
HAL Id: inria-00092248
https://inria.hal.science/inria-00092248

Submitted on 8 Sep 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Wrapping Web Pages into XML Documents: A
Practical Experience and Comparison of Two Tools

Sabine Jabbour, Anne-Marie Vercoustre

To cite this version:
Sabine Jabbour, Anne-Marie Vercoustre. Wrapping Web Pages into XML Documents: A Practical
Experience and Comparison of Two Tools. The Eighth Australian World Wide Web Conference, Jul
2002, Sunshine Coast, Queensland, Australia. �inria-00092248�

https://inria.hal.science/inria-00092248
https://hal.archives-ouvertes.fr

Wrapping Web Pages into XML Documents: A Practical
Experience and Comparison of Two Tools

Sabine Jabbour 1
sabine@jabbour.net

Anne-Marie Vercoustre
 CSIRO,

Mathematical and Information science
71 Normanby Road, Clayton, VIC 3168, Australia
Anne-Marie.Vercoustre@csiro.au

Abstract

 The notion of wrapping a web server into XML documents is driven from the need for
structured data that can be used by a variety of applications. The web contains vast amounts of
information that is useless to most applications since it is mainly targeting a human audience. A
solution to this would be to automate the browsing process and then convert the extracted
information into a more suitable format – like XML. This is called wrapping. We have used two
different tools to wrap several tourist sites into XML The tool we have been using are Norfolk, a
system developed since 1997 by the CSIRO TED group and W4F, initially developed at the
University of Pennsylvania, now a commercial product. This report describes our practical
experience with the tools and makes comparison between them. The comparison highlights useful
features for a wrapper system to support real applications.

1. Introduction

XML (Extensible Markup Language) allows data to be stored within a document and
information about the data to accompany it. In comparison with HTML (HyperText
Markup Language), which is mainly specifying the layout of a page, XML separates the
data from the layout. XML documents can be viewed in much the same as any HTML
page by defining a stylesheet for the page. However, XML tags are meaningful with
respect to their content and these tags can be defined by the application that requires
them.

The word ‘wrapper’ originates from the database community. A wrapper in this
context is used as a mediator between several databases and an application [7,11]. In a
similar way, in the web environment, a wrapper converts information from HTML
documents into information as a data-structure (like XML). The information can be saved

1 This work was developped when Sabine Jabbour, student at Monash Univerity, was doing her internship
at CSIRO.

Page 2 of 14

in permanent storage for later use, such as answering queries, or generated dynamically
on demand through a Web interface or from an application.

Although there are promising researches on wrapper induction ([1][3]) to
automatically generate wrappers from a few examples, the technique is not yet quite
effective to write real wrappers for Web sites. The approach we chose was to write a
program using a scripting language designed for writing wrappers. There are two tools
we used for this purpose – Norfolk and W4F. Norfolk is a language and a system
developed by the TED group in 1997 initially for creating virtual documents from
heterogenous sources [5]. It has recently been extended to cater for the creation of XML
documents for the purpose of wrapping. W4F (World Wide Web Wrapper Factory) began
as a research tool developed by the University of Pennsylvania (Penn Database Group)
[2]. It has now become a wrapping product.

We have used Norfolk and W4F to wrap different tourist sites and get XML data for
another project demonstrator. The sites we wrapped were mostly www.fodors.com and
www.intown.com.au. Automatic wrapping is worthwhile only for sites that offer a lot of
data in a regular format (e.g. a list of hotels) or a large set of similar pages (e.g. hotels for
different cities). It is generally the case when a site is generated from a database.
However the underlying HTML page may not be as regular as it looks like from a quick
look at the page displayed by the browser. Another situation is to wrap a page where data
are updated very frequently (for example a forcast page or a stock quote page). In this
case the regularity comes from wrapping thousands of time the same page. We have not
explored this type of applications.

In this paper, some of the difficulties encountered with Norfolk and W4F will be
outlined. In addition, they will be compared as wrapper tools in general. This has
involved some testing for a variety of wrappers written for the same web server using
each of the two tools.

2. The General Tasks of a Wrapper in the Web Environment

A wrapper has three main tasks: first, to retrieve a web document, to extract the

relevant information from the web page; third, and to map the information into the XML
format required by any specific application.

2.1 A simple example
Let take the example of the tourist Web site http://www.fodors.com/ and the page that

lists hotel information for Melbourne. The actual page 2 is shown in Figure.1. The
wrapper must first retrieve the page using its URL. Then it has to extract the relevant
information in the page. The page display details for 19 hotels in Melbourne and for each
of them we want to get its name, address, phone, fax, price range and description.

2 The screen dump has been generated in 2001 and the page format has changed since.

Page 3 of 14

Figure.1 Example of page to be wrapped

The objective of the wrapper is to extract the relevant information from the HTML page
and to transform it into a format that can be easily reused by application, in our case
XML. Figure 2. shows on the left side the HTML source of the page to be wrapped and
on the right side the result in XML, after the information has been extracted.

The XML document could mention the DTD the document has to conform as well as a
style sheet to display the XML document with a browser.

The same wrapper can be used to wrap hotel information available for other cities on the
site, by just changing the URL of the page that is passed to the wrapper as a parameter.

2.2 Tree based wrappers
 The two wrappers we have used worked from the tree representation of the Web pages,
therefore taking advantage of the hierarchical structure of the tags when present. Both
Norfolk and W4F have developed a language that uses the notion of tree path to locate
the information to be extracted. Figure 3. shows a simplified version of the tree
associated with the HTML page presented in figure.2.

Page 4 of 14

Figure.2 Wrapping HTML text into XML data

Fig.3 Tree representation of an HTML page

b

… td td

… tr tr

table
…

head

html

 …

Body

THE ADELPHI

Page 5 of 14

An absolute path in a tree is an expression that describes how to access a specific element
by traversing the tree from child to child. For example, if we suppose there is only a table
in the document, the path:

html.body.table.tr[0].td[0].b.text (1)

will access the node that contains the string “THE ADELPHI”.

A relative path is a path that is described using the descendants rather than the direct
childs. For example, in Norfolk:

html..table..td

will retrieve all the elements (sub-trees) with label td in all the table elements.

In Norfolk and W4F paths can be selected when some conditions are fulfilled (expressed
with a where condition). For example, using Norfolk syntax:

select html..table as $table where $table..td contains “THE ADELPHI” (2)

will also select the table that contains the string "THE ADELPHI" .

The XML Path Language (XPath)[6] is a W3C recommendation for addressing parts of
an XML document using location paths. Xpath are more complex than the one described
here since they use more than the two axes "child" and "descendants" for traversing the
tree. Norfolk and W4F have been designed before XPath and can be seen as a simplified
version of XPath using a different syntax.

3. The Norfolk System

The Norfolk system has been developed by the CSIRO from 1996 [5,9]. It was first
designed for reusing information from structured and semi-structured data sources and
reassembled it into virtual documents, in particular an HTML set of pages. An example
of such application is our project home page (http://www.cmis.csiro.au/TIM/) where staff
pages and publications are dynamically generated from data stored in an SQL database
and publications stored in a proprietary publication directory system. One obvious
benefice is that a publication are intered once and displayed on any page where it is
relevant.

Norfolk has been used since 1997 in a number of internal and external projects, in
particular to extract information from HTML Web pages and integrate it with other
information before displaying it to the user. This amounts to wrap HTML pages into new
HTML documents. An example is our Experts Search ([HREF2]), where results from a
search engine and corporate home pages are integrated into a new page [13]. Since XML
is becoming a standard for integrating information we have extended Norfolk for dealing
with generating XML documents instead of HTML. Norfolk can be used in batch mode
for generating XML files or in dynamic mode. In the latter XML documents will be
created when required and possibly displayed with XSLT stylesheets, or accessed by
other wrappers.

Norfolk is currently an advanced prototype that can be download from the Web (see.
[HREF1]). For a full description of the Norfolk language the reader can refer to earlier

Page 6 of 14

publications. Some examples will be given when making comparisons with W4F. We
chose W4F for comparison with Norfolk because it was freely available at that time and
very popular in the research community. It was also one of the very few ava ilable
systems able to deal with the real applications we were aiming at.

4. Evaluation of Norfolk vs. W4F

Extending the evaluation criteria proposed in [3] for evaluating Wrapper induction, we
will evaluate Norfolk and W4F (Wrapper scripting), according to:

- The expressiveness of the language at the micro level, i.e. how the scripting
language is well designed for wrapping single HTML pages.

- The general architecture and expressiveness of the language at the macro level,
i.e. how the language is well suitable to wrap a set of linked pages and map
extracted information into a given XML format.

- The efficiency of the actual wrappers, i.e the time it takes to wrap a (set) of
page(s), and how robust is the wrapper against changes in the page.

The expressiveness of a wrapper scripting language has to be evaluated for the three tasks
of accessing pages, extracting and mapping information. First Norfolk allows the
integration of the three tasks within the wrapper definition, whereas W4F has a clear
separation between them. We will see the respective advantages of each approach while
comparing the two wrappers in more details along the three tasks mentioned above. The
task of accessing the pages will be considered in the section on combining wrappers.

4.1 Extracting information from web documents
Extraction in both Norfolk and W4F is done using the paths of the relevant information in
the parsed HTML tree. In addition, some basic string matching rules are used (regular
expressions).

This process begins by pruning the tree to reach the relevant subtree and then applying
the matching rules on the parts of the tree that contain the necessary information.

 In the following example, the wrapper extracts the text of a row (tr) j of a table where
the second tr element contains the string “We found”, and some other tr element j
contains the string “Convert it”.

W4F example:

info = html.body->table[i].tr[j:0-].txt

WHERE html.body->table[i].tr[1].txt =~ "We found"

AND html.body->table[i].tr[j].txt =~ "Convert It";

This equivalent expression in Norfolk would be:

Page 7 of 14

Norfolk example:

<?define $info as select $tr.#VALUE

 from $page.body..table as $table, $table.tr as $tr,

 where $table.tr[1] contains "We found" and

 $tr contains "Convert It">

There is no real difference, other than syntactic, between how the two tools find the
proper table and extract the specific information. The major difference is that Norfolk
introduces explicit variables ($table and $tr) to make the joints on table and tr, while
W4F use index variables (i and j).

We are going to compare a bit further the expressiveness of the two languages for path
expressions.

4.1.1 Navigating the document hierarchy
W4F and Norfolk have relatively similar ways of navigating the tree representation of the
parsed web page.

For example, html.body.table[1].tr[0].td[2] would be interpreted in the same way by
both W4F and Norfolk, although the default for the index value is different.

 e.g. html.body.table[1].tr[0].td would be interpreted as:

W4F: html.body.table[1].tr[0].td[0] -- W4F returns the first td element

Norfolk: html.body.table[1].tr[0].td[*] -- Norfolk returns all td elements

W4F has three ways of accessing nodes in a tree:

 “.” indicates a direct child

 “->” will search any part of the tree using depth-first traversal

 “-/> will only search within the scope of the current sub-tree

Norfolk has only two ways:

 “.” indicates a direct child

 “..” will search within the scope of the current sub-tree

In Norfolk, extraction rules return nested lists of trees on which one can recursively
apply other extraction rules. Appropriate functions (namely text, sgml, xml) will return
the text or the underlying tagged source associated with the node. The textual value of a
node or an attribute can also be extracted directly with an expression such as

 html.body.table[1]..td[2].#VALUE

which is equivalent to:

 text(html.body.table[1]..td[2])

Page 8 of 14

W4F is less interested in the nodes themselves, but more interested in the information
they carry. This means it does not let you extract sub-trees for doing further processing.
Any W4F instruction is a rule for extracting some text, while Norfolk offers a full
language for tree extraction and transformation.

4.1.2 Semantic difference in basic path expressions
The fundamental difference between the two languages is that path expressions in
Norfolk never fail – they only return an empty list if the specified expression does not
correspond to any actual node. With W4F, the expressions must refer to a real path in the
tree for the wrapper to execute successfully. To avoid W4F to fail on irregular or
incomplete data, defaults (exceptions) must be specified for all extraction rules. This is
because the majority of websites, even ones that are relatively consistent, will have some
fields of information missing.

An example of this in W4F is:

html.body->table[0].tr[2]->font[1].txt, match("(.*?) Fax"), default("");

In case a restaurant does not give a fax number, the wrapper will generate an empty
string. If the default rule is not specified, W4F will fail to wrap this page.

HTML and XML documents are generally semi-structured documents, e.g. documents
that present an irregular and incomplete structure. We believe that Norfolk semantic for
interpreting the path expressions is better suited to semi-structured documents than W4F
semantic. Norfolk semantic is similar to the one defined for XPATH expressions as
defined by W3C.

4.2 Mappings
W4F requires an explicit definition of the mapping rules which must correspond in order
and number to the extraction rules. An additional feature is that W4F generates a DTD
from these mapping rules. The advantage is that it guaranties that the XML result will
always conform with the DTD. This is simple and useful, but restrictive for most
applications.

Indeed it is often necessary to have optional elements in a DTD and this is not possible
with W4F since the mapping rules are relatively simplistic. It is also a common problem
that an application has a predefined DTD which the XML documents generated should
conform to.

Norfolk does not provide any DTD as a result of wrapping. Instead it can explicitly
map to a previously defined DTD format. This was much appropr iate when you want to
apply one DTD to all the kinds of tourism information we wrapped. However Norfolk
does not verify that the XML document resulting from the wrapping conforms to the
DTD. This has to be checked separately until your wrapper is validated.

Another situation that is often encountered when wrapping a web server is that one
wants to add in static values for some elements of the XML document. This is because
one does not need or want to extract them from the pages. For example, when wrapping a

Page 9 of 14

hotel website (see www.fodors.com), each page may contain a list of hotels in a
particular city. The name of each city does not need to be extracted since it is already
known (or found in the parameter for the page). In this case, W4F will not allow the
addition of static information in the mapping. This is a great disadvantage and limits
W4F immensely in comparison with Norfolk’s flexibility in this respect. Norfolk being a
tool for creating virtual documents, permits any inclusion of information.

Note here that the only way of creating a static value is cheating W4F with a default
value.

Example in W4F:

html.body->table[1].tr[3] ->web.txt, default(“http://www.fodors.com”)

This allows you to create a tag with a static value that is to be repeated for all the
elements this extraction rule maps into, which might not be quite desirable. The example
below shows that Norfolk only needs the wrapper to have a tag created with the value in
it, and it will be embedded into the document generated.

Example in Norfolk:

<source>http://www.fodors.com</source>

The values could also be taken from input parameters passed to the wrapper.

In resume, Norfolk and W4F have an equivalent expressiveness regarding the path
expressions, W4F being a bit more declarative and simpler, but Norfolk language
offering a better semantic for extraction from semi-structure documents, as well as being
more flexible for mapping into predetermined DTD formats.

4.3 General architecture and Web environment
Writing wrappers often involve extracting data from a set of pages rather than a single
page. You may for example wrap pages that describe a list of movies where the
decription for the movie is on a different page than the one setting the cinema where it is
screened. Another common situation is to first extract a list from an initial page (e.g. a list
of cities), then to follow the links from the list elements to new pages for extracting
further elements with another wrapper.

Both Norfolk and W4F allow the retrieval of several pages within the one wrapper.
However, W4F only allows extraction from one of the retrieved pages within the one
wrapper, while other pages are just used as navigational pages. This is done in a separate
retrieval section. Although the separation between retrieval and extraction make the
language more readable, it is a limitation that prevents W4F wrappers to axtract, combine
and map information from a set of linked pages. In some cases, it is possible to write a set
of independent wrappers and to combine them using a java program, which goes beyond
the scope of the wrapping language.

Norfolk combines the wrapper language with basic crawler functions that allow to access
any number of linked pages, extracting and combining information from any of them.
This can be done within a single wrapper, or by combining wrappers that can pass
parameters and results to each others. Norfolk is well designed for wrapping a set of

Page 10 of 14

pages into XML data and calling recursively several wrappers. The set of pages may be
linked or not. Although a declarative language for following links has been defined in
[6], it has not been implemented and the part of language used for crawling is very
procedural and requires to explicitly extract the URL from the link before requiring the
proper http connection. However it makes it very convenient to write realistic and
complex wrappers.

W4F offers a very limited way of following links and requires a Java program to combine
specialised wrappers. It is not possible either with W4F language to build a single
wrapper that extracts information from several pages.

4.4 User Interface
W4F has an extraction wizard, the purpose of which is to give the absolute tree path for
any part of the web page. The idea behind this wizard is very good, because when
wrapping, you need first to locate the information you are interested in retrieving, and the
HTML structure might be very complex. However, this tool only allows you to see these
paths if the mouse is scrolled over the relevant item (the path disappears too quickly) or
by viewing the source of the page after it has been run through the extraction wizard.
Norfolk has no such wizard and it is clearly missing, although a tool more integrated with
the wrapping language would be desirable.

Machine learning-based wrappers such as [1] usually offer a good user interface since
the system need to be given examples of what to wrap and how before deducting
wrapping rules. Although scripting-based wrappers are programmed manually it would
be a very useful to supply them with a wrapping user interface.

On the other hand debugging is much easier with Norfolk since intermediate results can
be printed. Debugging incorrect mappings can be very difficult with W4F.

4.5 Testing performance

Since a wrapper is usually used dyna mically and regularly to get updated data, it is
important that it is efficiant in doing it. We did some testing for times for both Norfolk
wrappers (against each other) and two wrappers written using Norfolk and W4F (for the
same web server).
4.5.1 Norfolk Tests
Three different Norfolk wrappers were tested against each other. These were wrapping
information from http://www.fodors.com/ for 25 cities and get the list of restaurants,
hotels and activities for each city. Norfolk generated 25 XML documents for each
wrapper. The tests were run 11 times and on different times of the day. The table on the
next page shows the details of the tests. The wrappers themselves can be found in
Appendix A.

The only odd result was obtained in the test run on 11/01/01 at approximately
10:30am. This was an unexpected result and is most likely due to a problem with the
server at the time. The averages calculated did not include this result.

Page 11 of 14

The most notable difference is that the restaurants wrapper took the longest and the
activities wrapper took the least time in wrapping. This can be attributed to the amount of
extraction and mapping the wrapper has to do. First, the restaurant wrapper had to extract
the most information, the activities one extracted the least. The wrapper retrieves the
page once only, so that is not an affecting factor in this case.

Time of wrapping Accommodation
wrapper

Restaurant wrapper Activities wrapper

10/01/01 ~11:00am 5’13’’ 6’17’’ 2’04’’
10/01/01 ~2:45pm 4’48’’ 6’05’’ 2’01’’
10/01/01 ~5:45pm 4’22’’ 5’36’’ 1’49’’
11/01/01 ~10:30am 10’07’’ 19’48’’ 3’41’’
11/01/01 ~2:30pm 4’43’’ 6’23’’ 2’08’’
11/01/01 ~6.15pm 4’21’’ 5’30’’ 1’51’’
12/01/01 ~12.30pm 4’41’’ 5’53’’ 1’56’’
12/01/01 ~3.30pm 4’42’’ 5’55’’ 2’10’’

AVERAGE ~ 4’41’’ 5’57’’ ~ 1’59’’

Table 1. Execution time for different Norfolk wrappers

These tests show that the time of the wrapping itself (extraction and mapping) is
significant against the total time that includes the server access and the download of the
pages. It was important to set this before carrying tests for comparing Norfolk and W4F.

4.5.2 Norfolk vs. W4F runtime tests
This phase of testing was for the purpose of determining whether Norfolk was slower

than W4F. This was the expected result, since Norfolk language is interpreted whilst
W4F is compiled into Java classes. However, as table 2. indicates, there is no
considerable difference between how the two performed on average. In fact, Norfolk is
slightly, yet not significantly, faster.

The two wrappers were both using the same tourism website (http://www.fodors.com).
However, only the hotel pages were tested, for the same twenty-five cities.

Time of wrapping W4F NORFOLK

19/01/01 ~11:30am 4’51’’ 5’29’’
19/01/01 ~1:30pm 5’00’’ 4’58’’
19/01/01 ~3:00pm 4’54’’ 5’08’’
19/01/01 ~4:15pm 4’31’’ 4’58’’
23/01/01 ~5:15pm 5’20’’ 5’07’’
24/01/01 ~10:15am 4’44’’ 5’12’’
24/01/01 ~1:10pm 4’59’’ 5’04’’
24/01/01 ~3.15pm 6’22’’ 4’55’’
25/01/01 ~10:45am 8’07’’ 6’04’’
25/01/01 ~12:15pm 4’37’’ 4’54’’
25/01/01 ~3:15pm 5’45’’ 6’08’’

AVERAGE ~ 5’21’’ ~ 5’16’’

Page 12 of 14

Table 2. Runtime comparison between Norfolk and W4F

5. Robustness towards changes
General studies suggest that web pages, on average, are prone to changes every month.
The rate of change is particularly high for commercial sites that use generation technique
(from database) for page generation since it simplifies the maintenance and changes can
be made consistently at a low cost.
Wrappers, such as Norfolk and W4F, that strongly rely on the underlying HTML tag
structure to locate information are vulnerable to changes and can be broken very easily.

It is a well-known problem that references within trees are hard to maintain when the tree
is modified. Much attention to the problem has been paid in the Hypertext and Web
community, specifically for trying to maintain semantic links within documents. In [4] a
solution is proposed, using a node signature based on a combination of the absolute path
of the node, the string value of the node and the one of its neighbours, as well as an
associated repair algorithm.

The problem in wrappers is not exactly the same as for referential links. Indeed, for
referential links one tries to keep the reference on an actual content in order to keep the
link semantically relevant. If the content of the target node has changed too much, the
link may become irrelevant. In wrappers, on the opposite, one wants to maintain
references to placeholders for content, which is expected to have changed (e.g. the price
of a product). The value of the content cannot be part of the signature of the node,
although the content of a neighbour node can be used.

Incomplete path expressions with condition like those presented in section 4.1 are more
robust to structural change than absolute paths from the root. However they are not strong
enough to resist big changes, and even small changes can break a wrapper. When this
happens the wrapper should at least be able to locate and report the problem.

We have started to investigate signatures that compare value (string) extracted by the
wrapper with a domain vocabulary and will complain when a wrapped value is not of the
expected type. For example, common expected words in a hotel list would be "hotel",
"room", "pool", etc. In the IBM system ANDES [10], a lot of attention is put in data
validation. Their system monitors the quality of data extraction (e.g. valid numeric range
of value) and alerts the administrator when adjustments to the wrapper are required.

More research is needed to make wrappers much more robust to change than they are
today. An appoach would be to replace the to-down, structure-first, extraction with
bottom-up, content-first, extraction. Another approach would develop strong repair
algorithms based on tree differences.

Page 13 of 14

6. Conclusions and Future Work
Wrapping, in general is something that is aimed at making the job of gathering and
converting information more efficient. For this, a wrapping tool must be easy to use for
the human who writes the wrapper. It must also be fast in wrapping.

Our conclusion is that W4F and Norfolk are very effective in wrapping Web sites and
relatively easy to use. The two tools offer a comparable language for wrapping single
Web pages (comparable expressiveness), and take about the same time to wrap pages
(comparable efficiency). Norfolk supports more complex wrapping from sets of linked
pages and can run in dynamic or batch mode. W4F offers a wizard interface that is
helpful for beginners.

Although Norfolk was found to be more flexible and powerful to write actual wrappers, it
is lacking a user-friendly interface similar to W4F Wizard but possibly better integrated
with the actual tool.

Both tools need to develop robust techniques to deal with frequent changes in the
wrapped sites if the sites have to be wrapped regularly.

References

[1] Brad Adelberg, Mattiew Denny, Nodose version 2.0, in SIGMOD Record, 28(2),

p.540-543, 1999.
[2] Fabien Azavant, Arnaud Sahuguet, “World Web Wrapper Factory (W4F), User

Manual”, April 2000.
[3] Nicholas Kushmerick, “Wrapper induction: Efficiency and expressiveness”, in

Artificial Intelligence 118, (2000) 15-68, Elsevir (Ed.)
[4] Thomas A. Phelps and Robert Wilensky, “Robust Intra -document locations”, in Proc.

of WWW9 Conference, Amsterdam, 1999.
[5] Anne-Marie Vercoustre and François Paradis, A Descriptive Language for

Information Object Reuse through Virtual Documents, in 4th International
Conference on Object-Oriented Information Systems (OOIS'97), Brisbane, Australia,
pp299-311, 10-12 November, 1997.

[6] J. Clark and S. DeRose (eds), XML Path Language (Xpath) Version 1.1, W3C
Recommendation, Novembre 1999, http://www.w3c.org/TR/xpath.

[7] G. Mecca, P. Merialdo, P. Atzeni, "ARANEUS in the Era of XML", in IEEE Data
 Engineering Bullettin, Special Issue on XML, September, 1999
 http://www.dia.uniroma3.it/Araneus/
[8] Anne-Marie Vercoustre and François Paradis, "Reuse of Linked Documents through

Virtual Document Prescriptions", in Lecture Notes in Computer Science 1375,
Proceedings of Electronic Publishing '98 , Saint-Malo, France, pp499-512, 1-3 April,
1998.

[9] François Paradis and Anne-Marie Vercoustre, A Language for Publishing Virtual
Documents on the Web, in International Workshop on the Web and Databases,
Valencia, Spain, March 1998.

Page 14 of 14

[10] Jussi Myllymaki, "Effective Web data Extraction with Standard XML
Technologies", in 10th International World Wide Web Conference (WWW10), Hong
Kong, May 2001.

[11] J. Hammer, M. Breunig, H. Garcia-Molina, S. Nestorov, V. Vassalos, R. Yerneni.
"Template-Based Wrappers in the TSIMMIS System". In the 26th SIGMOD
International Conference on Management of Data, Tucson, Arizona, May 1997.

[12] L.Liu, W. Han, D. Buttler, C.Pu, and W.Wang, "An XML-based Wrapper generator
for Web Information Extraction", in Sigmod'99, Philadelphia, 1999.

[13] Nick Craswell, David Hawking, Anne-Marie Vercoustre and Peter Wilkins,
P@NOPTIC Expert: Searching for Experts not just for Documents, Poster in Ausweb
2001, April 2001. http://ausweb.scu.edu.au/aw01/papers/edited/vercoustre/paper.html

[HREF1] http://www.ted.cmis.csiro.au/proj/RIO/norfolk/
[HREF2] http://www.ted.cmis.csiro.au/proj/yellow/front.html

