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Revisiting open boundary conditions from the

point of view of characteristic variables

E. Blayo ∗, L. Debreu

IDOPT Project, LMC-IMAG and INRIA Rhône-Alpes, BP 53X, 38041 Grenoble

cedex, France

Abstract

This paper emphasizes the peculiar role of characteristic variables in the design of
open boundary conditions (OBCs). It is shown that local OBCs leading to posi-
tive results in previous comparative studies do fulfil two requirements : they make
use of incoming characteristic variables (i.e. privilege the hyperbolic aspect of the
equations), and satisfy a consistency relationship between the model solution and
some external data. The classical OBCs used in atmosphere and ocean modeling are
revisited from this point of view. It is shown that several usual boundary conditions
should be avoided, while conditions satisfying the two preceding criteria are pointed
out. Finally, the application of these criteria to the design of OBCs for primitive
equations is discussed.

1 Introduction

Defining artificial boundaries is a necessity in any non-global ocean or atmo-
sphere circulation model. One must prescribe boundary conditions for such
artificial interfaces in order to close the system of equations and to yield a
well-posed problem. However the choice of relevant open boundary conditions
(OBCs) is a difficult problem, which has been the subject of numerous stud-
ies. With regard to more classical fluid dynamics applications, an additional
difficulty specific to these applications is that an artificial boundary cannot
be chosen as a purely inflow or a purely outflow boundary; the flow through a
section generally exhibits a complex inflow/outflow pattern, which is generally
time-dependent.

While prescribing OBCs for ocean or atmosphere models, one has typically
two main goals. The first one is to evacuate the outgoing information reaching
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the boundary. The second one is to bring some extra knowledge on incom-
ing information, and to make the model solution compatible with it. One can
notice obviously that several terms in the preceding specifications are rather
vague, like information, knowledge and compatible. This is unavoidable, given
the complexity of ocean and atmosphere dynamics and the diversity of nu-
merical applications. This implies therefore that there is no perfect solution
to this problem.

That is why numerous methods have been proposed for more than 25 years,
ranging from purely mathematical approaches to specific modeling applica-
tions. Mathematical results are often obtained for simplified equations (e.g.
linearized and/or inviscid). They generally address the derivation of OBCs,
and the well-posedness of the model equations using these OBCs. Note that
the well-posedness of the system ensures the uniqueness of the solution and its
stability with regard to initial datum, but does not give any information on its
accuracy nor relevance with regard to the ”true” global solution. On the other
hand, numerical studies can use complex and realistic models, but their results
seem often dependent on the test cases. Several reviews of OBCs are avail-
able, either for ocean and atmosphere models or in a more general context.
Let us mention for instance the introductory parts of the papers by Palma
and Matano (1998), Marchesiello et al.(2001), Treguier et al.(2001), or the
review papers by Givoli (1991), Tsynkhov (1998) or Holdstad and Lie (1999).
OBCs are often classified roughly into two categories : global OBCs are usually
very accurate, but computationally expensive and difficult to implement; local
OBCs are much cheaper and easier to implement, but also generally much less
accurate and mathematically justified.

When attempting to draw some synthesis of the previous works, two key points
stand out, which seem to be necessary constituents for any good OBC. The
first point is that good results are obtained when taking primarily into account
the hyperbolic part of the dynamics, and therefore when working on incoming
characteristic variables. The second point is that this must be associated with
a consistent use of some external data or reference flow. The first aim of this
paper is to emphasize and justify these two aspects, and to revisit most of the
usual OBCs from this point of view. We explain these two criteria in section
2. Then we propose in section 3 a critical review of usual OBCs, emphasizing
the context in which they seem justified and efficient, and their links in that
case with incoming characteristic variables. To illustrate this review, we have
chosen not to conduct new numerical experiments, but rather to rely on the
numerous existing comparative studies already published. A second aim of
this paper, discussed in section 4, is to give some indications on the way a
characteristic-based approach could be applied to primitive equations.
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2 Two necessary criteria for efficient OBCs

2.1 Incoming characteristic variables

Let us now recall some standard definitions concerning hyperbolic systems,
and in particular the definition of characteristic variables. The general form
of a hyperbolic system of equations is

∂Φ

∂t
+ A(Φ)

∂Φ

∂x
= F (1)

where Φ(x, t) is a vector of n functions, A(Φ) is a n×n matrix of functions of
Φ, and F is a forcing term. For the system to be hyperbolic, A must have n
real eigenvalues and n distinct eigenvectors. Let Wk the kth left eigenvector of
A, corresponding to the kth eigenvalue λk : W T

k A = λk W T
k . Multipliying (1)

on the left by W T
k , one gets :

W T
k

dkΦ

dt
= W T

k F with
dk

dt
=

(

∂

∂t
+ λk

∂

∂x

)

(2)

The operator dk/dt represents a total (or directional) derivative in the di-

rection defined by
dx

dt
= λk. To the hyperbolic system (1) correspond n such

families of curves, which are called characteristic curves of the system.

If the system (1) is linear with constant coefficients, i.e. if A is a constant
matrix, one can define the new variables φk(x, t) = W T

k Φ(x, t). (1) is then
equivalent to the system of n uncoupled transport equations :

∂φk

∂t
+ λk

∂φk

∂x
= W T

k F k = 1, . . . , n (3)

The characteristic curves in that case are the lines x − λkt = constant, along
which the φk (called characteristic variables or Riemann invariants) are con-
served. One can notice that, at a given boundary, these characteristic variables
will be either inflowing or outflowing, depending on the sign of λk.

A fundamental point is that, for a hyperbolic open boundary problem to be
well-posed, one must prescribe as many boundary conditions as the number
of incoming characteristics. This result is in fact quite intuitive : the solution
can be decomposed into outgoing and incoming characteristics; information
on the former is available within the computation domain, and no additional
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condition is required, while information on the latter is not available, and must
be specified.

The extension to non-hyperbolic systems, like for example the Navier-Stokes
equations, is not trivial. As pointed out by Poinsot and Lele (1992), a logical
approximation is then to consider only the hyperbolic part of the system, and
to use the same procedures as for the hyperbolic case. This approximation
is probably well justified at least at high Reynolds numbers, and more ques-
tionable at low Reynolds numbers. However, Poinsot and Lele present good
numerical results obtained even in such a test case.

2.2 A consistent use of external data

The nature of the available external information at the open boundary may
differ a lot, depending on the application. At the very least, the modeller has
climatological data, with a somewhat crude resolution, at his disposal. In such
a case, the ratios between model and data resolutions can be typically

∆xext

∆xmodel

≃ 5 − 20 and
∆text

∆tmodel

≃ 103 − 105 (4)

At the very best, the numerical model can be embedded, in a one-way inter-
action, within another model of coarser resolution. In that case, the previous
ratios become typically

∆xext

∆xmodel

≃ ∆text

∆tmodel

≃ 2 − 5 (5)

Given some external data, the question is then to decide what consistency we
would like to get between this information and the solution of the open bound-
ary problem. Since the external data generally correspond to some temporal
and spatial averages, one should probably impose ideally

1

T

1

|D(x0)|

T/2
∫

−T/2

∫

D(x0)

φ(x0 + x′, t + t′) dx′ dt′ ≃ φext(x0, t) (6)

where T and D(x0) correspond respectively to the time and space scales of
the external data and φ represents the model variables. However, such a con-
sistency cannot be easily imposed, except in an inverse problem framework.
That is why modellers often introduce the external data quite empirically in
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the formulation of the OBCs, sometimes with tuning parameters (see section
3).

To avoid too much empiricism, a reasonable choice consists in imposing the
consistency locally all along the boundary. This means that the OBC is of the
form

Bφ = Bφext (7)

where B is the open boundary operator. B = Id corresponds to the continuity
of φ through the boundary, and B = ∂/∂n to the continuity of the flux. Such
a formulation (7) is quite natural for example if we consider that the external
data φext represents some steady state or far field solution φ∞. In that case, as
detailed for example by Engquist and Halpern (1988), if we want the model
solution to converge to the steady state solution as t → ∞, then the OBC
must also be satisfied by φ∞. We will show in section 3 that several OBCs
that seem to be efficient do indeed satisfy (7).

Note also that, if we consider (7) as a necessary form, then any OBC of the
form Bφ = 0 corresponds in fact to Bφ = Bφext = 0, which means assuming
Bφext = 0, which is probably not relevant in many cases.

Used together with the point of view of characteristic variables presented previ-
ously, this condition (7) leads to recommending OBCs of the form Bw = Bwext

where w is an incoming characteristic variable of the governing equations.

3 Revisiting usual OBCs

We are now going to review the usual OBCs using the preceding point of view
of hyperbolic equations. We will emphasize that OBCs with actual efficiency
can always be readily interpreted in terms of incoming characteristic variables
and external data. We will see also that some usual OBCs are justified only
in some particular context and should not be used out of this context.
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3.1 Radiation methods

3.1.1 Justification of the Sommerfeld condition

A very popular class of OBCs are radiation methods. They are based on the
Sommerfeld condition :

∂φ

∂t
+ c

∂φ

∂n
= 0 (8)

which corresponds to the transport of the quantity φ through the boundary Γ
(n is the outward normal vector) with the velocity c.

It is well-known that this condition is fully justified in the context of wave
equations. Let us first consider the 1-D wave equation :

∂2φ

∂t2
− c2 ∂2φ

∂x2
= 0 x ∈ IR, t > 0 (c > 0) (9)

Defining ϕ =
∂φ

∂x
and ξ =

∂φ

∂t
, (9) is equivalent to the first order hyperbolic

system :































∂ϕ

∂t
=

∂ξ

∂x

∂ξ

∂t
= c2 ∂ϕ

∂x

(10)

Diagonalizing this system as explained in §2.1 leads to a system of two inde-
pendent transport equations :































∂C−

∂t
− c

∂C−

∂x
= 0

∂C+

∂t
+ c

∂C+

∂x
= 0

with































C+ = ξ − cϕ =
∂φ

∂t
− c

∂φ

∂x

C− = ξ + cϕ =
∂φ

∂t
+ c

∂φ

∂x

(11)

The characteristic quantities C+ and C− are thus conserved respectively along
the characteristic lines x − ct = constant and x + ct = constant. Considering
for example an eastern boundary, prescribing the incoming characteristic to
zero is equivalent to the condition C− = 0, which is exactly the Sommerfeld
condition (8).
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This result can be extended to the 2-D wave equation :

∂2φ

∂t2
− c2

(

∂2φ

∂x2
+

∂2φ

∂y2

)

= 0 (x, y) ∈ IR2, t > 0 (c > 0) (12)

Defining ϕ1 =
∂φ

∂x
, ϕ2 =

∂φ

∂y
, and ξ =

∂φ

∂t
, (12) can be written :

∂Φ

∂t
+ A1

∂Φ

∂x
+ A2

∂Φ

∂y
= 0 (13)

with Φ =















ξ

ϕ1

ϕ2















, A1 =















0 −c2 0

−1 0 0

0 0 0















, A2 =















0 0 −c2

0 0 0

−1 0 0















.

Considering an eastern artificial boundary x = constant, the diagonalization of
A1 gives the characteristic variables in the direction normal to this boundary :
C+ = ξ − cϕ1 (corresponding to the eigenvalue c), ϕ2 (corresponding to 0),
and C− = ξ + cϕ1 (corresponding to −c). Therefore, prescribing the incoming
characteristic to 0 is C− = 0, i.e. again the Sommerfeld condition.

The Sommerfeld condition is thus legitimate (and optimal in the 1-D case) for
wave propagation problems with constant phase velocity, and corresponds to
specifying the incoming characteristic to zero.

3.1.2 Limitations of Orlanski-type conditions

Orlanski (1976) proposed a numerical implementation of this Sommerfeld con-
dition for more complex hyperbolic flows, including an adaptive evaluation of
c. A number of variants were then derived, using alternative computations of
c, and/or taking into account the tangential derivative, and/or including an
additional relaxation term (e.g. Camerlengo and O’Brien, 1980; Miller and
Thorpe, 1981; Raymond and Kuo, 1984; Barnier et al., 1998; Marchesiello et
al., 2001). Such radiation methods are now widely used in ocean and atmo-
sphere modeling.

However their relevance for such complex flows is far from obvious. They have
proved to give rather poor results in several comparative studies (e.g. Röed
and Cooper, 1987; Palma and Matano, 1998; Nycander and Döös, 2003). In the
same way, Treguier et al. (2001) analyze the behaviour of a radiation BC in an
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eddy-permitting model of the Atlantic, and conclude that the computation of
c is problematic, and leads to a function c(x, t) close to a white noise, without
physical meaning (see also figure 5 in Durran (2001)). They also verify that
a clamped BC leads to nearly similar results than those obtained with their
radiation BC.

The basic reason for these results is the explanation given previously, indi-
cating that the Sommerfeld condition is justified only in the context of wave
equations with a constant phase velocity. Therefore applying such a condition
to variables which do not satisfy at all such equations, as is commonly done
in ocean or atmosphere models, does not make sense. This results, from a
practical point of view, in a fundamental nonlinearity of radiation BCs, which
has been recently pointed out by Nycander and Döös (2003) and can be ex-
plained as follows. Let us suppose for instance that Γ is an eastern meridional
open boundary, which means that ∂/∂n = ∂/∂x. All radiation conditions are
based on the same following sketch. One first assumes that the Sommerfeld
condition is valid not only on the open boundary Γ but also in its vicinity
(typically two gridpoints within the domain). The velocity c is then estimated
using (8) under the form

c(x, t) = − ∂φ/∂t

∂φ/∂x
(14)

and making an arbitrary additional hypothesis. For example, Orlanski (1976)
computes c(x, t) on Γ using (14) one gridpoint from Γ and at the previous
timestep. This is equivalent to assuming c(x, t) = c(x − ∆x, t − ∆t), i.e.

∂c

∂t
+

∆x

∆t

∂c

∂x
= 0 (15)

near Γ. One applies then the radiation condition using the previous estimate
for c. So the condition which is really used is not (8), but rather a system of two
equations like (8)-(15). c can be eliminated by combining the two equations,
in order to get one only equation for φ. This means that the condition (8)-(15)
which is actually implemented by Orlanski’s method is a discretization of

∂

∂t

(

∂φ/∂t

∂φ/∂x

)

+
∆x

∆t

∂

∂x

(

∂φ/∂t

∂φ/∂x

)

= 0 (16)

i.e.

∂2φ

∂t2
∂φ

∂x
−
(

∂φ

∂t
− ∆x

∆t

∂φ

∂x

)

∂2φ

∂t∂x
− ∆x

∆t

∂φ

∂t

∂2φ

∂x2
= 0 (17)
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A similar derivation with the implicit version of Orlanski’s method (which
consists in estimating c one gridpoint within the domain at the same timestep)
leads to the condition :

∂2φ

∂t∂x

∂φ

∂x
− ∂φ

∂t

∂2φ

∂x2
= 0 (18)

The nonlinearity of the method is obvious in equations (17) or (18). There-
fore such a condition is correct for any single wave reaching the boundary
(with normal incidence) but is not as soon as there is combination of several
waves with different velocities : φ(x, t) = f(x− ct) satisfies (17) and (18), but
φ(x, t) = f1(x − c1t) + f2(x − c2t) with c1 6= c2 does not.

3.1.3 The role of external data in radiation methods

Although radiation boundary conditions cannot be efficient for complex flows
from a theoretical point of view, they are widely used in realistic ocean and
atmosphere simulations, with some apparent efficiency. This contradiction is
explained by the role of external data in the actual formulation of radiation
conditions. As indicated previously, the radiation velocity c is evaluated at
each timestep and at each gridpoint on the open boundary. If c is inward, the
model variable is generally set to the corresponding external value : φ = φext,
or strongly relaxed towards it :

∂φ

∂t
= − φ − φext

τin

(19)

where τin is a short relaxation timescale. If c is outward, then the radiation
equation is applied, but often with the addition of a relaxation term :

∂φ

∂t
+ c

∂φ

∂n
= − φ − φext

τout

(20)

where τout is a longer relaxation timescale. In their careful analysis of a simula-
tion of the Atlantic ocean, Tréguier et al. (2001) have observed that c behaves
in some sense like a white noise, and is directed inwards about half of the
time at any location on the open boundaries. Therefore the model solution
at the open boundary never departs significantly from the external data, and
the radiation condition acts in fact nearly as a clamped condition. Following
this idea, Tréguier et al.(2001) performed an additional simulation with such
a clamped BC, and observed very few differences in the results. So it is proba-
bly the strong influence of the external data through the additional relaxation
term in the radiation conditions that gives them most of their practical effi-
ciency, rather than the radiation procedure.
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Note also that neither (8) nor (20) satisfy the consistency criterion (7). A
correct condition from this point of view would be for example :

∂φ

∂t
+ c

∂φ

∂n
=

∂φext

∂t
+ c

∂φext

∂n
(21)

which is a condition recommended by Carpenter [1982] and Perkins et al.
[1997]. However this still does not make the Sommerfeld operator relevant for
realistic flows. A simple relaxation condition like

∂(φ − φext)

∂t
= − φ − φext

τ
(22)

, which satisfies (7), would probably give rather similar results than previous
radiation conditions in actual complex simulations, without unuseful reference
to the Sommerfeld condition.

3.2 Flather condition

Flather (1976) proposed an OBC for 2-D barotropic flows, which is often
classified within the family of radiation conditions. This condition can be
obtained by combining the Sommerfeld condition for the surface elevation η
(with surface gravity waves phase speed)

∂η

∂t
+
√

gh
∂η

∂n
= 0 (23)

with a one-dimensional approximation of the continuity equation

∂η

∂t
+ h

∂v̄n

∂n
= 0 (24)

where h is the local water depth and v̄n is the normal component of the
barotropic velocity. Substracting (23) to (24), one obtains

∂

∂n

[

v̄n −
√

g

h
η
]

= 0 (25)

which gives by integration through Γ :

v̄n −
√

g

h
η = v̄ext

n −
√

g

h
ηext (26)
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Note that for an eastern open boundary for instance, v̄n ≡ ū.

The Flather condition has been used in some comparative studies (e.g. Palma
and Matano, 1998; Marchesiello et al., 2001; Nycander and Döös, 2003), and
it always appears to be one of the most efficient conditions.

This can be explained in fact using the point of view of characteristic variables.
Let us consider the 2-D linearized inviscid shallow-water equations :







































∂u

∂t
+ u0

∂u

∂x
+ v0

∂u

∂y
− fv + g

∂η

∂x
= 0

∂v

∂t
+ u0

∂v

∂x
+ v0

∂v

∂y
+ fu + g

∂η

∂y
= 0

∂η

∂t
+ u0

∂η

∂x
+ v0

∂η

∂y
+ h0

(

∂u

∂x
+

∂v

∂y

)

= 0

(27)

with u = (u, v)T the velocity, η the surface elevation, f the Coriolis parameter,
g the reduced gravity and h0 the water depth. This system is hyperbolic, and
can be written in matrix form :

∂Φ

∂t
+ A1

∂Φ

∂x
+ A2

∂Φ

∂y
+ CΦ = 0 (28)

with Φ =















u

v

η















, A1 =















u0 0 g

0 u0 0

h0 0 u0















, A2 =















v0 0 0

0 v0 g

0 h0 v0















, C =















0 −f 0

f 0 0

0 0 0















The characteristic variables in the direction normal to Γ are found by com-
puting the left eigenvectors of A = A1nx + A2ny, where n = (nx, ny)

T is

the outward normal vector. It is well-known that one finds w1 = u.n −
√

g

h0

η

(corresponding to the eigenvalue λ1 = u0.n−c), w2 = u×n (with λ2 = u0.n),

and w3 = u.n +

√

g

h0

η (with λ3 = u0.n + c), with c =
√

gh0.

In the case of an eastern boundary, this reduces to w1 = u −
√

g

h0

η, w2 = v

and w3 = u +

√

g

h0

η.

For subcritical flows (u0.n < c), the incoming characteristic variable is w1 (and
possibly w2 if u0.n < 0). Therefore a possible relevant boundary condition is
to prescribe w1 (w1 = wext

1 ), which is exactly the condition (26) proposed by
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Flather.

This is probably the key point explaining the effectiveness of this condition
observed in several comparative studies, as mentioned above. Rather than be-
ing classified within the family of radiation OBCs, the relevant interpretation
of the Flather condition is that it imposes the value of the incoming charac-
teristic of the shallow water equations. Moreover this condition satisfies the
consistency relationship (7), with B = Id. Therefore the two criteria pointed
out in section 2 are fulfilled by this OBC.

An additional interesting property of the Flather condition which can be eas-
ily demonstrated is that it ensures a near conservation of mass and energy
through the open boundary. We will be back in section 4.1 on the actual im-
plementation of the Flather condition in the case of shallow-water equations.

3.3 Absorbing conditions

Absorbing boundary conditions are exact relations satisfied by the outgoing
quantities at the open boundary. In a reference paper, Engquist and Majda
(1977) give a general method for obtaining such relations. However, these
conditions are generally global in time and space, and cannot be used just
as is in practice. That is why they must be approximated to give tractable
local conditions. A strong interest of this approach is its sound mathematical
foundation, and its practical efficiency in several domains of applications.

For the inviscid shallow water equations (27), their method gives the following
OBCs (given here, with previous notations, in the case of an eastern open
boundary and with no external sources) :

• At first order :










w1 = 0 if u0 > 0 (outgoing flow)

w1 = v = 0 if u0 < 0 (incoming flow)
(29)

• At second order :






































∂w1

∂t
− u0

∂v

∂y
− u0

c
fv = 0 if u0 > 0



















∂w1

∂t
− u0 + c

2

∂v

∂y
= 0

∂v

∂t
− v0

u0 −
√

2(u0 + c)√
2c

∂v

∂y
+

u0 + c

2

∂w3

∂y
+ f

u0 + c

2c
w3 = 0

if u0 < 0
(30)

Generalization to non-zero external data should result in additional terms in
order to satisfy the consistency relationship (7).
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As can be seen in the previous conditions, a striking point is that this theory of
absorbing boundary conditions has also close links with incoming characteris-
tic variables. In the case of first order symmetric hyperbolic systems (like the
wave equation or the inviscid shallow water equations), Engquist and Majda
(1977) formulate the exact nonlocal absorbing condition and its approxima-
tions at different orders in terms of the characteristic variables normal to the
open boundary. In particular, a very interesting result is that the first or-
der approximation consists merely in setting the incoming characteristics to
zero. Therefore the first order absorbing condition for the wave equation is
the Sommerfeld equation (or (21) in the case of external data). Similarly the
first order absorbing condition for the shallow water system is w1 = 0, which
becomes the Flather condition w1 = wext

1 in the case of external data. Note
however that, as explained in §2.1, there are in fact as many conditions as the
number of incoming characteristics. We will discuss further that specific point
in section 4.1.

Several papers have recently readdressed the derivation of transparent bound-
ary conditions for the inviscid shallow water system (27) using to some extent
the methodology proposed by Engquist and Majda (1977). Although not for-
mulated that way in the original papers, it appears that these derivations
lead to OBCs which can be written in terms of incoming characteristic vari-
ables only, with criterion (7), and which give apparently quite good numerical
results :

• Combining the approach of absorbing conditions for the wave equation and
some physical insight, McDonald (2002, 2003) derives conditions which are
in fact the Flather condition (26) and its Lagrangian derivative :

Dw1

Dt
=

∂w1

∂t
+ u0

∂w1

∂x
+ v0

∂w1

∂y
= 0 (31)

His best results on academic testcases are obtained using (26) at inflow
locations (i.e. u0.n < 0) and (31) at outflow locations.

• Nycander and Döös (2003) derive absorbing conditions in the particular
case u0 = 0, which prove to perform well on their test cases. The conditions
they obtain are in fact again the Flather condition (26) and another relation
(their equation (37)) which can be rewritten as :

∂w1

∂t
+ c

∂w1

∂n
=

∂wext
1

∂t
+ c

∂wext

1

∂n
(32)

So, starting from the point of view of absorbing BCs, it appears once again
that the two criteria presented in section 2 play a central role in the derivation
of efficient OBCs.

Finally with regard to absorbing conditions, note that Lie (2001) generalizes
in some way the results of Engquist and Majda by relaxing the hypothesis
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of symmetry of the system, and computing the characteristics without di-
agonalizing the matrix A defined previously. He then obtains new absorbing
boundary conditions taking into account the tangential component of the flow
at the boundary. Finally one can also notice that the introduction of a vis-
cous term makes the approximation of the exact nonlocal absorbing boundary
condition much more difficult (Halpern, 1991).

3.4 Characteristic waves amplitudes methods

Hedström (1979) proposes a perfectly nonreflecting OBC for homogeneous
one-dimensional nonlinear hyperbolic systems (i.e. (1) with F = 0). This
condition can be written as ∂φk/∂t = 0 for each incoming characteristic,
which is also equivalent to setting the slope of the incoming characteristics
to zero on the open boundary. Defining the characteristic waves amplitudes
Lk = λk ∂φk/∂x (with the notations of §2.1), this condition is :

Lk = 0 for each incoming characteristic (33)

Although optimal only in 1-D, Röed and Cooper (1987) propose an extension
of this method to 2-D linearized inviscid shallow-water equations (27). The
characteristic waves amplitudes are (in the case of an eastern open boundary) :







































L1 = λ1
∂w1

∂x
= (u0 − c)

(

∂u

∂x
−
√

g

h0

∂η

∂x

)

L2 = λ2
∂w2

∂x
= u0

∂v

∂x

L3 = λ3
∂w3

∂x
= (u0 + c)

(

∂u

∂x
+

√

g

h0

∂η

∂x

)

(34)

The OBCs are then L1 = 0, and L2 = 0 if u0 < 0. The actual implementation
consists in using at the open boundary the original set of equations rewritten
in terms of the Lks :







































∂u

∂t
+

1

2
(L1 + L3) − fv + v0

∂u

∂y
= 0

∂v

∂t
+ L2 + fu + v0

∂v

∂y
+ g

∂η

∂y
= 0

∂η

∂t
+

1

2

√

h0

g
(L3 − L1) + v0

∂η

∂y
+ h0

∂v

∂y
= 0

(35)

and simplified by (33). In these equations, the remaining normal derivatives
at the open boundary concern only outgoing characteristics, and can then be
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discretized in a stable manner using upwind schemes. This approach is also
used by Guo and Zeng (1995). It is compared to other OBCs by Röed and
Cooper (1987), Jensen (1998) and Palma and Matano (1998), and leads to
rather good results.

The basic idea in the preceding method consists in choosing for OBCs the
original set of model equations with as few approximations as possible. Since
the incoming characteristics are the only variables that cannot be evaluated
by the model alone, the approximations must concern only these terms (i.e.
the incoming Lks), and eventually the viscous terms if the model is not invis-
cid. Therefore (33) can be considered as a particular case of a more general
framework, in which one has to provide one condition on each incoming Lk.
Several papers developed this idea these last years in the context of deriving
OBCs for direct numerical simulation of compressible Euler and Navier-Stokes
equations, with apparently good experimental results (Poinsot and Lele, 1992;
Bruneau, 2000; Bruneau and Creusé, 2001). In this last paper, Bruneau and
Creusé (2001) specifically address the use of a reference flow in the design of
their OBCs. Their method consists in decomposing each incoming Lk into a
steady part L̄k and a transient part L′

k. The steady component is then imposed
by a reference flow (corresponding to our external data) :

L̄k = λk
∂w̄k

∂n
= λk

∂w̄ext
k

∂n
(36)

which is an equation of the type (7). Note however that the originality of their
method lies also in the fact that the transient component L′

k is assumed to
be advected by the mean flow, and can thus be computed by upwind schemes
when the mean flow is directed outwards. One could also think of the simpler
condition

Lk = Lext
k (37)

for each incoming characteristic variable, which can be seen as a modification
of the Hedström condition (33) using the consistency criterion (7).

Therefore, as previously, the two criteria discussed in section 2 are underlying
in the derivation of efficient OBCs based on characteristic waves amplitudes.
Note also that the absorbing conditions (31) and (32) also belong to this family,
since they can be rewritten using their respective original set of equations and
correspond to particular choices of incoming Lks.
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3.5 Relaxation methods

A widely-used class of OBCs are relaxation methods. Their goal is to relax the
model solution φ towards the external data φext on (or in the vicinity of) the
artificial boundary Γ. The most brutal way to do this is to impose φ = φext on
Γ, i.e. to use a Dirichlet (or clamped) boundary condition. Such a condition is
often used in particular in the context of one-way nesting, where the values of
the model variables at the open boundary are interpolated from the solution
of a large-scale model. However, a major drawback of this method is that
the outflowing information is totally determined by these external data, and
does not depend at all on the internal solution. Therefore part of the outgoing
information will be reflected into the domain as soon as the external data is
not perfectly consistent with the internal dynamics. One of the conclusions of
a comparative study by Röed and Cooper (1987) in the context of a simple
linear barotropic ocean model is that such a clamped BC should be avoided
in most applications.

It is frequent in practical applications to use a more progressive method, called
flow relaxation scheme (FRS). This approach consists in extending the com-
putational domain Ω by defining an additional domain Ωs (the sponge layer),
which interface with Ω is Γ. In the original method proposed by Davies (1976),
the model equations are numerically solved on Ω∪Ωs, and the solution in Ωs

is replaced at each timestep by

(1 − α) φ + αφext (38)

where α is a relaxation function increasing from 0 on Γ to 1 far enough from
Γ. While primarily designed for discretized equations, it can be shown easily
(e.g. Martinsen and Engedahl, 1987) that this correction scheme can also be
interpreted as adding a nudging term to the original model equations

∂φ

∂t
+ F (φ) = 0 (39)

which become

∂φ

∂t
+ F (φ) + K(φ − φext) = 0 (40)

where K is a positive function, null on Ω and increasing away from Γ (K
depends on α and on the time-discretization scheme). Relaxation methods
are often performed jointly with a sponge layer approach, which means that
the model viscosity is artificially increased in Ωs, in order to damp the local
turbulent activity. Relaxation often appears to be one of the best methods
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in comparative numerical studies (e.g. Röed and Cooper, 1987; Palma and
Matano, 1998; Nycander and Döös, 2003).

Since relaxation methods are not local conditions, the consistency criterion
(7) does not apply directly. However, it is obvious from (38) that the tran-
sition from φ to φext is smooth as soon as the additional domain Ωs is large
enough. Similarly the problem of specifying incoming characteristics and evac-
uating outcoming characteristics at the open boundary is treated implicitly :
the values of the incoming characteristics are computed within Ωs, using the
relaxed solution, while the outgoing characteristics are not directly affected
when reaching Γ but are relaxed in Ωs towards their corresponding external
values, and damped by the increased dissipation.

Two drawbacks of these methods must however be emphasized. The first one
is the increase of the computational cost induced by the additional layers Ωs.
The ratio of this additional cost to the cost of the initial model is roughly
equal to |Ωs|/|Ω|, and can either be negligible or reach some tens of percents,
depending on the configuration. The second drawback is that the meaning of
the solution in the sponge layer is far from obvious, since it is not solution of
any system of governing equations.

Finally, note also that perfectly matched layer (PML) methods, which have
been proposed quite recently in the context of electromagnetism (Berenger,
1994), can be seen as an improvement of relaxation methods. This methodol-
ogy consists basically in a convenient splitting of the equations with addition of
relaxation terms with well-chosen coefficients. PML approach has been applied
to the Euler equations (Hu, 1996, 2001) and to the shallow water equations
(Darblade et al., 1997; Navon et al., 2004), and leads to improved results in
academic test cases. It must now be validated in realistic configurations to get
a better evaluation of its actual effectiveness.

4 Towards characteristic-based approach for PE models

We have emphasized in the previous section the fact that OBCs leading to
the best practical results are generally based on the hyperbolic part of the
equations, and are therefore working on characteristic variables. However these
results are obtained with simplified models. The methods generally used in
realistic 3-D models are relaxation methods, and/or a Flather condition for
the free surface, and radiation conditions for the other variables. There is still
to our knowledge no implementation of fully characteristic based OBCs. In
this context, the aim of this section is to provide some tentative elements
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towards the design of such OBCs.

As a necessary preliminary step, we will first concentrate on 2-D shallow-water
equations, then address 3-D primitive equations.

4.1 Shallow water equations

Let us consider first the 2-D shallow water system :







































∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− fv + g

∂η

∂x
+ D(u) = Fu

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ fu + g

∂η

∂y
+ D(v) = Fv

∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
+ h

(

∂u

∂x
+

∂v

∂y

)

= 0

(41)

where D and F represent respectively the dissipation and forcing terms. Let
us take for instance in the whole section the case of an eastern boundary.
Numerous models presently use the Flather condition, which writes in this
case :

u −
√

g

h
η = uext −

√

g

h
ηext (42)

and which is recognized to lead to good results. However, as mentioned pre-
viously, this OBC is generally seen as a radiation condition, and not from the
point of view of characteristic methods. Therefore the question of incoming
and outgoing characteristics is generally not addressed in the actual imple-
mentations, and two other conditions are quite systematically added, like for
example ∂v/∂n = 0 and ∂h/∂n = 0. From the point of view of hyperbolic
systems (i.e. if the dissipation is neglected locally), a condition on h is a priori
not justified, while neither is the condition on v when the flow is directed
outwards. Characteristic based OBCs should be of the form (with previous
notations) :











B1w1 = B1w
ext
1 if u > 0 (outgoing flow)

B2w1 = B2w
ext
1 and B3v = B3v

ext if u < 0 (incoming flow)
(43)

The simplest choice for the operators Bi consists in choosing the identity or
the normal derivative (B1 = B2 = Id corresponds of course to the Flather
condition). These conditions, with Bi = Id (i = 1, 2, 3), are those proposed by
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Browning and Kreiss (1982), who demonstrated that they lead to a well-posed
open boundary problem, and illustrated their practical efficiency.

These OBCs correspond only to incoming characteristics. As explained pre-
viously, outgoing ones do not need additional OBCs, but must be computed
from the interior solution, with several possible methods. Let us take the ex-
ample of w3 = u +

√

g
h

η, which is always directed outwards. This variable

satisfies the equation :

∂w3

∂t
+ (u + c)

∂w3

∂x
+ v

∂w3

∂y
− fv + c

∂v

∂y
+ D(u) = Fu (44)

• A first method consists in computing the values of w3 on the open bound-
ary by solving the preceding equation using upwind schemes for the normal
derivative ∂w3/∂x. Note that an additional hypothesis, called viscous con-
dition, is necessary since the flow is viscous. This condition must have a
negligible effect when the viscosity tends to zero, and is generally chosen
to simplify the expression of the viscous term at the open boundary. In
the present case of an eastern boundary, ∂2u/∂x2 = 0 could be chosen for
instance.

• One can also simplify (44) locally, by neglecting for example the viscous and
the forcing terms, or even by retaining only the transport part of the equa-
tion. The numerical resolution of the equation is therefore also simplified.

• Finally, a third possibility consists simply in extrapolating the value of w3

on the open boundary from interior values, using for example the second
order scheme : w3(x, t) = 2w3(x− δx, t)−w3(x− 2δx, t). The extrapolation
is probably the simplest method for evaluating w3, and avoids in some sense
any of the approximations necessary in the other methods.

From a practical point of view, a Flather condition on w1 with an extrap-
olation on w3 writes for instance :











w1(x, t) = wext
1 (x, t)

w3(x, t) = 2w3(x − δx, t) − w3(x − 2δx, t)
(45)

Since u = (w1 + w3)/2 and η =
√

h/g (w3 − w1)/2, (45) can thus be imple-
mented in the numerical model under the form



















































u(x, t) =
1

2

(

uext(x, t) + 2u(x − δx, t) − u(x − 2δx, t)

−
√

g

h

[

ηext(x, t) − 2η(x − δx, t) + η(x − 2δx, t)
]

)

η(x, t) =
1

2

(

ηext(x, t) + 2η(x − δx, t) − η(x − 2δx, t)

+

√

h

g

[

−uext(x, t) + 2u(x − δx, t) − u(x − 2δx, t)
]

)

(46)
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The same ideas apply of course for the other characteristic, v, which is also
outgoing when the flow is directed outwards.

Numerical experiments investigating these different possible choices (opera-
tors Bi and computation of the outgoing characteristics) are presently under
investigation.

4.2 Primitive equations

Most realistic ocean models solve the primitive equations, which consist in
the momentum and continuity equations with hydrostatic and Boussinesq ap-
proximations, equations for conservation of heat and salt, and an equation of
state.

4.2.1 Tracers

The equations for the tracers (temperature and salinity) are advection-diffusion
equations of the type :

∂T

∂t
+ U.∇T −∇.(AT∇T ) = FT (47)

where U is the 3-D velocity, AT a diffusion coefficient, and FT a flux. The
hyperbolic part of the equation is simply the transport of T by U :

∂T

∂t
+ U.∇T = 0 (48)

Since (47) contains a diffusion term, an auxilliary assumption (a viscous condi-
tion, as defined in section 4.1) must be chosen. The simplest solution consists
in neglecting locally the diffusion and the flux, and retaining only the hyper-
bolic context (48). Therefore a possible OBC is to specify T = T ext if U.n < 0,
and to implement an upwind discretization of (48) if U.n > 0. A less drastic
choice can be to neglect only the normal derivatives in the diffusion term, and
to retain the tangential derivatives and the flux in the upwind discretization
of (47) when U.n > 0.

Note that, although frequently used in practical applications, Orlanski-type
conditions have no theoretical basis for such equations (see discussion in sec-
tion 3.1). Note also that absorbing conditions for advection-diffusion equations
with constant diffusion coefficient can be found in Halpern (1986).
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4.2.2 Dynamics

The dynamic part of the primitive equations writes :















































∂u

∂t
+ U · ∇u − fv +

1

ρ0

∂p

∂x
+ D(u) = 0

∂v

∂t
+ U · ∇v + fu +

1

ρ0

∂p

∂y
+ D(v) = 0

∂p

∂z
= −ρg

divU = 0

(49)

with an additional equation for the surface elevation in the case of a free-
surface model.

It is well-known that the open boundary problem for the linearized inviscid
primitive equations is ill-posed in the sense that prescribing local OBCs at
each vertical level or in each density layer cannot be appropriate (Oliger and
Sundström, 1978). This result is obtained by analyzing a vertical mode de-
composition of the equations, from which it is obvious that OBCs that are
not applied mode by mode necessarily overdetermine some modes and/or un-
derdetermine others. The most common way to overcome this problem con-
sists in adding some numerical viscosity at the boundary, which produces a
non physical boundary layer. Other possibilities proposed recently can con-
sist in working in Lagrangian coordinates (Bennett and Chua, 1999) or in
adding some vertical viscosity (Temam and Tribbia, 2003). From the results
presented previously in this paper, it is clear that a simple and rather appropri-
ate solution consists in using the characteristic OBCs presented in §4.1 for the
barotropic component, and a relaxation method for the baroclinic part of the
solution. Another way already mentioned by several authors (e.g. Oliger and
Sundström, 1978; McDonald, 2002), and which would not require to modify
the model equations, could be to work directly in the space of vertical modes.
This is what we are going to investigate now, trying to apply the point of view
of characteristic variables not only to the barotropic part of the flow, but to
all components.

Let us first remind briefly the different assumptions which are necessary to
separate the inviscid primitive equations into vertical modes. The first step is
a local linearization of the equations around a barotropic velocity U0(x, y, z) =
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(u0(x, y), v0(x, y), 0)T , which leads to the system (with P = p/ρ0):























































∂u

∂t
+ u0

∂u

∂x
+ v0

∂u

∂y
− fv +

∂P

∂x
= 0

∂v

∂t
+ u0

∂v

∂x
+ v0

∂v

∂y
+ fu +

∂P

∂y
= 0

∂P

∂z
= − ρ

ρ0

g

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0

(50)

We consider then a mean density profile ρ̄(z) and write ρ = ρ̄ + ρ′ with the
assumption that ∂ρ′/∂z ≪ ∂ρ̄/∂z. The auxiliary equation Dρ/Dt = 0 is then
approximated by

∂ρ

∂t
+ u0

∂ρ

∂x
+ v0

∂ρ

∂y
+ w

∂ρ̄

∂z
= 0 (51)

Combining this equation with (50d) in order to eliminate w gives (using
(50c)) :

∂u

∂x
+

∂v

∂y
+ Λ

(

∂P

∂t
+ u0

∂P

∂x
+ v0

∂P

∂y

)

= 0 (52)

where the operator Λ is defined by

Λ =
ρ0

g

∂

∂z





(

∂ρ̄

∂z

)−1
∂

∂z



 (53)

In the standard case of an hydrostatic profile ρ̄ and of usual surface and bottom
boundary conditions, Λ is a compact symmetric operator. Therefore it admits
a basis of orthonormal eigenfunctions Mn(z) with positive eigenvalues c−2

n (the
cn are velocities, sorted in decreasing order). We have then ΛMn = c−2

n Mn

(n = 1, 2, . . .) with
∫ 0
H Mn(z) Mm(z) dz = 1 if m = n and 0 otherwise.

The solutions of (50a,b,c)-(52) are seeked under the form











































u(x, y, z, t) =
∞
∑

n=1

un(x, y, t) Mn(z)

v(x, y, z, t) =
∞
∑

n=1

vn(x, y, t) Mn(z)

P (x, y, z, t) = g
∞
∑

n=1

hn(x, y, t) Mn(z)

(54)
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which leads to






































∂un

∂t
+ u0

∂un

∂x
+ v0

∂un

∂y
− fvn + g

∂hn

∂x
= 0

∂vn

∂t
+ u0

∂vn

∂x
+ v0

∂vn

∂y
+ fun + g

∂hn

∂y
= 0 n = 1, 2, . . .

∂hn

∂t
+ u0

∂hn

∂x
+ v0

∂hn

∂y
+

c2
n

g

(

∂un

∂x
+

∂vn

∂y

)

= 0

(55)

This is the classical result stating that the original linearized primitive equa-
tions can be seen as the superposition of linear shallow-water systems corre-
sponding to the different vertical modes, the first mode being of course the
barotropic mode.

Let us now consider for example an eastern open boundary. The character-

istic variables corresponding to the nth mode are w1,n = un − g

cn

hn (corre-

sponding to the eigenvalue u0 − cn), w2,n = vn (corresponding to u0), and

w3,n = un +
g

cn

hn (corresponding to u0 + cn). If we define the index p such

that cp > |u0| > cp+1, the directions of these variables can be summarized in
the following table :

w1,n w2,n w3,n

if u0 < 0 incoming incoming outgoing for n = 1, . . . , p

incoming for n = p + 1, . . .

if u0 > 0 incoming for n = 1, . . . , p outgoing outgoing

outgoing for n = p + 1, . . .

Therefore, following what was done in section 4.1, a possible strategy to derive
OBCs for the primitive equations could be :

• Initialization : for each location (x, y) on the open boundary, choose (e.g.
from climatological data) a mean vertical profile ρ̄(z) and compute the cor-
responding modes Mn(z). Since we consider in practice a discretized model,
there will be a finite number of modes.

• At each timestep, for each location along the open boundary :
choose for U0 the local barotropic velocity. Using the table above, the direc-
tions of the characteristic variables corresponding to each mode are known.
Then :

- The values of the incoming wi,n can be taken equal to wext
i,n , obtained by

a simple projection on the vertical modes of the external data uext, vext and
P ext.
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- The values of the outgoing wi,n can be computed from the interior
solution by one of the ways suggested in section 4.1, for example by extrap-
olation.

- Finally, values for u, v, and P can be computed using the expansion
(54) and can be imposed as open boundary conditions.

Let us now add a few remarks concerning this algorithm :

• The natural horizontal scale of the vertical modes is given by the Rossby ra-
dius, equal to Rn = cn/f . Most of them are equal to a few kilometers or less,
and thus are not properly resolved in numerical models. Therefore taking
into account a few dominant modes only should probably be sufficient.

• The addition of an horizontal dissipation in the momentum equations does
not modify the separation process, and results in the addition of an hori-
zontal dissipation in (55).

• In the particular case of a null eigenvalue, the corresponding characteristic
variable can be either considered as incoming or outgoing.

• The exact definition of the Mn depends on the surface and bottom bound-
ary conditions. Some numerical difficulties could occur in case of strong
topographic gradients.

• The separation into vertical modes relies on a strong but necessary hypoth-
esis, which is that the linearization of the equations must be done around
a barotropic velocity. This makes probably the local approximation of the
original primitive equations by the linearized system less accurate, and this
can have consequences on the efficiency of the OBCs for baroclinic modes,
since it is this barotropic velocity that is used to decide whether a wi,n is
incoming or outgoing.

These points are presently under investigation within numerical experiments.

5 Summary and discussion

We have emphasized in this paper the peculiar role of characteristic variables
in the design and the efficiency of OBCs. These variables are defined using
the hyperbolic part of the model equations, and allow a separation of the
flow into incoming and outgoing quantities. Therefore a natural method is to
specify information on incoming characteristic variables only, and to compute
outgoing quantities from interior values, using for instance upwind schemes.
We have seen that (apart from sponge layer methods) the OBCs which lead to
positive results in previous comparative studies are in fact following this rule.
This is for example the case for the conditions proposed by Flather (1976),
Hedström (1979), or the absorbing conditions by Engquist and Majda (1977),
Nycander and Döös (2003) or McDonald (2002).
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A second point which appears to be fundamental is the consistency relation-
ship (7), which indicates that a good way to connect the model solution to the
external data is to impose that they give the same response to the boundary
operator. Therefore conditions which do satisfy these two requirements appear
as good candidates for OBCs.

Using these two criteria as guidelines, we have revisited most classical OBCs
used in atmosphere and ocean modeling :

• In our opinion, clamped (or Dirichlet) boundary conditions, which are often
used in the context of one-way model nesting, should be avoided in most
cases, since the outflowing information does not depend in that case on the
internal solution.

• Similarly, despite their frequent use in actual numerical simulations, radi-
ation methods should also be avoided. They are only designed for single
waves, and cannot manage correctly a complex flow. Their apparent effec-
tiveness in some cases is a mere artefact of the addition of a nudging term
towards external data.

• Relaxation methods pull the model solution towards external data in an
additional sponge layer with increased dissipation. Although quite crude,
it seems that this approach often leads to reasonable results in actual ap-
plications. It can possibly be improved by PML methods, which need now
to be tested in realistic applications. However, one must notice that these
methods induce an additional computional cost, due to the additional layer.

• Several conditions following the two criteria we have emphasized are cited
in this paper : (26) (Flather, 1976), (32) (Nycander and Döös, 2003), (36)
or (37) (Bruneau and Creusé, 2001).

Note also that several possible improvements have been proposed, which need
to be extended to realistic test cases : generalized characteristic variables (Lie,
2001), absorbing conditions taking into account the viscous terms (Halpern,
1991), transmission (or weak formulation) methods (Bruneau and Fabrie,
1994, 1996).

Finally we investigate in this paper the derivation of OBCs for shallow water
and primitive equation models, based on the previous criteria. It is important
to note that the present paper addresses only the continuous form of the equa-
tions. However discretized models contain spurious numerical modes, which
nature is different from that of physical modes, and which have to be handled
by the OBCs. Therefore, once the continuous form of the OBCs is chosen, one
has to perform some specific work in order to adapt their numerical imple-
mentation to the numerical schemes of the model. This difficulty is probably
also a reason for the efficiency of relaxation and radiation-relaxation methods,
which tend to automatically damp these non-physical modes. Numerical ex-

25



periments of characteristic based OBCs are presently under investigation.
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[41] Röed, L.P., and C. Cooper, 1987: A study of various open boundary conditions
for wind-forced barotropic numerical ocean models, in Three-dimensional models

of marine and estuarine dynamics, edited by J.C.J. Nihoul and B.N. Jamart, pp.
305–335, Elsevier.

[42] Temam, R., and J. Tribbia, 2003: Open boundary conditions for the primitive
and Boussinesq equations. J. Atmos. Sci., 60, 2647–2660.

28
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