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Abstract

Let P1, . . . , Pn be generic homogeneous polynomials in n variables of degrees d1, . . . , dn respectively. We prove

that if ν is an integer satisfying
∑n

i=1
di − n + 1 − min{di} < ν, then all multivariate subresultants associated to

the family P1, . . . , Pn in degree ν are irreducible. We show that the lower bound is sharp. As a byproduct, we get

a formula for computing the residual resultant of
�

ρ−ν+n−1

n−1

�
smooth isolated points in Pn−1.

Résumé

Soient P1, . . . , Pn des polynômes homogènes génériques en n variables de degré respectif d1, . . . , dn. Nous montrons

que si ν est un entier tel que
∑n

i=1
di − n + 1 − min{di} < ν, tous les sous-résultants multivariés de degré ν des

polynômes P1, . . . , Pn sont irréductibles. Nous montrons également que cette borne est atteinte dans des cas

particuliers. Comme conséquence directe nous obtenons une nouvelle formule pour le calcul du résultant résiduel

de
�

ρ−ν+n−1

n−1

�
points lisses isolés dans Pn−1.

Classical subresultants of two univariate polynomials have been studied by Sylvester in the foundational
work [13]. Multivariate subresultants, introduced in [2], provide a criterion for over-constrained polynomial
systems to have Hilbert function of prescribed value, generalizing the classical case. To be more precise,
let K be a field. If P1, . . . , Ps are homogeneous polynomials in K[X1, . . . , Xn] with di = deg(Pi) and s ≤ n,
Hd1,...,ds

(.) is the Hilbert function of a complete intersection given by s homogeneous polynomials in n
variables of degrees d1, . . . , ds, and S is a set of Hd1,...,ds

(ν) monomials of degree ν, the subresultant ∆ν
S

is a polynomial in the coefficients of the P ′
is of degree Hd1,...,di−1,di+1,...,dn

(ν − di) in the coefficients of Pi

(i = 1, . . . , s) having the following universal property: ∆ν
S 6= 0 if and only if Iν +K〈S〉 = K[X1, . . . , Xn]ν ,

where Iν is the degree ν part of the ideal generated by the Pi’s (see [2]).
Multivariate subresultants have been used in computational algebra for polynomial system solving

([10],[14]) as well as for providing explicit formulas for the representation of rational functions ([11,6,7,12]).
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The study of their properties is an active area of research ([3,4,6,7,8]). In particular, it is important to
know which S verify ∆ν

S 6= 0, and which of these ∆ν
S are irreducible (see the final remarks and open

questions in [2] and the conjectures in [7]). Partial results have been obtained in this direction. In [5] it is
shown that, if s = n and

∑n

i=1 di − n − min{di} < ν, then for every set S of monomials of degree ν and
cardinal Hd1,...,dn

(ν), the polynomial ∆ν
S is not identically zero. Moreover, in [4], it is also proved that

if s = n, ν =
∑n

i=1 di − n, and S = {xν
j } for j = 1, . . . , n, then ∆ν

S is an irreducible polynomial in the
coefficients of the P ′

is. In [8, Lemma 4.2] the irreducibility of ∆ν
S is shown for s = n = 2, max{d1, d2} ≤ ν,

and S = {Xν
2 , X1X

ν−1
2 , . . . , X

Hd1,d2
(ν)−1

1 X
ν−Hd1,d2

(ν)+1
2 }.

In this note we study the irreducibility problem in the case s = n. Let us introduce some notations
in order to state our result. Let ρ :=

∑n

i=1(di − 1). For i = 1, . . . , n and α ∈ Zn
≥0 such that |α| = di,

introduce a new variable ci,α. Let A := Z [ci,α, i = 1, . . . , n, |α| = di] and set

Pi(x1, . . . , xn) :=
∑

|α|=di

ci,αxα. (1)

Theorem For every ν such that ρ − min{di} + 1 < ν and every set S of monomials of degree ν and

cardinality Hd1,...,dn
(ν), the subresultant ∆ν

S(P1, . . . , Pn) is irreducible in A.

Observe that, if n = 2, then ρ − min{di} + 1 = d1 + d2 − 2 − min{di} + 1 = max{di} − 1, and this is
equivalent to max{di} ≤ ν, so our result contains those in [8].

Proof of the Theorem: For simplicity we assume hereafter that d1 ≥ . . . ≥ dn ≥ 1. First observe that
if ν > ρ then ∆ν

S is simply a resultant, and is hence known to be irreducible. So, we can suppose w.l.o.g.
that dn > 1. We thus only have to consider integers ν such that

ρ ≥ ν > ρ − dn + 1 =

n−1
∑

i=1

(di − 1), (2)

where we recall that ρ =
∑n

i=1(di −1). We begin by computing the multi-degree of the subresultants ∆ν
S ;

we know (see [2]) that
degPi

(∆ν
S) = Hd1,...,di−1,di+1,...,dn

(ν − di).

But from the standard short exact sequence

0 →

R

(f1, . . . , fi−1, fi+1, . . . , fn)
(−di)

×fi
−−−→

R

(f1, . . . , fi−1, fi+1, . . . , fn−1)
→

R

(f1, . . . , fn)
→ 0,

where f1, . . . , fn are homogeneous polynomials of respective degree di in a graded polynomial ring R and
f1, . . . , fn is a complete intersection in R, we deduce

Hd1,...,di−1,di+1,...,dn
(t − di) = Hd1,...,di−1,di+1,...,dn

(t) − Hd1,...,dn
(t)

for all integer t. It follows that for all integer ν ≥ ρ − dn + 1,

degPi
(∆ν

S) =
d1 . . . dn

di

− Hd1,...,dn
(ν) =

d1 . . . dn

di

−

(

ρ − ν + n − 1

n − 1

)

, (3)

where that last equality comes from the facts that Hd1,...,dn
(ρ − t) = Hd1,...,dn

(t) for all integer t, and
Hd1,...,dn

(t) =
(

t+n−1
n−1

)

for all 0 ≤ t < dn. We define a :=
(

ρ−ν+n−1
n−1

)

. As a does not depend on i ∈

{1, . . . , n} and residual (or reduced) resultants of a isolated points in Pn−1 have the same degree in the
coefficients of Pi as the right hand side of (3), this suggest that we compare ∆ν

S with residual resultants.
We will work with an ideal G defining a points in Pn−1 which is generated in degree at most dn and

such that Gdn−1 6= 0. Ideals defining a points in sufficiently generic position are generated in degree
exactly ρ − ν + 1 (see [9, Proposition 4]). Since by (2) we have dn > ρ − ν + 1, we thus choose such an
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ideal G = (g1, . . . , gm), where deg(gi) = ρ−ν +1 for all i = 1, . . . , m, defining a points in generic position
(see [9] for the definition of “generic position”), and hence locally a complete intersection.

Now consider the following specialization of polynomials Pi’s

Pi 7→ P i :=

m
∑

j=1

pij(x)gj(x), (4)

where pij(x) =
∑

|α|=di−ρ+ν−1 c
|α|
ij xα is a generic polynomial of degree di−ρ+ν−1. There exists a resultant

associated to the system P 1, . . . , Pn, called the residual resultant. We denote it by ResG(P 1, . . . , Pn). Let
us recall its main properties (see [1] §3.1).

– ResG(P 1, . . . , Pn) is a homogeneous and irreducible polynomial in the ring of all the coefficients Q[c
|α|
ij ],

– For any given specialization of the coefficients c
|α|
ij ’s sending P i to Qi, we have

ResG(Q1, . . . , Qn) = 0 if and only if (Q1, . . . , Qn)sat  G = Gsat,

– ResG(P 1, . . . , Pn) is multi-homogeneous: it is homogeneous in the coefficients of each polynomials P i,
i = 1, . . . , n, and we have

deg
P i

(ResG(P 1, . . . , Pn)) =
d1 . . . dn

di

− a.

We are now going to compare this residual resultant with the specialized subresultant ∆ν
S(P 1, . . . , Pn),

which is non-zero as proved in [4]. We claim that we have the following implications:

∆ν
S(Q1, . . . , Qn) 6= 0 ⇒ H(Q)(ν) = a ⇒ H(Q)(t) = a for all t ≥ ν ⇒ ResG(Q1, . . . , Qn) 6= 0, (5)

where H(Q)(.) denotes the Hilbert function associated to the ideal (Q1, . . . , Qn). Only the second im-

plication needs to be proved, the others follow directly from the algebraic properties of resultants and
subresultants. We know that HG(t) = a for all t ≥ ρ − ν + 1 (see [9]), and since we have supposed (2),
it is a straightforward computation to show that ν ≥ ρ − ν + 1. It follows that, by hypothesis, the ideals
G and (Q) coincide in degree ν and have Hilbert function a in this degree. As they are both generated
in degree at most ν this implies that they coincide in all higher degrees, and therefore they both have
Hilbert function equal to a in these degrees, because G is the defining ideal of a set of points.

Due to (5) and the irreducibility of the residual resultant, we deduce that ResG(P 1, . . . , Pn) divides
∆ν

S(P 1, . . . , Pn). But both polynomials have the same degree, so they must be equal up to a rational
number (giving a new formula for computing this residual resultant using [3]). Since this residual resultant
is irreducible, and since ∆ν

S and ∆ν
S(P 1, . . . , Pn) have the same multi-degree, this shows that ∆ν

S is
irreducible in Q[coeff(Pi)].

It remains to prove that ∆ν
S is irreducible in Z[coeff(Pi)]. As it is irreducible in Q[coeff(Pi)], we only

have to show that ∆ν
S has content ±1. Suppose that this is not the case, and let p ∈ Z be a prime dividing

the content of ∆ν
S . Let k be the algebraic closure of Zp. This implies that ∆ν

S = 0 in K := k(coeff(Pi)),
and hence S is linearly dependent in K[x1, . . . , xn]/〈P1, . . . , Pn〉, contradicting the main result of [4].

Reducibility in lower degrees: We now exhibit some sets S of degree ν = ρ − min{di} + 1 such that
∆ν

S factorizes. This shows that the lower bound in our theorem is sharp.

• n = 2, d1 > d2: In this case, ν = d1 − 1 ≥ d2, and Hd1,d2
(ν) = d2. Thus ∆ν

S can be here computed

with Sylvester type matrices [13]. However, setting f2 = c0x
d2

1 + c1x
d2−1
1 x2 + · · ·+ cd2

xd2

2 , the universal
property of the subresultant ∆ν

S shows immediatly that it is a power of c0, and we have already seen

that its degree is d1 − d2 + 1; it follows that ∆ν
S = cd1−d2+1

0 , so it can not be irreducible.
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• n > 2, d1 − 1 > d2 = d3 = . . . = dn = 1: Again in this case, ν = d1 − 1 and Hd1,d2
(ν) = 1. Choose

S = {xν
1} and, if fi = c1ix1 + . . . + cnixn, i = 2, . . . , n, we set δ := det (cij)2≤i,j≤n

. Applying Lemma

4.4 in [6] to this situation, we get that ∆ν
S = δν . So, ∆ν

S is not irreducible.
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