1, . . . , Xn) ⊂ C, and that r and n
are a priori two distinct integers.

clearly F : M → HomR(N,R) is injective; so if M and N are finite free R-modules, the existence of a non-
degenerated pairing f implies that rank(M) = rank(N) (for f is non-degenerated implies that g : N×M → R
defined by g(n,m) = f(m,n) is also a non-degenerated paring and hence that G : N → HomR(M,R) is also
injective).

We say that f :M×N → R is a perfect pairing if it is non-degenerated and if the corresponding (injective)
morphism F :M → HomR(N,R) is an isomorphism.
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Definition 3.9 The ideal of inertia forms of the ideal I with respect to the ideal m is

TFm(I) :=
⋃
t≥0

(I :C mt) = {f ∈ C : ∃ν ∈ N mνf ⊂ I} = π−1(H0
m(B)) ⊂ C,

where π denotes the canonical projection C → B = C/I → 0.

Observe that TFm(I) is an homogeneous ideal of C and that A = TFm(I)0 ⊂ A. We give
hereafter some properties of these inertia forms.

Lemma 3.10 Let j be any fixed integer in {1, . . . , n}, then

TFm(I) =
⋃
t≥0

(I :C Xt
j) = {f ∈ C : ∃ν ∈ N Xν

j f ⊂ I} = Ker(C → BXj ). (3.2)

Moreover, TFm(I) is a prime ideal of C (and therefore A is a prime ideal of A).

Proof. Let j be fixed in {1, . . . , n}. For all i = 1, . . . , r we distinguish the particular
coefficient Ei := Ui,(0,...,0,di,0,...,0) of the polynomial fi which can be rewritten in C[X−1j ] as

fi = Xdi
j (Ei +

∑
α6=(0,...,0,di,0,...,0)

Ui,αX
αX−dij ).

Then we easily get the isomorphism of k-algebras

BXj
∼−→ k[Ul,α : Ul,α 6= Ei][X1, . . . , Xn][X−1j ] (3.3)

Ei 7→ Ei −
fi

Xdi
j

= −
∑

α 6=(0,...,0,di,0,...,0)

Ui,αX
αX−dij

from we deduce that Xi is not a zero divisor in BXj for all couple (i, j) ∈ {1, . . . , n}2. It
follows that we successively obtain, for any couple (i, j) ∈ {1, . . . , n}2, the equalities

Ker(C → BXi) = Ker(C → BXiXj ) = Ker(C → BXjXi) = Ker(C → BXj )

which prove the claimed description of TFm(I). Moreover, since k is a domain, it follows
that the BXj ’s are also domains and thus that TFm(I) is a prime ideal of C. 2

Proposition 3.11 (Hurwitz) If r < n then TFm(I) = I.

Proof. We just have to prove that TFm(I) ⊂ I, the other inclusion being obvious. By the
above lemma 3.10, we need to prove that for all f ∈ C such that there exists s ∈ N such that
Xs
nf ∈ I then f ∈ I. This property is evident if s = 0 and an easy inductive argument shows

that if we prove it for s = 1 the property is true for any s ∈ N (since Xk
nf = Xn(Xk−1

n f)).

RR n° 5918



22 Laurent Busé

Thus, let f ∈ C such that Xnf = h1f1 + · · ·+hrfr ∈ I ⊂ C. By specializing Xn to 0 we
deduce that h1f1 + · · ·+ hrfr = 0, where the f i’s are generic homogeneous polynomials in
n − 1 variables. Therefore, by lemma 3.3 they form a regular sequence in A[X1, . . . , Xn−1]
and by corollary 3.4, the Koszul complex K•(f1, . . . , fr;A[X1, . . . , Xn−1]) is acyclic. From
the remark following this corollary 3.4 we deduce that there exists a skew-symmetric matrix
M (i.e. tM = −M), such that

(
h1 h2 · · · hr

)
= M

 f1
...
fr

 .

Now, define the polynomials g1, . . . , gr ∈ A[X1, . . . , Xn] such that

(
g1 g2 · · · gr

)
= M

 f1
...
fr

 .

Since M is skew-symmetric, it is easy to check that
∑n
i=1 gifi = 0. Moreover, for all

i = 1, . . . , r, since gi = hi we deduce that there exists a polynomial li such that hi−gi = Xnli.
Consequently, we have

Xnf = (g1 +Xnl1)f1 + · · ·+ (gr +Xnlr)fr =

n∑
i=1

gifi +Xn

n∑
i=1

lifi

which implies that f =
∑n
i=1 lifi ∈ A[X1, . . . , Xn] (for Xn is not a zero divisor), i.e. f ∈ I. 2

Corollary 3.12 Assume that r = n and let f ∈ TFm(I) ⊂ A[X1, . . . , Xn]. Then either
f ∈ I = (f1, . . . , fn) or f depends on all the coefficients of each polynomials f1, . . . , fn.

Proof. Let us denote by U := Ui,α a coefficient of the polynomial fi for some i ∈ {1, . . . , n};
we put gi = fi − UXα. We assume that there exists f ∈ TFm(I) independent of U and we
will prove that f ∈ I.

Since f ∈ TFm(I), we know that X l
nf =

∑n
i=1 hifi ∈ A[X1, . . . , Xn] for some l ∈ N.

Consider the k-algebra morphism

A[X1, . . . , Xn]
ϕ−→ A[X1, . . . , Xn]X1X2...Xn

U 7→ −gi/Xα

Uj,β 7→ Uj,β if (j, β) 6= (i, α)

Xj 7→ Xj .

Since ϕ(fi) = 0, we have

ϕ(X l
nf) = H1f1 + · · ·+Hi−1fi−1 +Hi+1fi+1 + · · ·+Hnfn ∈ A[X1, . . . , Xn]X1...Xn .
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But X1 . . . Xn is not a zero-divisor in A[X1, . . . , Xn]X1...Xn and ϕ(X l
nf) = X l

nf , so there
exists a monomial Xβ such that

Xβϕ(X l
nf) = XβX l

nf = G1f1 + · · ·+Gi−1fi−1 +Gi+1fi+1 + · · ·+Gnfn ∈ A[X1, . . . , Xn],

that is to say that f ∈ TFm(f1, . . . , fi−1, fi+1, . . . , fn) (up to a certain extension of the
coefficient ring). We conclude that f ∈ I by the proposition 3.11. 2

Proof of theorem 3.8. First, observe that A 6= 0 since

Proj(k[X1, . . . , Xn]/(Xd1
1 , . . . , Xdn

n )) = ∅.

Now, choose a coefficient U := Ui,α and define the polynomial ring A′ such that A = A′[U ]
(note that A′ is also a UFD ring). Since I ∩ A = 0, we deduce from corollary 4.4 that all
non-zero f ∈ A has a positive degree as a polynomial in U , i.e. degU (f) ≥ 1. Let s ≥ 1 be
the minimum such degree among all non-zero element f ∈ A.

We claim that there exists a prime element R ∈ A such that degU (R) = s. Indeed, let
f 6= 0 ∈ A such that degU (f) = s. Since A′ is a UFD ring, there exists a decomposition
f = q1 . . . qt where qj are primes in A′[U ]. But since A is a prime ideal by lemma 3.10, we
deduce that there exists j ∈ {1, . . . , t} such that qj ∈ A. Moreover, we have 1 ≤ degU (qj) ≤
degU (f) = s, and by the definition of s we get that degU (qj) = s, which implies that the
element R := qj is as claimed.

We now show the above element R generates A. Indeed, since A′ has no zero-divisor, for
all g ∈ A we have

λg = uR+ v with λ ∈ A′ and

 v = 0
or
degU (v) < s.

It follows that v = λg − uR ∈ A. If v 6= 0, then degU (v) ≥ 1 by proposition 4.4, and
thus degU (v) ≥ s by the definition of s; this gives a contradiction. Therefore, λg = uR.
Moreover, λ ∈ A′ which does not contain U , so R divides g.

Finally, R is unique up to multiplication by an invertible element of A′, hence of k. This
element is fixed to 1 ∈ k by the normalization given in this theorem. 2

3.3 The resultant as a MacRae’s invariant
The aim of this section is to prove that the resultant ideal of n homogeneous polynomial
in n homogeneous variables, which we proved that it is principal, is the MacRae’s invariant
of certain graded parts of a Koszul complex. As a byproduct, we obtain an algorithm to
compute the resultant Res(f1, . . . , fn) either as an alternating product of determinants or a
gcd of some determinants of some maximal minors of a single matrix.

Lemma 3.13 For all integer ν ≥ η := d1 + · · ·+ dn − n+ 1 we have H0
m(B)ν = 0.
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Proof. The proof of this lemma consists in a standard use of two spectral sequences associated
to the double complex

0 → C0m(∧nE)
dn−→ . . .

d2−→ C0m(∧1E)
d1−→ C0m(C) → 0

↓ ↓ ↓
0 → C1m(∧nE) −→ . . . −→ C1m(∧1E) −→ C1m(C) → 0

↓ ↓ ↓
...

...
...

...
↓ ↓ ↓

0 → Cnm(∧nE) −→ . . . −→ Cnm(∧1E) −→ Cnm(C) → 0

where E denotes the graded free A-module E := ⊕ni=1C(−di). The first row is the Koszul
complex associated to the sequence f1, . . . , fn, and its columns are Čech complexes. We
know that K•(f1, . . . , fn;C) is acyclic and also that Hi

m(C) = 0 if i 6= n. Examining the
two filtrations by rows and by columns we deduce that, among other properties,

H0
m(B) ' Ker

(
Hn

m(∧nE)→ Hn
m(∧n−1E)

)
(3.4)

which is a graded isomorphism. By the computation we did at the end of section 3.1.4, we
know that Hn

m(C)ν = 0 for all integer ν > −n. Therefore, since

Hn
m(∧nE)ν = Hn

m(C(−d1 − · · · − dn))ν = Hn
m(C)ν−d1−···−dn ,

it follows that H0
m(B)ν = 0 for all integer ν > d1 + · · ·+ dn − n. 2

Corollary 3.14 For all integer ν ≥ η we have annA(Bν) = A = (Res(f1, . . . , fn)) ⊂ A.

Proof. It is an immediate consequence of the proposition 1.2 and the above lemma 3.13. 2

As a consequence, we obtain that the initial Fitting ideal of the A-module Bν , for all
ν ≥ η, satisfies

A(ν+n−1
n−1 ) ⊂ F(Bν) ⊂ A,

which implies that F(Bν) and A = (Res(f1, . . . , fn)) have the same radical (as ideals in A).
More precisely, A is the unique minimal prime ideal containing F(Bν). Moreover, it turns
out that it contains it with “multiplicity” one in the sense that

lengthA/AA(Bν) = lengthAA/AAA
((Bν)A) = 1

(note that Bν has a canonical structure of A/AA-module)6. This is the content of the
following theorem. We first need the preliminary

6From a more geometric point of view, this property means that the projection Proj(B)→ Spec(A/A) is
birational
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Lemma 3.15 For all integer j = 1, . . . , n and any couple (α, β) of multi-index such that
|α| = |β| = dj , we have

Xα ∂R

∂Uj,β
−Xβ ∂R

∂Uj,α
∈ TFm(I)

where R := Res(f1, . . . , fn) ∈ A.

Proof. By definition, there exists a monomial Xγ and polynomials ci, i = 1, . . . , n, in A[X]
such that XγR =

∑n
i=1 cifi. By computing the derivative with respect to Uj,α and to Uj,β

one gets both equalities

Xγ ∂R

∂Uj,α
= cjX

α +

n∑
l=1

∂cl
∂Uj,α

fl and Xγ ∂R

∂Uj,β
= cjX

β +

n∑
l=1

∂cl
∂Uj,β

fl.

We deduce easily that

Xγ

(
Xα ∂R

∂Uj,β
−Xβ ∂R

∂Uj,α

)
∈ (f1, . . . , fn)

and conclude by using lemma 3.10. 2

Theorem 3.16 For all integer ν ≥ η we have

S(Bν) = A = (Res(f1, . . . , fn)) ⊂ A.

Proof. First, observe that by the behavior of MacRae’s invariants and resultants under base
changes, it is sufficient to prove this formula in the case where k = Z.

We know that S(Bν) is the smallest minimal prime (equivalently principal) ideal con-
taining F(Bν). Therefore, the claimed result will be proved if we show that (recall that
Fitting ideals and MacRae’s invariants are stable under localization)

F(Bν)A = AAA.

To prove this, we put, for simplicity, R := Res(f1, . . . , fn) and denote by Ej,l the coeffi-
cient of the monomial XlX

dj−1
n in the polynomial fj , for all couple (i, j) ∈ {1, . . . , n}:

fj(X1, . . . , Xn) := · · ·+ Ej,1X1X
dj−1
n + Ej,2X2X

dj−1
n + · · ·+ Ej,nXdj

n .

From now on, let us fix the integer j. Consider the ideal of the quotient ring A/A

J :=

(
∂R

∂Ej,1
,
∂R

∂Ej,2
, . . . ,

∂R

∂Ej,n

)
⊂ A/A.

We can define a graded morphism (of degree zero) of A-algebras by

Θ : C := A[X] → R := A/A⊕ J ⊕ J2 ⊕ · · ·

Xi 7→ 0⊕ ∂R

∂Ej,i
⊕ 0⊕ · · ·
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which is clearly surjective.
We claim that there exists an integer j such that ∂R

∂Ej,n 6= 0. Indeed, by lemma 3.15 we
know that for all j and all multi-index α such that |α| = dj we have

Xα ∂R

∂Ej,n
−Xdj

n

∂R

∂Uj,α
∈ TFm(I).

Therefore, if ∂R
∂Ej,n = 0 for all j, then ∂R

∂Uj,α
= 0 for all j and all α which is impossible since

R 6= 0 (we are in characteristic zero).
Now, one may assume that the integer j we chose to define R is such that ∂R

∂Ej,n 6=
0. Then we claim that Θ induces a graded isomorphism A[X]/TFm(I) ' R (note that
A[X]/TFm(I) = B/H0

m(B)). Indeed, let F (X) be a homogeneous polynomial in A[X] of
degree d ≥ 0 such that F ∈ Ker(Θ), i.e. such that

F

(
∂R

∂Ej,1
, . . . ,

∂R

∂Ej,n

)
∈ A.

We easily derive from lemma 3.15 that

Xd
nF

(
∂R

∂Ej,1
, . . . ,

∂R

∂Ej,n

)
−
(
∂R

∂Ej,n

)d
F (X1, . . . , Xn) ∈ TFm(I),

which implies in our case that(
∂R

∂Ej,n

)d
F (X1, . . . , Xn) ∈ TFm(I).

But by hypothesis, 0 6= ∂R
∂Ej,n ∈ A/A ↪→ B/H0

m(B). Since B/H0
m(B) is a domain, we deduce

that ∂R
∂Ej,n is not a zero-divisor in A[X]/TFm(I), and therefore that F ∈ TFm(I).

Finally, since B/H0
m(B) ' R (a graded isomorphism), we deduce, by localization at A,

that (
B/H0

m(B)
)
A
'
⊕
N
AA/AAA

(again a graded isomorphism) since JA = AA/AAA. Therefore, since H0
m(B)ν = 0 as soon

as ν ≥ η, we obtain that (Bν)A ' AA/AAA for all ν ≥ η. Since A is principal, we get
F(Bν)A = AAA, for all ν ≥ η. 2

This theorem implies that the Macaulay’s resultant can be computed as the determinant
of certain graded parts of the Koszul complex K•(f1, . . . , fn;A[X]), as well as the gcd of
the maximal minors of its first map (see section 2.3.1). Another consequence is that we can
determine the degree, more precisely the multi-degree of the resultant of the polynomials
f1, . . . , fn.

INRIA



Elimination theory in codimension one and applications 27

To do this, observe that the Koszul K•(f1, . . . , fn;A[X]) is Nn+1-graded: it is graded
with respect to the coefficients of each polynomial fi, the Ui,α’s, for i = 1, . . . , n, and with
respect to the variables X1, . . . , Xn. We put

E := A(−1, 0, . . . , 0;−d1)[X]⊕A(0,−1, 0, . . . , 0;−d2)[X]⊕ · · · ⊕A(0, . . . , 0,−1;−dn)[X]

so that K•(f1, . . . , fn;A[X]) is of the form

Kn := ∧n(E)→ · · · → K2 := ∧2(E)→ K1 := ∧1(E) ' E (f1,...,fn)−−−−−−→ K0 := A[X](0, . . . , 0; 0).

The theorem 3.16 says that for all integer ν ≥ η := d1+· · ·+dn−n+1 then the νth graded part
ofK•(f1, . . . , fn;A[X]), seen as a complex N-graded in the Xi’s, has determinant S(Bν) = A
which is a principal ideal generated by the element Res(f1, . . . , fn). Therefore, by proposition
2.12 we have a canonical graded isomorphism of A-modules A ' A(−δ1, . . . ,−δn) where, for
all i = 1, . . . , n,

δi :=
∑

J⊂{1,...,n}\{i}

(−1)|J|
(
ν − di −

∑
j∈J dj + n− 1

n− 1

)
∈ Z.

The following simple lemma helps to give a more compact formula for these integers.

Lemma 3.17 Let n, r1, . . . , rp be a list of positive integers and consider the formal series
S(T ) :=

∏p
i=1(1− T ri)/(1− T )n ∈ Z[[T ]]. Then, for all integer ν ≥ 0, we have

S(T )|T ν =
∑

J⊂{1,...,p}

(−1)|J|
(
ν −

∑
j∈J rj + n− 1

n− 1

)
∈ Z

where S(T )|T ν denotes the coefficients of T ν in S(T ), with the convention
(
q

n−1
)

= 0 if
q < 0.

Proof. It suffices to develop S(T ) as

S(T ) =

p∏
i=1

(1− T ri)× 1

(1− T )n
= (

∑
J⊂{1,...,p}

(−1)|J|T
∑
j∈J rj )× (

∑
s≥0

(
s+ n− 1

n− 1

)
T s)

and compute the coefficient of the monomial T ν . 2

We deduce that δi is the coefficient of T ν−di in the series
∏n
j=1,j 6=i(1−T

di )

(1−T )n for any integer
ν ≥ η. Defining the polynomial

H(T ) :=

n∏
j=1,j 6=i

(1 + T + · · ·+ T di−1) =

−di+d1+···+dn−n+1∑
s=0

NsT
s ∈ Z[T ],
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we have S(T ) = H(T )/(1 − T ), that is to say S(T ) = H(T ) × (
∑
s≥0 T

s). It follows that,
since ν−di ≥ η−di = deg(H), we obtain δi =

∑deg(H)
s=0 Ns = H(1) = d1d2...dn

di
and therefore

deduce that we have a graded isomorphism

(Res(f1, . . . , fn)) ' A(−d2 · · · dn, . . . ,−
d1d2 · · · dn

di
, . . . ,−d1d2 · · · dn−1).

3.4 Complement: multivariate subresultants
Given n homogeneous polynomials f1, . . . , fn in n variables X1, . . . , Xn of degree d1, . . . , dn
respectively, we have just seen that their resultant is a generator of the MacRae’s invariant of
a graded part of the quotient algebra B of degree greater or equal to η := d1+· · ·+dn−n+1.
A natural question is then to ask what kind of invariants, if any, are associated to the graded
parts of B of degree smaller than η. This question leads us to the so-called multivariate
subresultants, as defined by Chardin in [10]. We hereafter give a quick overview of the
definition and some basic properties of these interesting eliminant polynomials, even if they
are not really invariants of the input polynomials. The following can be seen as a direct
extension of the techniques we used to define the Macaulay’s resultants.

Let k be a UFD ring. We suppose given s generic homogeneous polynomials in n vari-
ables, such that n ≥ s ≥ 1, of positive degree d1, . . . , ds respectively

fi(X1, . . . , Xn) :=
∑

|α|=di≥1

Ui,αX
α, i = 1, . . . , s.

We put A := k[Ui,α : i = 1, . . . , s, |α| = di] the universal coefficient ring over k, C :=
A[X1, . . . , Xn], m := (X1, . . . , Xn) and B := C/(f1, . . . , fs). Both C and B are naturally
graded modules by setting deg(Xi) = 1 for all i = 1, . . . , n.

Suppose given an integer ν ≥ 0. From lemma 3.4 we know that the Koszul complex
K•(f1, . . . , fs;C) is a graded finite free resolution of C-modules of the quotient algebra B.
We deduce that its νth graded part is also a finite free resolution of A-modules of Bν .
Therefore,

Char(Bν) =
∑

J⊂{1,...,s}

(−1)|J|
(
ν −

∑
j∈J dj + n− 1

n− 1

)
= S(T )|T ν

where S(T ) :=
∏s
i=1(1−T di)/(1−T )n, the last equality following from lemma 3.17. There-

fore, we deduce that Char(Bν) = 0 only if d1 + · · ·+ds ≥ n and ν ≥ d1 + · · ·+ds−n+1 (for
instance, if s = n then Char(Bν) = 0 only if ν ≥ η := d1 + · · ·+ dn − n+ 1). It follows that
in some cases the MacRae’s invariant of Bν does not exists. To get ride of this difficulty we
consider another associated module.

Suppose given an integer ν ≥ 0 and a set S of Char(Bν) homogeneous polynomial of
degree ν in k[X1, . . . , Xn] that we assume to be free in Bν over A. We denote by 〈S〉A
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the free A-submodule of Bν with basis S and consider the A-module Mν := Bν/〈S〉A. It
admits a natural finite free resolution of A-modules, namely the νth graded part of the Koszul
complex K•(f1, . . . , fs;C) whose last map on the right is co-restricted to Cν/〈S〉A. It follows
that the Euler characteristic of Mν is zero and that it possesses a MacRae’s invariant.

Definition 3.18 We define the S-subresultant of the polynomial f1, . . . , fs, and we will
denote it by ∆S(f1, . . . , fs), or simply ∆S , as a generator of the principal ideal S(Mν). It
is defined up to an invertible element in k; in particular, in the universal case k = Z it is
uniquely defined up to a sign.

As a consequence of the definition of ∆S , we know that ∆S is a gcd of a system of
generators of F(Mν). We are now going to explicit its link with the annihilator of annA(Mν).
But before, observe that if s = n and ν ≥ η then S must be the empty set and ∆{∅} is
nothing but the resultant of the polynomials f1, . . . , fn (up to an invertible element in
k×). The following proposition, pointed out to me by Jean-Pierre Jouanolou in a personal
communication, may be seen as the main property of the multivariate subresultants.

Proposition 3.19 Assume that k is a noetherian UFD ring and that Bν is A-torsion free.
Then the ideal annA(Mν) is a principal ideal of A.

Proof. We will denote hereafter by P the set of prime ideals of A which are minimal among
the non-zero prime ideals of A, that is to say the set of prime ideals of height one. We will
prove that the set AssA(Mν) of associated primes of the A-module Mν is contained in P .

Let K be the fraction field of A and consider the K-vector space V := Bν⊗AK. Observe
that its dimension equals Char(Bν) which is exactly the rank of the free A-module 〈S〉A.
Since Bν is A-torsion free, we deduce that the canonical map Bν → V is injective (actually
its kernel is exactly the A-torsion of Bν) and hence induces an injective mapMν ↪→ V/〈S〉A.
Therefore AssA(Mν) ⊂ AssA(V/〈S〉A) and we claim that AssA(V/〈S〉A) ⊂ P , where we note
that V := Bν⊗K = 〈S〉A ⊗ K =: 〈S〉K (remember that 〈S〉A is a free A-submodule of V
whose rank is just the dimension of V over K := Frac(A)).

To see this, consider the map

V →
⊕
p∈P

V

〈S〉Ap

: x 7→ (. . . , xp, . . .) (3.5)

where 〈S〉Ap
:= 〈S〉A ⊗A Ap. Remark that since A is a UFD ring (and hence a Krull ring)

then for any x ∈ V we have xp = 0 for all p ∈ P except for a finite number of such prime
ideal in P (see e.g. [1, VII §1 no 2, théorème 4]). The kernel of (3.5) is clearly ∩p∈P 〈S〉Ap

which equals 〈S〉A because A = ∩p∈PAp (since A is a Krull ring, see again [1, VII §1 no 2,
théorème 4]) and 〈S〉A is a free A-module. Therefore we deduce that

AssA(Mν) ⊂ AssA(V/〈S〉A) ⊂ ∪p∈PAssA(V/〈S〉Ap
).

Now, let us pick a prime ideal p ∈ P . If V/〈S〉Ap
= 0 then AssA(V/〈S〉Ap

) = ∅. So
assume that V/〈S〉Ap

6= 0 and let 0 6= q ∈ AssA(V/〈S〉Ap
) (observe that V/〈S〉A is torsion).
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Since any element of A \ p is invertible in Ap, it is clear that q ⊂ p and we conclude that
AssA(V/〈S〉Ap

) = {p}.
We have just proved that AssA(Mν) ⊂ P. But since Mν is a A-module of finite type we

deduce that A/annA(Mν) ⊂ Ms
ν . Indeed, let m1, . . . ,ms be a system of generators of M

and denote by pi := annA(mi) for all i. Then we clearly have annA(Mν) = ∩si=1pi and hence
the kernel of the canonical map

A→ ⊕si=1Ami : a 7→ (am1, . . . , ami, . . . , ams)

equals annA(Mν). It follows that A/annA(Mν) ⊂ Ms
ν since Ami is a submodule of Mν for

all i = 1, . . . , s. Therefore, we obtain that AssA(A/annA(Mν)) ⊂ ∪si=1AssA(Mν) ⊂ P . Since
we assumed that A is a noetherian UFD ring, this implies that annA(Mν) is a principal ideal
of A (see [1, VII, §1, no 7, proposition 10 and §3, no 2, théorème 1]). 2

It appears that the absence of A-torsion of certain graded part of the quotient algebra
B is a key point in the existence of the subresultants ∆S . The following lemma, taken from
[21, proposition 2.12] (see also [23, proposition 3.1.6.]), characterizes those graded parts of
B without A-torsion.

Lemma 3.20 The A-module Bν is torsion free if either 1 ≤ s < n or s = n and ν < η :=
d1 + · · ·+ dn − n+ 1.

Proof. Assume first that s < n. From lemma 3.10 and proposition 3.11 we deduce that
I := (f1, . . . , fs) is a prime ideal of C. Therefore B = C/I is a domain and hence Bν is
A-torsion free (remember that k is a domain) for any integer ν.

We now turn to the second case which is much more intricate; we assume that s = n
and we want to prove that Bν is A-torsion free for all integer ν such that 0 ≤ ν < η. We
first claim that for all integer ν such that 0 ≤ ν < η the pairing of A-modules

Bν ×Bη−1−ν → Bη−1 : (x, y)→ xy (3.6)

is non-degenerated. Indeed, let x ∈ Bν such that xBη−1−ν = 0. Then it is clear that
mη−1−νx = 0 in Bν . So we deduce that x ∈ H0

m(B)ν and more precisely that x is in the
kernel of the canonical map

H0
m(B)ν → HomA(Bη−1−ν , H

0
m(B)η−1) : x 7→ (b 7→ xb).

We want to prove that this kernel is zero. From the computation we did at the end of the
section 3.1.4, we know that H0

m(C)−n ' A an that we have isomorphisms (coming from the
perfect duality)

H0
m(C)−m−n

∼−→ HomA(Cm, H
0
m(C)−n) : x 7→ (c 7→ xc)

for all relative integer m ∈ Z. We thus deduce that

H0
m(C)ν−d1−···−dn = H0

m(C)(ν−η+1)−n
∼−→ HomA(Cη−1−ν , H

0
m(B)η−1).
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But in the proof of lemma 3.13, we shown that

H0
m(B)ν ' Ker

(
Hn

m(C)ν−d1−···−dn
t(f1,...,fn)−−−−−−−→ ⊕ni=1H

n
m(C)ν−d1−···−dn+di

)
.

Therefore, we have

H0
m(B)ν ' {u ∈ HomA(Cη−1−ν , H

0
m(B)η−1)) s.t. u(xfi) = 0 ∀j = 1, . . . , n and ∀x ∈ Cη−1−ν}

which shows that H0
m(B)ν ' HomA(Bη−1−ν , H

0
m(B)η−1)).

The paring (3.6) is hence non-degenerated. It follows that for all integer ν such that
0 ≤ ν < η we have a canonical inclusion

Bν ↪→ HomA(Bη−1−ν , Bη−1)

which implies that Bν is A-torsion free if Bη−1 is so. Therefore, to complete the proof it
only remains to prove that Bη−1 is A-torsion free. To do this, consider the exact sequence

0→ H0
m(B)η−1 → Bη−1 → Qη−1 := Bη−1/H

0
m(B)η−1 → 0.

Since H0
m(B)η−1 ' A we deduce that for any ideal K of A we have an exact sequence

0→ H0
K(A)→ H0

K(Bη−1)→ H0
K(Qη−1).

But since A is a domain H0
K(A) = 0 for all ideal K. Moreover, A annihilates Qη−1 (one

immediately check that ABη−1 ⊂ H0
m(B)η−1 since A = H0

m(B)0), and hence H0
K(Qη−1), so

we deduce that AH0
K(B)η−1 = 0 and therefore that

H0
K(Bη−1) ⊂ H0

A(B)η−1.

It turns out that H0
A(B)η−1 = 0: this is a consequence of the proof of the theorem 3.16 (see

[23, lemme 3.1.5] for the details). 2

Corollary 3.21 Assume that s < n or s = n and ν < η. Then, ∆S ∈ annA(Mν). Moreover
the prime divisors of ∆S are the same of the prime divisors of any generator of annA(Mν).
In particular if ∆S is prime then (∆S) = annA(Mν).

Proof. These are immediate consequences of the properties of MacRae’s invariants. 2

Corollary 3.22 ([10], theorem 2) Let K be a field and ρ : A → K a map of rings (a
specialization map). Then we have

ρ(∆S) 6= 0 ⇐⇒ 〈S〉A + (ρ(f1), . . . , ρ(fs))ν = k[X1, . . . , Xn]ν .
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Let us compute the multi-degree of ∆S in the coefficients of each polynomials f1, . . . , fs.
To do this, we use the fact that ∆S is a generator of the MacRae’s invariant S(Mν) and
we proceed as for the case of resultants: (see the end of section 3.3). A straightforward
extension of the computations we made at the end of section 3.3 show immediately that we
have a graded isomorphism

(∆S) ' A(−S(T )|T ν−d1 , . . . ,−S(T )|T ν−di , . . . ,−S(T )|T ν−dn ),

where S(T ) :=
∏s
i=1(1− T di)/(1− T )n.

We end this paragraph by emphasizing that the irreducibility of the multivariate subre-
sultants seems to be a difficult problem. For now, it is only proved in [5] that ∆S is a prime
element of A if k = Z and if ν > η−mini{di} (there is an example showing that this inequal-
ity is sharp, that is to say that there exists a reducible subresultant with ν = η−mini{di}).
Point out that in [9] it is proved that the A-moduleMν is Z-torsion free, i.e. TorZ1 (Mν , N) = 0
for any Z-module N (it is actually proved in [9] that TorZ1 (Mν ,Z/pZ) = 0 for any prime
integer p, which is sufficient to get the claimed result), if ν ≥ η −mini{di}.

4 Implicitization of rational hypersurfaces in a projective
space

Let k be a field and A be a N-graded k-algebra. Suppose given two integers n ≥ 2, d ≥ 1
and for all i = 1, . . . , n an element fi ∈ Ad. Then, the k-algebra morphism

h : k[T1, . . . , Tn] → A (4.1)
Ti 7→ fi

gives rise to a k-schemes morphism

λ : Proj(A) → Pn−1k (4.2)
x 7→ (f1(x) : f2(x) : · · · : fn(x))

whose closed image (the smallest k-scheme containing the image) is defined by the ideal
Ker(h), that is to say that this closed image is Proj(k[T]/Ker(h)) = Proj(k[T]/Ker(h)sat) ⊂
Pn−1k . Recall that an ideal of k[T] defines a closed subscheme in Pn−1k up to saturation. In
particular, the biggest ideal defining the closed image of λ is Ker(h)sat := Ker(h) :k[T] (T)∞.

If we assume that A is a domain of dimension n− 1 and that the parameterization map
λ is generically finite onto its image, then it turns out that the ideal Ker(h) is a prime and
principal ideal of k[T], that is to say that the closed image of λ is an irreducible hypersurface
in Pn−1k . Indeed, it is a prime ideal because we have a canonical inclusion k[T]/Ker(h) ↪→ A
and A is a domain, and it is a principal ideal because dim(k[T]/Ker(h)) = dim(A) = n− 1
(since λ is generically finite [12, chapter 9]) and the well-known property saying that a
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codimension one ideal in a factorial ring is a principal ideal. Consequently, any generator of
Ker(h) will be called an implicit equation of the closed image of λ.

The aim of this last part is to provide techniques to “compute” such a closed image as
a MacRae’s invariant when A is the polynomial ring k[X1, . . . , Xn−1]. However, since some
of the results can be stated for more general rings we will often precise the hypothesis we
require on the ring A.

4.1 The degree formula
We always suppose that k is a field and we denote by C the polynomial ring k[X1, . . . , Xr]
which is N-graded by putting deg(Xi) = 1 for all i = 1, . . . , r. Our concern here is to give a
formula for the degree of the closed image of λ (which will be a hypersurface) providing

• the ring A is a N-graded k-algebra of the form C/J , where J is a homogeneous prime
ideal of C,

• Proj(A/I) is a zero-dimensional scheme (possibly empty), where I denotes the ideal
(f1, . . . , fn) ⊂ A,

• λ is generically finite onto its image (meaning that Proj(A) and the image of λ have
the same dimension).

In order to state this formula we need to recall quickly the notions of algebraic and
geometric multiplicities and state some useful properties. We refer the interested reader to
[2] for a detailed treatment of this subject.

4.1.1 Geometric multiplicity.

For all Z-graded finite C-module M one defines the Hilbert series of M :

HM (T ) =
∑
ν∈Z

lengthk(Mν)T ν =
∑
ν∈Z

dimk(Mν)T ν .

If δ denotes the Krull dimension of M , there exists a unique polynomial LM (T ) such that
LM (1) 6= 0 and

HM (T ) =
∑
ν∈Z

dimk(Mν)T ν =
LM (T )

(1− T )δ
.

The number LM (1) is an invariant of the moduleM called the multiplicity ofM ; we will de-
note it by mult(M) := LM (1). Another way to obtain this invariant is the Hilbert polynomial
of M , denoted PM (X). It is a polynomial of degree δ − 1 such that PM (ν) = dimk(Mν) for
all sufficiently large ν ∈ N. The Hilbert polynomial is of the form

PM (X) =
aδ−1

(δ − 1)!
Xδ−1 + . . .+ a0,
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and we have the equality mult(M) = LM (1) = aδ−1.
Such a definition of multiplicity for M is called a geometric multiplicity and is also often

called the degree of M because of its geometric meaning. Indeed, let J be a graded ideal
of C and consider the quotient ring R = C/J . If δ denotes the dimension of R then the
subscheme Proj(R) of Pn−1k is of dimension δ − 1. The degree of Proj(R) over Pn−1k is
defined to be the number of points obtained by cutting out Proj(R) by δ − 1 generic linear
forms. To be more precise, if l1, . . . , lδ−1 are generic linear forms of Pn−1k , then the scheme
S = Proj(R/(l1, . . . , lδ−1)) is finite and we set

degPr−1
k

(Proj(R)) := dimkΓ(S,OS) = dimk

(
Rν

(l1, . . . , lδ−1)ν

)
for all sufficiently large ν. It turns out that this geometric degree equals the multiplicity of
R, i.e. we have

degPr−1
k

(Proj(R)) = mult(R) = LM (1) = ad−1.

To see it, just observe that the exact sequence

0→ R(−1)
×l1−−→ R→ R/(l1)→ 0

shows that HR/(l1)(T ) = (1 − T )HR(T ) = LM (T )/(1 − T )δ−1. The above equality is then
obtain with an easy recursion.

4.1.2 Algebraic multiplicity.

Let (R,m) be a local noetherian ring and M 6= 0 a finite R-module. Let I ⊂ m be an ideal
of R such that there exists an integer t satisfying mtM ⊂ IM (any such ideal is called a
definition ideal of M), the numerical function length(M/IνM) is a polynomial function for
sufficiently large values of ν ∈ N. This polynomial, denoted SIM (X), is called the Hilbert-
Samuel polynomial of M with respect to I. It is of degree δ = dim(M) and of the form:

SIM (X) =
e(I,M)

δ!
Xδ + terms of lower powers in X.

The algebraic multiplicity of I in M is the number e(I,M) appearing in this polynomial.
With such a definition of algebraic multiplicity one can define the algebraic multiplicity of
a zero-dimensional subscheme as follows: let J be a graded ideal of a N-graded ring R, then
if T = Proj(R/J) is a finite subscheme of Proj(R), its algebraic multiplicity is

e(T,Proj(R)) = e(J], R]) =
∑
t∈T

e(J]t ,OProj(R),t) =
∑
t∈T

e(Jt, Rt).

4.1.3 The degree formula.

We recall that if λ is assumed to be generically finite onto its image, then the function field
of Proj(A) is a finite extension field of the function field of the image of λ and its degree is
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called the degree of λ (note that we abuse notation since we should say “the degree of the
co-restriction of λ to its image”). More precisely, the fields inclusion is explicitly given by

0→ Frac(k[T]/Ker(h)) ↪→ Frac(A) : Ti 7→ fi.

Theorem 4.1 Suppose that k is a field and that A is a N-graded k-algebra of the form
k[X1, . . . , Xr]/J , where J is a prime homogeneous ideal and each Xi is of degree one. Denote
by δ the dimension of A and let I = (f1, . . . , fn) be an ideal of A such that each fi is of
degree d ≥ 1. Then, if T = Proj(A/I) is finite over k, the number

dδ−1degPr−1
k

(Proj(A))− e(T,Proj(A))

equals {
deg(λ).degPn−1

k
(H) if λ is generically finite

0 if λis not generically finite,

where H denotes the closed image of λ.

Proof. The proof (we know) of this theorem is quite technical and beyond the scope of these
notes. We refer the interested reader to [7, theorem 2.5] and also to [33, theorems 6.4 and
6.6]. 2

4.2 Link with blow-up algebras
In this section, we assume that k is a ring and A is a N-graded k-algebra such that k = A0.
We again consider the k-algebra morphism

h : k[T1, . . . , Tn] −→ A
Ti 7→ fi,

where all the fi’s are supposed to have the same degree d ≥ 1. We will focus on two
blow-up algebras associated to the ideal I := (f1, . . . , fn) of A, the Rees algebra ReesA(I)
and the symmetric algebra SymA(I), and show their close relation with the ideal Ker(h) of
k[T1, . . . , Tn].

4.2.1 The Rees algebra.

The Rees algebra of A with respect to the ideal I is the graded A-algebra

ResA(I) := A⊕ I ⊕ I2 ⊕ I3 ⊕ · · ·

Introducing a new indeterminate Z, this algebra is classically obtained as the image of the
A-algebra morphism

β : A[T1, . . . , Tn] −→ A[Z]

Ti 7→ fiZ.
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In other words, ReesA(I) ' A[T]/Ker(β) as bi-graded7 A[T]-modules. Moreover, we have
the following simple description in the extended ring A[T, Z] :

Ker(β) = (T1 − f1Z, T2 − f2Z, . . . , Tn − fnZ) ∩A[T]. (4.3)

Proposition 4.2 With the above notation, Ker(h) = Ker(β) ∩ k[T]. Moreover, if J is an
ideal of A such that H0

J(A) = 0, then we have Ker(β) = Ker(β) :A[T] J
∞, and therefore

Ker(h) = Ker(β) ∩ k[T] = (Ker(β) :A[T] J
∞) ∩ k[T].

Proof. Let P ∈ k[T] such that β(P ) = P (f1Z, f2, Z, . . . , fnZ) = 0 in A[Z]. By specializing
Z to 1 we deduce that P ∈ Ker(h). Now, let P ∈ Ker(h). Since Ker(h) is a homogeneous
ideal on may assume that P is homogeneous of degree n ≥ 0. Then we have

β(P ) = P (f1Z, f2Z, . . . , fnZ) = ZnP (f1, f2, . . . , fn) = 0.

Regarding the second part of the proposition, we only have to prove that Ker(β) :A[T]

J∞ ⊂ Ker(β) since the other inclusion is immediate. Let P ∈ A[T] such that there exist
n ∈ N with the property JnP ⊂ Ker(β). Then, we deduce that

JnP (f1Z, f2Z, . . . , fnZ) = 0 ∈ A[Z].

But H0
J(A[Z]) = H0

J(A)[Z] = 0 by hypothesis, and it follows that P (f1Z, f2Z, . . . , fnZ) = 0
in A[Z]. 2

Let us point out two consequences of this proposition. First, If we see Ker(β) as a graded
A-module, then Ker(β)0 = Ker(h). It follows that one may obtain a generator of Ker(h), in
the case it is principal, from certain minimal systems of generators for Ker(β). For instance,
assume that A = k[X1, . . . , Xn−1] and that f1, . . . , fn define a rational hypersurface in
Proj(k[T]). Then, Gröbner basis computations on the ideal (4.3) with a lex-order satisfying
X1 > X2 > · · · > Xn−1 > Z will return a minimal system of generators of Ker(β) containing
a unique element in k[T] which is an implicit equation of this hypersurface. Second, always
under the previous assumptions on the ring A, regarding ReesA(I) as a A-graded module
we easily see that H0

m(ReesA(I)) = (Ker(β) :A[T] m
∞)/Ker(β) = 0 as soon as H0

m(A) = 0
where m = (X1, . . . , Xn−1). And we have

annk[T](ReesA(I)0) = Ker(h).

Although the Rees algebra has this very nice property, there is a significant drawback: in
general, there is no known “universal” resolution of this algebra. We thus turn to its closer
related blow-up algebra:

7there is a grading coming from A and another grading coming from the Ti’s, setting deg(Ti) = 1 for all
i = 1, . . . , n
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4.2.2 The symmetric algebra.

This well-known algebra can be described by the surjective morphism of A-algebras

α : A[T1, . . . , Tn] −→ SymA(I)→ 0

Ti 7→ fi,

whose kernel is described by

Ker(α) = {T1g1 + . . .+ Tngn such that gi ∈ A[T] and
n∑
i=1

figi = 0}.

The symmetric algebra of I appears naturally by its link with the Rees algebra of I (see for
instance [35]). We have the following commutative diagram

Ker(β)

''

Ker(α)

ww

? _oo

A[T1, . . . , Tn]

α

ww

β

''
SymA(I)

σ // // ReesA(I)

where σ denotes the canonical map from SymA(I) to ReesA(I). In fact the quotient
Ker(β)/Ker(α) has been widely studied as it gives a measure of the difficulty in exam-
ining the Rees algebra of I. We recall that the ideal I is said to be of linear type if the
canonical map σ is an isomorphism.

Lemma 4.3 Let J be an ideal of A such that the ideal I is of linear type outside V (J) then

Ker(α) :A[T] J
∞ = Ker(β) :A[T] J

∞.

If moreover H0
J(A) = 0 then Ker(β) = Ker(α) :A[T] J

∞.

Proof. The first assertion comes by definition: if I is of linear type outside V (J) then the
A[T]-module Ker(β)/Ker(α) is supported in V (J), that is

J.A[T] ⊂
√
J.A[T] ⊂

√
annA[T](Ker(β)/Ker(α)),

which implies Ker(α) :A[T] J
∞ = Ker(β) :A[T] J

∞. The second statement is a consequence
of the first one and proposition 4.2. 2

We are now in position to state the key result of our approach to the implicitization
problem.
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Proposition 4.4 Assume that k is a field and A is the polynomial ring k[X1, . . . , Xn−1].
Let η be an integer such that H0

m(SymA(I))ν = 0 for all ν ≥ η, where SymA(I) is seen as a
graded A-module. Then

Ker(h) ⊇ annk[T](SymA(I)ν) for all ν ≥ η.

Moreover, if the ideal I is of linear type outside V (m), where m = (X1, . . . , Xn−1), then

Ker(h) = annk[T](SymA(I)ν) for all ν ≥ η.

Proof. This is a consequence on the discussion and properties developed in the general setting
of section 1 with B := SymA(I) regarded as a graded A-module (we want to eliminate the
Xi’s). By proposition 1.2, the hypothesis H0

m(SymA(I))ν = 0 for all ν ≥ η implies that, for
all ν ≥ η,

annk[T](SymA(I)ν) = annk[T](SymA(I)η) = H0
m(SymA(I))0.

Now, proposition 4.2 shows, since H0
m(A) = 0, that Ker(h) = (Ker(β) :k[T] m

∞) ∩ k[T].
Since we always have Ker(α) ⊆ Ker(β) ⊆ A[T], we deduce that

Ker(h) = (Ker(β) :k[T] m
∞) ⊇ (Ker(α) :k[T] m

∞) = H0
m(SymA(I))0.

If moreover I is assumed to be of linear type outside V (m) then lemma 4.3 implies that

(Ker(β) :k[T] m
∞) = (Ker(α) :k[T] m

∞),

which completes the proof. 2

Under the hypotheses of this proposition, we deduce that for all ν ≥ η the MacRae’s
invariant S(SymA(I)ν) equals Ker(h) up to a certain power. The purpose of the following
section is to provide of finite free resolution of SymA(I)ν that will be used to compute a gen-
erator of this MacRae’s invariant, i.e. an implicit equation of our parameterized hypersurface
image of λ.

4.3 Approximation complexes
In this section we give the definition and some basic properties of the approximation com-
plexes. These complexes was introduced in [32] and systematically developed in [18] and
[19]. At their most typical, they are projective resolutions of the symmetric algebras of ideals
and allow an in-depth study of the canonical morphism σ : SymA(I) → ReesA(I), where I
is an ideal of a given ring A. In what follows we only develop (sometimes without proof)
those properties that directly affect the applications we are interested in. For a complete
treatment on the subject we refer the reader to the previously cited articles.

INRIA



Elimination theory in codimension one and applications 39

4.3.1 Definition.

Let A be a ring and J be an ideal of A generated by r elements a1, . . . , ar (which we will
often abbreviate with the bold letter a). Let also T := (T1, . . . , Tr) be a sequence of new
indeterminates. To both applications

u : A[T1, . . . , Tr]
r (a1,...,ar)−−−−−−→ A[T1, . . . , Tr] : (b1, . . . , br) 7→

r∑
i=1

biai,

v : A[T1, . . . , Tr]
r (T1,...,Tr)−−−−−−→ A[T1, . . . , Tr] : (b1, . . . , br) 7→

r∑
i=1

biTi,

we can associate both Koszul complexes K(a;A[T]) and K(T;A[T]) with respective dif-
ferentials da and dT. One can easily check that these differentials satisfy the property
da ◦ dT + dT ◦ da = 0, and therefore there exists three complexes, the so-called approxima-
tion complexes, which we denote

Z• = (Ker da, dT)

B• = (Im da, dT)

M• = (H•(K(a;A[T])), dT).

The Z-complex ends with the sequence Ker(u)
v−→ A[T1, . . . , Tr]→ 0. Since by definition

v(Ker(u)) =

{
r∑
i=1

biTi such that
r∑
i=1

biai = 0

}
,

we deduce that
H0(Z) =

A[T1, . . . , Tr]

v(Ker(u))
' SymA(J).

A similar argument applied to theM-complex shows that

H0(M) ' SymA/J(J/J2).

More generally, one can check that v(Ker(u)) annihilates the homology modules (over A[T])
of Z,B andM which are therefore modules over SymA(J). These homology modules have
the following interesting property, which is probably one of the most important of the ap-
proximation complexes:

Proposition 4.5 The homology modules of Z,B and M do not depend on the generating
set chosen for the ideal J .

Proof. See proposition 3.2.6 and corollary 3.2.7 of [35] or [20, §3]. 2
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4.3.2 Proper sequences and an acyclicity criterion.

The acyclicity of the complex Z• bears a striking resemblance to that of an ordinary Koszul
complex, with the role of regular sequences (see proposition 3.1 and attached remark 3.2)
being played by the so-called proper sequences (see [20, §6]).

Definition 4.6 Let A be a ring and suppose given a sequence x1, . . . , xr of elements in R.
This sequence is called a proper sequence if

xi+1Hj(x1, . . . , xi;A) = 0 for i = 0, . . . , r − 1 and j > 0,

where Hj(x1, . . . , xi;A) denotes, as in section 3.1, the jth homology group of the Koszul
complex K•(x1, . . . , xi;A).

Theorem 4.7 Let A be a ring and I be an ideal of A. Consider the following statements:

(i) I is generated by a proper sequence,

(ii) the complex Z(I)• is acyclic.

Then (i) implies (ii). Moreover, if A is a local noetherian ring (A,m, k) with infinite residue
field, then (i) and (ii) are equivalent. The same holds if A is a graded ring, where A0 = k
is an infinite field and m is its irrelevant ideal, which is finitely generated as an A1-algebra
and such that all xi ∈ m is a homogeneous element of positive degree.

Proof. This is proved in [20]. The first assertion is the theorem 12.5 (the ambient ring A
does not need to be noetherian, which is the framework of [20], for that particular property),
and the second assertion is the theorem 12.9. 2

We use the above acyclicity criterion to derive the following one which is well suited for
the application to the implicitization problem that we have in mind. However, we need to
recall the

Proposition 4.8 Let A be a ring and x := (x1, . . . , xn) a sequence in A generating a proper
ideal I in A. If y1, . . . , ym is a A-regular sequence generating and ideal J contained in the
ideal I then

Hn+1−i(x;A) = 0 for all i = 1, . . . ,m, and

Hn−m(x;A) ' ExtmA (A/I,A) ' HomA(A/I,A/J) ' (J : I)/J.

Proof. See for instance theorem 1.6.16 in [2]. 2

Proposition 4.9 Let k be an infinite field and define A := k[X1, . . . , Xn−1] and m :=
(X1, . . . , Xn−1). Suppose given an ideal I = (f1, . . . , fn) of A such that P := Proj(A/I) is
finite, then the following statements are equivalent.
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(i) Z• is acyclic,

(ii) Z• is acyclic outside V (m),

(iii) the ideal I can be generated by a proper sequence,

(iv) the projective scheme P can be locally generated by a proper sequence in Proj(A),

(v) the projective scheme P can be locally generated by n− 1 equations in Proj(A).

Proof.
Clearly (i)⇒(ii) and (iii)⇒(iv); moreover, by theorem 4.7 we have (i)⇔(iii) and (ii)⇔(iv).

Therefore, it remains to show, for instance, that (iv)⇒(v)⇒(iii).
Proving that (iv) implies (v) is clearly a local property at each point p ∈ P. So let (R, p)

be a local Cohen-Macaulay ring (observe that A is Cohen-Macaulay) of dimension n−2 and
with infinite residue field. Suppose given an ideal I ⊂ p of codimension (and hence depth) at
least n− 2 which can be generated by a proper sequence. Then, one may find a generating
proper sequence g1, . . . , gn such that the sequence g1, . . . , gn−2 is R-regular. Therefore, by
proposition 4.8 and the definition 4.6 of a proper sequence, gn must annihilates

H1(g1, . . . , gn−1;R) ' ((g1, . . . , gn−2) : (g1, . . . , gn−1))/(g1, . . . , gn−2).

Now, since the ideal (g1, . . . , gn−1) is unmixed (it is p-primary) then, by [36, proposition
3.2.3 and corollary 3.2.2], we know that the annihilator of H1(g1, . . . , gn−1;R)) is exactly
(g1, . . . , gn−1) itself. It follows that gn ∈ (g1, . . . , gn−1).

Now, assume (v). Since k is infinite and the support of P is finite, one can find a
sequence of homogeneous elements (g1, . . . , gn) in A generating I such that the sequence
g1, . . . , gn−1 defines P, that is to say that ((g1, . . . , gn−1) : m∞) = (I : m∞) in A, and such
that g1, . . . , gn−2 is a A-regular sequence (and hence g1, . . . , gn−1 is a proper sequence). It
follows that gn ∈ ((g1, . . . , gn−1) : m∞) (since it is obviously in (I : m∞)) and to conclude
the proof, we need to show that gn annihilates H1(g1, . . . , gn−1;A). But as before, we have

H1(g1, . . . , gn−1;A) ' ExtA(A/(g1, . . . , gn−1), A) ' ExtA(A/((g1, . . . , gn−1) : m∞), A)

' ((g1, . . . , gn−2) : ((g1, . . . , gn−1) : m∞))/(g1, . . . , gn−2)

(we can saturate the ideal (g1, . . . , gn−1) thanks to the Exts properties; see [36, end of the
proof of proposition 3.2.3]) and from [36, proposition 3.2.3 and corollary 3.2.2] we get that
its annihilator is exactly ((g1, . . . , gn−1) : m∞) (which is an unmixed ideal). 2

Remark 4.10 In the above proposition, note that conditions (i), (ii) and (v) are unaffected
by extension of the base field. Therefore, the equivalence of these three assertions remains
true if we drop the hypothesis that the field k is infinite.
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4.4 Implicitization by means of linear syzygies
It is now time to gather the various results we obtained in the above sections. Recall that
we started from the rational map λ (4.2) whose image lives in Pn−1k and which is canonically
associated to a k-algebra morphism h (4.1) from k[T] to A. From now on we will assume
that A is the polynomial ring A := k[X1, . . . , Xn−1] (n ≥ 3) so that the closed image of λ is
an irreducible hypersurface H in Pn−1k .

Let us denote by I the ideal of A generated by the homogeneous polynomials f1, . . . , fn ∈
A, all assumed to have degree d ≥ 1, defining the rational parameterization λ. Recall that
Ker(h) ⊂ k[T] is the defining ideal of H in Pn−1k . In the previous sections, we proved that

• Ker(h) is a principal and prime ideal of k[T],

• There exists an integer η such that for all integer ν ≥ η we have

Ker(h) ⊇ annk[T](Sym(I)ν)

with equality if I is of linear type outside V (m) (see proposition 4.4).

• Z•(I) is a projective bi-graded resolution of Sym(I) as soon as Proj(A/I) is finite and
locally defined by at most n− 1 equations.

All the ingredient are given to obtain an implicit equation of H, that is to say a generator
of the ideal Ker(h), as a MacRae’s invariant of a certain graded parts of a Z-approximation
complex. In this aim, we will hereafter always assume that k is a field and that the projective
scheme Proj(A/I) is finite and locally defined by at most n− 1 equations - this means that
the ideal I defines only a finite number of isolated points, possible zero, in Pn−2k and that
at each such point is locally generated by at most n− 1 equations.

4.4.1 Bound on the saturation index.

We need to provide an upper bound of the saturation index of Sym(I) with respect to the
graduation of A, that is a bound on the integer η such that H0

m(SymA(I))ν = 0 for all
ν ≥ η. We recall that if M is a N-graded module over a N-graded ring then its initial degree
is indeg(M) := min{ν ∈ N : Mν 6= 0}.

Lemma 4.11 We define the integer

η := (n− 2)(d− 1)− indeg(I :A m∞) ∈ N.

Then, for all integer ν ≥ η we have H0
m(SymA(I))ν = 0.

Proof. This lemma can be proved very similarly to lemma 3.13 but is much more technical.
We refer the reader to [4]. 2
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4.4.2 The main theorem.

We are now ready to state the central result of this part. We recall that for each point p ∈
P := Proj(A/I), often called a base point of the parameterization λ, we two multiplicities:

• the “degree”, that we will denote by dp, which dimAp/pAp
Ap/Ip

• the “multiplicity” which equals e(Ip, Rp) as defined in paragraph 4.1.2.

Moreover, we always have ep ≥ dp and this inequality is an equality if and only if p can be
generated by a regular sequence8 (see [2, corollary 4.5.10]).

Theorem 4.12 With the above notation, for all integer ν ≥ η we have

Ker(h)deg(λ) ⊇ S(SymA(I)ν) = S(SymA(I)η) ' k[T](−dn−2 +
∑

p∈Proj(A/I)

dp)

where the last isomorphism is a graded isomorphism of k[T]-modules. Moreover, the three
following statements are equivalents

(i) Proj(A/I) is locally of linear type,

(ii) Proj(A/I) is locally a complete intersection.

(iii) the above inclusion is an equality

Sketch of proof. We refer the reader to [7] and [4] for a complete proof of this theorem that
we will only outline.

We already know that S(SymA(I)ν) is contained in Ker(h) for all ν ≥ η. To prove that
it is actually contained is Ker(h)deg(λ) we need to prove that

length((SymA(I)ν)Ker(h)) ≥ deg(λ) = length((ReesA(I)ν)Ker(h))

where the last equality comes (implicitly) from the degree formula stated in theorem, but
this is a consequence of the additivity of the length.

To compute the degree of a generator of S(SymA(I)ν), that we will denote by δ, we
will use the formula given in proposition 2.12. We saw that the Z-approximation complex
associated to I is a projective resolution of SymA(I). By shifting correctly the Zi’s, it is
actually a bi-graded resolution of SymA(I), the first grading being w.r.t. the grading in the
Xi’s and the second grading w.r.t.the Ti’s; it is of the form

0→ Zn−1((n− 1)d;−(n− 1))→ · · · → Z2(2d;−2)→ Z(d;−1)→ Z0(0, 0) = A[T]

(remember that its differentials are linear in the Ti’s and that Zi ↪→ A[T](−id; 0) for all
i ≥ 0). Therefore, taking the degree ν ≥ η part of this complex with respect to the grading in

8 One also often says that the base point p is locally a complete intersection
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the Xi’s, on get a finite linear free resolution of k[T]-modules of SymA(I)ν from we deduce
that

δ :=

n−1∑
i=1

(−1)i+1idimk((Zi)ν+id).

We have canonical graded exact sequences, i = 0, . . . , n− 1,

0→ Zi+1 → Ki+1 → Bi(−d)→ 0

and
0→ Bi → Zi → Hi → 0

which shows that δ can be expressed in terms of the Hilbert polynomials of the Ki’s and
the Hi’s. The contribution of the Ki’s only depends on n and d, and hence equals to dn−2
(for ν � 0) as it is the case when P is empty (in such case SymA(I) is of linear type and
there is no base points; see [7, theorem 5.2]). The contribution of the Hi’s only comes from
Z1 and Z2 since Hi = 0 for all i ≥ 3 and an easy computation shows that it is

(H0)ν+d − 2((H1)ν+2d − (H0)ν+2d).

As degH1 = 2degP (one may use for example that (H0)ν − (H1)ν + (H2)ν = 0 for ν � 0
and that H2 ' ωR/I , the canonical module, up to a degree shift), this contribution is equal
to −degP = −

∑
p∈P dp for ν � 0.

We now turn to the proof of the equivalence of the three statements (i), (ii) and (iii).
Let X := Proj(ReesA(I)) ⊆ Y := Proj(SymA(I)) ⊂ Pn−1 × Pn. If P is locally of linear
type, then X = Y , so that, by comparing degrees (see (4.4)), S(SymA(I)) = Ker(h)deg(λ),
dp = ep for any p ∈ P and P is locally a complete intersection. So we just proved that
(i) → (iii) → (ii). The fact that (ii) implies (i) follows from standard properties of the
M-approximation complex, as proved in [7, first lines of the proof of theorem 5.7] 2

Recall that we know from theorem 4.1 that

Ker(h)deg(λ) ' k[T](−dn−2 +
∑

p∈Proj(A/I)

ep) (4.4)

where the last isomorphism is again a graded isomorphism. It follows that when computing
S(SymA(I)η) as the determinant of the ηth-graded part of Z• we get an implicit equation of
H to the power deg(λ) times an extraneous homogeneous element of degree

∑
p∈Proj(A/I) ep−

dp (which equals zero as soon as the base points are locally complete intersection).
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