N
N

N

HAL

open science

Distributed Monitoring of Peer to Peer Systems

Serge Abiteboul, Bogdan Marinoiu

» To cite this version:

Serge Abiteboul, Bogdan Marinoiu. Distributed Monitoring of Peer to Peer Systems. ACM WIDM

2007, ACM, Nov 2007, Lisbon, Portugal. inria-00259054

HAL 1d: inria-00259054
https://inria.hal.science/inria-00259054
Submitted on 26 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://inria.hal.science/inria-00259054
https://hal.archives-ouvertes.fr

Distributed Monitoring of Peer to Peer Systems

Serge Abiteboul and Bogdan Marinoiu
INRIA Saclay and University Paris Sud
4, rue Jacques Monod
91893 Orsay CEDEX, France

firstname.lastname@inria.fr

ABSTRACT

In this paper, we are concerned with the distributed moni-
toring of P2P systems. We introduce the P2P Monitor sys-
tem and a new declarative language, namely P2PML, for
specifying monitoring tasks. A P2PML subscription is com-
piled into a distributed algebraic plan which is described
using algebra over XML streams. The operators of this al-
gebra are first alerters in charge of detecting specific events
and acting as stream sources. Other operators process the
streams or publish them.

We introduce a filter for streams of XML documents that
scales by processing first simple conditions and then, if still
needed, evaluating complex queries. We also show how par-
ticular tasks can be supported by identifying subtasks that
are already provided by existing streams.

Categories and Subject Descriptors

H.2 [Database management|: Distributed databases, Query

processing

General Terms

Algorithms, Design, Languages, Performance

Keywords

distributed data management, stream processing, peer to
peer systems, databases, Web services, active documents

1. INTRODUCTION

Peer to Peer systems have become popular over the last
decade mainly because they provide support for community
content sharing and for loosely coupled distributed applica-
tions. Their use is still hindered by the difficulty to observe
such highly dynamic systems, and to gather information on
their functioning. Observation turns out to be essential in
many contexts, e.g., error management, statistics gathering,
workflow control, Web surveillance. This is the topic of the
present paper where we propose a generic monitoring system

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

WIDM' 07, November 9, 2007, Lisbon, Portugal.

Copyright 2007 ACM 978-1-59593-829-9/07/0011 ...$5.00.

for P2P systems. A main contribution is that subscriptions,
specified in a declarative language, are compiled into dis-
tributed algebraic plans over XML streams. We present a
new algorithm for efficient filtering and introduce a novel
P2P technology for re-using already existing streams.

We introduce a system, called P2P Monitor (P2PM for
short) for monitoring P2P systems. P2PM is itself a P2P
system. So, we have two P2P systems that coexist, the
monitored one (possibly several monitored systems) and the
monitoring one (namely P2PM). The same machine may
participate in both kinds of P2P networks. Each peer in
the monitored P2P system can observe some activities (e.g.
data changes or communications) happening locally and thus
become a primary source of monitoring information. We
represent such information as a stream of XML data. Such
data may be transmitted between peers through channels
(e.g., using point to point or broadcasting). The peers in
P2PM perform operations on data streams to produce new
streams or publish resulting streams.

A main characteristic of the system is the use of a declara-
tive Subscription Language, P2PML, short for Peer-to-Peer
Monitor Language. A monitoring task is specified to the
system in this language. It is then compiled into an alge-
braic monitoring plan involving both the monitored system
and P2PM. Thus, our work is founded on an algebra over
data streams (i.e., a library of services) derived from the
ActiveXML algebra framework for distributed data manage-
ment [4]. The algebraic operators include Alerters - 0-ary
operators, that are situated on the premises of the moni-
tored peers, detect specific local events and produce data
streams, stream processors - for filtering or applying more
complex operations on streams, and publishers - for expos-
ing streams to other peers of the system (in channels), or to
the human users in e-mails, RSS feeds or Web pages.

The most important stream processor is the Filter, which
can perform efficiently a large number of filtering queries
over a stream with intense traffic. An important aspect,
from a performance viewpoint, is that it checks separately
simple test conditions, evaluated on the fly, and more com-
plex ones that require the use of an XML query processor.

An important issue for scaling with many subscriptions
and peers is the placement of operators such as filters close to
the data they work on when possible, to save on data trans-
fers. As we will see, ActiveXML is also used for reducing the
amount of data that is transferred by providing information
intentionally when possible to avoid useless transfers and
replication. With respect to replication, P2PM also includes
the means to reduce the load on the system by re-using ex-



isting data streams. When a new monitoring subscription
arrives, the system searches for existing streams that could
help support (portions of) the new task. This (monitoring)
service discovery is implemented on top of a P2P content
management system, namely KadoP [3].

Motivations. A wide range of applications can benefit from
such a monitoring of P2P systems. We will mention briefly
some that particularly motivated the present work.

P2PM can be used to observe Web services activity in
a Web community. Towards this goal, we implemented an
alerter to monitor SOAP messages. This could serve, for
instance, to follow the concurrent execution of large num-
ber of workflow instances in telecom services (e.g., BPEL
workflows [6]) to detect malfunctions, gather statistics, un-
derstand usage patterns, support billing, etc.

An application we considered for testing is the surveil-
lance of the content published by Web servers (e.g., for a
community portal). In particular, we developed an alerter
to monitor changes in RSS feeds.

A main motivation of our work is the monitoring of the
Edos content sharing network [9]. Edos is a P2P distribu-
tion system that is developed in cooperation with the Man-
driva company (originally MandrakeSoftware). In Edos, the
data consists of the Mandriva Linux distribution, i.e., about
10 000 software packages and the associated metadata. The
metadata for one distribution is more than 100 megabytes
of XML data. The monitoring is primarily used to gather
statistics about the peers (e.g., number, efficiency, reliabil-
ity) and the usage of the system (e.g., query rate).

The paper is organized as follows. Section 2 introduces
the subscription language. Section 3 defines the notions of
streams and channels and presents the architecture of P2PM
as well as the Stream Algebra. Section 4 focuses on the mod-
ule implementing efficiently stream filtering. Section 5 shows
techniques allowing stream reuse. In Section 6, we compare
P2PM to other systems and in Section 7, we conclude.

2. P2P MONITORING LANGUAGE

In this section, we briefly describe the subscription lan-
guage and thereby the functionalities of the system.

The monitoring language P2PML allows specifying in declar-

ative statements, called (monitoring) subscriptions, complex
events a user is interested in, as well as how the user should
be notified of detected events. The system is globally in
charge of performing the corresponding (monitoring) task,
and in particular, of assigning the operators.

For instance, consider the subscription involving three
peers in Figure 1. The monitor office of meteo.com wants
to detect when the meteo service it provides to some peers,
a.com and b.com, is too slow (takes more than 10s).

As one can notice, the syntax is inspired by the XQuery’s
FLWR [18]. Statements in the language use five types of
clauses that are discussed next.

The FOR clause specifies the information sources. Three
sources are used in the example: two alerters of outgoing
calls (outCOM), one on peer a, one on b, and an alerter of
incoming calls (inCOM) at meteo.com. Note that the same
”call” is an out-call for a.com and an in-call for meteo.com.
The clause defines XML variables: $cl for events detected
by the two clients and $c2 for events detected at the server.

The functions in the FOR clause define the nature of the
alerters that are used. In the example, the outCOM and
1 COM alerters monitor the communications in SOAP RPC

for $cl in outCOM(<p>http://a.com</p>
<p>http://b.com</p>),
$c2 in inCOM(<p>http://meteo.com</p>)
let $duration := $cl.responseTimestamp
- $cl.callTimestamp
where
$duration > 10 and
$cl.callMethod = "GetTemperature" and
$cl.callee = "http://meteo.com" and
$cl.callld = $c2.callld
return
<incident type = "slowAnswer">
<client>{$cl.caller}</client>
<tstamp>{$c2.callTimestamp}</tstamp>
</incident>
by publish as channel "alertQoS";

Figure 1: A monitoring subscription

calls. Such communications consist of a pair of a Call and a
Response. An alerter produces a stream of XML trees. An
element of such stream is called a stream item. In a stream
item, we distinguish two parts:

1. the attributes of the root that typically gather some
generic information. For a Web service alerter, these
will include call identifier, server identifier or the time
of the call. Selection conditions on these attributes are
very common in subscriptions.

2. the sub-elements of the root that possibly have some
more complex structure. In the case of the Web service
alerter, the entire SOAP message or an error message
may be included in the alert.

The filter will process selections over these two kinds of data
in the alert differently for performance reasons.

The LET clause enables the user to define more variables
based on the already defined ones, e.g. $duration.

The WHERE clause imposes some Boolean conditions on
the variables. (For the moment, the system supports only
conjunctions of conditions.) The conditions are equality
or inequality conditions on the atomic variables (integer or
strings) or on some atomic values that can be extracted from
variables using XPath queries. An example of a XPath query
is:

$c1l/alert[@callMethod = "GetTemperature"]
Since such conditions on the root attributes of alerts are
very common, we use a dot notation as syntactic sugar-
ing. For instance, the previous condition can be expressed
as: $cl.callMethod = ”GetTemperature”. Conditions on
the root attributes are called simple conditions. The Where
clause in the example contains four simple conditions.

The RETURN clause specifies the output stream. When
conditions are matched by the values over the input streams,
an output XML tree is obtained in the output stream. This
output is defined as XML data with possibly curly brackets-
guarded expressions that are to be evaluated at runtime.

Finally, the BY clause determines how the user gets no-
tified. Publication in a channel (the most interesting case),
illustrated by the example, consists in publishing a stream
that clients (other peers) can subscribe to or other subscrip-
tions (issued by human users) can refer to. This will be
detailed in Section 3.

As previously mentioned, the main concept of the system
is the stream. A subscription produces a stream. Further-
more, the syntax declaration of a FOR clause is:



‘ Web crawler "'T"" RSS Reader
12 : ¥

i —
Web Page RSS RSS
DB Alerter Alerter DB

| (Active) XML data streams | |
Scheduler ¥  Read ds
- Stream ‘ Duplicates (Active) XML data
Subscriptions Processor Removal streams from peers
received from
peers Union Join ‘ﬁ
—*| Subscription \—‘ \—‘
<«—— Manager i

sent to peers history
(Active) XML ldata stream

WS Update
Alerter Alerter

Subscription

Databases E-mails
(ActiveXML streams)
Publisher —
Ch 1 Web P

Figure 2: The architecture of a peer in P2PM

<fclause> :- FOR <var> in <stream>
(, <var in <stream> )*

So, in particular we can nest subscriptions:

for $x in ( for $y in ... )
Also, functions such as inCOM take a stream as input and
produce a stream as output. The input stream does not
have to be fixed. So for instance, one can define:

for $j in

areRegistered(<p>s.com/dht</p>)
for $c in inCOM($j)

For this example we suppose that our system has the support

of a DHT and that the DHT exports a stream of events,

corresponding to peers joining or leaving:
<p-join>a.com</p-join> % a joins
<p-leave>a.com</p-leave> %, a leaves

In the latter case, inCOM removes peers from the collection

of monitored peers.

One can also request duplicate-free results by preceeding
the content of the RETURN clause by the distinct attribute
as in: return distinct <a>{$y}</a> .

The syntax of P2PML has the flavor of that of XQuery.
Clearly, it is very different because its role is not to query
XML documents but to monitor P2P systems; in particular
the BY clause has no analogue in XQuery. XQuery has an
influence because the streams contain XML data.

3. P2ZPMONITOR

We first present the architecture of P2PM. Then we focus
on two key aspects: (i) the ActiveXML algebra that is used
in the system and (ii) the generation of monitoring plans.

3.1 Architecture

The functional architecture of a peer in the P2PM is
shown in Figure 2. Between them and with other peers, the
modules mostly exchange streams of ActiveXML trees. The
minimum required to be a P2PM peer is to run a Subscrip-
tion Manager. A peer may also host some alerters, stream
processors and some publishers. These are discussed next.

Subscription manager. When a user requests a monitor-
ing task in P2PML, she forwards the subscription to a peer
which becomes Subscription Manager for this subscription.
A peer keeps the information about all subscriptions under

his responsibility in a database named Subscription Database.

The Subscription Manager is in charge of translating the
subscription into a monitoring plan, optimizing this plan,
and then deploying the optimized plan (See Section 3.4).
A peer can also delegate a part of the monitoring task, by
expressing demands in the same P2PML language for mon-
itoring subtasks to other peers.

Alerters. Each alerter (a O-ary operator producing a stream)
is specialized in detecting particular events in some sys-
tems that are external to P2PM, as described next. An WS
Alerter intercepts inbound-outbound Web service calls and
produces alerts including SOAP envelopes expanded with
annotations such as timestamps and the identifiers (DNS/IP)
for caller/called entities. They are implemented as Awis
handlers. An Active XML alerter detects updates to the
ActiveXML peer’s repository. A WebPage Alerter detects
changes in XML/XHTML pages by comparing their snap-
shots. The alert may provide (if desired) the delta between
two pages. (This alerter uses an auxiliary Web crawler for
the surveillance of collections of Web pages). RSS Feed
Alerter detects changes in an RSS feed by comparing snap-
shots also. With RSS, the alerts have more semantics than
with arbitrary XML: e.g., add, remove and modify entry.

Streamprocessors. Some of the stream processors are state-
less, i.e., their behavior does not depend on the history of

their input streams, e.g., Filter (o), Restructure (I1), Union

(U). Others are stateful, e.g., Duplicate-removal, Join (=)

or Group. We next briefly discuss the main processors we

support. The Filter processor whose performance is critical

for the usability of the system, is discussed in Section 4.

Join takes two streams as input and generates an output
stream. Join can be parameterized by a join predicate. For
instance, in Section 2, we need to “join” the alerts of the
two streams using the equality of the calllds. Such a join is
typically very used in monitoring systems to follow a task
across different peers. For each new tree t in one of the input
streams, the history of the other stream is searched for a tree
t' so that (¢,¢') matches the join predicate. An index over
that history is used to speed up the search. The result of
Join includes information about the matching pair of trees.
Duplicate-removal detects similar trees based on a duplicate
criteria. Union takes several streams as inputs and merges
them into a single stream.

Restructure takes as input one stream. A template defines
the restructuring that has to be done at runtime based on
the input. In the simplest case, the template specifies a
projection of an input tree. For the input tree that passed
the Where test (or for a tuple of trees, e.g., in case of joins),
the template is used to construct the output tree.

Publisher. Publisher is an operator in charge of publish-
ing streams generated by stream processors, under different
forms: by emails, in XML files (ordinary XML documents,
XHTML Web pages or RSS feeds) or as channels. The chan-
nel is the basis of our Pub/Sub mechanism. An entity inter-
ested in some stream, has to subscribe to a channel publish-
ing it. If a peer P is interested in the output stream of a
service evaluating at Ps, it asks P» to publish its results on
a channel #x. P> then subscribes to this channel #xQP;.

Implementation. P2PM is implemented in Java, on top of
Active XML Peer. 1t is a Web application using Azis li-
braries to handle SOAP Web services and the Jakarta Tom-
cat servlet engine. JavaCC libraries are used to build a



parser for P2PML. Code from the YFilter [8] project was
modified and used to implement an adaptable automata-
based query processor for XML document streams.

3.2 Streams, channels, services

The language ActiveXML [5] has been proposed to sup-
port distributed query evaluation and optimization. The
Active XML algebra [4] is an algebra over (Active) XML
streams. We show here how it can serve as the basis of a
P2P monitoring system. Indeed, P2PM is based on the ex-
change of ActiveXML streams and it uses the ActiveXML
algebra. We briefly recall some definitions of ActiveXML
and sketch the ActiveXML algebra.

An ActiveXML document is an XML document where
some of the elements (sc elements), denote calls to Web ser-
vices. The evaluation of such a call results in performing
the call and enriching the document with its result (e.g., by
appending the result at the place of the call). All the in-
formation needed for performing the call (e.g., for accessing
the service, deciding when to perform the call or what to do
with the result) is provided inside the sc element.

An XML (respectively, ActiveXML) stream is a possibly
infinite sequence of XML (respectively, ActiveXML) trees.
A particular symbol eos may be considered to denote the
termination of the stream. Typically, a stream is sent from
one peer to a set of peers using the concept of channel.

A channel is defined by a tuple (peerID, streamID, sub-
scribers), where peerID is the peer that published this par-
ticular stream as a channel and subscribers is the set of peers
interested in it. Note that subscribing to a monitoring task
is different from subscribing to a channel. A monitoring task
subscription is defining a complex distributed interaction be-
tween peers. Subscribing to a channel means expressing the
will to receive the data published by the channel.

A subscription to a channel can be seen as a call to a
service, where the result of the service call is a stream of
ActiveXML trees. In ActiveXML terminology, this is a con-
tinuous service. The trees in the stream are received one
after another in an asynchronous manner. Note that a non-
continuous service is a particular case: the service returns
an ActiveXML tree followed by an eos.

We adopt the following ActiveXML notation. A document
d or a service s at peer p, are denoted respectively dQp, sQp.
Some services, called generic, can be offered by many peers.
In particular, query services can be offered by any peer with
an XML query processor. Such a service is denoted s@Qany,
e.g., 0//q/6Qany. (In the following, a service s with no
peer location is assumed to be s@any.) For deployment,
the generic services will be replaced by concrete ones.

3.3 The Stream Algebra

We next briefly present the stream algebra. Details may
be found in [4]. As in [4], we consider the following alpha-
bets: D of document names, S of service names, P of peer
identifiers, N of node identifiers, L of label identifiers and V
of variables. Data variables are denoted as $x,%y... and node
variables as fx, ffyy... . The set S contains particular services:
send, receive and eval. Active XML expressions are used to
model distributed evaluations. For [ € £, p and p’ peers,
dQ@p a document at p, sQp a service of arity k, n@p a node
in some document at peer p, and the algebraic expressions
e1, e2...ex, the following are also algebraic expressions:

l{e1,...,ex), sQ@p(e1,...,ex), dQp, eval@p (e1),
send@p (n@p’, e1), receive@p ().

P2PML Monitoring Global Subtask
subscription plan optimization assignment

Global
deployment

Loezl cha! Ll Local tasks
subscription Mopiiorig optimization
plan

Local
deployment

Figure 3: Subscription Processing Chains

An executing service s@Qp is noted os@p. A service that
finished executing is noted es@p. eval@p (s@p’ (...)) means
p asks for the execution of s@p’(...) on peer p’.

The semantics of algebraic expressions are defined using
rewriting rules. To illustrate them, we present only the two
rules for service invocation.

1. Local service invocation

20@p : eval@p (sQp (..., t;,...)) —

2o@p : 0sQ@p (..., eval@p (¢;),...)

2. External service invocation
fz@p(eval@p (s@p’ (...))) —
fx@p (oreceive@p ()) &
(new) @p’ : eval@p' (send@p' (j:i:tc@p7 (s@p' ())))

In the second rule, Peer p asks p’ to evaluate service sQp’
(e.g., a local database call at p’) and to send its (stream
of) result(s) under the node fx@p. Note the fact that p is
executing receive() to accept data from p’ and to place it
at the right spot. The separator & between actions means
that these are done concurrently (here, at peers p and p’).

We also present an important rule for query optimization
that illustrates the tight interaction with the local optimizer:
Ifq=q (q1,..,qn), then

eval@p (¢Qany) <

eval@p (q'@any (1 @Qany, ..., qn@any))

Let us consider again the example of Section 2 and denote
by out@a.com and out@b.com the two alerters over outgoing
calls, and in@meteo.com the alerter on incoming calls. Let
p be the peer that processes the subscription. Then the
subscription is first compiled into the plan:

eval@p(publisher (Il (
xp (U(or(out@a.com),
or(out@b.com))),
o (in@meteo.com))))

where T is the restructuring template, P the join predi-
cate, F, F' some filtering over the out and in-calls, respec-
tively. Observe that in the above expression, some services
are still generic (i.e., non concrete). Observe that the selec-
tions were pushed as much as possible to the proximity of
the sources to save on communications and that operators
have not yet been "placed” with the exception of the alerters.

3.4 Monitoring plan generation

As already mentioned, the subscription manager is in charge
of compiling a subscription into a monitoring plan that will
then be optimized. The monitoring plans are expressed
in the algebra using the discussed operators, in particular,



Peer a.com

X

Peer b.com

Peer meteo.com
Figure 4: One possible plan for the monitoring task

alerters, stream processors and publishers. Figure 3 presents
the steps transforming a subscription into a running moni-
toring task. The processing phases are represented by ovals
and the input/output data by rectangles. Observe that at
the end of the top processing chain, the work is distributed
between the peers in the system. Some of the work may be
requested locally (observe the bottom processing chain).

In a first step, the subscription manager computes an op-
timized plan for the given subscription. The optimization
is performed using algebraic rewrite rules and heuristics. In
a second step, it searches for resources in the system that
cover at least parts of the task plan. This is considered in
Section 5. Finally, for the new tasks, the subscription man-
ager assigns them to peers, trying to balance the load.

To illustrate the first step, let us consider again the exam-
ple. Imagine that no existing stream was found that could
serve (part of) the subscription. Suppose that the query
optimizer selects the plan (using the ActiveXML syntax):

eval@p(publisherQp(IIrQmeteo.com(
Xp @meteo.com(UQb.com(or@a.com(outQa.com),
or@b.com(out@b.com))),
o @meteo.com(in@meteo.com))))

By rewriting, this yields:
% at p
opublisher@p(§M@Qp : oreceive())
& % at meteo.com
osend@meteo.com (M Qp, ollr@meteo.com(
o xIp @meteo.com(

fY @meteo.com : oreceive(),

oo pr@meteo.com(in@meteo.com))))
& % at b.com
osend@b.com (Y @meteo.com,

o U @b.com(§X@Qb.com : oreceive(),
oo p@Qb.com(out@b.com))

& % at a.com
osend@a.com (X @b.com, oo rQa.com(out@a.com))

Peer a.com filters its out-calls and sends its result to b.com.
Observe the use of identifiers in §X@b.com to denote the
destination of the message, i.e., the place where the result
of the filtering at a.com is expected. This is in fact sup-
ported by a publication in a channel, namely the X channel
published by a. This will allow the reuse of this stream
if some other peer is interested in the same filtering. Peer
b.com filters its own out-calls, merges with the data received

XML
input
stream

tree root r of t

preFilter

Subscriptions

simple conditions
satisfied inr

i | Subscription
""""" ; manager

AESFilter

YFilter

Simple subs Complex subs
hit set, 1 hit set , t
s, l S,

viv i i xm Output streams
Figure 5: Filter Structure

from a.com. The result of the merge is sent to meteo.com,
again via a channel, this time Y. This last peer joins what it
receives with the result of the filtering of its in-calls. Finally,
meteo.com also does a transformation (II7) to produce the
results and sends it to p, via a last channel, namely M.

Observe that each expression involves only services exe-
cuted at one of the peers. So, each peer can start perform-
ing its part of the global task. The same plan is represented
graphically in Figure 4 for the three peers. Note that local
subscriptions can also be expressed in the P2PML language.
So, for instance, Peer a.com is assigned the task:
for $e in outCOM(<p>local</p>)
let $duration := $e.responseTimestamp

- $e.callTimestamp

where

$duration > 10 and $e.callMethod = "GetTemperature"

and $e.callee = "http://meteo.com"
return $e

by channel X and subscribe(b.com, #X, X)
Observe that the result is published as a channel to which

peer b.com is automatically subscribed as a first client, and
#X indicates the place where this data is expected at peer
b.com. Other peers may subscribe to this channel if desired.

4. FILTER

In this section, we describe a most important stream pro-
cessor, namely Filter. As we will see, Filter is based on
two basic mechanisms: the Atomic Event Set Algorithm
(AES for short) [15] for matching conjunctions of simple
conditions and the YFilter Algorithm [8] for matching tree-
patterns. The goal is to support very high volume input
streams. This is of first importance for filtering potentially
heavy source streams coming from alerters: e.g., telecom ser-
vices, produce huge volumes of notifications to be filtered.

In Section 2, we mentioned that the attributes of the root
of a stream item often contain information important for
filtering. At the same time, this information is easy to ac-
cess without requiring complex computation and without
the need to read the entire stream item. A system can sup-
port the filtering of a very high rate of stream items on the
fly if only such simple conditions are checked. This is what
we do next by separating the filtering in two stages. The
first step consists in checking simple conditions. The second
one treating complex conditions only sees a stream of items
that is typically much smaller than the stream being filtered.



H, Hi,
A Q4 o Qs

o Q1,Q2 T

Qs Q3
H C1|_ C, C3I_ Cy

Figure 6: Atomic Event Set

More precisely, suppose we have to apply a large set {S;}
of subscriptions over a stream of XML documents. A sub-
scription S; is specified in Filter as a pair (Q;,T;) where Q;
is a conjunctive query and 7T; a report template. For each
tree t in the stream, Filter must find the @; that matches
t. When a matching is found, it also has to apply the tem-
plate T; but since the main performance issue is to detect
the matchings, this aspect will be ignored here. For this
section, we will refer to Q; as subscription.

The subscriptions supported by Filter may include simple
conditions, i.e., equalities or inequalities (#, <) between the
attributes of the root node of ¢t and constants. An example
of simple condition is $c.callee = "http : //meteo.com”.
For each Q;, Q; = A;C;;(AQ;) where the C;; are simple
conditions and Q) performs the remaining complex filtering
if needed. We consider here that Q) is a general tree-pattern
query. If there is no Q}, the subscription is said to be simple;
otherwise, it is complex. Filtering is performed by three
modules: preFilter, AESFilter and YFilter, .

preFiIter. The preFilter module is an automaton that, for
each document ¢, reads the first tag of ¢ (so, in particular,
the root’s attributes ). It tests the simple conditions which
are organized in a hash-table with the attribute name as key
and the condition as value.

AESFilter. AESFilter is a modified version of the hash tree
technique of [15]. Figure 6 represents the hash tree for the
subscriptions. The AES algorithm assumes that the set of
simple conditions is ordered. So we assume this is the case.
preFilter produces an ordered sequence of the simple con-
ditions satisfied by ¢. AESFilter feeds that sequence in the
hash tree to obtain the simple subscriptions that are sat-
isfied by t and the active complex subscriptions, i.e., those
with simple conditions satisfied.

Q1 = C1,C2,Q)
Q2 = OlycQO,Z

Qs = C3,Q5%
Q1 = C1,C5,Q)
Qs = Ci

Qs = C1,C2,C4,Qs

The structure used by the Atomic Fvent Sets algorithm is
a hash-tree. The root hash-table, named H, has for entries
simple conditions specified by the subscriptions in the sys-
tem. (To simplify, we ignore subscriptions with no simple
conditions.) An entry, say the entry for C;, possibly contains
a pointer to another hash table, named H;, which contains
entries for the conditions that follow condition %1 in some

subscriptions. A hash-table in this structure corresponds to
a prefix in some subscription. Hj, 4,,... s, exists if at least one
subscription has as prefix the sequence: C;,,C5,,...,C;, . In
the example, H1 2 contains Cy that follows after the sequence
C', Cs in subscription Qs.

The structure we use to implement our AESFilter corre-
sponds only to the simple conditions of the subscriptions.
The markings correspond to the subscriptions that are still
active after the processing of the simple conditions, mean-
ing that their complex queries have to be evaluated by the
Y Filter,. The marked cells are the last simple conditions
in at least one subscription. For instance, the condition C3
in the hash-table H; is the last simple condition for Q4. Its
marking is Q4. Details on the AES may be found in [15].

AESFilter is called with as input, the ordered list of con-
ditions detected as valid by preFilter in the XML tree. It
returns (i) the list of simple subscriptions satisfied by the
tree, and (ii) the complex queries that have to be executed
by the Y Flilter,, i.e., such that all the corresponding simple
conditions are satisfied by the document. As shown in [15],
this organization scales with the number of subscriptions.

YFilter.. Lastly, YFilter, uses the YFilter algorithm to
test on t the query Q) for each active subscription @;. Ob-
serve that we run a different filter YFilter,, depending on
the complex subscriptions that passed the AESFilter test.
If we suppose t satisfies C1,C5 in the example, AESFilter
will detect @5 as a matching simple subscription and Q4, Q3
as active complex subscriptions. Then YFilter, is adapted
to check only for the complex queries Q) and Q%. Suppose
that Q} only is verified. The matchings are Q4 and Q5.

Y Filter, is a modified version of the YFilter automaton.
Given the set {Q;} of queries corresponding to the com-
plex subscriptions, we construct a YFilter automaton. Now,
given a tree t, only certain subscriptions are active so the au-
tomaton is virtually pruned to adapt to the specific filtering
task for ¢. As shown in [8], this is a most efficient organiza-
tion that scales with the number of subscriptions because it
groups path queries based on their common linear prefixes.

Figure 5 describes the Filter’s architecture consisting main-
ly of the three modules previously described. Dotted arrows
represent the flow of data corresponding to the offline adjust-
ment of the filter when the subscription database changes.
Plain arrows correspond to the data flowing in the Filter
during the processing of an XML document coming on the
input stream. Input data for the Filter is figured in ovals.

Web service calls. To conclude this section, we consider
a particular aspect of the filter, namely the use of external
services. This is a place where the fact that the trees we
monitor may be active (i.e., in ActiveXML) is particularly
relevant. Such a tree may include calls to a Web service
which provides, on demand, a part of the document that
was considered too big to be passed into the stream. Let us
consider the following XML document coming on a stream:

<root attril="x" attr2="y">

<sc service="storage" address="site">
<parameters>...</parameters>

</sc>

</root>

The active part is rooted at the element sc. Suppose that
the call to service storage@site would evaluate to:
<c><d>. . .</d></c>



This data would replace the subtree rooted at sc. Let us
also assume that a subscription filters this stream with the
query:

$item.attr1="x" and $item.attr2="z" and $item//c/d

The Filter first evaluates the simple conditions, i.e. the con-
ditions on the root attributes. Since the checking for the
second condition fails, it will not pursue the checking of the
XPath expression. Observe that by replacing the service call
subtree with the result of the Web service call, the XPath
expression would evaluate to true. Our strategy avoids the
unnecessary call to service storage@site.

5. STREAM REUSE

This section presents P2PM’s support for stream reuse.

P2PM is a P2P platform providing monitoring services.
Services such as Selection, Join, Restructure or Publisher
are provided by the peers but each peer does not have to
support all services. For instance, a PDA may refuse to
support an expensive service such as Join whereas, an en-
terprise server may typically be willing to do it. When a new
monitoring subscription is submitted to a Subscription Man-
ager at a particular peer, an essential aspect of its work is
to determine which already existing streams may be reused
for that task to save CPU consumption and network traffic.
Since monitoring subscriptions are tasks that execute over
long periods of time, it is therefore important to pay once
for optimizing the monitoring plan.

To support stream reuse, the system provides a Stream
Definition Database that contains the description of all avail-
able streams. This database is implemented using the KadoP
[3] system, a P2P XML index and repository over a DHT
system. The motivation is that a centralized database would
potentially be a bottleneck. All the peers in the KadoP
network can participate in the storage and indexing of the
Stream Definition Database. One can efficiently discover
streams of interest even when millions of streams have been
declared by tens of thousands of peers.

Streamrepresentation. The description of streams is main-
tained in a database. The system provides services for pub-
lishing information about existing streams, and for querying
this information in particular for stream reuse. The infor-
mation about some stream is defined with XML data:
<Stream PeerId="..." StreamId="..." isAChannel="...">
<Operator>...</Operator><Operands>...</Operands>
<Stats>...</Stats>
</Stream>
The pair (Streamld,Peerld) fully identifies the stream.
Operands provides the list of pairs (OPeerId, OStreamId)
of operands, and Stats provides statistical information main-
tained for the stream such as the average volume of data in
the stream for some period of time. The Operator argument
specifies the operator that is used to produce this stream.
When the set Operands is empty, this means that the stream
is a monitoring source, in other words, it is produced by an
alerter. The boolean attribute isAChannel specifies if the
stream is published under the form of a channel or not. Re-
call that a channel is a stream that has been published. A
channel is typically multicasted to several peers, so Peerld
is not the single peer that can provide this data. The infor-
mation about a particular channel is also defined in XML:

<InChannel PeerId="..." StreamId="..."

ReplicaPeerId="..." ReplicaStreamId="..."/>

T S6@p2
X @p>

$7@ps3

inCOM@p;, outCOM@p, outCOM@ps
P, P, P;

Figure 7: Stream Replication and Equivalence

Suppose peer p published a stream s in a channel and that
peer p’ subscribes to that channel. Then p’ may choose to
publish this information to let it be known that he can also
provide (p, s). To do so, it also has to provide an Id for the
replica, s’. The attributes would be in order p, s,p” and s’.

When we publish the specification of a stream, we always
do it with respect to the original streams and not to the
replica. For instance, suppose that a peer provides some fil-
tering of s'@Qp’, say s”@p”. When declaring this new stream,
it will use s@p as operand. So, even if "physically” s”@p" is
obtained by filtering s'@p’, it is viewed semantically as a fil-
tering of s@p. This greatly facilitates the re-use of streams.

Algorithmfor discoveringuseful streams. The algorithm
searches for existing streams that can be used for serving a
newly declared subscription. Suppose the subscription is a
selection over the Web communications at peer p;. One first
queries the database to see if a communication alerter for p;
exists. Say it does and its output stream is s1@p;. Then
one queries the database to see whether there is a filtering
of s1@p1 that performs the desired task (see Figure 7).

Since the operators have been published over the original
streams, we are concerned only with searching operators on
original versions of the streams. The issue of replicas comes
only in a second stage, namely when we have discovered a
stream we are interested in and when we have to select ei-
ther this original stream or one of its replicas. This selection
is guided by the optimizer. Typically, we select as provider
a peer that is preferably ”close” (networkwise) and not over-
loaded. Clearly, the notion of replica is not a full answer
to stream equivalence. Indeed, one can find in Figure 7 an
example of two streams that are equivalent (because of the
equivalence of algebraic expressions) without being replicas.
The Reuse algorithm works on a monitoring plan, trying to
find sub-plans already supported by existing streams. Reuse
starts its search from the sources of the monitoring stream.
For instance, if a source stream in the subscription involves
incoming communications at Peer pi, we can use the follow-
ing XPath query to find streams produced by alerters on pi,
assuming the variable $p; holds the peer ID:

/Stream[@PeerId = $pl] [Operator/inCom]

Suppose now that we found that s; contains alerts on
incoming calls and that we want some particular filter over
s1. The following query returns all possible candidates that
filter s1 assuming ($p1,$s1) holds the peer and stream ID:

/Stream[Operator/Filter]

[Operands/Operand [@0PeerId=$p1] [@0StreamId=$s1]]

Now consider the more complex monitoring plan corre-
sponding to the evaluation of the following expression:

Xp (or (inCOM@p1) , outCOM@ps)



Figure 7 shows existing streams in the system that may be
used. Suppose that we already found that the filtering of
incoming calls can be provided by s3@p; and s4@p>; and
that the outcalls can be provided by s2@ps. To search for
the join, we can ask the query:

/Stream

[Operator/Join]

[Operands/Operand [@0PeerId=$pl] [@0StreamId=$s3]]
[Operands/Operand [@0PeerId=$p2] [@0StreamId=$s2]]

More generally, the algorithm proceeds from the "leaves” of
the monitoring plan, attempting to map nodes in the plan
to existing streams. Operators that have all their operands
matched generate queries to the database. The result of the
queries determines whether this operator will be mapped to
an existing stream. For a node that is matched, the algo-
rithm searches for possible replicas of the streams to substi-
tute for that node. The nodes that have not been matched
correspond to new streams that have to be produced.

6. RELATED WORK

Most of the works in the field of monitoring peer-to-peer
systems have addressed two aspects. The first is the gath-
ering of statistics for file sharing systems, e.g. [16], in order
to answer queries such as: which is the most shared video
file in this P2P system? The other is network monitoring
typically for improving QoS, e.g. [14].

Our work differs greatly of these, since we are primarily
interested in monitoring events regarding document updates
(database, RSS feeds, Web pages) and distributed applica-
tions running in P2P systems. For these reasons, this topic
is at the confluence of two research areas : Web-scale moni-
toring systems and stream processing.

Systems such as [7], [12] and [15] do centralized monitor-
ing for changes in documents on the Web. NiagaraCQ[7]
becomes scalable by regrouping similar structures of differ-
ent continuous queries expressed in an XML-QL language.
PeerCQJ10] is a P2P system that performs Web-scale infor-
mation monitoring using continuous queries and implement-
ing efficient algorithms for allocating the queries on peers.
All the processing for a continuous query is done on a peer.

STREAM]13] processes data streams by transforming them
into relations. The query results are transformed back into
streams. This system uses time-based windows for bounding
the necessary storage for the evaluation of joins over streams,
for instance. We intend to couple this approach with an effi-
cient garbage collection mechanism which detects and elim-
inates unnecessary trees from the storage. Borealis[1] and
Aurora[2] are also stream processing engines. All these sys-
tems are based on the relational model, processing streams
of data tuples.

A work close in spirit to ours is StreamGlobe[11, 17], a
P2P system for efficiently querying data streams represented
in XML, that uses an XQuery-like language and proposes
stream sharing to achieve scaling. StreamGlobe performs
in-network search for useful streams while we are using a
service (provided by a DHT) for maintaining and querying
the stream definitions. Also StreamGlobe shares streams
derived from data sources by applying only unary operators,
e.g. selections, projections and window-aggregation while
the system we present allows sharing for all streams. In
particular, the stream resulting from the join of two streams
can be shared, detected as useful and re-used.

7. CONCLUSION

In this paper we presented P2PM, a versatile peer-to-peer
tool for monitoring generic P2P systems. Alerters have to
be developed for every type of system one wishes to monitor.
However, the part of the architecture dedicated to processing
and the stream publishers remain the same, regardless of the
monitored application. We have shown an efficient filtering
technique and an algorithm for detecting useful streams for
covering (parts of) a new monitoring task.

We are currently testing our system by monitoring RSS
feeds. We also plan to test our system for monitoring P2P
systems running distributed applications like Edos[9], al-
ready mentioned. Certainly, we have met very interesting
problems and we plan to explore them in the near future.
One is defining and implementing an efficient garbage col-
lection mechanism for reducing the storage needed for our
stateful stream processors. A second is finding solutions for
the issue of stream equivalence. We are also interested in
detecting and reusing streams that hold sufficient data.

8. REFERENCES
(1] D. J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel,

M. Chernlack J -H. Hwang7 W. Llndner A. Maskey,
A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B.
Zdonik. The design of the Borealis stream processing
engine. In CIDR, 2005.

(2] D. J. Abadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and S. B.

Zdonik. Aurora: a new model and architecture for data

stream management. VLDB J., 12(2), 2003.

S. Abiteboul, I. Manolescu, and N. Preda. Constructing

and querying peer-to-peer warehouses of XML resources. In

ICDE, 2005.

S. Abiteboul, I. Manolescu, and E. Taropa. A framework

for distributed XML data management. In EDBT, 2006.

Active XML Survey, ftp://ftp.inria.fr/inria/projects/

gemo/gemo/gemoreport-331.pdf.

[6] Business Process Execution Language for Web Services,

http://www.ibm.com/developerworks /library/ws-bpel/.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:

A scalable continuous query system for Internet Databases.

In SIGMOD Conference, 2000.

[8] Y. Diao, P. M. Fischer, M. J. Franklin, and R. To. Yfilter:
Efficient and scalable filtering of XML documents. In
ICDE, 2002.

(9] Edos, http://www.edos-project.org.

[10] B. Gedik and L. Liu. PeerCQ: A decentralized and
self-configuring Peer-to-Peer information monitoring
system. In ICDCS, 2003.

[11] R. Kuntschke, B. Stegmaier, A. Kemper, and A. Reiser.
Streamglobe: Processing and sharing Data Streams in
Grid-Based P2P infrastructures. In VLDB, 2005.

[12] L. Liu, C. Pu, and W. Tang. WebCQ: Detecting and
delivering information changes on the Web. In CIKM, 2000.

[13] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. S. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, approximation, and resource
management in a data stream management system. In
CIDR, 2003.

[14] Netscout, http://www.netscout.com/.

[15] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda.
Monitoring XML data on the Web. In SIGMOD, 2001.

[16] Peermind, http://www.peermind.com/.

[17] B. Stegmaier, R. Kuntscke, and A. Kemper. Streamglobe:
adaptive query processing and optimization in streaming
P2P environments. In ACM International Conference
Proceeding Series; Vol. 72, 2004.

[18] XQuery, http://www.w3.org/xml/query/.

3

[4

[5

7



