Laplace-Beltrami Eigenfunctions Towards an algorithm that " understands " geometry - Inria - Institut national de recherche en sciences et technologies du numérique Access content directly
Conference Papers Year : 2006

Laplace-Beltrami Eigenfunctions Towards an algorithm that " understands " geometry

Bruno Lévy

Abstract

One of the challenges in geometry processing is to automatically reconstruct a higher-level representation from raw geometric data. For instance, computing a parameter-ization of an object helps attaching information to it and converting between various representations. More generally , this family of problems may be thought of in terms of constructing structured function bases attached to surfaces. In this paper, we study a specific type of hierarchical function bases, defined by the eigenfunctions of the Laplace-Beltrami operator. When applied to a sphere, this function basis corresponds to the classical spherical harmonics. On more general objects, this defines a function basis well adapted to the geometry and the topology of the object. Based on physical analogies (vibration modes), we first give an intuitive view before explaining the underlying theory. We then explain in practice how to compute an approximation of the eigenfunctions of a differential operator, and show possible applications in geometry processing.
Fichier principal
Vignette du fichier
SMI_Laplacian.pdf (2.9 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

inria-00105566 , version 1 (22-09-2016)

Identifiers

Cite

Bruno Lévy. Laplace-Beltrami Eigenfunctions Towards an algorithm that " understands " geometry. IEEE International Conference on Shape Modeling and Applications - SMI 2006, Jun 2006, Matsushima, Japan. pp.13, ⟨10.1109/SMI.2006.21⟩. ⟨inria-00105566⟩
3642 View
768 Download

Altmetric

Share

Gmail Facebook X LinkedIn More