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Generalized resultants over unirational algebraic
varieties

Laurent Busé†

Mohamed Elkadi‡

Bernard Mourrain§

In this paper, we propose a new method, based on Bezoutian matrices, for computing a
nontrivial multiple of the resultant over a projective variety X, which is described on an
open subset by a parameterization. This construction, which generalizes the classical and
toric one, also applies for instance to blowing up varieties and to residual intersection
problems. We recall the classical notion of resultant over a variety X. Then we extend it
to varieties which are parameterized on a dense open subset and give new conditions for
the existence of the resultant over these varieties. We prove that any maximal nonzero
minor of the corresponding Bezoutian matrix yields a nontrivial multiple of the resultant.
We end with some experiments.

1. Introduction

Resultant theory has a long mathematical story, starting with the resolution of lin-
ear systems. The first explicit construction of the so-called resultant of two univariate
polynomials, proposed by E. Bézout and L. Euler (Bézout, 1764), was followed by the
well known dialytic method of Sylvester (Sylvester, 1840). Generalizations to multivari-
ate polynomials appeared soon after (Sylvester, 1841), becoming an intensive subject of
study (Salmon, 1885), (Macaulay, 1902), (Dixon, 1908), (Van der Waerden, 1948) . . .

After the dark period “Il faut éliminer l’élimination”, these last decades have wit-
nessed a renewal of elimination theory (Jouanolou, 1991), (Gelfand et al., 1994), (Eisen-
bud, 1994), partly motivated by applications in effective algebraic geometry and more
specially in polynomial system solving (Chistov, 1986), (Grigoryev, 1986), (Pedersen and
Sturmfels, 1993), (Manocha and Canny, 1993), (Chardin, 1995), (Mourrain, 1998). In-
deed many operations used in this domain involve projections of varieties and elimination
of variables. Resultant constructions yield a direct answer to such problems. After a pre-
processing step of the polynomial equations, one obtain the “eliminant” polynomial by
specialization of the input coefficients in the determinant of the constructed matrix. This
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approach is particularly interesting for numerical solver (based on eigenvalue computa-
tions), because it provides a template construction, which applies for a large class of
input systems (Manocha, 1994), (Bondyfalat et al., 1998).

However such methods suffer from a problem of genericity, when the input system
yields a degenerate resultant construction. This problem has lead to new developments,
extending the notion of resultant to more general varieties than the projective space
(Gelfand et al., 1994). The recent efforts in this direction concern resultants over toric
varieties, and more precisely explicit matrix constructions whose determinant is a non-
trivial multiple of the toric resultant (Sturmfels, 1993), (Gelfand et al., 1994)[chap. 8],
(Canny and Emiris, 1993).

In this work, we aim at extending such constructions to resultants over general varieties.
We propose a systematic method based on Bezoutian matrices, which yields a nontrivial
multiple of the resultant over a projective variety X , when a dense open subset of this
variety can be parameterized. It generalizes the classical and toric one, corresponding to
varieties parameterized by monomial maps, and it also applies to blowing up varieties or
residual intersection problems.

We divide our presentation as follows. In the next section, we recall the classical no-
tion of resultant over a variety X , giving some conditions for which this resultant is
well defined. These conditions are essentially those given in (Gelfand et al., 1994), but
reformulated in simpler terms. In subsection 2.2, we extend this approach to varieties
which are described by a parameterization on an open subset and we give new conditions
(less restrictive) for the existence of the resultant over these varieties. In section 3, we
recall the definition and a fundamental property of multivariate Bezoutian matrices. We
prove that any maximal nonzero minor of these matrices yields a nontrivial multiple of
the resultant. Finally, we illustrate this construction by 3 examples.

Before going into details, here are the notations that will be used hereafter. Let K be
a field and R = K[t1, . . . , tn] = K[t] be the ring of polynomials in the variables t1, . . . , tn,
with coefficients in K. For α = (α1, . . . αn) ∈ Nn, tα = tα1

1 . . . tαn
n . We denote by K the

algebraic closure of K, Pn (resp. An) the projective (resp. affine) space over K.
Introducing new variables z = (z1, . . . , zn), we will identify the algebra R ⊗K R with

K[t, z] = K[t1, . . . , tn, z1, . . . , zn].
If I is an ideal of R, we denote by V

K
(I) (or simply V(I)) the set of common roots

in K
n

of elements of I. More generally, we denote by VX(I) the set of common roots
of (resp. homogeneous) elements of I in the algebraic (resp. projective) variety X . The
quotient ring of R by the ideal I is denoted by A = R/I. The class of a polynomial p ∈ R
in A is denoted by p.

We denote by R̂ the dual of R (i.e. the set of linear forms from R to K), Â the

vector space of K-linear maps from A to K. We will identify Â with I⊥ = {Λ ∈ R̂ :

Λ(f) = 0 for all f ∈ I}. It has a natural structure of A-module: ∀Λ ∈ Â, ∀a ∈ A,
a · Λ : b ∈ A 7→ Λ(a b) ∈ K.

2. Resultant theory

Elimination theory deals with the problem of finding conditions on parameters of a
system of equations, so that these equations have a common solution in a fixed algebraic
variety X .
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2.1. Classical resultant case

The typical situation is the case of n+ 1 “polynomials”

fc :=






f0(x) =
∑k0

j=0 c0,j ψ0,j(x)
...

fn(x) =
∑kn

j=0 cn,j ψn,j(x)

where c = (ci,j) are parameters, x is a point of the variety X of dimension n, and the
vector Li = (ψi,j)j=0,...,ki

is a regular map fromX to Pki (see (Harris, 1992)) independent
of c. In the language of modern algebraic geometry, the Li correspond to line bundles on
X and the fi to generic global sections (see (Gelfand et al., 1994)).

The elimination problem consists, in this case, in finding necessary (and sufficient)
conditions on c such that the system fc = 0 has a solution in X .

In the classical case, X is the projective space Pn, Li is the vector of all monomials
of a fixed degree di, and the function fi is a generic homogeneous polynomial of degree
di. The necessary and sufficient condition on c such that the homogeneous polynomials
f0, . . . , fn have a common root in Pn is ResPn(fc) = 0, where ResPn(fc) is the classical
projective resultant (see (Macaulay, 1902), (Van der Waerden, 1948)).

Considering a geometric point of view: We look for the values of parameters c = (ci,j)

such that there exists x ∈ X with
∑ki

j=0 ci,jψi,j(x) = 0 for i = 0, . . . , n. In other words,
the vector c is the projection of the point (c, x) of the incidence variety

WX = {(c, x) ∈ P
k0 × · · · × P

kn ×X :

ki∑

j=0

ci,jψi,j(x) = 0, i = 0, . . . , n}.

We denote by π1 : WX → Pk0 × · · ·×Pkn and π2 : WX → X the two natural projections.
The image of WX by π1 is precisely the set of values of parameters c for which the system
has a root (in X). The image by π2 of a point of WX is a solution in X of the associated
system.

Definition 2.1. If π1(WX) is an irreducible hypersurface, then “its” equation (unique
up to a scalar) will be called the resultant of f0, . . . , fn. It will be denoted by ResX(fc).

In order to be in this case (i.e. π1(WX) is an irreducible hypersurface), we impose the
following conditions:

(C)






(C1) X is a projective irreducible variety of dimension n.
(C2) For each i = 0, . . . , n, Li is a regular map from X to Pki .
(C3) For generic values of c, the system fc = 0 has no solution in X .

The condition (C1) is required, because affine algebraic varieties do not behave correctly
by projection, but projective ones do. The irreducibility of X is not necessary, but it
simplifies the presentation. By decomposing the variety X into irreducible components,
we can reduce to this case. (C2) will give us the properties of WX . (C3) is obviously
needed, if we want to define a resultant polynomial.

Theorem 2.2. If the conditions (C) are satisfied, the projection Z = π1(WX) is an
irreducible hypersurface of Pk0 × · · · × Pkn .
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Proof. Consider a point x ∈ X . Its fiber π−1
2 (x) is a linear space of Pk0×· · ·×Pkn×{x}.

By condition (C2), this space is of dimension
∑n

i=0 ki−n−1. From the fiber theorem (see
(Shafarevitch, 1974)[p. 60] or (Harris, 1992)[p. 139]), we deduce that WX is irreducible
and of dimension

∑n

i=0 ki − 1. Thus, its projection Z by π1 is an irreducible variety of
dimension ≤

∑n

i=0 ki − 1.
Let U be the dense subset of Pk0 × · · · × Pkn such that VX(f0, . . . , fn) is empty (in

X). Let U ′ be the subset of P
k0 × · · · × P

kn such that VX(f1, . . . , fn) is finite. We have
U ⊂ U ′, for if VX(f1, . . . , fn) is not zerodimensional (i.e. it is of dimension ≥ 1) then
VX(f0, . . . , fn) = VX(f1, . . . , fn) ∩ VX(f0) is not empty. Therefore U ′ is a dense open
subset of Pk0 × · · · × Pkn which implies that WX ∩ (U ′ × X) is a dense subset of WX

and projects by π1 onto Z ∩U ′. As VX(f1, . . . , fn) is finite for any c ∈ Z ∩U ′, π−1
1 (c) =

{(c, ζ) : ζ ∈ VX(f1, . . . , fn) ∩ VX(f0)} is finite for c ∈ U ′. Therefore, WX and Z are of
the same dimension and Z is an hypersurface of Pk0 × · · · × Pkn . 2

2.2. Resultant over a parameterized variety

We consider here systems of the form

fc :=






f0(t) =
∑k0

j=0 c0,j κ0,j(t)
...

fn(t) =
∑kn

j=0 cn,j κn,j(t)

(2.1)

where t = (t1, . . . , tn) and the κi,j(t) are polynomials. We assume that they are not
zero, otherwise we drop them from the decomposition (2.1). Let Ki = (κi,j)j=0,...,ki

be
the vector of polynomials defining fi. We are looking for conditions on the coefficients
c = (ci,j) such that there exists t ∈ A

n with Ki(t) 6= 0 and f0(t) = · · · = fn(t) = 0.
Let U be the open subset of An such that Ki(t) 6= 0, for i = 0, . . . , n. Let σ0(t), . . .,

σN (t) be polynomials in R defining a map

σ : U → P
N

t 7→
(
σ0(t) : · · · : σN (t)

)
,

and ψi,j(x0, . . . , xN ), i = 0, . . . , n, j = 0, . . . , ki be homogeneous polynomials, such that

κi,j(t) = ψi,j

(
σ0(t), . . . , σN (t)

)
and deg(ψi,j) = deg(ψi,0) ≥ 1.

Notice that the maps σ and ψi,j are not uniquely defined. We may have many choices
for these functions. See section 4 for examples.

Let Xo be the image of σ and X = X
o

the closure of Xo in PN . In order to be able
to construct the resultant associated to the system (2.1) on the variety X , we make two
hypotheses:

(D)

{
(D1) The Jacobian matrix of σ = (σi)i=0,...,N is of rank n at one point of U.
(D2) For generic c, f1 = · · · = fn = 0 has a finite number of solutions in U.

When the field K has characteristic 0, (D1) is equivalent to the assumption that X has
dimension n. We will show that these conditions are sufficient to define the resultant. Let
Uo = {t ∈ U : κi,0(t) 6= 0, for i = 0, . . . , n} be the dense open subset of U and consider
the parameterization

τ : Pk0−1 × · · · × Pkn−1 × Uo → Pk0 × · · · × Pkn × PN

(c̃0, . . . , c̃n, t) 7→
(
c0, . . . , cn, σ(t)

)
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with ci = (ci,0, c̃i) and ci,0 = − 1
κi,0(t)

∑ki

j=1 ci,jκi,j(t) (κi,0(t) 6= 0). We denote by W o the

image of this map, W = W
o

its closure in Pk0×· · ·×Pkn×PN , π1 : Pk0×· · ·×Pkn×PN →
P

k0 × · · · × P
kn , and π2 : P

k0 × · · · × P
kn × P

N → P
N the canonical projections.

Theorem 2.3. Under the conditions (D), the variety W is irreducible and projects onto
a hypersurface Z = π1(W ). It is defined by one equation ResX(fc) = 0, where ResX(fc)
is the resultant of fc on the parameterized variety X.

Proof. The variety W is the closure of a parameterized variety W o. Therefore, it is
irreducible and its projection Z is also irreducible.

According to condition (D1), the Jacobian of σ is of rank n at one point of U and thus
on an open subset of U , which implies that the variety Xo (and thus X) is of dimension
n.

The fibers of the projection π2 : W o → Xo are linear spaces of dimension
∑n

i=0 ki −
n − 1, for we have Ki(t) 6= 0 when t ∈ U . By the fiber theorem ((Shafarevitch, 1974)[p.
60] or (Harris, 1992)[p. 139]), we deduce that W is of dimension

∑n

i=0 ki − 1.
Consider now the restriction of the projection π1 to W o : W o → P

k0 × · · · × P
kn .

According to condition (D2), there exists an open subset of Pk0 ×· · ·×Pkn on which the
number of solutions of f1 = · · · = fn = 0 is finite. The fibers of π1 on this open subset
is therefore of dimension 0. This shows that the projection π1(W

o) and thus Z is of the
same dimension as W , that is a hypersurface of Pk0 × · · · × Pkn , defined (up to a scalar)
by one equation. 2

Corollary 2.4. For any specialization of the parameters c = (ci,j), ResX(fc) = 0 if and

only if there exists (c, x) ∈W such that f̃i(x) :=
∑ki

j=0 ci,j ψi,j(x) = 0, for i = 0, . . . , n.

Proof. As the fibers of π2 aboveXo are of dimension
∑n

i=0 ki−n−1 and W is of dimen-
sion

∑n

i=0 ki − 1, the image π2(W ) is an irreducible variety of dimension n, containing
Xo. This shows that X = π2(W ).

Consequently ResX(fc) = 0 iff there exists x ∈ X such that (c, x) ∈ W , i.e. satisfying
f̃i(x) = 0, i = 0, . . . , n. 2

Remark 2.5. The degree of the resultant ResX(fc) in the coefficients ci,j of fi is bounded

by (but not necessarily equal to) the generic number of roots Vi = VX(f̃0, . . . , f̃i−1, f̃i+1,
. . . , f̃n). In the case where the linear forms (in ci,j) f̃i(ζ), ζ ∈ Vi, are all distinct, then the
degree of ResX(fc) in ci,j is exactly the number of generic roots. This is the case when
the line bundle Li is very ample or when t1, . . . , tn appear among the κi,j , j = 0, . . . , ki,
as it is illustrated in section 4.1 and 4.3.

3. Bezoutians

In this section, we relate Bezoutians and Resultants. We show that in the case (of
practical importance) where an open subset of the projective variety X is parameterized
by a polynomial map, the resultant is a factor of any maximal minor of the Bezoutian
matrix. See also (Kapur et al., 1994), (Cardinal and Mourrain, 1996), (Elkadi and Mour-
rain, 1999b), (Elkadi and Mourrain, 1999a) for connected results.
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3.1. Definitions and properties

We recall the construction of Bezoutian matrices, that we will use hereafter.

Definition 3.1. The Bezoutian Θf0,...,fn
of the polynomials f0, . . . , fn ∈ R (or simply

Θf0
if f1, . . . , fn are fixed) is the polynomial in R⊗K R defined by

Θf0,...,fn
(t, z):=

∣∣∣∣∣∣∣

f0(t) θ1(f0)(t, z) · · · θn(f0)(t, z)
...

...
...

...
fn(t) θ1(fn)(t, z) · · · θn(fn)(t, z)

∣∣∣∣∣∣∣
,

where

θi(fj)(t, z) :=
fj(z1, . . . , zi−1, ti, . . . , tn) − fj(z1, . . . , zi, ti+1, . . . , tn)

ti − zi

.

Let Θf0
(t, z) =

∑
θαβ t

αzβ, θα,β ∈ K, be the decomposition of the Bezoutian. We order
the monomials that appear in Θf0

. The Bezoutian matrix of f0, . . . , fn is the matrix
Bf0,...,fn

= (θαβ)α,β (also simply denoted by Bf0
if f1, . . . , fn are fixed).

The Bezoutian was used by E. Bézout to construct the resultant of two polynomials in
one variable (see (Bézout, 1764)).

Definition 3.2. Let v = (vi)i∈N,w = (wj)j∈N be two K-bases of R, and let

Θf0
=

∑

i,j

νij vi ⊗ wj , νij ∈ K ,

be the decomposition of the Bezoutian in these bases. The coefficient matrix (νij)i,j will
be denoted by Bv,w

f0
.

If v = w = (tα)α∈Nn , then Bv,w
f0

is the Bezoutian matrix of f0, . . . , fn. The matrix Bv,w
f0

is exactly the matrix of the K-linear map

Θ⊲
f0

: R̂ → R

Λ 7→ Θ⊲
f0

(Λ) :=
∑

i,j

νijΛ(wj)vi

in the dual basis (ŵj)j∈N
† of R̂ and the basis (vi)i∈N of R.

Similarly, we define Θ⊳
f0

(Λ) :=
∑
νij Λ(vi)wj ,Λ ∈ R̂. The matrix of this map in the

bases (v̂j)j∈N and (wi)i∈N is the transpose of Bv,w
f0

.
The following proposition shows that the Bezoutian matrices Bf0

, for all f0 ∈ R, admit
a diagonal decomposition in a common basis. It will be used in the following subsection.

Proposition 3.3. Let I = (f1, . . . , fn) be an ideal of R such that the K-vector space
A = R/I is of finite dimension D. Then there exists two bases v = (vi)i∈N and w =
(wi)i∈N of R such that (v1, . . . , vD), (w1, . . . , wD) are bases of A, vi, wi ∈ I for i > D,

† The dual basis satisfy ŵj(wi) = 1 iff i = j and 0 otherwise.
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and for any f0 in R the matrix Bv,w
f0

is of the form

v1 . . . vD vD+1 . . .


Mf0
0

0 Lf0




w1

...
wD

wD+1

...

(3.1)

where Mf0
is the matrix of multiplication by f0 in the basis (v1, . . . , vD) of A.

Proof. We recall that Â is identified with I⊥. Let us consider the two vector subspaces
E = Θ⊲

1(Â) and F = Θ⊳
1(Â) of R. From dimK(Â) = D, we deduce that E and F are of

dimension ≤ D. According to (Kunz, 1986), (Scheja and Storch, 1975), Θ⊲
1 and Θ⊳

1 are

isomorphisms between Â and A. Therefore, the image of Â by Θ⊲
1 and Θ⊳

1 are at least of
dimension D. Consequently, dimE = dimF = D and E is isomorphic as a vector space
to A. Thus we have R = E ⊕ I and by symmetry R = F ⊕ I.

From this, we deduce that Θ1 is in E⊗F⊕I⊗I, for it is in E⊗F ⊕E⊗I⊕I⊗F⊕I⊗I
and Θ⊲

1(I
⊥) = E, Θ⊳

1(I
⊥) = F .

Let us fix now f0 in R. It is clear from the definition 3.1 and from the invariance of
the Bezoutian when we substitute z for t in the first column, that Θf0

− (1⊗ f0)Θ1 is in
the ideal of R⊗K R generated by 1 ⊗ f1, . . . , 1 ⊗ fn. Consequently,

Θ⊲
f0

(Â) =
(
(1 ⊗ f0)Θ1

)⊲
(Â) = Θ⊲

1(f0 · Â) ⊂ Θ⊲
1(Â) = E.

The same argument shows that Θ⊳
f0

(Â) ⊂ F , and Θf0
∈ E ⊗ F ⊕ I ⊗ I.

Let v = (vi)i∈N and w = (wi)i∈N be two bases of R such that (v1, . . . , vD) is a basis
of E, (w1, . . . , wD) a basis of F and vi ∈ I , wi ∈ I for i > D. From the decomposition
Θf0

∈ E ⊗ F ⊕ I ⊗ I, Bv,w
f0

has a block-diagonal form.

Let us denote by Cf0
=

(
cij(f0)

)
i,j=1,...,D

the upper-left block in this decomposition

and by Mf0
= (mij)i,j=1,...,D the matrix of multiplication by f0 in the basis (v1, . . . , vD)

of A. We deduce from the decomposition above that, modulo the ideal
(
f1⊗1, . . . , fn⊗1

)
,

we have

Θf0
≡

D∑

i,j=1

cij(f0) vi ⊗ wj ≡ (f0 ⊗ 1)Θ1 ≡ (f0 ⊗ 1)




D∑

i,j=1

cij(1) vi ⊗ wj





≡

D∑

i,j=1

cij(1) (f0 vi) ⊗ wj ≡

D∑

k,j=1

( D∑

i=1

mkicij(1)

)
vk ⊗ wj ,

which implies that Cf0
= Mf0

C1.
Notice that the matrix C1 is invertible, for it is the matrix of Θ⊲

1 in the bases (v1, . . . ,

vD) of A and its dual basis in Â. Indeed, as f1, . . . , fn is a complete intersection, this

map is an isomorphism between Â and A (see (Scheja and Storch, 1975), (Kunz, 1986),
(Becker et al., 1996), (Elkadi and Mourrain, 1996)). By a change of bases, we may assume
that C1 = ID (the matrix identity), so that the matrix of Bv,w

f0
is of the form (3.1). 2
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3.2. Bezoutians and Resultants

We consider here the system (2.1) of n+ 1 “polynomials” in n variables.

Theorem 3.4. Assume that the conditions (D) are satisfied. Then any maximal minor
of the Bezoutian matrix Bf0,...,fn

is divisible by the resultant ResX(fc).

Proof. According to the conditions (D), the set of coefficients (ci,j) of f1, . . . , fn such
that V(f1, . . . , fn) is finite is a dense subset of Pk1 × · · · × Pkn . As Xo = σ(U) is a dense
subset of X , the set of (ci,j) such that V(f1, . . . , fn) is finite and in Xo is also a dense
subset. Let us choose “generic” coefficients in this subset for f1, . . . , fn.

The K-vector space R/(f1, . . . , fn) is of finite dimension. Let us denote by Dg the
generic dimension of this quotient. For any f0 ∈ R, we denote by rg(f0) the generic rank
of the Bezoutian matrix Bf0

. The minors of size rg(f0) of Bf0
are polynomials in c, which

are not all identically zero and any minor of size rg(f0) + 1 vanishes identically.
According to proposition 3.3, for generic values of c, the matrix Bf0

can be decomposed
as in (3.1), so that

rank(Bf0
) = rank(Mf0

) + rank(Lf0
).

As for generic values of c, the variety V(f0, . . . , fn) is empty, the multiplication matrix
Mf0

is generically invertible (the eigenvalues of Mf0
are the values of f0 at the roots of

f1, . . . , fn), that is of rank Dg = dimK (R/(f1, . . . , fn)).
Let us choose now f1, . . . , fn such that their roots are in Xo and f0 has a common root

with f1, . . . , fn. In this case, ResX(fc) = 0. Moreover, we have rank(Mf0
) < Dg (for f0

vanishes at one of the roots of f1, . . . , fn), and by specialization the rank of Lf0
cannot

exceed the generic one. Thus, rank(Bf0
) < rg(f0) and all the rg(f0) × rg(f0) minors

vanish.
As the set of systems (f0, . . . , fn) such that V(f1, . . . , fn) ⊂ Xo and f0 vanishes at

one of these points is a dense subset of the variety V
(
ResX(fc)

)
in Pk0 × . . . × Pkn ,

it implies that any maximal minor of the Bezoutian matrix vanishes on this resultant
variety. Consequently, any maximal minor (of size rg(f0)) is divisible by the resultant. 2

4. Examples and applications

We illustrate now our methods by some experiments in maple. It should be noticed
that the eliminant polynomials are very large and cannot be computed with classical
elimination methods like Gröbner basis techniques.

4.1. An example where the classical and toric resultants are degenerate

Consider the three following polynomials:





f0 = c0,0 + c0,1t1 + c0,2t2 + c0,3(t1
2 + t2

2)
f1 = c1,0 + c1,1t1 + c1,2t2 + c1,3(t1

2 + t2
2) + c1,4(t1

2 + t2
2)2

f2 = c2,0 + c2,1t1 + c2,2t2 + c2,3(t1
2 + t2

2) + c2,4(t1
2 + t2

2)2.

We are looking for conditions on the coefficients ci,j such that these three polynomials
have a common root in A

2. The resultant of these polynomials over P
2 is zero (whatever

the values of (ci,j), for the polynomials f0, f1, f2 vanish at the points (0 : 1 : i) and
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(0 : 1 : −i). For the same reason, the toric resultant of these polynomials also vanishes
(these polynomials have common roots in the associated toric variety).

Now applying the result of the previous section, we consider the map

σ : A
2 → P

3

(t1, t2) 7→ (1 : t1 : t2 : t21 + t22)

whose Jacobian is of rank 2. We denote by X the closure of the image of σ in P3 and let

ψ0 = (x0, x1, x2, x3)

ψ1 = (x2
0, x0x1, x0x2, x0x3, x

2
3)

ψ2 = (x2
0, x0x1, x0x2, x0x3, x

2
3)

where (x0 : x1 : x2 : x3) are the homogeneous coordinates of P3. We have the decompo-
sition fi =

∑
ci,jψi,j ◦ σ, i = 0, 1, 2. For generic values of the coefficients ci,j , we check

that the system f1 = f2 = 0 has a finite number of solutions in A
2, and so that by

theorem 3.4, any nonzero maximal minor of the Bezoutian matrix Bf0,f1,f2
is divisible

by the resultant ResX(f0, f1, f2). Computing a maximal minor of this Bezoutian matrix
of size 12 × 12, and rank 10, yields a huge polynomial in the coefficients ci,j , containing
207805 monomials. It can be factorized as Q1Q2(Q3)

2S, where

Q1 = −c0,2c1,3c2,4 + c0,2c1,4c2,3 + c1,2c0,3c2,4 − c2,2c0,3c1,4

Q2 = c0,1c1,3c2,4 − c0,1c1,4c2,3 − c1,1c0,3c2,4 + c2,1c0,3c1,4

Q3 = c0,3
2c1,1

2c2,4
2 − 2c0,3

2c1,1c2,1c2,4c1,4 + c0,3
2c2,4

2c1,2
2 + · · ·

S = c2,0
4c1,4

4c0,2
4 + c2,0

4c1,4
4c0,1

4 + c1,0
4c2,4

4c0,2
4 + c1,0

4c2,4
4c0,1

4 + · · ·

The polynomials Q3 and S contain respectively 20 and 2495 monomials. As for generic
equations f0, f1, f2, the number of points in V(f0, f1), V(f0, f2), V(f1, f2) is 4 (see for
instance (Mourrain, 1996)), according to remark 2.5 ResX(f0, f1, f2) is homogeneous of
degree 4 in the coefficients of each polynomial fi. Thus, the resultant ResX(f) corresponds
to the last factor S.

4.2. An example of the resultant as an implicit equation

We want to compute the “resultant” of the system





f0 = c0,0t1t2 + c0,1t2
2 + c0,2t3 + c0,3

(
t1

3 + t2
3 + t3

3
)

+ c0,4

(
t1t2

2 + t1
2t2 − t3

3
)

f1 = c1,0t1t2 + c1,1t2
2 + c1,2t3 + c1,3

(
t1

3 + t2
3 + t3

3
)

+ c1,4

(
t1t2

2 + t1
2t2 − t3

3
)

f2 = c2,0t1t2 + c2,1t2
2 + c2,2t3 + c2,3

(
t1

3 + t2
3 + t3

3
)

+ c2,4

(
t1t2

2 + t1
2t2 − t3

3
)

f3 = c3,0t1t2 + c3,1t2
2 + c3,2t3 + c3,3

(
t1

3 + t2
3 + t3

3
)

+ c3,4

(
t1t2

2 + t1
2t2 − t3

3
)

Following the previous sections, we consider the map:

σ : A
3 − {(0, 0, 0)} → P

4

(t1, t2, t3) 7→ (t1t2 : t22 : t3 : t1
3 + t2

3 + t3
3 : t1t2

2 + t1
2t2 − t3

3)

whose Jacobian is generically of rank 3. We denote by X the closure of the image of σ
in P4. We decompose as fi =

∑
ci,jψi,j ◦ σ with

ψi = (x0, x1, x2, x3, x4), i = 0, 1, 2, 3.
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We check that the system f1 = f2 = f3 = 0 has a finite number of solutions in A3 −
{(0, 0, 0)} for generic values of c. Thus according to theorem 3.4, any maximal minor of
the Bezoutian matrix Bf0,f1,f2,f3

is divisible by the resultant ResX(f0, f1, f2, f3).
Computing a maximal minor of this Bezoutian matrix, which is a 25 × 23 matrix of

rank 21, we obtain

∆5∆2∆3
6

(
∆5

4
∆3

3
∆2

6
− 4∆5

3
∆4∆3

3
∆2

6
+ 6∆5

2
∆4

2
∆3

3
∆2

6
− 4∆5∆4

3
∆3

3
∆2

6
+ ∆5∆2

12

−3∆5∆2
11

∆1 + 6 ∆5∆2
10

∆1
2
− 11 ∆5∆2

9
∆1

3
+ 15 ∆5∆2

8
∆1

4
− 18∆5∆2

7
∆1

5

+20∆5∆2
6
∆1

6
− 18 ∆5∆2

5
∆1

7
+ 15 ∆5∆2

4
∆1

8
− 11∆5∆2

3
∆1

9

+6∆5∆2
2
∆1

10
− 3∆5∆2∆1

11
+ ∆5∆1

12
+ ∆4

4
∆3

3
∆2

6
− ∆4∆2

11
∆1 + 4∆4∆2

10
∆1

2

−9∆4∆2
9
∆1

3
+ 16∆4∆2

8
∆1

4
− 22 ∆4∆2

7
∆1

5
+ 24 ∆4∆2

6
∆1

6
− 22∆4∆2

5
∆1

7

+16∆4∆2
4
∆1

8
− 9∆4∆2

3
∆1

9
+ 4∆4∆2

2
∆1

10
− ∆4∆2∆1

11
)

where ∆i is the determinant of the submatrix of

C =




c0,0 c0,1 c0,2 c0,3 c0,4

c1,0 c1,1 c1,2 c1,3 c1,4

c2,0 c2,1 c2,2 c2,3 c2,4

c3,0 c3,1 c3,2 c3,3 c3,4




corresponding to all columns except i. In fact the coefficients of Bf0,f1,f2,f3
are linear

forms in ∆i, i ∈ {1, 2, 3, 4, 5}. The last factor of this expansion is an irreducible polyno-
mial in ci,j and corresponds to the resultant of fc over X . Another way to look at this
polynomial is to consider it as the condition on the coefficients c such that the projective
point in the kernel of C (whose coordinates are (∆1 : · · · : ±∆5)) lies on the closure of
the image of σ. Thus replacing ∆i by the variable ±xi, we obtain the implicit equation
of degree 13 of the image of σ. When f0, . . . , fn have the same support, this computation
involving the n+ 1× n+ 1 determinants of the coefficients ci,j of the input polynomials
can easily be generalized, using the multilinearity and antisymmetry of the Bezoutian
matrix.

4.3. Blowing up and resultants

A typical situation, which appears in many practical cases is when we have to deal
with an overconstrained system of n+1 homogeneous equations in X = Pn depending on
parameters c, but whose zero set contains a variety Y independent of these parameters.
In such a case, each equation fi can be decomposed as

fi(t) =

m∑

j=0

qi,j(c, t) pj(t) , i = 0, . . . , n ,

where qi,j(c, t) are polynomials in t and c, and where the polynomials pj(t), j = 0, . . . ,m
define the variety Y . We are looking for the conditions on the parameters c such that
this system has a root outside Y , also called residual intersection conditions.

A standard construction used to analyze what happens outside Y consists in blowing
up X along Y , by computing the closure of the graph of the rational map

φ : X − Y → P
m

x 7→
(
p0(x) : · · · : pm(x)

)
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in X × Pm. The blowing up of X along Y is denoted by X̃Y .
Notice that the closure of the graph of the restriction of φ on any dense subset of

X − Y is also X̃Y (see (Harris, 1992)[p. 82]).
Let Xo = An − Y be the set of points (1 : t1 : · · · : tn) of X = Pn and let us define the

map

σ : A
n − Y → X × P

m

(t1, . . . , tn) 7→ ((1 : t1 : . . . : tn),
(
p0(1 : t1 : . . . : tn) : · · · : pm(1 : t1 : . . . : tn))

)
.

We immediately check that the rank of the Jacobian of this map is generically n. The
closure of the image of σ is the strict transform X̃Y of the blow up of X along Y . If we
assume moreover that for generic values of the parameters c the system f1 = · · · = fn = 0
has a finite number of solutions in An − Y , then according to theorem 2.3, the resultant
over X̃Y is well defined. Let us illustrate it by the following system





f0 = c0,0 + c0,1t1 + c0,2t2 + c0,3t3 + c0,4t4 + c0,5

(
t1

2 − t2t3
)

+ c0,6

(
t1t2 − t4

2
)

f1 = c1,0 + c1,1t1 + c1,2t2 + c1,3t3 + c1,4t4 + c1,5

(
t1

2 − t2t3
)

+ c1,6

(
t1t2 − t4

2
)

f2 = c2,0 + c2,1t1 + c2,2t2 + c2,3t3 + c2,4t4 + c2,5

(
t1

2 − t2t3
)

+ c2,6

(
t1t2 − t4

2
)

f3 = c3,0 + c3,1t1 + c3,2t2 + c3,3t3 + c3,4t4 + c3,5

(
t1

2 − t2t3
)

+ c3,6

(
t1t2 − t4

2
)

f4 = c4,0 + c4,1t1 + c4,2t2 + c4,3t3 + c4,4t4 + c4,5

(
t1

2 − t2t3
)

+ c4,6

(
t1t2 − t4

2
)

For generic values of the parameters, we check that the system f1 = f2 = f3 = f4 = 0
has a finite number of roots (i.e. 5).

After homogenization ti = xi

x0

, we see that the zero set of every homogenized equation

contains the twisted cubic C defined by x0 = 0, x2x4 − x3
2 = 0, x1x4 − x3x2 = 0, x1x3 −

x2
2 = 0 in the plane at infinity. We blow up this curve by considering the closure of the

graph of

φ : P
4 − C → P

3

(x0 : x1 : x2 : x3 : x4) 7→ (x0
2 : x2x4 − x3

2 : x1x4 − x3x2 : x1x3 − x2
2).

The map σ that we use to parameterize a dense open subset of this graph is

σ : A
4 → P

4 × P
3

(t1, t2, t3, t4) 7→
(
(1 : t1 : t2 : t3 : t4), (1 : t2t4 − t3

2 : t1t4 − t3t2 : t1t3 − t2
2)

)
.

Its Jacobian is of rank 4. A maximal minor of the Bezoutian matrix Bf0,...,fn
, expressed

in terms of the 5 × 5 determinants ∆i,j , i, j ∈ {1, 2, 3, 4, 5, 6, 7} of the coefficient matrix
(ci,j)0≤i≤4, 0≤j≤6 corresponding to all columns except i and j is

−∆1,2∆4,5∆1,3∆3,5∆1,4∆2,5∆1,7 + ∆1,3
2
∆1,2∆4,5

2
∆2,3∆2,5 + ∆1,4

2
∆1,3∆2,3∆1,7

2
∆2,5 + · · ·

The resultant over the blowing up of P4 along C is this polynomial in ci,j divided by
∆2,3,5,6 ∆1,5. We should remark that this resultant vanishes not only when the hyper-
surfaces V(fi) intersect outside C, but also when they share a common tangent along
C.

References

Becker, E., Cardinal, J., Roy, M., Szafraniec, Z. (1996). Multivariate Bezoutians, Kronecker symbol
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