N

N

Specifying and automatically generating a specialization
tool for Fortran 90

Sandrine Blazy

» To cite this version:

Sandrine Blazy. Specifying and automatically generating a specialization tool for Fortran 90. Auto-
mated Software Engineering, 2000, 7 (4), pp.345-376. inria-00108501

HAL 1d: inria-00108501
https://inria.hal.science/inria-00108501
Submitted on 22 Oct 2006

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/inria-00108501
https://hal.archives-ouvertes.fr

Specifying and automatically generating a
specialization tool for Fortran 90

SANDRINE BLAZY blazy@jiie.cnam.fr
CEDRIC IIE, 18 allee Jean Rostand, 91 025 Evry Cedex, France

Abstract. Partial evaluation is an optimization technique traditionally used in compilation. We
have adapted this technique to the understanding of scientific application programs during their
maintenance and we have implemented a tool. This tool analyzes Fortran 90 application programs
and performs an interprocedural pointer analysis. This paper presents how we have specified a
dynamic semantics of Fortran 90 and a partial evaluation process, both with various formalisms
(inference rules with global definitions and set and relational operators) and how the partial
evaluation has been manually derived from the dynamic semantics. The guidelines for proving
the correctness of the partial evaluation with respect to the dynamic semantics are introduced in
this paper. The tool implementing the specifications is also detailed. It has been implemented
in a generic programming environment and a graphical interface has been developed to visualize
the information computed during the partial evaluation (values of variables, already analyzed
procedures, scope of variables, removed statements, etc.).

Keywords: program understanding, partial evaluation, dynamic semantics, formal specification,
interprocedural analysis, alias analysis, proof of correctness

1. Introduction

A wide range of software maintenance tools analyze existing application programs
in order to transform them. Some of these transformations aim at facilitating
the understanding of programs and they may perform rather complex analyses.
This is due either to the programming language itself (e.g. shared mechanisms of
common blocks in Fortran) or to the analysis itself (e.g. an interprocedural alias
analysis). As software maintenance tools, these tools must introduce absolutely no
unforeseen changes in programs. To overcome these problems, we have used formal
specifications to develop a software maintenance tool. In our framework, a formal
specification yields:

e A basis for expressing precisely which transformations are performed. The for-
mal specification can be seen as a reference document between specifiers and
end-users. Formal concepts are powerful enough to clarify concepts of program-
ming languages and to model complex transformations. In our context, end-
users were software maintainers who had a strong background in mathematics.
Thus, they were disposed to understand our formal specifications.

e A mathematical formalism for proving and validating properties of program
transformations.

e A framework for simplifying the implementation of a tool.

Our tool aims at improving the understanding of scientific application programs.
These application programs are difficult to maintain mainly because they were de-
veloped a few decades ago by experts in physics and mathematics, and they have
become very complex due to extensive modifications. For a maintenance team
working on a specific application program, one of the most time consuming steps
was to extract by hand in the code the statements corresponding to their specific
context. This context is very well known by all the people belonging to the mainte-
nance team; this is their minimum knowledge concerning data of their application
program. This context is described by equalities between specific variables and
values. Such variables and their values are very well known by the maintenance
team [23].

Our tool is based on partial evaluation, an optimization technique, also known
as program specialization. When given a program and known values of some input
data, a partial evaluator produces a so-called residual or specialized program. In
partial evaluation, the only constraints are the values of some input data. Run-
ning the residual program on the remaining input data will yield the same result
as running the original program on all of its input data [13]. Partial evaluation
has been applied to generate compilers from interpreters (by partially evaluating
the interpreter for a given program). In this context, previous work ([15, 1]) has
primarily dealt with functional and declarative languages. Partial evaluation has
also been applied to improve speedups of imperative programs ([11, 18, 16]). We
have adapted this technique to program understanding.

Usually, the chief motivation for doing partial evaluation is speed. The residual
program is faster than the initial one because statements have been unfolded each
time they could be replaced by faster statements ([11, 16]). Statement unfolding
replaces procedure calls and loops by their unfolded body. We have not used this
partial evaluation technique because it modifies the structure of the code and does
not generate residual programs that are easier to understand. Thus, our residual
programs are not as efficient as they could have been if we have used statement
unfolding and other more sophisticated partial evaluation techniques (e.g. binding-
time analysis). In like manner, our partial evaluator neither generates new variables
nor rename variables, as it is done in classical partial evaluation for optimizing
the residual code. The residual code we generate is easier to understand because
many statements and variables have been removed and no additional statement or
variable has been inserted. The known values of variables like PI or TAX RATE
are propagated during partial evaluation but these variables are likely to be kept
in the code (2*PI+1 should be easier to understand than 7.28). The benefit of
replacing variables by values depends also on the kind of user (see [20] for details
about our specialization strategy).

Fig. 1 briefly illustrates how initial code is specialized, with respect to constraints
on input variables. The initial code that has been removed is striked out (e.g. in
fig. 1, the first if statement is removed and replaced by its specialized then-branch).
The initial code that is not striked out corresponds to the specialized code. In
the specialized code, expressions are also simplified. This code is an executable
code. In initial and specialized codes, simplified expressions are underwaved. This

SUBROUTINE INIG(X,DX,IDEC,DXL,ZMIN) IREX=1

COMMON/GEO1/IM,JM,KM,KMM1,IMAT IDESCREG=3
COMMON/GEO2/INDX.I,INDX_J,INDX K INDX . I=2
IRIREX-NE.OYTHEN DXL=0.5

IR DXI-BQ-0) THEN WRITENRICI2,100 DX KM=20

- [Gonstrainta] on

= input variables
ELSE ZMIN=0. ENDIE
X=ZMIN+FLOAT*DXL; KMM1=KM-1

R AL BV

— SUBROUTINE INIG(X,DX,IDEC,DXL,ZMIN)

P

IF (IMAT.EQ.0 AND-KM-GE-18) THEN COMMON/GEO1/IM,JM,KM,KMM1,IMAT
CALL VALMEN(MAT,KMM1,-1) COMMON/GEO2/INDX.I,INDX_J,INDX K
IFIREX-EQ-0)THEN WHAT="] EL.CE ZMIN= 0.

CALL VALMEN(MAT,KM,3) X= FLOAT * 0.5
AR £V
IFEDESCREG-EQ-0YTHEN KMMi1= 19
R

HREG=6 IF (IMAT .EQ. 0) THEN
BESE IREG=1; IDEC=IDESCREG CALL VALMEN_V1(MAT,19,-1)
ENDIR C SPECIALIZED VERSION OF VALMEN WITH...
IF(IDEC-EQ.0-ANDIREG-EQ-0) CALL VALMEN.V2 (MAT,20,3)

THEN WHAT='I> IDEC=3 C SPECIALIZED VERSION OF VALMEN WITH...
BLSEIRANDX LNE-OYTHEN IREG= 1; IDEC= 3

B

WHAT="K’ WHAT= 'K’

BELSEIRINDX-J-NE-Q)THEN KMIN=20; KMAX= 21
o) S8
=3 ENDIF

ELSERINDXKNE-0)THEN END Specialized code

WHAT =
ELSE CALL STORLINIGY
ENDIE

ENDIE
IFIDEC-EQ-HTHEN

—0 —
EESE KMIN=KM; KMAX=KM+1 ENDIF
ARAS AAANAA

ENDIR Initial code

ENDIF; END

Figure 1. An example of program specialization.

formatting of the program text is automatically done by our tool. Usually, a color
is associated to each format. Known values of variables are propagated in called
procedures. Called procedures have been replaced by their specialized versions and
a comment recalls the name of the called procedure and its initial known values.
Other information are computed and displayed during the partial evaluation (e.g.
final values of some variables). They are not shown in fig. 1 to avoid overloading
it.

At the very beginning, our tool implemented a simple intraprocedural analysis.
It simplified assignments, alternatives and loops [21]. The formal specification
consisted only of inference rules in natural semantics operating on abstract syntax
trees [4]. These rules were quite easy to understand: they were made of sequents

propag
defining inductively a propagation relation called propag (S1 + | : S2 means
that the execution of the statement | modifies the initial state S1 into the final

simpl
state S2), a simplification relation called simpl (S F 11 — 12 means that given
the state S, the statement 11 simplifies into 12), and the combination of both for

PE
defining a partial evaluation relation called PE (S1 + I1 + 12,52 means that given
the state S1, the specialization of the statement I1 yields a simplified statement 12
and a new state S2). These sequents consist of variables (e.g. S or I1- usually they
are capitalized), symbols representing relations (e.g. —, < and :) and nodes of
abstract syntax trees (e.g. 11 and 12). These nodes will be written in bold in this
paper.

In natural semantics, each rule expresses how to deduce sequents (the denomi-
nator of the rule) from other sequents (the numerator of the rule). Our sequents
were simple because propagated data (i.e. the hypotheses of the sequents) were
only made of a map S from variables to their values (when a variable has a known
value at the current program point). Since the formal specifications were simple,
it was also easy to derive from the specifications an implementation of a prototype
tool [21].

We have then added to our prototype a very precise interprocedural analysis.
To specify in our interprocedural analysis side-effects on global variables and side-
effects accomplished through parameter passing, we need information about the
data that a procedure inherits and about the side effects of procedures that it
invokes. To account for this effect, we must model the transmission of values from
within a procedure back to the call site that invoked it. We have also specified
a pointer analysis for Fortran 90. The partial evaluation simulates the run time
memory management. Due to the implicit connections through paths within a
pointer structure, the side-effects of pointer assignments have been modeled by
other information than those for modeling assignments to a simple variable.

We have specified and implemented a context-sensitive and flow-sensitive general
alias analysis. It is more sensitive than other alias analysis that are more efficient
[17, 24, 12], but as our partial evaluation propagates only equalities between vari-
ables and values, less data are propagated during the interprocedural alias analysis.
Our analysis does not support recursive calls (the application programs we have
analyzed are not recursive) but it handles return constants. The framework of our

analysis is similar to the more general one described in [3]: for each procedure,
information that describe the effects of that procedure are propagated through the
call graph. This graph represents the structure of the analyzed program. In this
paper, we will also specify analyzed programs.

Natural semantics rules are useful to show how semantic relations are recursively
called. This formalism is concise and comprehensible enough to specify a simple
partial evaluation process. We have extended it to specify an interprocedural alias
analysis. To this end we have used in our natural semantics rules various set
and relational operators and we have structured data appearing in the rules. We
have modeled the composition links between these data by object diagrams. The
diagrams show some variables of the rules and other variables that are defined
outside the rules to avoid overloading them.

The aim of this paper is threefold: to show how we have specified, proven and
implemented these extensions to our partial evaluator. Compared to our previous
work ([20, 21, 22]):

¢ Our program analyses take into account an interprocedural alias analysis.
¢ We have implemented a graphical interface.

e Before specifying natural semantics rules, we have defined object diagrams for
structuring modeled data.

¢ We have adapted our specifications to allow local definitions.

The rest of this paper is structured as follows. First, Section 2 recalls some con-
cepts of Fortran 90 and explains our specialization strategy. Then, section 3 details
how we specify programs and the information computed during their analyses. It
gives a dynamic semantics of call statements and pointer variables, and specify the
interprocedural pointer analysis of the partial evaluation. It shows how the prop-
agation relation has been derived from the dynamic semantics relation. Section 4
presents the general framework for proving the correctness of the partial evaluation
and gives the proof steps for an example of call statements. Section 5 is devoted to
the implementation of our tool.

2. Background

This section introduces some concepts of Fortran 90: procedures, common blocks,
structures, pointers and targets. Then, it explains how procedures are specialized
and reused during the specialization process. Reused procedures are also modeled
in an object diagram.

2.1. Fortran 90

Fortran procedures may be subroutines or functions and parameters are passed by
reference. Variables are usually local entities. However, variables may be grouped
in common blocks (a common block is a contiguous area of memory) and thus

shared across procedures. Although the names of the common blocks themselves
are global, none of the variables within the common blocks are global. Common
blocks may also be inherited in a procedure. They have a scope in that procedure
but they have not been declared in it. If a common block is neither declared in the
currently executing procedure nor in any of the procedures in the chain of callers,
all of the variables in that common block are undefined.

In Fortran 90 a structure consisting of a list of fields, each of some particular
type, is a type. The field’s types may include pointers to structures of the type
being defined, of a type previously defined, or of a type to be defined. A pointer
variable, or simply a pointer may point to either another data object which has the
TARGET attribute, or an area of dynamically allocated memory, or the NULL value.
In Fortran 90, a pointer should be thought of as a variable associated dynamically
with or aliased to another data object where the data is actually stored - the target
[17]. There is no pointer arithmetic in Fortran 90. A pointer can not point to
a pointer. There is no notation for representing pointed variables (dereferencing
is automatic in Fortran 90). We will then use a C-notation when needed (e.g.
*(p — next) in fig. 2 and fig. 3).

Fig. 2 shows an example of a Fortran 90 code, where a new type called node is
defined. It will be constructed from two values representing an ident and a pointer
to the next field in a linked list. Once two variables p and ¢ of type pointer to node
have been declared, the values 3.4 and 6.2 are inserted in the list of nodes in that
order.

TYPE node
REAL :: ident ! data field
TYPE (node) , POINTER :: next ! pointer field

END TYPE node

q => plnext ! q points to *(p->next)
phident = 3.4 ! the value 3.4 is assigned to the field ident of p
qlkident = 6.2

Figure 2. An example of Fortran 90 code.

An identifier is either a simple identifier (e.g. v), or a compound left-hand side
(e.g- person%address%town), or a pointer dereference (e.g. *p, x(xp.next)). This is
represented by the abstract syntax of fig. 3. The set of simple variables identifiers of
a procedure is denoted by Var Name. The set of left-hand sides is denoted by Lhs.
The example in this figure shows the connection between some concrete Fortran 90
variables and the corresponding abstract syntax notations.

2.2. Interprocedural Partial Evaluation

The specialization proceeds depth-first in the call-graph to preserve the order of
side-effects. Thus, the specialization of a call statement first runs the specializer

Abstract syntax

VarName C Lhs

deref : Lhs — Lhs
field_lhs : Lhs x VarName — Lhs

concrete syntax abstract syntax

v VarName(v)
person%address%town | field lhs(field_lhs(person, address), town)
*(p — next) deref(field lhs(deref(p), next))

Figure 3. Abstract syntax rules and examples of links with concrete syntax.

on the called procedure SP. This yields a specialized version of SP and the call
statement is replaced by a call to this specialized version. A procedure is specialized
with respect to specific values of some of its input data (its input static data). At
the end of its specialization, the known values of variables belong to its output
static data, and a new name is given to the new specialized version (if any).

The diagram of fig. 4 models specialized versions. A procedure SP belongs to
the object called Procedure. SP represents the code of the whole procedure (its
declarations and its statements). The specialized versions of SP belong to the
object called Version. They are represented by the set version(SP). A specialized
version v of SP consists of a name for this version (name_version(v)), input static
data (input(v)), output static data (output(v)) and statements (stmit_version(v)).
This is equivalent to saying that a version is represented by a quintuplet (name
of original procedure, version name, input data, output data, statements). The
version and its corresponding procedure have the same arities. Thus, the formal
parameters of the version are those of the procedure.

stmt_version

Figure 4. Object diagram modeling specialized versions.

To improve the specialization, specialized versions of procedures are propagated
and reused. Thus, given a set of specialized procedures, when a call to a procedure
SP is encountered in the current procedure, if the set of input static data of SP and
their values:

e is the same as those of a previous call, then the corresponding version is directly
reused,

e strictly includes those of a previous call, then the corresponding version is spe-
cialized yielding a new version that is added to the already specialized versions.
If several versions match, the following selections are successively made:

— most specialized versions, that is the versions with the largest set of input
static data,

— shortest version among most specialized versions.

3. Formal Specification of the Partial Evaluation

This section shows in object diagrams data that are propagated during execution
and partial evaluation. It also introduces set operators that apply on these data.
Then, this section details the specification of the dynamic semantics of two kinds
of statements: call statements and assignments between pointers. The dynamic
semantics of assignments between targets and pointers is specified in a similar way.
It has not been presented in this paper. Lastly, the propagation and simplification
relations (introduced in section 1) are derived from the dynamic semantics relation.

3.1. Program Representation

We have specified with inference rules (as in [21]) both the dynamic semantics and
the partial evaluation, but more data are propagated in the inference rules. In our
specifications, a Fortran 90 procedure is represented by:

e its environment (called Env in fig. 5), that represents what does not vary during
the analysis of the procedure (formal parameters, common blocks variables that
have a scope in the current procedure, local variables and statements),

e its state (called State in fig. 5) modeling relations between variables and known
values at the current program point. An object State (called S) consists of two
objects: val(S) and comVal(S). val(S) maps variables to values (if these values
are known) and comVal(S) maps common blocks to the known values of their
variables. Since in common blocks, values are shared between two variables
simply by the fact that they occupy corresponding positions within the same
common block, these values are not modeled as values of other variables. In
fig. 5 these values are represented by the object called ” Value of common blocks
variables” that is accessed from State through the comVal function. An instance
of this object denotes the values (and their corresponding positions) of variables
belonging to common blocks.

formal vl

State Value of
comVal\| common

Formal Common Local Statements blocks
parameter | | blocks variables variables

Figure 5. Some propagated data: the state and the environment of a procedure.

[22] gives examples of these data and fig. 6 models the whole data that represent
procedures. The diagram of fig. 6 represents objects and access functions between
them. It extends the diagram of fig. 5. The object called Procedure denotes a
called procedure SP at a given program point. From SP, we have access to its
environment environment(SP), its state values(SP), its inherited common blocks
inherits(SP) and its name name(SP). This name belongs to ProcName, that de-
notes actual procedure names (including names of versions) that are used in the
current application program.

An instance of the diagram of fig. 6 represents information for all procedures that
are called from a main program (or from one of its called procedures). It shows
the bindings between procedure names and their corresponding statements, and it
results from a preliminary analysis of the program. Such an instance is an implicit
parameter of the dynamic semantics and partial evaluation systems. The objects of
the instance are never modified by the sequents. Thus, the instance is an implicit
parameter, to avoid overloading the sequents.

State Value of
comVal\| common

blocks

variables

Formal Common Local Statements

parameter blocks variables

Figure 6. Object diagram showing data propagated during an interprocedural analysis.

3.2. Definitions

We define in this section some notations, especially set operators, that we use in
our specifications. PROCN AME denotes the set of possible names of procedures,
thus ProcName is a subset of the set PROCNAME. VALUE denotes the set
of possible values of variables. The eval function either yields the value of an

10

expression (if it is known) or gives a residual expression [20]. We introduce useful
set operators, similar to those defined in the formal specification languages B [10]
and VDM [2]: mainly inverse (~!), domain (dom), range (ran), union (U), override
(1), restrictions (>, < and <), relation composition (; ') and direct product (®). In
the following definitions s denotes a set, r, p and ¢ denote binary relations, m and
n denote maps (specific binary relations where each element is related to at most
one element). A binary relation is a set of pairs. Thus, classical set operators such
as union can also be applied to binary relations.

o r'l={zmyl|ly—zer}

o dom(r)={z|z—yer}

o ran(r)={y|x—yer}

o rip={zmylzoyep\V(l@ryerAz¢dom(pp))}
o r>s={z—yer|ye€s}

o sar={z—y€er|zes}

o sar={z—yer|cd¢s}

e mp={z—z|y-z—oyerA\y—zecp}

o rep={z-(y,2)|z—yerA\z— zep}

When r and p are functions, their direct product is specially interesting when it
is an injective function. In this case, when a pair of the form x — (y, 2) belongs
to r ®p then (y, 2) determines x uniquely, and x may be written (r ® p)~!(y, 2).

e rRpRqg={r— (y,2,t) |z yerANz—zeEpA\z—teq}

In like manner, when 7 ® p ® ¢ is an injective function, x may be written
(rep®q)'(y,z1).

e Given s a set of pairs of maps, we define:
Corres(s) = J{m™';n|m — n € s}.

We use Corres(s) to bind variable names of a common block to their cor-
responding values. Variables of common blocks are shared among procedures
(their values are inherited in each called procedure) but their names may change
in each procedure. Thus, each pair m — n of s corresponds to a common block.
m and n map integers (the position in the list of declared variables of the com-
mon block) to respectively variable names and values. m~!;n is then a map
from variable names to values and Corres(s) is the union of all such maps.

In the following example, the declaration of two common blocks B and C is
represented by the map ComDecl. At the current program point, the values of
variables belonging to common blocks are given by the map ComVal. ComVal
states that:

11

— the value of the first variable of B is 0 and the value of the other variable
of B is unknown (this variable is not represented in the map ComVal),

— the value of the first (resp. third) variable of C is 0.5 (resp. 6.2), the value
of the second variable of C is unknown.

In the current procedure, the variables of B (resp. C) are t and u (resp. %, y
and z). Thus, at the current program point, the map from these variables to
their values is Corres(s).

ExAMPLE: COMMON B / t, u
COMMON C / x, y, z

ComDecl ={B— {1~ t,2—u},C— {1—=z,2—y,3—2z}}
ComVal ={B+— {1~ 0},C— {1—0.5,3— 6.2}}
If s = ComDecl™t;ComVal then

s={{1—=t,2u}»{1—0},{l—»22—y3—2}—{1—0.53—62}}
and Corres(s) = {t = 0,2 — 0.5,z — 6.2}

O

3.8. Dynamic Semantics of Call Statements

The dynamic semantics of Fortran 90 is deterministic. It is formalized by the sem

system, that generates sequents of the form E,S, Cl Sim | : §, meaning that given
an environment E, a state S and inherited common blocks Cl, the execution of
statement | leads to the values given by the state S’. E,S and Cl are the hypotheses
of the sequent.

Fig. 7 shows the dynamic semantics rule for a call statement CALL SP(LParam),
given an environment E, a state S and inherited common blocks Cl. SP is the
name of the called procedure and LParam is a map from positions (in the list of
parameters) to the actual parameters of SP at the current program point. In the
definitions part of the figure, some definitions are factorized. They introduce some
useful local variables appearing in the dynamic semantics rule. These variables
are EnvSP, S1, Cl' and S'. Definitions are here "macros” that are supposed to be
applied to the rules containing the variables. They are given in the definition part
of fig. 7, to avoid overloading the dynamic semantics rule.

The first definition introduces EnvSP, the environment of the procedure named
SP. name ! yields an object Procedure from an object ProcName (see fig. 6).
Thus, since SP is a procedure name, name ! (SP) represents the procedure whose
name is SP and EnvSP is defined as the environment of this procedure.

The beginning of fig. 7 illustrates through an example which data are propagated
during the execution of statements (with respect to the dynamic semantics rule

12

of the figure) and which are the corresponding program points (a, 3,7 and ¢ in
the figure). Classically, the execution of the call statement starts with a forward
propagation through the call graph (from program point a to program point 7)
followed by a backward propagation (from program point § to program point 3).
The forward propagation aims at giving new values to formal parameters (refer-
enced as VFormal in fig. 7) and common blocks variables of the called procedure SP
(VComCalled). These values are val(S) (values of variables) and comV al(S) (values
of common blocks).

3.3.1. Computation of VFormal (values of formal parameters at program point -y)
Formal (resp. actual) parameters are represented by maps between positions and
names (resp. values) of the parameters. In fig. 7, these maps are respectively
formal(EnvSP) and LParam. Thus:

e (formal(EnvSP))~! maps the names of the formal parameters of SP to their
positions,

e (formal(EnvSP))~!; LParam maps the names of the formal parameters of SP to
the actual parameters of the current call statement,

e 2 VFormal A (formal(EnvSP))~1; LParam;val(S) maps the names of the formal
parameters to their initial values, that are the values of actual parameters at
the program point a.

3.3.2. Computation of VComCalled (values of common blocks at program point
~) Variables belonging to a common block are also represented by maps between
positions in the common block and variable names. The values of variables be-
longing to common blocks of the calling procedure are also transmitted to the
corresponding variables (they share a same position in the common block). Thus,
VComCalled A Corres((comDecl(EnvSP))~!; comVal(S)) is a list of pairs (variable
of a common block declared in SP, value) (see the example of section 3.2), and it
belongs to the object called ”Value of common blocks variables” in fig. 6.

3.3.8. Computation of InputVar (values of variables at program point v) The
variables of SP (and thier initial values) are:

e formal parameters and variables of common blocks that are declared in SP,
that is VFormal f VComCalled: in SP, if a formal parameter is also declared in a
common block, then its value is the value given by the common block.

e variables of the calling procedure P that have a scope in SP. These are the
current static variables, but not the local variables of P (that are represented
by a set): localVar(E) < val(S).

The restriction between these two maps models scope rules between procedures.
The resulting map InputVar belongs to the object called Value in fig. 6.

13

subroutine P(...) subroutine SP(...)
7Y | EnvSPS1CH
X=1
B T=2 LParam ={1 > X,2 +— Y,3 > Z}

EnvSP A environment(name™"(SP))
1. Caller — called propagation

VFormal A (formal(EnvSP))~'; LParam; val(S)
VComCalled A Corres((comDecl(EnvSP))™!; comVal(S))
InputVar A (localVar(E) < val(S)) 7 (VFormal 1 VComCalled)
S1 A (val ® comVal)~*(InputVar, VComCalled)
Cl" A (dom(comDecl(E)) U Cl) — dom(comDecl(EnvSP))

2. Called <= caller propagation

VActual A LParam™'; formal (EnvSP); val(S2)
VComCaller A Corres((comDecl(E))™'; comVal(S2))
OutputVar A (localVar(EnvSP) < val(S2)) T (VActual 1 VComCaller)
OutputComBlock A [dom(comDecl(EnvSP)) — (dom(comDecl(E)) U Cl)] < comVal(S2)
S' A (val ® comVal)~*(OutputVar, OutputComBlock)

‘Dynamic semantics rule‘

EnvSP,S1, Cl E stmt(EnvSP) : S2
E,S,Cl F CALL SP(LParam): S’

Figure 7. Dynamic semantics of a call statement.

14

3.3.4. Computation of S1 (known values at program point v) wval ® comVal is
an injective function:

e Any state State represents at least one program point, where values of some
variables (i.e. the static variables) are known. These values are precisely given
by the pair of maps (val ® comVal)(State). Thus, val ® comVal is a total
function.

e Given two states S1 and S2, (val ® comVal)(S1) = (val ® comV al)(S2) means
by definition of a pair that val(S1) = val(S2) and comVal(S1) = comV al(S2).
This means that all the values of static variables are the same, and that the
static variables are also the same in S1 and S2. Thus, S1 and S2 denote a same
state.

We can then write (val®comV al)~!(InputVar, VComCalled) to denote a State object
for SP, as explained previously (see section 3.2). We call this state S1.

3.3.5. Computation of CI' (names of inherited common blocks at program point y)
These common blocks Cl’' that are inherited by SP are those that have a scope in its
caller except those that are also declared in SP (these are dom(comDecl(EnvSP)),
where the domain of the map com Decl(EnvSP) yields the names of common blocks).
The common blocks that have a scope in the caller are its declared common blocks
dom(comDecl(E)) and its inherited common blocks ClI.

3.8.6. Backward propagation Once values have been transmitted to SP, the cur-
rent program point is y. Then, statements of SP are executed given the environment
of SP (EnvSP), its state (S1) and inherited common blocks (CI') (premise of the
dynamic semantics rule), yielding a new State object S2 for SP. S2 represents the
new values (for common blocks and parameters of SP) that need to be transmitted
to the calling procedure.

The analysis has reached program point §. The known values are then transmitted
back to the calling procedure: the maps LParam and comDecl(E) (from actual
parameters and common blocks variables to their values) are updated (backward
propagation, second part of definitions in fig. 7), yielding the final state S’ of the
caller. Similarly to VFormal in the forward propagation,

VActual A LParam™'; formal (EnvSP); val(S2)

is a list of pairs (actual parameter, value of formal parameter). The definition of
VComC aller (resp. OutputVar) is very close to the definition of VComCalled (resp.
InputVar).

SP has inherited the values of common blocks from P. But, some values of
common blocks of SP are not backward propagated in P. Thus, the definition of S1
differs slightly from the definition of S'. The values OutputComBlock of common
blocks at program point § are the values of common blocks at program point §
(i.e. comVal(S2)), except for the common blocks declared in SP that do not have

15

a scope in P. The common blocks of SP that do not have a scope in P are those
defined in P and those inherited by P (from one of its callers). These are:

dom(comDecl(EnvSP)) — (dom(comDecl(E)) U Cl).
Thus, the values OutputComBlock of common blocks at program point 3 are:

[dom(comDecl(EnvSP)) — (dom(comDecl(E)) U Cl)] < comVal(S2).

3.4. Pointer Representation

For every pointer variable, we need to represent the set of objects it may point to.
Here, an object is a location that can store information (for example, variables).
In our specifications, we use stores to represent associations between variables and
their values. The variables are represented by locations in stores [5]. In a procedure,
the set of values (denoted by Value) includes integers and other values (such as
locations denoted by Location). Thus, locations are specific values. The dynamic
semantics of pointers is modeled by the following functions that are defined in fig. 8:

e locOf maps (simple) identifiers to their locations.

e The map locO fGen extends the locO f map to left-hand sides and dereferences.
The location of a pointed record is the value of its first field.

e The store is modeled as a map store from locations to values. The locations give
in turn access to the current values stored in variables. The value of a variable
is looked up in the store through the locOf map. The store of a pointer is the
location of its pointed object, if the pointer points to a target. If the pointer
has the NULL value, it is not represented in the store function. Thus, store is a
partial function.

locOf € VarName — Location
locO fGen € Lhs — Location
store € Location -» Value U Location and Value CVALUE

accessField € Location x VarName -» Location

For locOfGen(i) = locOf(i)
i € VarName locOfGen(deref(l)) = store(locOfGen(l)
andl € Lhs locO fGen(fieldlhs(l,i)) = accessField(locOfGen(l),1)

Figure 8. Dynamic semantics of some variables.

16

e given the location of a record r and a field f, accessField yields the location of
r.f. This is a partial function since only record names with their corresponding
fields may have a location.

The function mapping variables to their known values was previously called val
in our object diagram. It is now defined as:

val A locO fGen; store> VALUE.
The map pointsTo from pointers to their targets is defined as follows:
pointsTo A locO fGen; store; locO fGen ™!

EXAMPLE: pointsTo = {p — deref(q),r — loc} O

Fig. 9 represents in diagrammatic form the linked list created by the statements
of fig. 2. The rest of the figure shows the dynamic semantics of the corresponding
statements and details the maps val and pointsTo. All pointer chaining are resolved
before the two assignments, so any node can be referred to directly by its location.
Each node has been dynamically allocated. Thus, each node has a unique location,
as shown in the map locO fGen. The definition of this map is illustrated in the last
part of fig. 9.

Fig. 10 models the whole data that are propagated during the execution of any
statement. It extends fig. 6 by showing functions modeling pointer variables. A
new object representing locations is accessed from State through the locO fGen
function. Values of variables are given by the store function. Thus, the object
called State may be considered as a triplet state(set of locations, set of stores, set
of values for variables of common blocks), where state denotes a constructor of
occurrences of this object.

3.5. Dynamic Semantics of Assignments Between Pointers

Fig. 11 shows the dynamic semantics of a pointer assignment p = ¢, given two
pointers p and ¢, an environment E, a state S and inherited common blocks Cl
(same hypotheses as in the rule for a call statement). The execution of the assign-
ment modifies only locations and stores. This means that it updates the current
state S. The current locations and stores are respectively L A locOfGen(S) and
ST A store(S). The dynamic semantics expresses that L and ST are updated by
the alias introduced by that assignment.

g points to a target xq if ¢ € dom(pointsTo) (rule 1). In this case, when p is
affected by g¢:

e ppoints to xq. The store of the location of p (i.e. ST(L(p))) becomes the location
of ¢ (i.e.L(q)), yielding a new map of locations L1.

o the location of #p becomes the location of xq, ST(L(q)), yielding a new map of
stores ST1.

17

‘Representation of a list‘

iIf) 9- P"j&
c4

locOf ={pw loc1,q — locy}
locO fGen ={deref(p) — locs, deref (fieldLhs(deref (p), next)) — locs} UlocO f
store ={locy — loca, locg — locs,locy — locs, loca — 3.4,1locs — 6.2}
accessField ={(loca, next) — locs, (loca, ident) — loca, (locs,ident) — locs,
(locs, next) — locg}

‘Location of the cell p%next%ident‘

The abstract syntax of p%next%ident is:
fieldLhs(deref(fieldLhs(deref(p), next)), ident).
locO fGen(fieldLhs(deref (fieldLhs(deref(p), next)), ident)) =

accessField(locO fGen(deref(fieldLhs(deref (p), next))), ident) =
accessField(store[locO f Gen(fieldLhs(deref (p), next))], ident) =
accessField(store[accessField(locO f Gen(deref(p), next))], ident) =
accessField(store[accessField(store(locO f (p)), next)], ident)
accessField(store[accessField(store(locy), next)], ident) =

(

accessField(store(locs), ident) = locs

‘Maps val and pomtsTO‘

locO fGen; store ={deref(p) — 3.4, deref(fieldLhs(deref(p), next)) — 6.2,
p+— locy,q — locs}
val ={deref(p) — 3.4, deref(fieldLhs(deref(p), next)) — 6.2}
pointsTo ={p — deref(p), q — deref(fieldLhs(deref(p), next))}

Figure 9. An example of linked list.

18

store

comval Value of

Forma | (Common Loca Statements common
parameter | |_blocks variables| blocks

variables

Figure 10. Object diagram showing data propagated during the execution of a procedure.

A new state S1 is then created from its three components L1, ST1 and comVal(S).
This creation is very close to the creation of the states S1 and S’ in section 3.3 (see
fig. 7).

If ¢ has the NULL value, ¢ ¢ dom(store) (see section 3.4) and then, by definition
of pointsTo q ¢ dom(pointsTo). In this case, only the store is updated by the
value NULL of the location of p (rule 2). A new state S2 is created from this new
store and from its two other components that have not changed.

If there is no location pointed by ¢ (rule 3) then, the maps of locations and stores
are restricted:

e p does not point to any location. L becomes {deref(p)} <-L.

e xp has no location anymore. ST becomes {L(p)} <ST.

3.6. Interprocedural Partial Evaluation

The partial evaluation of a program is an analysis that propagates:

e the same data as the dynamic semantics (environment, inherited common blocks
and state),

e specialized versions of already specialized procedures (see section 2.2).

Fig. 12 shows data that are propagated during the partial evaluation. It extends
fig. 4 and fig. 10. As in fig. 6, an instance of the diagram of fig. 12 (without the
object Version) is an implicit parameter of the sequents belonging to the partial
evaluation system, to avoid overloading the sequents. Except for the object Version
that is treated separately and appears in the sequents, the objects of the instance
are never modified by the sequents.

The partial evaluation relation is the combination of the propagation and sim-
plification relations (see section 1). For simple statements, the partial evaluation
relation is directly defined, but for other statements such as call statements, the

19

L A locO fGen(S)
ST A store(S)

L1 A L {{deref(p) — ST(L(q))}
rulel { ST1IAST{{L(p)+~ L(q)}
S1 A (locOfGen ® store ® comVal) 1(L1,ST1,comVal(S))

rule 2 ST2 A ST 1 {L(p) — NULL}
S2 A (locO fGen & store ® comVal)~1(L,ST2,comVal(S))

L3 A {deref(p)} <L
rule 3 ST3 A {L(p)} <+ST
S3 A (locOfGen ® store ® comVal)~1(L3,ST3,comVal(S))

‘Dynamic semantics rules ‘

q € dom(pointsTo)

dor (rule 1)
Sk p=>g:S1
sem
S + p=NULL:S3 (rule 2)
q ¢ dom(pointsTo) g # NULL (rule 3)

sem
Sk p=gqg:52

Figure 11. Dynamic semantics of a pointer assignment.

rules are more complex and we define separately the propagation and simplification
relations. The dynamic semantics propagates all values of variables through state-
ments. Our propagation relation is close to the dynamic semantics relation except
that it propagates only known values of variables (with respect to the initial val-
ues given by the user). Thus, sequents of the dynamic semantics and propagation
systems may share the same formalism. For that reason, in the propag system,
we have overloaded the colon symbol representing the dynamic semantics relation
instead of using a new symbol.

20

Value of
common
parameter | |_blocks variables _ blocks

variables

Figure 12. Object diagram showing data propagated during partial evaluation.

3.6.1. Propagation This section discusses how we have manually derived the
propagation of a call statement from its dynamic semantics. This process is similar
to the process described in [9], where program slicing algorithms have been auto-
matically derived from semantic specifications, thanks to term rewriting systems.

Fig. 13 specifies the propagation of a call statement to a procedure SP with a list
LParam of actual parameters, given an environment E, a state S and inherited com-
mon blocks Cl. E, S and Cl are propagated through the statement CALL SP(LParam),
and the result from the propagation is a new state S'.

As the dynamic semantics, the propagation starts with a forward propagation fol-
lowed by a backward propagation. Compared to the dynamic semantics, some pa-
rameters and variables have unknown values. Formal parameters of SP that have a
known value are denoted by StaticFormal. As in fig. 7, (formal(EnvSP))~1; LParam
maps the formal parameters of SP to the actual parameters of the current call
statement. Actual parameters are also evaluated but here the evaluation yields
expressions whose values may be unknown. As our partial evaluation propagates
only equalities between variables and values, the resulting map is restricted to static
formal parameters (i.e. formal parameters that have been totally evaluated).

In like manner, during the backward propagation process:

1. LParam™!; formal(EnvSP) is a map of pairs (actual parameter, corresponding
formal parameter).

2. Formal parameters are evaluated with respect to the known values at the end
of the propagation in SP.

3. Dynamic actual parameters (they map to an expression whose value is unknown,
e.g. z = a — 2 with a unknown) are removed from the map. The resulting map
is StaticActual.

[22] gives examples of expressions propagated through called procedures.

3.6.2. Simplification Fig. 14 specifies the simplification of a call statement to a
procedure SP. The simplification rule is a general rule that:

21

EnvSP A environment(name™'(SP))

1. Caller — called propagation

StaticFormal A [(formal(EnvSP))™!; LParam; eval(val(S))] > VALUE
StaticComCalled A Corres((comDecl(EnvSP))™'; comV al(S))
InputVar A (localVar(E) < val(S)) T (StaticFormal 1 StaticComCalled)
S1 A (val ® comVal)~*(InputVar, StaticComCalled)
CI" A dom(comDecl(E)) U Cl — dom(comDecl(EnvSP))

2. Called —» caller propagation

StaticActual A [LParam™"; formal(EnvSP); eval(val(S2))] > VALUE
StaticComCaller A Corres((comDecl(E))™!; comVal(S2))
OutputVar A (localVar(EnvSP) < val(S2)) T (StaticActual t StaticComCaller)
OutputComBlock A [dom(comDecl(EnvSP)) — (dom(comDecl(E)) U Cl)] < comVal(S2)

S' A (val ® comVal)™" (OutputVar, OutputComBlock)

‘ Propagation rule ‘

propag
EnvSP,S1,CI" + stmt(EnvSP) : S2
propag
E,S,Cl F CALL SP(LParam): &

Figure 13. Propagation of call statements.

e simplifies the statements of the called procedure (first premise of the rule),
e propagates data through these simplified statements (second premise),
e creates a new version of the called procedure (third premise).

As specialized versions of called procedures are maintained (with a strategy in-
troduced in section 2.2), the implementation of this rule has been optimized ([22])
to take into account the cases when:

e the called procedure has already been specialized with respect to the same static
data,

22

e the most specialized version of the called procedure is not as specialized as

wanted.
EnvSP A environment(name ™" (SP)) as in the previous figure
S1A ...
aa ...
‘ Simplification rule ‘
stmpl
EnvSP,S1,CI''V F stmt(EnvSP) — StmtV', V' (premise 1)
propag

EnvSP,S1,CI" F StmtV’':S2 (premise 2)
NewName € PROCN AME — ProcName (premise 3)

simpl
E,S,ClI,V F CALL SP(LParam) — CALL NewName(LParam), V' U {NewVersion}

with NewVersion A (SP,NewName, 5,52, StmtV')

Figure 14. Simplification of call statements.

The simplification rule of fig. 14 refers to intermediate variables that are com-
puted during the propagation. Thus, the definitions of these variables (S1 and
Cl') are those given in fig. 13 and they have not been repeated in fig. 14. As ex-
plained previously, the set of initial static variables of SP is S1. Thus, during the
simplification process:

e The statements of SP are simplified into StmtV’, yielding an updated set of
specialized versions V' (first premise).

e Then data (EnvSP, S1 and CI') are propagated through these simplified state-
ments StmtV'] yielding a new state S2 for SP (second premise).

e A new name (NewName) is created for StmtV’ (third premise). This new name
is a possible name that is not already a procedure name:

NewName € PROCN AME — ProcName.

23

e The call to SP is replaced by the call to NewName with the same parameters (no
unfolding). The new specialized version NewVersion is also added among special-
ized versions of SP (conclusion of the rule). This new version is the quintuplet
(name of original procedure = SP,version name = NewName, input data =
S, output data = S2, statements = StmtV').

3.6.3. Partial Evaluation Given an environment E, a state S, inherited common
blocks Cl, and specialized versions V, the partial evaluation of a call statement com-
bines the propagation of E, S and Cl through this statement and the simplification
of this statement. Fig. 15 shows how the partial evaluation of a call statement
yields a new call statement (with the same actual parameters), a new state and a
new set of specialized versions.

propag
E,S,CI + CALL (LParam) : '

simpl
E,S,CL,V F CALL SP(LParam) < CALL SP’(LParam), V'

PE
E,S,Cl,V F CALL SP(LParam) — CALL SP’(LParam),S’, V'

Figure 15. Partial evaluation of call statements.

4. Correctness of the Partial Evaluation

The natural semantics rules that specify partial evaluation define inductively a for-
mal system (PE), that groups the propagation (propag) and the simplification
(simpl) systems. Propagated data and simplified statements are built-up in a
unique way. To prove that the partial evaluation system is correct means prov-
ing that it is sound (each result of a residual program is correct with respect to the
initial program) and complete (each correct result is computed by the residual pro-
gram, too) with respect to the dynamic semantics of Fortran 90 given in section 3.
The dynamic semantics rules are not proved: they are supposed to define ex nihilo
the semantics of Fortran 90.

The general schema to prove the correctness of the partial evaluation is the fol-
lowing. Given an initial procedure P, its environment E represents its syntax, and
its inherited common blocks Cl can be computed from its call graph. Intially, not a
single specialized version has been created. Given some values SO for known input
data, the partial evaluation of P yields a residual procedure P’. Let a state S’ and a

PE
set of specialized versions V' be such that the sequent E,S0,Cl,[] + P~ P',S",V'
holds in the partial evaluation system (PE). In this sequent [] denotes the initial
and empty list of specialized versions. Given this sequent, we want to prove that

24

the partial evaluation is sound and complete with respect to the dynamic semantics
(sem system). This is expressed by the following property of partial evaluation,
where the implication = (resp. <) states completeness (resp. soundness).

VS, : (E,S0US,Cl F P:S' & E,S0US,Cl E P':§).

S denotes the values of dynamic input variables (initally, their values are un-
known). Such variables are the remaining input data once SO has been given by the
user. Thus, SOUS denotes the values of the whole input variables. To prove in the
sem system this property on programs, we prove it for any Fortran 90 statement we
simplify (i.e. for any rule of the partial evaluation system). Such a proof proceeds
by structural induction on the Fortran 90 abstract syntax: the proof that the par-
tial evaluation of a compound statement such as IF ¢ THEN i1 ELSE 42 is correct is
done under the induction hypothesis that states it is correct for the substatements
i1 and i2. The proof for some simple simplifications of statements has been given
in [21].

Our approach to prove the correctness of partial evaluation is close to the approach
of [8] to prove the correctness of translators: in that paper, dynamic semantics and
translation are both given by formal systems and the correctness of the translation
with respect to dynamic semantics of source and object languages is also formalized
by inference rules that are proved by induction on the length on the proof. However,
to simplify our proofs, they do not deal with validity of inference rules in the union
of several formal systems (expressing the dynamic semantics of two langages and
the traduction from one langage to the other). Furthermore, we do not need rule
induction for all our proofs, but only structural induction and sometimes induction
on derivations (to handle loops).

As an example, we give here the guidelines for proving by structural induction
the completeness of the partial evaluation of a call statement CALL SP(LParam).
Figure 16 gives the completeness rule to prove. This rule is proved under the
induction hypothesis that the statements of SP are complete.

PE
E,S0,Cl,V F CALL SP(LParam) — CALL SP'(LParam), V', S’
E,S0US,Cl F CALL SP(LParam):S"

E,S0US,Cl, F CALL SP'(LParam) : 5"

Figure 16. Completeness rule for a call statement.

PE
Let E,SO,Cl,V F CALL SP(LParam) ~ CALL SP’(LParam),V’,S’ be a sequent
of the partial evaluation system. Let S and S’ be such that the following sequent

sem
of the sem system holds: E,SOUS,Cl + CALL SP(LParam) : S”. Now we have

25

to prove that given the same input values, the simplified call statement yields the
same output values. This is expressed by the following sequent.

E,S0US,Cl F CALL SP'(LParam) : §'

It will then prove the completeness of the partial evaluation of the call statement
CALL SP(LParam) and of the specialized versions of SP. This is proved in two stages.

1. Firstly, no data declaration is modified during the partial evaluation. Thus,
both procedures SP and SP’ have the same formal parameters and the same
data declarations. It follows that given input values SOUS the data declarations
of SP’ yield the same values as the declarations of SP.

2. Secondly, we assume that the induction hypothesis on the simplified statements
of SP holds, and deduce that the new version and the specialized statements
are complete as required.

5. The Tool

We have implemented our partial evaluator on top of a kernel that has been gen-
erated by the Centaur system [6]. The Centaur system is a generic programming
environment parametrized by the syntax and semantics of programming languages.
When provided with the description of a particular programming language, includ-
ing its syntax and semantics, Centaur produces a language specific environment.
The intermediate format for representing program texts is the abstract syntax tree.
We have merged two specific environments (one dedicated to Fortran 90 and an
other to a language that we have defined for expressing the scope of general con-
straints on variables) into an environment for partial evaluation. This environment
consists of structured editors for constraints and Fortran 90 procedures (provided by
Centaur), a partial evaluator, together with an uniform graphical interface. Fig. 17
shows the architecture of our tool, its inputs and outputs. Given a file of constraints
and an initial program represented by several Fortran 90 files, the tool generates
the program specialized with respect to these constraints and the corresponding
final constraints.

The formal specifications have been implemented in a language provided by Cen-
taur and called Typol. Typol is an implementation of natural semantics. Typol
programs are compiled into Prolog code. When executing these programs, Prolog is
used as the engine of the deductive system. Set and relational operators as defini-
tions have been written directly in Prolog in order to develop succinct and efficient
Typol rules [14]. Thus, the Typol rules operate on the abstract syntax and they
are close to the formal specification rules as shown in [20]. The partial evaluation
process transforms an initial abstract syntax tree (representing the initial Fortran
procedures and constraints) into a residual abstract syntax tree (representing the
specialized code and the final constraints).

The abstract syntax of Fortran 90 is general and close to the abstract syntax
of any imperative language. For instance, to be more general, our specifications

26

Lex and Yacc it
prog.f »| | abstract and . 7 result
g —L>
_ syntaxes tree builder
-
pretty-printing pretty-printer
exLf -~ rules constraints2.exp
ex2 f o transformation —L > | Semantic
rules PN tools
vy |
Lisp Prol

partial evaluator built on Centaur

Figure 17. Architecture of the partial evaluator.

assume a dereferencing operator that does not exist in Fortran 90. The only pecu-
liarities of Fortran 90 are the parameter passing (by reference only) and the use of
common blocks instead of global variables. Except the corresponding specification
rules, other rules are abstract enough to be those of any other imperative language
(without recursion).

We have implemented a graphical interface to facilitate the exploration of For-
tran 90 application programs [19]. It has been written in Lisp, enhanced with struc-
tures for programming communication between graphical objects and processes. It
is shown in fig. 18 and used as follows.

The user starts to define the application program to be specialized. For example,
in fig. 18, the user has selected the files called ex.f, exann.f and exannsb.f. The
constraints related to this application program are called through a popup menu
button (in fig. 18 they are written in the file called ex-ter.lgaux). When the
partial evaluation is triggered, two new windows are displayed. The first one (called
”Initial programs” in fig. 18) displays the procedures to specialize. This is especially
useful if some Fortran 90 files have not been already displayed. The second window
displays (under the previous one in the figure) the specialized procedures.

Hyperlinks have been added to visualize with color:

e all occurrences in all displays with a special selection,

e specialized versions of a procedure (e.g. in the window called ”Specialized ver-
sions of spl” in fig. 18),

9

e propagated data (in a window similar to the “ex-ter.lgaux” window, not

shown in Fig. 18),

e warning messages in a special message window (called ” Centaur messages” in
fig. 18) that will open automatically.

File Display Selections View End {7
UTINE spif b} .

= ,
| O File Display Selections
.

=

File Display Selections

Selections

=
[] File Display Selections
rog(e=3)"(r=1)"(

: prolog [1) yes.

: Version specialisee de sublbis non trouvee.
: Version specialisee de sublibis non trouvee.
: Version specialisee de sub1his non trouvee.

Figure 18. Partial evaluation of a Fortran 90 application program (with reuse of specialized
versions).

In fig. 18, the display of the window ” Specialized versions of sp1” has been triggered
by a click on the call statement to SP1 in the ”Initial programs” window. The user
may trigger several instances of the tool together. Fig. 18 shows only an instance
numbered SFAC(1) (this number is written in the title of the ”Initial programs”
window). Each window depends on an instance and it will be killed automatically
when the instance is killed.

28

6. Conclusion

This paper has presented an approach to the understanding of application programs
during their maintenance. The approach relies on partial evaluation, a technique
that we have adapted to program understanding. The partial evaluation performs
an interprocedural pointer analysis. We have formally specified our partial evalua-
tion process and we have derived the propagation from the dynamic semantics, also
expressed in natural semantics. In these specifications, inference rules in natural
semantics show how statements are simplified from data propagation and simpli-
fication of other statements. A lot of data are propagated in these rules. The
computations performed on these data are expressed with set and relational oper-
ators. Propagated data have been structured to avoid overloading the rules. Data
structuration has been presented in object diagrams with access functions.

From the specifications, we have proven by induction the correctness of the partial
evaluation with respect to a dynamic semantics of Fortran 90. This proof has been
done by hand. We are currently investigating an automatic proof of the correctness
of the partial evaluation.

A tool has been implemented from the specifications. A graphical interface has
also been implemented to visualize program dependencies (mainly between vari-
ables and values and between reused versions of procedures). The tool has been
tested at the EDF (the French national company that produces and distributes
electricity), that provided us with scientific application programs [20]. The first re-
sults are very encouraging. We are planning more empirical work to validate these
preliminary results: we intend to test other application programs made of a great
deal of pointers and to use metrics such as those defined in [17] to evaluate our
interprocedural constant propagation. An other current focus is in improving the
analysis by propagating general constraints between variables instead of only equal-
ities between variables and values. To this end, we could adapt the rules described
in [7].

Furthermore, partial evaluation is complementary to program slicing, another
technique for extracting code when debugging a program. Program slicing aims at
identifying the statements of the program which impact directly or indirectly on
some variable values. We believe that merging partial evaluation (a forward walk
through the call graph) and program slicing (a backward walk) would improve a
lot the reduction of programs.

Notes

1. we could have used the other symbol for composition o that is tantamount to ; since for any
pair of binary relations r and p it is defined by por =r;p

2. A means ”by definition”

29

References

1. ACM. Symposium on partial evaluation, number 4 in ACM Computing Surveys, December
1998.

2. C.B.Jones. Systematic development using VDM. Prentice-Hall, 1990.

3. D.R.Chase and F.K.Zadeck. Analysis of pointers and structures. In Programming Languages
Design and Implementation Conference Proceedings, pages 296-31, White Plains, June 1990.
ACM SIGPLAN.

4. G.Kahn. Natural semantics. In STACS Proceedings, volume 247 of Lecture Notes in
Computer Science, 1987.

5. H.R.Nielson and F.Nielson. Semantics with application - A formal introduction. John Wiley
and Sons, 1992.

6. INRIA. Centaur 1.2 documentation, 1994.

7. J.A.Bergstra, T.B.Dinesh, and J.Heering. Toward a complete transformational toolkit for
compilers. ACM Transactions on Programing Languages and Systems, (5):639-684, Septem-
ber 1997.

8. J.Despeyroux. Proof of translation in natural semantics. In Symp. on Logic in Computer
Science Proceedings, Cambridge, USA, June 1986.

9. J.Field, G.Ramalingam, and F.Tip. Parametric program slicing. In Principles Of
Progamming Languages Conference Proceedings, pages 379-392, San Francisco, USA, 1995.

10. J.R.Abrial. The B-Book assigning programs to meanings. Cambridge University Press, 1996.

11. L.O.Andersen. Program analysis and specialization for the C programming language. PhD
thesis, University of Copenhagen, 1994. DIKU report 94/19.

12. M.Sagiv, T.Reps, and R.Wilhelm. Solving shape-analysis problems in languages with destruc-
tive updating. In Principles Of Progamming Languages Conference Proceedings, January
1997.

13. N.D.Jones, C.K.Gomard, and P.Sestoft. Partial evaluation and automatic program
generation. Prentice-Hall, 1993.

14. N.Dubois and P.Sayarath. Aide a la compréhension et & la maintenance: pointeurs pour la
spécialisation de programmes. Master’s thesis, IIE-CNAM, June 1996. in French.

15. O.Danvy, R.Gliick, and P.Thiemann, editors. International seminar on partial evaluation,
volume 1110 of Lecture Notes in Computer Science, Dagstuhl castle, February 1996.

16. R.Baier, R.Gliick, and R.Zd&chling. Partial evaluation of numerical programs in fortran. In
Partial Evaluation and semantics based Program Manipulation Workshop Proceedings, pages
119-132, Melbourne, 1994. ACM SIGPLAN.

17. R.Carini and M.Hind. Flow-sensitive interprocedural constant propagation. In Programming
Languages Design and Implementation Conference Proceedings, pages 23-31, La Jolla, June
1995. ACM SIGPLAN.

18. R.Marlet, S.Thibault, and C.Consel. Mapping software architectures to efficient implemen-
tation via partial evaluation. In Automated Software Engineering Conference Proceedings,
pages 183-192. IEEE, November 1997.

19. R.Vassallo. Ergonomie et évolution d’un outil de compréhension de programmes. Master’s
thesis, IIE-CNAM, June 1996. in French.

20. S.Blazy and P.Facon. Sfac, a tool for program comprehension by specialization. In
Third Workshop on Program Comprehension Proceedings, pages 162-167, Washington D.C.,
November 1994. IEEE.

21. S.Blazy and P.Facon. Formal specification and prototyping of a program specializer. In
TAPSOFT Conference Proceedings, volume 915 of Lecture Notes in Computer Science, pages
666—680, Aarhus, May 1995.

22. S.Blazy and P.Facon. An automatic interprocedural analysis for the understanding of scien-
tific application programs. In O.Danvy et al. [15], pages 1-16.

23. S.Blazy and P.Facon. Partial evaluation for program understanding. ACM Computing
Surveys - Symposium on partial evaluation, 4(4), December 1998.

24. W.Landi and B.G.Ryder. A safe approximate algorithm for interprocedural pointer alias-

ing. In Programming Languages Design and Implementation Conference Proceedings. ACM
SIGPLAN, June 1992.

