
HAL Id: inria-00107339
https://inria.hal.science/inria-00107339

Submitted on 18 Oct 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Toolkit for Addressing HCI Issues in Visual Language
Environments
Emmanuel Pietriga

To cite this version:
Emmanuel Pietriga. A Toolkit for Addressing HCI Issues in Visual Language Environments. 2005
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05), Sep 2005,
Dallas, TX, USA, �10.1109/VLHCC.2005.11�. �inria-00107339�

https://inria.hal.science/inria-00107339
https://hal.archives-ouvertes.fr

A Toolkit for Addressing HCI Issues in Visual Language Environments

Emmanuel Pietriga

INRIA Futurs & Laboratoire de Recherche en Informatique (LRI)

Bât. 490 - Université Paris Sud, 91405 Orsay, France

emmanuel.pietriga@inria.fr

Abstract

As noted almost a decade ago, HCI (Human-Computer

Interaction) aspects of visual language environments are

under-developed. This remains a fact, in spite of the central

role played by user interfaces in the acceptance and usabil-

ity of visual languages. We introduce ZVTM, a toolkit aimed

at promoting the development of HCI aspects of visual en-

vironments by making the creation of interactive structured

graphical editors easier, while favoring the rapid integra-

tion of novel interaction techniques such as zoomable user

interfaces, distortion lenses, superimposed layers, and al-

ternate scrolling and pointing methods.

1. Introduction

Visual language environments ease the programmer’s

task and increase his productivity by providing him with

debugging tools as well as syntax- and semantics-aware

editing primitives. Combined with a high level of live-

ness, these primitives limit the level of viscosity associated

with the manipulation of visual language programming con-

structs, and can prevent the programmer from making some

kinds of errors [20]. Other representation and interaction

issues such as the screen real-estate problem are also ad-

dressed at the level of the visual environment, which there-

fore plays a central role in the usability of visual languages

and their acceptance by programmers [14].

The implementation of visual language environments

can be achieved through the use of various visual lan-

guage meta-tools (see [27] for an example and list of ref-

erences). It can also be done from scratch, coding the user

interface with a combination of high-level WIMP (Window

Icon Menu Pointer) toolkits (e.g. Java/Swing) and lower-

level graphical APIs (e.g. Java2D) which typically pro-

vide methods for drawing shapes and manage low-level

events through a set of callbacks. They are used to build

application-specific interface components in which arbi-

trary graphical objects can play the role of widgets and are

necessary for instance to represent visual programming lan-

guage constructs or any other complex representation that

cannot be handled by traditional WIMP widgets.

Low-level graphical APIs are powerful but cost more im-

plementation and maintenance time, and put more burden

on the programmer of the visual environment. As a conse-

quence, and because novel interaction techniques are them-

selves difficult to implement, HCI aspects of visual lan-

guage environments and visual language meta-tools are of-

ten under-developed as noted by Green almost a decade ago

[20]. Such aspects are nevertheless important and deserve

more attention and effort on the part of visual language en-

vironment designers and implementors.

One way to promote the integration of new interaction

techniques in visual environments is to build toolkits that

reduce the cost of implementing the user interface part of in-

teractive software while offering off-the-shelf customizable

interaction components, as considered in [2]. In this pa-

per we describe ZVTM (Zoomable Visual Transformation

Machine), a Java-based toolkit designed to ease the task of

creating the complex interface components required by vi-

sual language environments, visual language meta-tools or

graph editors, while favoring the rapid integration of novel

interaction techniques from which these applications can

significantly benefit.

1.1. Related work

CPN2000 [3] is a good but rare example of use of novel

interaction techniques in a visual editor, experimenting with

toolglasses, bi-manual manipulation and marking menus for

colored Petri net editing. Few visual language environments

and meta-tools make use of such techniques in their user in-

terface. One notable exception is Pounamu, which provides

ZUI (Zoomable User Interface)-based multiple consistent

views to address the screen real-estate problem [25].

Pounamu’s zoomable views are implemented with Jazz.

Along with its replacement Piccolo [4], this ZUI toolkit is

similar in its purpose to ZVTM. But our approach relies

on a more human-centric representation model and tries to

(a)

Camera 1

Virtual Space 2

Virtual Space 1

Camera 3

Camera 2

(b)Belongs to layer associated with Camera 2

Belong to layer associated with Camera 3

Figure 1. Schematic representation of virtual spaces, cameras, glyphs, views and layers

be more lightweight. While acknowledging the richness of

scene graphs, we chose to use a more basic approach, tak-

ing into consideration the fact that applications often have to

maintain their own internal representation of what is being

specified (e.g. the structure of a visual program). Having to

maintain a separate scene graph for the graphical represen-

tation puts significant programming burden on the applica-

tion programmer and consumes more memory than a simple

stack of (possibly linked) graphical objects.

Earlier toolkits [13, 22, 26] implement specific interac-

tion techniques. ZVTM gathers many of these in a single

extensible framework, favoring their combination through

a simple API. In this respect it is closer to information vi-

sualization toolkits [19, 21]. These, however, provide ded-

icated data structures and high-level manipulation methods

optimized for the visualization of very large quantities of in-

formation, and are not aimed at building highly customized

applications such as visual language environments.

1.2. Applications

ZVTM is distributed [18] under an open source license

and can be used in both free and commercial products. To

our knowledge, it has been used in a dozen different appli-

cations, among which four have been designed and imple-

mented by the author. These applications range from visual

language environments to distributed system monitoring fa-

cilities and domain-specific graph editors. After giving an

overview of the toolkit, we discuss common issues associ-

ated with user interface design and implementation of visual

environments, relying mainly on the following two applica-

tions to illustrate how they were addressed with our toolkit.

VXT [30] is a domain-specific visual programming lan-

guage for the specification of structural XML transforma-

tions. It is a declarative rule-based language with some

control structures, relying on a unified treemap-based visual

formalism [37, 30] for representing document structures,

document schemas and transformation rules. The epony-

mous visual environment was the first application based on

ZVTM and uses many features of the toolkit.

IsaViz [17] is a visual authoring tool for RDF [38] de-

signed and distributed by the World Wide Web Consortium

(W3C). RDF models are graphs whose textual serializa-

tions in RDF/XML or other triple-oriented formats are not

user-friendly, partly because they fail to convey the models’

graph structure. IsaViz generates editable visual represen-

tations as zoomable 2D graphs which are often easier to un-

derstand. While not a visual language environment, similar

representation and interaction issues arise, as IsaViz is a vi-

sual editor aware of the structure and semantics of the data

being manipulated.

2. Overview

ZVTM provides the application programmer with build-

ing blocks for implementing complex 2.5D (zoomable) in-

terface components that cannot be handled by traditional

WIMP widgets. It also features off-the-shelf visualization

and navigation components that can easily be combined.

2.1. Concepts and architecture

The toolkit is based on the metaphor of infinite1 uni-

verses called virtual spaces that can be observed through

movable and zoomable cameras and contain potentially

large amounts of geometrical shapes called glyphs.

All glyphs rely on the same polymorphic object model.

A glyph belongs to a specific virtual space, but can be ob-

served through different cameras simultaneously as each

virtual space can contain multiple cameras as shown in Fig-

ure 1-a. Cameras are associated with viewports called views

which correspond to windows in the user interface. Distor-

tion lenses [12] can be applied to views. If more than one

camera is associated with a given view, each camera draws

its content on a transparent layer (Figure 1-b). The glyph

graphical model features alpha channel support; glyphs can

therefore be opaque, translucent or transparent.

1Actually bounded by the representation of 64-bit integers in the cur-

rent Java implementation, i.e. ±9 × 10
18.

Translucency is one of several orthogonal visual vari-

ables that define a glyph. Modifications to these variables

can be animated using various temporal schemes (see sec-

tion 5). Camera translations and altitude changes can also

be animated, as well as distortion lens modifications.

Input event handling is managed through high-level call-

backs that provide context about the event such as the list of

objects intersected by the cursor. The event handler’s inter-

face can be extended at will to support non-standard events,

such as the use of two pointing devices simultaneously (see

section 6).

On top of these concepts are implemented various in-

teraction techniques that can be combined: zoomable user

interfaces, superimposed translucent layers, fisheye lenses,

rate-based scrolling and speed-dependent automatic zoom-

ing, semantic pointing, and more. The use of these tech-

niques is illustrated in the next sections with the two appli-

cations described earlier.

2.2. Low­level graphical operation management

Toolkits such as Java2D are powerful but difficult to use,

requiring the programmer to deal with low-level graphical

operations and implementation problems. ZVTM allows

the programmer to consider the task at a more abstract level

by automatically handling the following operations:

Clipping: the toolkit is designed to handle many glyphs

while maintaining an acceptable refresh rate. Two ZUI-

aware clipping algorithms contribute to this: an analytical

clipping pass that determines whether each glyph should be

projected and painted or not (based on its bounding box in

virtual space), and an optional top-down pass that can detect

some occlusion configurations and ignore glyphs that will

not be visible in the final rendering (taking glyph translu-

cency into account).

Multi-threading and consistency: multiple cameras as-

sociated with different views can exist simultaneously, ob-

serving the same or different regions of (possibly different)

virtual space(s). A glyph observed through different cam-

eras simultaneously is actually a single object with multiple

projected coordinates. As a consequence, the synchroniza-

tion and consistency of multiple views is automatic.

Repaint requests: views are refreshed lazily, i.e., only

upon request. Such repaint requests are fired automatically,

so that the programmer only has to assign new values to

glyph and camera visual properties. Each camera is associ-

ated with a view which runs in its own thread. Each thread

tries to provide a frame rate as close to 25 images per sec-

ond as possible (unless specified otherwise), but not beyond

this limit as it would consume CPU resources for nothing.

Animation management: all camera, glyph and lens

animations are handled by the same module, which offers

a simple and unified API for their declarative specification.

Figure 2. VShape model

The module manages a queue of pending animations and

can handle concurrent animations affecting orthogonal vi-

sual variables of the same object.

Hardware acceleration: various graphics acceleration

methods are available, such as Java Volatile Images and var-

ious OpenGL rendering pipelines. ZVTM features different

types of views that provide hardware acceleration based on

these methods while sharing the exact same API.

These mechanisms make the user interface part of the

application less difficult and less time-consuming to imple-

ment, thus allowing the programmer to devote more time to

enhancing the interface’s quality, features and design.

3. Mapping data to visual variables

As stated in [20], “data must be presented in a usable

form before it becomes information, and the choice of repre-

sentation affects the usability”. The representation system,

and thus the graphical object model, play a central role in

converting data into information. Low-level graphical APIs

provide large sets of powerful drawing primitives that ad-

dress many programmers’ and designers’ needs. However,

these primitives are often specific to the associated geomet-

rical shape, and APIs suffer from the lack of a unified set of

instructions for manipulating heterogeneous graphical ob-

jects. Moreover, these instructions often rely on machine-

oriented models for encoding geometrical shapes. Such

models have advantages (e.g. performance) but do not make

the mapping of data to visual variables straightforward.

ZVTM’s graphical object model is inspired by Bertin’s

perceptual dimensions [5] and the Visual Abstract Ma-

chine’s visual type system [36]. The model uses encapsu-

lation to provide the programmer with a polymorphic in-

struction set for manipulating all graphical objects, called

glyphs, no matter their actual shape and appearance2.

2In this respect we diverge from the VAM’s visual type system which is

intrinsically polymorphic but limited in the kind of shapes it can represent,

as ellipses, rectangles, bitmap images and splines are not supported.

Figure 3. GSS rendering of an RDF graph in IsaViz, using a ZUI, a distortion lens and an overview

All glyphs are defined by the following orthogonal at-

tributes (Figure 2): the cartesian coordinates of the shape’s

centroid, the size of the shape’s bounding circle, the shape’s

orientation, its border and fill colors, associated with an

optional alpha channel for translucency. Basic predefined

shapes are fully defined by these attributes. Other, more

complex, shapes may require additional attributes. For in-

stance, VShape glyphs support an arbitrary number of ver-

tices, whose position within the bounding circle is repre-

sented by a normalized float (see [36] for more details).

Glyphs can also be composed of other glyphs and still de-

fine polymorphic operations (resizing, reorienting, translat-

ing, coloring).

The resulting representation system, with its orthogonal

visual variables that mirror perceptual dimensions, makes

mapping data to graphical attributes easy. It is coupled with

the direct manipulation interface shown in Figure 2 that fa-

cilitates the definition of glyphs, drawing a parallel with

[16] which demonstrates the importance, for color selec-

tion, of a well-designed interface over the supposed intu-

itiveness of color models.

Both GSS [29], the Graph Stylesheet language for RDF

graphs implemented in IsaViz (Figure 3) and VXT (Figure

4) rely heavily on the glyph model to dynamically map data

and represented object properties to graphical attributes in a

straightforward manner.

4. Scalability of representations

One problem commonly associated with visual program-

ming languages is the diffuseness of notations and the con-

sequent need for screen real-estate (a limited resource).

Both representation and interaction solutions can be ex-

plored to address this problem. For instance, designing

domain-specific languages tends to increase the closeness

of mapping [20], which is often accompanied by a reduc-

tion of the number of lexemes required to express a given

concept or instruction. However, this is very dependent on

the language and underlying paradigm. Generic solutions

to the problem are more likely to be found on the side of

HCI aspects of the interface. ZVTM makes available vari-

ous techniques coming from the field of information visual-

ization aimed at addressing scalability issues.

4.1. Focus+context techniques

Visualizing large quantities of information poses the

problem of getting a detailed view of the current area of in-

terest while maintaining user awareness of the global struc-

ture. It is also important to put the focus area in context in

order to avoid user disorientation. This can be achieved by

different means such as distortion lenses which provide a

smooth transition between the focus and context, overviews

(also called radar views) identifying the current focus area,

or superimposed layers.

In order to support the display of large RDF graph struc-

tures, IsaViz uses a ZUI coupled with geographic book-

marks and a set of navigation helpers to quickly navigate in

the representation, allowing smooth transitions from global

to detailed representations of (areas of) the graph. However,

these facilities by themselves are insufficient for very large

graphs, as it is still easy to get lost in the representation.

Figure 4. VPME represented as a visual filter
above the source structure in VXT (two layers)

Two focus+context techniques are used to further assist the

user (Figure 3):

• an additional ZVTM view displaying an overview of

the graph and identifying the current region observed

through the main camera,

• a distortion lens providing a detail-in-context represen-

tation of the region of interest.

Thanks to the multiple synchronized views mechanism,

implementing the overview required less than twenty lines

of code, event callbacks for controlling the main camera

from the overview window included. Activating or deacti-

vating the distortion lens required only one line of code.

Lenses are based on Carpendale and Montagnese’s

framework [12]. Right now, the following drop-off func-

tions are available: Linear, Inverse Cosine and Manhattan.

They can be used in conjunction with the following distance

functions: L(1), L(2), L(∞). Other functions can eas-

ily be added to the toolkit simply by subclassing existing

lenses and overriding the mathematical functions defining

the drop-off profile and Lp-metric. All lens-related oper-

ations, including animation capabilities, are automatically

available for every lens type.

Another focus+context technique, which also addresses

the screen real-estate problem, is to display different obser-

vation regions on superimposed translucent layers, which

thus share the same physical screen space. As mentioned

in section 2.1, ZVTM supports the combination of differ-

ent cameras in the same view, organized in layers. Used in

conjunction with translucent objects, this mechanism makes

the creation of overview layers [15, 24] straightforward. As

in [31], such layers can be displayed temporarily. Layers

can also be used for different purposes. A separate layer

can for instance store toolglasses (see section 6), or be used

in a visual programming environment to display secondary

notations such as comments referring to visual source code,

which are then easy to separate from the actual program-

ming constructs.

Layers can also be used in more innovative ways. For

instance, the visual interface of Blackwell’s SWYN [7] for

constructing regular expressions from examples could eas-

ily be implemented in ZVTM. In a related application do-

main, VXT uses superimposed layers to represent instances

of XML documents or schemas in the background, while

the foreground layer contains Visual Pattern Matching Ex-

pressions (VPMEs) that select source nodes and extract in-

formation from the source structure (they are the left-hand

side of transformation rules). Taking advantage of VXT’s

unified visual formalism based on treemaps, this multi-layer

representation conveys the idea of visual filters, as a VPME

closely resembles the subtrees it matches from a purely vi-

sual perspective (Figure 4). The VXT environment thus of-

fers an intuitive metaphor for evaluating pattern matching

expressions against source XML structures, exploiting hu-

man visual capabilities and allowing programmers to reason

about transformation rules visually. To address the problem

of visual interference caused by their superimposition, the

two layers are visually differentiated by rendering the back-

ground source structure using shades of gray with minimum

contrast while VPMEs are rendered with highly-contrasted

vivid colors, following Tufte’s minimal contrast principle

[35].

4.2. Semantic zooming

In the previous section we presented techniques to ad-

dress the problem of providing detailed in-context views of

large-workspace regions on a limited display surface. These

techniques all rely on geometrical transformations of graph-

ical objects, either through magnification or distortion, but

do not tamper with the object’s appearance and content. A

complementary approach implemented by ZUI toolkits is

to modify the appearance of objects as the amount of screen

real-estate available to them changes. This technique, called

semantic zooming [28], makes it possible to render objects

with varying levels of details depending on the camera’s al-

titude of observation.

As semantic zooming is a domain-specific issue, ZVTM

does not provide an “implementation” of it, as no such

thing exists, but supports it through the definition of new

glyph types. The amount of screen real-estate available for

the rendering of a glyph instance (i.e. its apparent size) is

known by its rendering method through the projection pro-

cess that occurs earlier in the display pipeline. Therefore,

programmers willing to create a glyph type that exploits

semantic zooming only have to subclass an existing glyph

type and override the rendering method. The apparent size

value computed through projection by the ZVTM engine

can then be used to decide what level of details to select.

In its implementation of the second version of the GSS

stylesheet language for RDF [29] (currently under devel-

opment), IsaViz makes use of semantic zooming to enable

the display of a varying number of Web resource properties

depending on the altitude of observation.

4.3. Procedural abstraction

Scalability of a visual programming language is also tied

to the possibility of using procedural abstractions to en-

capsulate subtask details [9]. Using such abstractions, the

complexity of the visualization can be managed by split-

ting programs’ representations into different views (see e.g.

LabView’s virtual instruments). Through the use of multi-

ple virtual spaces, cameras and views, ZVTM facilitates the

implementation of procedural abstractions independently of

the programming paradigm, and provides building blocks

for addressing visibility and juxtaposability issues, i.e. the

ability to see different parts of the code simultaneously [20].

As an example, RDQLPlus3, a visual tool based on

ZVTM for building RDQL queries, uses multiple virtual

spaces and views to store and display separate queries, thus

making their comparison easier. Another example of proce-

dural abstraction achieved through the use of ZVTM com-

ponents is VXT’s environment. The multilayer representa-

tion described in section 4.1 is part of a global effort to find

new ways of organizing the visual programming environ-

ment. Instead of splitting the workspace on the basis of the

heterogeneity of entities manipulated by the programmer

(source XML structure, schema, rules), we explored a more

task-centric approach while keeping scalability problems

in mind. The main window contains the above-mentioned

source and VPME layers and is thus dedicated to the task

of selection and extraction of source data. New windows

focusing on the transformation task performed by each rule

can be opened simultaneously and closed at will, taking ad-

vantage of rule independence from the perspective of their

specification and modification by VXT programmers.

5. Perceptual continuity

Sudden and unexpected changes in a user interface (e.g.

objects moving from one position to another without any

transition between the two states) put a heavy cognitive load

on the user, who must mentally relate the states in order to

re-assimilate the new display [13]. Animating changes ap-

plied to user interface objects transfers part of the user effort

to the perceptual level, freeing cognitive processing capac-

ity for application tasks [32]. Aside from the aesthetically

pleasant impression it produces on most users when used

appropriately, animation therefore contributes to make in-

terfaces more user-friendly.

3http://rdqlplus.sourceforge.net

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

A
ni

m
at

io
n

co
m

pl
et

io
n

Animation duration

uniform
slow-in/fast-out

slow-in/slow-out

Figure 5. Animation pacing functions

Animations have been used for didactic purposes, for in-

stance to explain algorithms (see e.g. [11, 33]), but tend to

be used more and more just for their above-mentioned abil-

ity to reduce the user’s cognitive load. For instance, desktop

animations are ubiquitous in Apple’s Mac OS X and con-

tribute to the perceived quality of this operating system’s

GUI. Closer to our domain, many information visualization

toolkits also support some animation primitives often cen-

tered on objects’ position. Other toolkits [13, 22] provide

more advanced animation support, but the use of animation

in visual language environments and other visual editors re-

mains limited.

ZVTM offers animation capabilities inspired by Stasko’s

path/transition paradigm [34]. Many user interface changes

can be animated following a unified declarative API. Vari-

ables to which animations can be applied include all ba-

sic glyph variables (position, orientation, size, color and

translucency) as well as some shape specific ones (bezier

curve control points). Camera translations and altitude

changes (zoom-in/out) can also be animated, as well as dis-

tortion lens’ radii and magnification factor modifications.

Animations are specified with a single instruction and do

not require more implementation work than basic variable

value modifications. They require the following parame-

ters: the animation duration, the object involved, the vari-

able(s) impacted by the animation, the desired target value

interpreted as an offset from the start value, and the pacing

function. Three pacing functions are available (Figures 5

and 6). Slow-in/slow-out transitions are typically used for

camera motion (e.g. in IsaViz) and some glyph animations

such as translations, as they convey a feeling of solidity that

is important in direct manipulation interfaces [13]. Non-

uniform pacing functions are generally used to put emphasis

on the start (and end) of animation paths. However, they are

not always appropriate, and the uniform function is often

used when modifying distortion lens parameters or animat-

slow−in/fast−out slow−in/slow−outuniform

Figure 6. Pacing functions for a translation

ing color changes (e.g. when applying the minimal contrast

principle in VXT’s superimposed layers - see section 4.1).

Animations are managed by a dedicated thread that con-

trols their timing precisely, skipping steps on the com-

puted animation path if necessary. This mechanism ensures

that an animation lasts the specified duration, and runs as

smoothly as the system and hardware performance allow.

6. User input

So far we have discussed issues related to the repre-

sentation of information and its perception by users. An-

other fundamental aspect of interaction covers the means

by which the user operates the environment through various

input devices and interface components. Many novel tech-

niques have been developed that try to address the limits

of traditional WIMP interfaces. However, few are widely

used because of the users’ cost of change and the lack of

associated models and tools for their implementation [2].

ZVTM’s constructs and event handling mechanism can be

used to quickly implement the following techniques.

Speed-dependent automatic zooming [23] affects cam-

era altitude in order to maintain a constant perceptual

scrolling speed in screen space. This technique builds on

the rate-based scrolling technique commonly used to nav-

igate ZVTM unbounded spaces. Its implementation in

ZGRViewer4 (a visualization tool for Graphviz5) only re-

quired a dozen lines of code.

Bi-manual interaction [10] exploits the human ability

to perform separate tasks with each hand in order to im-

prove interaction performance. ZVTM allows two point-

ing devices to be used simultaneously (only under Linux

with add-on module ZVTM-MPD until the USB protocol

gets supported by Java on other platforms). For instance, a

mouse can be used by the dominant hand for tool manipula-

tions and camera translations while the non-dominant hand

uses a trackball to control camera altitude.

Toolglasses [6] are used in conjunction with bi-manual

interaction to provide the user with a translucent palette

containing click-through tools. Such widgets do not require

4http://zvtm.sourceforge.net/zgrviewer.html
5http://www.graphviz.org

Figure 7. Click-through tools in IsaViz

dedicated screen space and are useful for tasks that require

switching between tools repeatedly, as frequent shuttling

between the tool palette and the drawing surface is frustrat-

ing [14] and inefficient in some contexts [1]. Toolglasses

are currently being implemented in IsaViz as an addition to

the standard palette (Figure 7). Their use is also considered

as clipboard objects holding and assigning styling data for

manual GSS editing of RDF graphs.

Semantic pointing [8] improves target acquisition by as-

signing two sizes to targets: one in visual space adapted to

the amount of information it conveys, one in motor space

adapted to its importance for manipulation. Its implementa-

tion is underway in ZVTM, taking advantage of the decou-

pling of the system’s and toolkit’s cursors for adapting the

control-display ratio.

7. Conclusion

We have introduced ZVTM, an open source toolkit [18]

aimed at building the complex interface components found

in visual language environments, meta-tools and other

structured graphics editors. Using two applications (a visual

language environment and a domain-specific graph editor),

we have shown how ZVTM components and off-the-shelf

interaction techniques can be used and combined to address

several common issues faced by visual language environ-

ment designers while minimizing implementation effort.

The toolkit is used in some widely distributed applica-

tions (e.g. IsaViz), and continues to mature and grow. While

informal feedback from the user community leads us to be-

lieve that ZVTM does help reducing the difficulty of im-

plementing complex graphical user interfaces, we plan to

conduct a formal experiment with master level students in

order to get empirical evidence that corroborates this.

Acknowledgements

ZVTM is the continuation of XVTM, developed at Xerox Research

Centre Europe and inspired by earlier research on the Visual Abstract Ma-

chine [36]. Further work on the toolkit was done during the development

of IsaViz at MIT by W3C. Its development is now supported by INRIA

project In Situ (http://www.inria.fr/recherche/equipes/insitu.en.html).

References

[1] C. Appert, M. Beaudouin-Lafon, and W. Mackay. Con-

text matters: Evaluating interaction techniques with the CIS

model. In Proceedings of HCI 2004, People and Computers

XVIII, pages 279–295. Springer-Verlag, 2004.

[2] M. Beaudouin-Lafon. Designing interaction, not interfaces.

In Proceedings of the working conference on Advanced vi-

sual interfaces, pages 15–22, 2004.

[3] M. Beaudouin-Lafon and H. M. Lassen. The architecture

and implementation of CPN2000, a post-wimp graphical ap-

plication. In UIST’00, pages 181–190, 2000.

[4] B. B. Bederson, J. Grosjean, and J. Meyer. Toolkit design

for interactive structured graphics. IEEE Transactions on

Software Engineering, 30(8):535–546, 2004.

[5] J. Bertin. Semiology of Graphics. Number 0299090604 in

ISBN. University of Wisconsin Press, 1983.

[6] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D.

DeRose. Toolglass and magic lenses:the see-through inter-

face. In 20th annual conference on Computer graphics and

interactive techniques, pages 73–80, 1993.

[7] A. Blackwell. Your Wish is My Command: Giving Users the

Power to Instruct their Software, chapter SWYN: a visual

representation for regular expressions, pages 245–270. M.

Kaufmann, 2000.

[8] R. Blanch, Y. Guiard, and M. Beaudouin-Lafon. Semantic

pointing: Improving target acquisition with control-display

ratio adaptation. In ACM Conference on Human Factors in

Computing Systems, pages 519–526, 2003.

[9] M. M. Burnett, M. J. Baker, C. Bohus, P. Carlson, S. Yang,

and P. van Zee. Scaling up visual languages. IEEE Computer

archive, 28(3):45–54, 1995.

[10] W. Buxton and B. Myers. A study in two-handed input.

In SIGCHI conference on Human factors in computing sys-

tems, pages 321–326, 1986.

[11] P. Carlson, M. Burnett, and J. Cadiz. A seamless integration

of algorithm animation into a declarative visual program-

ming language. In Advanced Visual Interfaces, 1996.

[12] M. S. T. Carpendale and C. Montagnese. A framework for

unifying presentation space. In UIST’01 Conference Pro-

ceedings, pages 61–70, 2001.

[13] B. Chang and D. Ungar. Animation: from cartoons to the

user interface. In UIST’93, pages 45–55, 1993.

[14] W. Citrin. Requirements for graphical front ends for visual

languages. In E. P. Glinert and K. A. Olsen, editors, Proc.

IEEE Symp. Visual Languages, pages 142–150, 1993.

[15] D. Cox, J. Chugh, C. Gutwin, and S. Greenberg. The usabil-

ity of transparent overview layers. In CHI’98, ACM Confer-

ence on Human Factors in Computing Systems, 1998.

[16] S. A. Douglas and A. E. Kirkpatrick. Model and represen-

tation: The effect of visual feedback on human performance

in a color picker interface. ACM Transactions on Graphics,

18(2):96–127, 1999.

[17] IsaViz: A visual authoring tool for RDF, December 2004.

http://www.w3.org/2001/11/IsaViz/

[18] ZVTM: Zoomable visual transformation machine, January

2005. http://zvtm.sourceforge.net

[19] J.-D. Fekete. The infovis toolkit. In 10th IEEE Symposium

on Information Visualization, pages 167–174, 2004.

[20] T. Green and M. Petre. Usability analysis of visual program-

ming environments: a ‘cognitive dimensions’ framework.

Journal of Visual Languages and Computing, 7(2):131–174,

January 1996.
[21] J. Heer, S. K. Card, and J. A. Landay. prefuse: a toolkit

for interactive information visualization. In CHI 2005, ACM

Conference on Human Factors in Computing Systems, 2005.
[22] S. E. Hudson and J. T. Stasko. Animation support in a user

interface toolkit: Flexible, robust, and reusable abstractions.

In ACM Symposium on User Interface Software and Tech-

nology, pages 57–67, 1993.
[23] T. Igarashi and K. Hinckley. Speed-dependent automatic

zooming for browsing large documents. In UIST, pages

139–148, 2000.
[24] H. Lieberman. Powers of ten thousand: navigating in large

information spaces. In 7th annual ACM symposium on User

interface software and technology, November 1994.
[25] N. Liu, J. Hosking, and J. Grundy. Integrating a zoomable

user interfaces concept into a visual language meta-tool en-

vironment. IEEE Symposium on Visual Languages and

Human-Centric Computing, pages 38–40, September 2004.
[26] B. A. Myers, R. G. McDaniel, R. C. Miller, A. S. Ferrency,

A. Faulring, B. D. Kyle, A. Mickish, A. Klimovitski, and

P. Doane. The amulet environment: New models for effec-

tive user interface software development. Software Engi-

neering, 23(6):347–365, 1997.
[27] Z. Nianping, J. Grundy, and J. Hosking. Pounamu: a meta-

tool for multi-view visual language environment construc-

tion. IEEE Symposium on Visual Languages and Human-

Centric Computing, September 2004.
[28] K. Perlin and D. Fox. Pad: An alternative approach to the

computer interface. Computer Graphics, 27:57–64, 1993.
[29] E. Pietriga. Styling rdf graphs with GSS. XML.com, Decem-

ber 2003. http://www.xml.com/pub/a/2003/12/03/gss.html.
[30] E. Pietriga, V. Quint, and J.-Y. Vion-Dury. VXT: A visual

approach to XML transformations. In ACM Symposium on

Document Engineering, pages 1–10, November 2001.
[31] S. Pook, E. Lecolinet, G. Vaysseix, and E. Barillot. Context

and interaction in zoomable user interfaces. In Advanced

Visual Interfaces, pages 227–231, 2000.
[32] G. G. Robertson, S. K.Card, and J. D.Mackinlay. Informa-

tion visualization using 3D interactive animation. Commu-

nication of the ACM, 36(4):56–71, 1993.
[33] P. J. Rodgers and N. Vidal. Graph algorithm animation with

Grrr. In Agtive99: Applications of Graph Transformations

with Industrial Relevance. Springer-Verlag, 2000.
[34] J. Stasko. The path transition paradigm: A practical method-

ology for adding animation to program interfaces. Journal

of Visual Languages and Computing, 1(3):213–236, 1990.
[35] E. R. Tufte. Visual Explanations. Number 0-9613921-2-6 in

ISBN. Graphics Press, 1997.
[36] J.-Y. Vion-Dury and F. Pacull. A structured interactive

workspace for a visual configuration language. In Proceed-

ings of Visual Languages 1997, pages 132–139, 1997.
[37] J.-Y. Vion-Dury and E. Pietriga. A formal study of a vi-

sual language for the visualization of document type def-

inition. In IEEE Symposia on Human-Centric Computing

(HCC), pages 52–59, September 2001.
[38] W3C. RDF (Resource Description Framework), October

2004. http://www.w3.org/RDF/.

