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Summary. In this paper, we study instances of complex neural networks, i.e. neural
networks with complex topologies. We use Self-Organizing Map neural networks
whose neighbourhood relationships are defined by a complex network, to classify
handwritten digits. We show that topology has a small impact on performance
and robustness to neuron failures, at least at long learning times. Performance may
however be increased (by almost 10%) by artificial evolution of the network topology.
In our experimental conditions, the evolved networks are more random than their
parents, but display a more heterogeneous degree distribution.

1 Introduction

The connectivity structure of complex networks (i.e. their topology) is a cru-
cial determinant of information transfer in large networks (internet, social
networks, metabolic networks...) [1]. Hence, the computation made by com-
plex neural networks, i.e. neural networks with complex connectivity struc-
ture, could be dependent on their topology. For instance, recent studies have
shown that introducing a small-world topology in a multilayer perceptron
increases its performance [13, 2]. However, other studies have inspected the
performance of Hopfield [5, 10, 9, 14] or Echo state networks [3] with small-
world or scale-free topologies and reported more contrasted results.

Using artificial evolutionary algorithms to modify the topology of neu-
ral networks so as to optimise their performance has become widespread in
the artificial neural networks community for several years [11, 16]. But, in
most cases, the studied topologies are quite simple and the number of connec-
tions/neurons is low. Furthermore, the evolutionary mechanisms used in most
of these studies do not modify the topology in an intensive manner. Hence,
the optimisation of large, complex neural networks through artificial evolu-
tion has hardly been studied. Note however that in related systems, such has
1D-cellular automata [8] or boolean networks [12], the optimisation of com-
plex topologies has recently begun to confirm the influence of topology on
performance and the interest of evolutionary algorithms.
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In the case of Self-Organising (or Kohonen) maps (SOMs), the role of
network topology has been studied for several years with the perspective of
the development of network topologies that preserve that of the data [15]. In
the context of complex networks, a different problem is: considering a given
data set, do different complex network topologies yield significant differences
with respect of performance or robustness?

This paper investigates this issue through an experimental study on the
relationship between complex topology and performance for a SOM on a su-
pervised learning problem (handwritten digit classification). The robustness
of the results with respect to noise are also addressed. After introducing the
context in Section 2, Section 3 1s devoted to the direct problem, 1.e. observing
the performances of networks with different topologies. The inverse problem
is addressed in Section 4: what topology emerges from the evolutionary opti-
misation of the classification accuracy of a class of networks?

2 Methods & Experiments

The target of this study are SOMs [6]. The topology/performance relation is
looked at from the point of view of recognition/classification of handwritten
digits, using the well-known MNIST data base [7]. SOMs are usually used
for unsupervised learning. However, they will be used here for supervised
learning, in order to give an unambiguous performance measure. It should
be noted that the goal here is not to reach the best possible performance
for the MNIST problem (and indeed SOMs cannot compete with best-to-
date published results) but to compare the relative performances of different
topologies on the same problem.

Each digit is a M = 28 x 28 pixel picture. The N neurons of the SOM
are scattered on a 2d space. Each neuron ¢ has an associated M-dimensional
weight vector wy, and the different phases of the learning process go as follows
(for more details, see, again, [6]).

1. Learning: At each learning step ¢, a sample digit I(¢) is uniformly picked
up in the learning dataset. The corresponding Best Matching Unit (BMU)
is the neuron whose weight vector is the closest (in L2-norm) to I(t). The
weights of the BMU k are updated: wi (¢4 1) = wi () + n(t) x (I(t) — wk (2)).
The weights of the neighbours of the BMU are updated similarly, but with a
learning rate n that decays following a Gaussian law of the distance with the
BMU (the definition of the distance will be given below). Note that the radius
of the neighbourhood (i.e. the variance of the Gaussian law) is decreased along
learning iterations.

2. Labelling: The basic label of a neuron is the class (0...9) for which it
is the BMU most often over the whole training set. Neurons that never are
BMUs are given the basic label of the class from which they are at shortest
average distance. In all experiments reported below, the classification label of
a neuron is its basic label. Indeed, some tests using as classification label for a
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neuron some weighted average of the basic labels of its neighbors have shown
negligible differences.

3. Evaluating: The class given to an unknown example is the label of its
BMU. The performance of the network is the misclassification error over a
given test set, F' = nepp /Niest, where ne,, is the number of incorrectly classi-
fied examples and Nieg: the size of the test set.

Distance: In the classical SOM algorithm, the N neurons are regularly scat-
tered on a 2d square grid. The Euclidian distance and the graph distance be-
tween neurons (minimum number of hops following an edge) are equivalent.
However, when edges are added and suppressed, the situation changes dra-
matically. Hence, because the goal here is to evaluate the influence of topology
on learning performances, the only interesting distance is the graph distance.

3 Direct problem

The goal of the first experiments was to compare the classification perfor-
mance of SOM built on the Watts and Strogatz topology model. Figure 1A
shows the plots of the classification performance F' during learning iterations
for N = 1024-neurons networks with regular to small-world to fully random
topologies (see caption). This figure shows that, at long learning times, the
network performance is clearly not dependent on the topology. This is not
surprising since the role of the topology decreases with the neighborhood
distance. Important differences are however obvious at short to intermediate
times: the more random, the less efficient the network at this time scale. This
remark deserves further analysis. Indeed, the performance of these random
networks evolves in a piecewise constant fashion. Comparing this evolution
to the concomitant decrease of the neighbourhood radius (Fig. 1B) uncovers
that performance plateaus are synchronised to radius plateaus.

The more random the network, the lower its mean shortest path. Hence, a pos-
sible interpretation is that, for high p values, the influence of a given neuron
at short learning times extends over the entire 2d space, to almost every other
neuron. Thus, at short time scales, almost all neurons are updated each time
a new image is presented, which actually forbids any learning in the network.
This interpretation is supported by Fig. 1D, where the initial radius is five
time smaller than in Fig. 1A. Here, the differences in short time behaviours
observed above are suppressed.

This phenomenon explains a nontrivial effect of noise on the system. Noise is
here modeled by deactivating at each learning step a fraction v of the neurons
(the list of the Nv deactivated neurons is chosen uniformly for each learning
step). Note that all neurons are reactivated for the evaluation phase (step 3
above). Fig. 1C shows the performance during learning with v = 0.25 noise
level (i.e. one forth of the neurons are insensitive to learning, at each step) and
the same large initial radius than in Fig. 1A. Clearly, because the deactivated
neurons are protected from update, the above effect of large radius is strongly
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Fig. 1. Evolution of the performance F during learning for SOMs on complex neighbour-
hood networks. Neighbourhood networks are constructed positioning neurons on a square grid,
and linking each neuron to its 8-nearest neighbours on the grid (Moore neighbourhood). Each
link is then rewired to a (uniformly) randomly-chosen destination neuron with probability
p = 0,0.002,0.004,0.008,0.016,0.032,0.064,0.256,1.000 (from bottom to top). Panels A, €, D
and F show the evolution of the fitness F' for different values initial radii and noise levels (as
indicated on each panels). Panels B and E display the evolution of the neighbourhood radius.
Other parameters: map size N = 1024 neurons, initial learning rate n(0) = 0.080, training and
test sets of 30,000 and 10,000 examples, respectively.

attenuated. In other words, the presence of noise (here random node failures)
actually improves the performance of these complex random networks at short
learning times. That this effect is effectively related to large radius sizes is con-
firmed by inspection of Fig. 1F, which shows that with small initial radii, this
“beneficial” effect of noise is not observed (compare with Fig. 1D).

Another result from Fig. 1 is that the effects of noise are restricted to short-
to-average learning times and disappear with long learning, where the per-
formances of all networks are similar (whatever the topology randomness or
initial radius). Hence, at long learning times, the SOMs are robust to neuron
failure rates as high as 25%, and this robustness does not seem to depend
on their neighborhood topology. Finally, Fig. 2 shows the effects of network
size on its performance. While large SOMs (N > 2,000) perform better with
regular neighborhood networks, the situation is just the opposite with small
(N < 200) SOMs, where random networks perform better than regular ones.
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Small-world topologies are intermediate (not shown). Note however that even
for the extreme sizes, the difference of fitness between regular and random
topologies, though significant, remains minute.
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Fig. 2. Performance F vs number of neurons N after 10° learning steps for (white circles)
regular or (black circles) uncorrelated random topologies. Each point is an average over 11 random
initial weight and topology realisations. Bars are standard deviations. Stars indicate statistically
significant differences (unpaired ¢-test, p < 0.010). Other parameters as in Fig. 1A.

4 Inverse problem

The inverse problem consists in optimising the topology in order to minimise
the classification error. Evolutionary Algorithms [4] have been chosen for their
flexibility and robustness with respect to local minima. However, due to their
high computational cost, only SOMs with N = 100 neurons could be used.

The algorithm is a mutation-only Steady-State Genetic Algorithm with
2-tournament selection and 6-tournament replacement: At each iteration, the
best of two uniformly drawn networks undergoes mutation, and replaces the
worse of 6 uniformly drawn networks for the population.

The initial population is composed of 100 different small-world net-
works (p = 0.050), and mutation consists in random rewirings of C% of
uniformly chosen links. C' decreases exponentially during evolution (C' =
30 (102.6)_9/9"‘” where ¢ is the iteration number and ¢, 18 the total num-
ber of iterations). Here, gmaqy = 200,000, and C decreases from 102 (¢ = 0)
downto 1 (¢ = gmaz). The fitness is computed as the average misclassification
error F' over 5 learning phases, starting from 5 different initial weights.

Considering the small size of these SOMs, one may expect random net-
works to perform slightly better than regular ones (Fig. 2). The main statis-
tics of the best networks obtained during 9 evolution runs are plotted Fig. 3.
Fig. 3A shows that indeed the classification error of the best topology in the
population decreases, from 0.355 to a2 0.325, i.e. a > 9% improvement. In-
teresting characteristics of the best topologies have emerged during evolution:
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Fig. 3. Time courses of the main network statistics during artificial evolution. Each time a
mutation gives rise to a topology with a better fitness than the best one in the current popu-
lation, its fitness (A), average mean shortest path (B), average clustering index (C) (C) and
the standard deviation of its connectivity distribution op (D) are plotted against the current
generation number. Each panel groups the results of 9 evolution runs. Parameters: n(0) = 0.35,
fitness estimated as an average over 5 independent runs of 10,000 learning iterations with 2,000
examples from the training set and 5,000 examples from the test set.

Fig. 3B shows an important decrease of the mean shortest path, while Fig. 3C
demonstrates a clear collapse (more than fourfold reduction) of the clustering
index. In other words, the topology evolves towards more randomness — as
could be expected from Fig. 2.

Interestingly, there is another important change in the topology along evolu-
tion, concerning the network connectivity distribution. Indeed, the standard
deviation o of the connectivity distribution P(k) (where P(k) is the proba-
bility that a neuron chosen at random has k neighbours) almost triples during
evolution (Fig. 3D). This means that the connectivity distribution of the net-
works broadens (becomes less sharply peaked). In other words, artificial evo-
lution yields more heterogeneous networks. However, it should be clear that
this result is highly dependent on the topology of the data themselves (here
MNIST datebase), and could be different with other data.

5 Conclusion

The objective of this paper was to study the influence of topology in a case
of neural network defined on a complex topology. On the limited experi-
ments presented here, it seems that the performance of the network is only
weakly controlled by its topology. Though only regular, small-world and ran-
dom topologies, have been presented, similar results have been obtained for



Optimising the topology of complex neural networks 7

scale-free topologies. This suggests that for such learning task, the topology
of the network is not crucial.

Interestingly, though, these slight differences can nevertheless be exploited
by evolutionary algorithms: After evolution, the networks are more random
than the initial small-world topology population. Their connectivity distri-
bution is also more heterogeneous, which may indicate a tendency to evolve
toward scale-free topologies. Unfortunately, this assumption can only be tested
with large-size networks, for which the shape of the connectivity distribution
can unambiguously be determined, but whose artificial evolution, for compu-
tation cost reasons, could not be carried out. Similarly, future work will have
to address other classical computation problems for neural networks before
we are able to draw any general conclusion.
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