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Abstract

A low-cost method for dealing with model errors in 4D variational assimilation using the innovation

residual is presented and formally compared to the Kalman filter. This method is applied to two models,

first a burger equation to calibrate the method and second to a more relevant Shallow water equations

model. It is shown that compared to the classical 4D-Var results, this new method provides a sizeable

improvement.

Keywords : Data assimilation, innovation vector, Adjoint methods, Nudging

1 Introduction

Data Assimilation is a wide class of numerical methods for estimating the state of a system by combining

information from observational data with information provided by a numerical model. One of the most

important applications of these methods is the estimation of the best state of the atmosphere (or the ocean)

at a given time in order to improve the accuracy of the numerical forecast. In recent years, developments

of both observational means (remote sensing, buoys, tomography, ...) and computing resources have

permitted to improve widely Data Assimilation methods and their efficiency.

The current operational method in meteorological centres is called 4D-Var (for four dimension varia-

tional data assimilation) . It consists in assimilating all the observational and model informations from

the previous time sequence. The problem is formulated as an optimal control problem where the criteria

measures the misfit between the model predictions and the observations of the system state. One of the

main assumption of 4D-Var is that the model describes exactly the system behavior. However, in practice

the model equations do not represent the exact evolution of the system and model errors arise because of

the lack of resolution, inaccurate representation of small scale physics or errors in boundary conditions,

topography or forcing terms.

The next step in the 4D-Var development will be to consider that the model is not exact i.e, for

example, to introduce the model errors correcting term in the control vector (see Jazwinsky, 1970; Derber,

1989 and Cohn, 1997). The principle of the complete method is to add in the control vector, a residual

error correcting term which is added to the model equation at every time step. Due to the size of this

new problem (the dimension of the state variable (typically 106-107) times the number of time steps), this

approach is unaffordable for current computational resources. In order to reduce the cost of model errors
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control, one can propose to control only several and well chosen direction of the error (Vidard et al, 2000),

or only the time correlated part (bias) (Nichols and Griffith, 2000 and Derber, 1989).

In this paper we will introduce a new technique for treating model errors, based on an idea of Zou,

Navon and Le Dimet (1992). This method is an extension of nudging (or Newtonian relaxation) which

was the first operational data assimilation suite in oceanography (Lyne et al, 1982; Krishnamurti et al,

1991 and Lorenc et al, 1991). It consists in relaxing the model state towards the observations during the

assimilation period by adding a non physical ’nudging’ term to the model equation. The nudging terms are

defined as the difference between the observation and the model solution weighted by a nudging coefficient.

The nudging can be thought as an approximation of the Kalman filter (KF) the best nudging coefficients

are those related to a KF in linear case (see Lorenc, 1986 and Lorenc et al,1991). However, the KF is very

costly in practice (storage and manipulation of N × N matrices where N is the size of the state vector)

compared to the very cheap nudging. Moreover, in order to be applied, KF need simplifications that does

not take into account the whole time period.

In this paper we will use optimal control methods to estimate both initial condition (like in 4D-Var)

and the nudging coefficients in order to correct model errors in a much more efficient way (from the

computational point of view).

First we will recall the equations of the 4D-Var and introduce Optimal Nudging, and we will show that

this new method and the Kalman Filter are equivalent in a sense to be defined. Section 2 deals with the

application of optimal nudging data assimilation on a very simple Burger’s equation. Three forms of the

nudging matrix will be tested to determine which compromise between the size of control and the quality

of the results will be optimal.

And finally we will test this method on a more realistic shallow water model and compare it with

classical 4D-Var data assimilation on the same model. We will show that for a little extra-cost this new

method provides a quite sensitive improvement.

The notations used in this paper are the unified ones advocated by Ide et al (1997).

2 Optimal nudging: motivation

The aim of the 4D-Var classical approach of data assimilation is to try to reduce the misfit between the

observations and the forecast state by controlling the initial condition of the analysis period.
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Given a discretised model M, let x ∈ C ⊂ R
N

, xb the background state, or first guess of the minimisa-

tion, the evolution of the state can be described as






x0 = xb + δx0

xi+1 = M(ti,ti+1)(xi)

(1)

The aim of the method is to search for δx0 that minimises the following cost function :

J(δx0) =

Jo
︷ ︸︸ ︷

1

2

n∑

i=0

〈
R−1(Hi(xi) − yo

i ), Hi(xi) − yo
i

〉
+

Jb
︷ ︸︸ ︷

1

2

〈
B−1δx0, δx0

〉

where R is the m×m observational error covariance matrix and B the n×n background error covariance

matrix, yo
i ∈ R

m
is the observation vector at time ti and Hi is the observation operator that computes the

model equivalent quantities and interpolates them to the observation location at time ti. The first term

of the cost function (called Jo) represents the misfit we wish to minimise in an idealised case with true

observations and a model describing exactly the evolution of the system. However due to observation errors

and errors induced by the model, this term can not be canceled. That is why one introduces the second

term (called Jb) that prevents the solution to be non physical (trying to to fit exactly the observations)

and then generating oscillations to retreive physical equilibrium . The appropriate equilibrium between

the two terms is provided by the inverse of the error covariances matrices B−1 and R−1 which represents

the confidence we have in the background and the observations respectively.

Due to the term Jb and to the model errors, the innovation residual dk = Hk(xa
k) − yo

k remains non

zero after the 4D-Var assimilation.

The errors sources can be written as :

• Prediction (or Forecast) Error :

ε
f
k = x

f
k − xt

k

• Observation Error :

εo
k = yo

k − Hk(xt
k)

where x
f
k represents the forecast state at time tk and xt

k the true state.

Then we note that the innovation residual can be written as :

dk = Hk(xf
k) − yo

k

≈ Hkε
f
k − εo

k (2)
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where Hk = ∂Hk

∂x
|
x=x

f

k

is the tangent linear of the observation operator, and εf is assumed to be negligible

with respect to xf

Equation (??) shows that an important information about model and observations errors remains in

this residual. In the following we will try to use it to improve the 4D-Var assimilation scheme.

Formally, in the case of a completely and directly observed state an intuitive approach was to modify

the forecast state using a correcting term including the innovation residual. In this case, the inverse of the

observation operator H−1 exists and then we could write :

xa
k = x

f
k + H−1

k (dk − εo)

Among existing data assimilation methods one can quote the Kalman filter (Kalman, 1960) which

provides an analysed state using the innovation vector to correct the forecast by

xa
k = x

f
k + Kkdk

where K is called the gain matrix and is computed as follows :

Kk = P
f
kHk(HkP

f
kH

T
k + R)−1

with Pf the forecast error covariance matrix

It can be pointed out that in Kalman Filter, if observations are assumed exact (R = 0), we retrieve

the gain matrix as : Kn = H−1
n and εf

n = H−1
n dk

However there are two major drawbacks in Kalman filtering : it requires the manipulation of very large

matrices and it needs simplifications that do not take into account the whole time period.

That is why we try here to estimate an optimal ’Gain’ matrix using variational methods (4D-Var).

The following extend the method of Optimal Nudging introduced by Zou et al (1992) exploring three kind

of nudging matrices and introducing the smoothed optimal nudging which avoid the shocks induced by

nudging corrections in the model.

3 Optimal nudging: the method

In this section we introduce the main point of this paper : the Four Dimensional Optimal Nudging Data

Assimilation scheme (4D-ON). The computation of the gradient of the cost function does not require more
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tools than for classical 4D-Var but only a few more operations and storage.

The aim of nudging methods is to relax the model states toward the observation adding a ’nudging’

term. This term is the misfit between observation and forecast yo
i+1 − Hi+1(M(ti+1,ti)(xi)) weighted by

the nudging operator Gi. In this part the complete nudging case is considered that is to say that Gi is a

n×m matrix where n is the dimension of the state vector and m the dimension of the observation vector.

The problem is now: how to estimate Gi.

Let M be a non-linear discretised model describing the ocean or atmosphere evolution. We focus on

the problem :







x0 = xb + δx0

xi+1 = M(ti+1,ti)(xi) + Gi+1(y
o
i+1 − Hi+1(M(ti+1,ti)(xi)))

(3)

And we wish to minimise the cost function :

J(δx0,G) =
1

2

n∑

i=0

〈
R−1Hi(xi) − yo

i , Hi(xi) − yo
i

〉
+

1

2

〈
B−1δx0, δx0

〉

+

Jnudg

︷ ︸︸ ︷

1

2

n∑

i=1

〈
Q−1

i Gi(y
o
i − Hi(M(ti,ti−1)(xi−1))),Gi(y

o
i − Hi(M(ti,ti−1)(xi−1)))

〉

(4)

Basically we will consider a 4D-Var cost function where R is the observation error correlation matrix and

B is the background error covariance matrix, plus a regularisation term Jnudg that prevents G = G1, ..,Gn

to be too large, where Q is the forecast error covariance matrix.

Actually, the regularisation term comes from the classical formulation of the cost function of the 4D-Var

with imperfect model data assimilation (see Jazwinsky, 1970; Tikhonov and Arsenin, 1977; Cohn, 1997

and Alekseev and Navon, 2001]). In this entire formulation of the control of model errors the cost function

is

J(δx0, η1, .., ηn) =
1

2

n∑

i=0

〈
R−1Hi(xi) − yo

i , Hi(xi) − yo
i

〉

+
1

2

n∑

i=1

〈
Q−1

i ηi, ηi

〉
+

1

2

〈
B−1δx0, δx0

〉
(5)

where ηi is the correcting term at time ti. So ηi just have been replaced with the nudging correcting term.

In order to compute the gradient of the cost function we will use a classical Lagrangian method under

constraint of (??). Let L the Lagrangian being defined by:
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L(G, δx0;x
∗) = J(G, δx0) +

n∑

i=1

< x∗

i ,xi − M(ti,ti−1)(xi−1) − Gi(y
o
i − Hi(M(ti,ti−1)(xi−1))) >

x∗ being the Lagrangian multiplier. Computing the partial derivatives

∂L

∂x∗
(G,v; h∗

x) = xi − M(ti,ti−1)(xi−1) − GT
i (yo

i − Hi(M(ti,ti−1)(xi−1)))

we can first retrieve :

∂L

∂x∗
= 0 =⇒ (??)

Moreover,

∂L

∂δx0
(G, hδx0

,x∗) =
n∑

i=0

< HT
i (Hi(xi) − yo

i ), x̂i > +
〈
B−1δx0, hδx0

〉

−

n∑

i=1

< MT
(ti,ti−1)H

T
i GT

i Q−1Gi(y
o
i − Hi(M(ti,ti−1)(xi−1))), x̂i−1 >

−

n∑

i=1

< x∗

i , x̂i > + < MT
(ti,ti−1)

x∗

i , x̂i−1 > − < MT
(ti,ti−1)H

T
i GT

i x∗

i , x̂i−1 >

− < x∗

0, hδx0
>

So, if the adjoint state x∗ is defined by:






x∗

n = HT
nR−1(Hn(xn) − yo

n)

x∗

i = (M(ti+1,ti) − Gi+1Hi+1M(ti+1,ti))
Tx∗

i+1 + HT
i R−1Hi(xi) − yo

i )

−MT
(ti+1,ti)

HT
i+1G

T
i+1Q

−1Gi+1(y
o
i+1 − Hi+1(M(ti+1,ti)(xi)))

(6)

we obtain ,
∂L

∂δx0
(G, hδx0

,x∗) =< ∇δx0
J, hδx0

> i.e :

∇δx0
J = −x∗(0) + B−1δx0 (7)

And finally :

∂L

∂Gi
(v, hGi

,x∗

i ) = < Q−1Gi(y
o
i − Hi(M(ti,ti−1)(xi−1)), hGi

(yo
i − Hi(M(ti,ti−1)(xi−1))) >

− < x∗

i , hGi
(yo

i − Hi(M(ti,ti−1)(xi−1))) >

= < ∇GJ, hG > (8)
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thus the gradient of the cost function with respect to Gi can be written :

∇Gi
J = Q−1Gi(y

o
i − Hi(M(ti,ti−1)(xi−1)))(y

o
i − Hi(M(ti,ti−1)(xi−1)))

T

−x∗(t)(yo(ti) − Hi(M(ti,ti−1)(x)i−1))
T (9)

Provided the initial condition contribution to the gradient (eqn (??)) is computed (thanks to one

integration of the direct model and of the adjoint model) the computation of the nudging contribution of

the gradient does not need extra ‘heavy’ computations. Indeed ∇JGi
is obtained by the product of vectors

used in ∇Jδx0 (i. e. Gi(y
o
i − Hi(M(ti,ti−1)(xi−1))), (yo

i − Hi(M(ti,ti−1)(xi−1)))
T and x∗).

It can be proved that this algorythm is formally equivalent to the kalman filter (see appendix A).

4 Basic experiment on a Burger’s equation (1D)

In this section we will apply the optimal nudging data assimilation scheme on a simple one-dimensional

Burger’s equation. It can be an easy validation of the O.N. scheme and will permit to find an appropriate

choice for the form of Gi

Let the model be







∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f

u(0, t) = u(1, t) = 0

u(x, 0) = sinπx

(10)

with x ∈]0, 1[, t > 0

Note that a known analytic exact solution is associated to fixed forcing term (f) . For this experiment

we impose f to be f(x, t) = e−t(πu cosπx+(−1+νπ2) sin πx), and then u = e−t sin πx is an exact solution

of (??).

The 4D-ON is defined by adding the nudging term into the model equations :







∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f + g(uobs − h(u))

u(0, t) = u(1, t) = 0

u(x, 0) = sin πx

(11)
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We will focus on a sequence [0,1] split into N + 1 time steps. The same holds for spatial discretisation

of [0,1] in E points. In this experiment N = 5000 and E = 20.

During this time sequence, we have M observations located at (xm, tm) m = 1..M .

Therefore we can rewrite our model as :

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= f +

M∑

m=1

gm(uobs
m − um)δ(x − xm)δ(t − tm)

In a discrete formulation :

du

dt
(t) + M(u)(t) = F (t) +

K∑

k=1

Gk(uobs
k − H(uk))δ(t − tk)

where H is the observation operator. In this experiment the minimisation is performed by a home

made conjugate gradient method using the Hessian of J as a preconditioner. The Hessian-vector product

is computed using the second order adjoint of the model (see Wang et al, 1992 and Le Dimet et al, 1998)

We will apply two types of model error simultaneously on the forcing term f : a five percent white

noise and a ten percent correlated noise (bias). The observations are obtained from the model free of error,

only one point over five in space and one time step over fifty will be retained as observation and we add

a five percent white noise on these observations. Moreover, we add 20% noise to the initial condition in

order to simulate background errors, and we setting all the control vector (increment of initial condition,

and nudging coefficients) to 0.

Now we will analyse the results of three types of nudging coefficient matrices:

1. Gk is a full rank E × M matrix, i.e. at each point, the correcting term is a linear combination of

all forecast/observation misfit at the same time. This is the “dream” case, because each component

of the state vector will be corrected and not only observed . Even if only a very small size problem

allows this form of Gk, this experiment allows to compare the efficiency of this ideal case with simpler

forms of the nudging matrix and to emphasise the fact that the most is not necessarily the best.

2. Gk is a diagonal matrix. In this case the model equations are only corrected at observation locations

and the correction coefficient is different for each observation.

3. Gk is a scalar coefficient (just time varying). It is the same case as previously but for a fixed time

tk the correction coefficient is the same at every observation location.
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Using one of these three forms of Gk increases the size of the control vector (in relation to the classical

4D-Var which control size is E) respectively by E × M × N , M × N and N .

In table (??) we compare the level of error RMS and the computational cost for these three forms of

4D-ON. The first column shows the “raw” results of the assimilation and the second one is obtained using

a linear time interpolation of correcting terms as temporal smoothing and , for G diagonal matrix and

scalar coefficients, a convolution product with a gaussian function λ as spatial smoothing (eqn [??]).

u(t) = u(t) + Gk(uobs
k − H(u(t))) if t = tk

The level of rms of error is computed comparing the results of the assimilation to the known analytic

solution.

u(t) = u(t)+( t−tk

tk+1−tk
Gk+1 + tk+1−t

tk+1−tk
λ⋆(Gk)( t−tk

tk+1−tk
uobs

k+1+ tk+1−t
tk+1−tk

uobs
k −H(u(t))) if tk < t < tk+1) (12)

As a fair conclusion of this first experiment it can be noticed that despite all the 4D-ON schemes

provide better results than classical 4D-Var, the complete 4D Optimal Nudging (Gk full matrix, fig.??)

does not really provide better results than other alternatives. Even if in the raw method case the full

matrix is a little bit more efficient compared to simpler forms of Gk, the difference does not justify the

huge computational over-cost induced (the full matrix control is more than 60 times more expensive than

the scalar control !). Moreover in the results showed for interpolated methods the diagonal matrix and the

scalar coefficient provide better results. This can be explained by the too many degrees of freedom that

the complete method contains. The simpler the control vector, the better conditioned the optimisation

problem, which leads to a much more efficient minimisation. Moreover we can notice that both diagonal

matrix and scalar coefficient give almost the same results (different but indistinguishable on the graphs)

which could indicate that the misfit vector contains spatial informations i.e the misfits vector is itself well

equilibrated on the whole grid (the optimal nudging coefficient is nearly the same for all the observed

points at a given time).
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5 Numerical experiment with a non-linear shallow water model

5.1 The Model

For this testing experiment, we use a non-linear one-layer shallow-water model on a square basin with flat

bottom (this model is classically used, see for example Adcroft and Marshall, 1998).

Even if this model is not a very realistic one, the non-linearities included in the equation and the size

of the state vector (more than 104) make its complexity sufficient to be a relevant test case.

Actually, the framework of this experiment being a twin experiment one. That is to say that the

observations do not come from the reality but from the model (with light difference from the the model

used in assimilation). In this way two different models were used. The first one is used to represent the

realty, it provides a simulated ‘true’ state evolution and then using the observation operator (and possibly

a white noise), the synthetic observations can be obtained. The second one represents the model (called

forecast model in the following by opposition to the true model or the truth evolution). In this way the

presence of model errors is simulated and the evolution of the (pseudo) realty is known.

Both evolutions of xtrue/forecast =











u

v

h











are described by :







∂tu− (f + ζ)v + ∂xB =
τ

ρ0h
− ru + ν∆u

∂tv − (f + ζ)u + ∂yB =
τ

ρ0h
− rv + ν∆v

∂th + ∂x(hu) + ∂y(hv) = 0

(13)

where (u,v) represents the current velocity, h is the height of the layer, ζ = ∂xv − ∂yu is the relative

vorticity, B = g∗h + 1
2 (u2 +v2) is the Bernoulli potential, g∗ is the reduced gravity, r is the linear friction

coefficient and ν is the viscosity coefficient.

The forcing terms of the models are :

• wind : τforecast = τ0

sin(2π(y − L
4 )

L
L~i, and

τtrue = τforecast × [1 + 0.8 × sin(
2πt

∆t × 480
)] where L is the basin length

• Coriolis factor : f = f0 + βy.

boundary conditions :
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• v=0 on north/south boundaries and u=0 on east-west boundaries

• non-slippery boundary conditions.

In this experiment the numerical values are:

L = 2000 km, f0 = 0.7 × 10−4 s−1, β = 2 × 10−11 m−1 s−1, ν = 15 m2 s−1 (forecast), ν = 0, 9 × 15 m2 s−1

(true), r = 10−7 s−1 (forecast), r = 0, 9 × 10−7 s−1 (true), ρ0 = 103 kg m−3, g∗ = 0.02 m s−2, et

τ0 = 0.015 N m−2.

For the spatial discretisation a second order centered scheme is used on an Arakawa C-grid with

∆x = ∆y = 25 km and for the time discretisation, a leap-frog scheme with a time step size ∆t = 30mn

and an Asselin time filter is added in the equations.

The initial condition (first guess) of our data assimilation window is provided using a 6 years of the

forecast model whereas true initial state and observations are computed with a true model spin-up.

5.2 The Assimilation

The cost function is defined by (??) but in order to improve the minimisation efficiency we operate a

change of variable,

v = B−
1
2 δx0 (14)

where B−
1
2 is defined as A = A

1
2 A

T
2 . This preconditioning has two advantages:

• B−
1
2 is the square root of the Hessian of Jb (and then a very good preconditioner for the minimisa-

tion) (Thepaut and Moll, 1990; Yang et al, 1996; Courtier, 1997 and Derber and Bouttier, 1999)

• it implies the manipulation of B
1
2 instead of its inverse (actually the inverse of ?? δx0 = B

1
2 v is

performed at the beginning of each iteration in order to retreive a convenient initial condition).

Even in this simplified case (and consequently for more realistic ones) the entire Q and B matrices can

neither be estimated nor stored explicitly because of their size (B is an N ×N matrix where N is the size
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of state vector). We are therefore forced to see Q and B as operators. Roughly (for more explanation see

Weaver and Courtier, 2001) following Derber and Bouttier (1999) we can write for instance B :

B = KBuK
T

where K is a balance operator that relies one state variable to the other (here K uses the geostrophic

balance to compute the balanced part of u and v from h) and Bu is the error covariance matrix for the

unbalanced part of variables and assumed to be block diagonal (i.e the cross covariances of the unbalanced

part of variables are negligible)

Bu = ΣBCΣB

where ΣB is the diagonal matrix of background error standard deviation and represents the symmetric

matrix of background error correlations for the unbalanced part of the state variables. The C operator

is modeled using a diffusion equation (see Weaver and Courtier, 2001) Therefore the inverse of change of

variable can be written

δx0 = KΣBC
1
2 v

The same way is used to build Q, modifying standard error deviations (ΣQ) and possibly the parameters

of the diffusion equation (C).

In the same way, for this more realistic problem we can not really control the entire G matrices but only

a few coefficients. But this implies that the corrections are only applied on observed locations. In order

to correct this drawback we can pre multiply the correcting term by Q
1
2 ; this will smooth the correction

and simplify the computation of the cost function.

Now we can rewrite equation (??)







x0 = xb + B
1
2 v

xi+1 = M(ti+1,ti)(xi) + Q
1
2 Gi+1(y

o
i+1 − Hi+1(M(ti+1,ti)(xi)))

(15)

And the cost function
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J(v,G) =
1

2

n∑

i=0

〈
R−1Hi(xi) − yo

i , Hi(xi) − yo
i

〉

+
1

2

n∑

i=1

〈
Gi(y

o
i − Hi(M(ti,ti−1)(xi−1))),Gi(y

o
i − Hi(M(ti,ti−1)(xi−1)))

〉

+
1

2
〈v,v〉

(16)

This change of variable modifies the adjoint equations







x∗

n = HT
nR−1(Hn(xn) − yo

n)

x∗

i = (M(ti+1,ti) − Q
1
2 Gi+1Hi+1M(ti+1,ti))

T x∗

i+1 + HT
i R−1Hi(xi) − yo

i )

−MT
(ti+1,ti)

HT
i+1G

T
i+1Gi+1(y

o
i+1 − Hi+1(M(ti+1,ti)(xi)))

(17)

The gradients become







∇vJ = B
T
2 x∗

0 + v

∇Gi
J = Q

T
2 x∗

i (y
o
i − Hi(M(ti,ti−1)(xi−1)))

T

+Gi(y
o
i − Hi(M(ti,ti−1)(xi−1)))(y

o
i − Hi(M(ti,ti−1)(xi−1)))

T

(18)

Note that this second change of variable cannot be considered as a good preconditioner because Q
1
2

is not the square root of the inverse of the Hessian of Jnudg. Thus the minimization efficiency can be

improved by considering Jnudg =
1

2

n∑

i=1

〈

Q̃−1Gi,Gi

〉

(before the change of variable) where Gi is a state

dimension vector.

Although the optimization problem is modified and the Kalman equivalence (see appendix A) is lost,

the assimilation provides roughly the same quality of results compared with preceding Jnudg and the

number of needed iterations is highly reduced (about 1/10).

In the following, in both B and Q operators the correlation scales are about 250 km.

The minimisation method used in the following experiment is M1QN3 Quasi-Newton with limited

memory developed at INRIA by Gilbert and Lemaréchal (1989). Both classical 4D-Var and 4D-ON meth-

ods have been implemented with the PALM modular data assimilation system. This software package

allows a full modularity by splitting data assimilation algorithms into elementary units (see appendix B

and Piacentini et al, 2000), therefore it has been of a great help for the construction and the handling of

this two methods.
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5.3 Numerical experiment

In this section we will compare the 4D-ON results with classical 4D-Var ones. In both case, the control

vectors is set to 0 at the beginning of the assimilation. The assimilation is carried out for 30 days. This

time window represent a relevant time scale of ocean model, furthermore the tangent linear hypothesis1

which ensure the validity of the adjoint computation of the gradient, is still valid. Following the results

of the burger’s experiment we only focus on nudging coefficient as time-dependant scalar coefficients. The

observations are simulated as satellite tracks (see Fig.??) with one track every 3 days. This is not a

favorable case for nudging because of the lack of information provided by the observations; indeed only

500 grid points are observed whereas the state vector size is about 20000). In Fig.?? value of the different

terms of the cost function and the initial and the final values of the gradient are shown. The norme of

the gradient decrease of 6 orders of magnitude during the minimization. We note a rapid decrease in the

Jo term of the cost function during the first few iterations. After six iterations the algorithm has already

converge. Fig.?? shows the corresponding evolution of the nudging coefficient Gh according to time at

several steps of the minimization and confirms the convergence after six iterations.

Due to the undersampling of the observation, comparing the different level of RMS (computed thanks

to the knowledge of the “true” trajectory), it ca be noticed that, with no care, the former version of 4D-ON

(long-dotted line) gives slightly better results compared to 4D-Var (plain line) and bad results compared to

smoothed 4D-ON (with the change of variable) (short dotted line, see Fig.??). The non-smoothed 4D-ON

corrects the model only on observed locations therefore it is not consistent with the other coordinates

and then gravity waves can be created to return to a more coherent state (nasty fluctuations on Fig.??).

Moreover the Jo term is only computed by the corrected terms, so the cost function does not really reflect

the gap between reality and model state. Indeed the corrected state can be a smooth field with some Dirac

on observed locations and the Jo term will be very small.

The smoothed version of 4D-ON allows the under-sampling of the observation, replacing a Dirac cor-

rection by a Gaussian correction (with the help from Q
1
2 ). In addition to spatial smoothing, a temporal

smoothing is performed multiplying the correcting term by a time decreasing coefficient. The time smooth-

ing distance is six hours, this parameter has been tuned by hand, and a more generalistic estimation may

be explored as a further development of this method.

1M(t0,tN )(x
b + δx0) = M(t0,tN )(x

b) + M(t0,tN )δx0
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All these developments permit 4D-ON to give noticeable improvement to classical 4D-Var for the same

number of iterations. On the observed component (sea surface elevation) the improvement compared to

4D-Var is very significant (RMS of the error is up to 50% less, see Fig.??). On the other components

(current velocity Fig.??) thanks to K, the balance operator included in Q, the gain of RMS error remain

about 10%.

The introduction of smoothing implies, for this Shallow-water model, that the computational cost of

one iteration of 4D-ON is about 10 percent more expensive than a 4D-Var one and may be smaller for

bigger models. Compared to the gain provided by the 4D-ON this over-head is not a limitation.

Due to shocks induced by nudging corrections, we want to check if the analysed state obtained at the

end of the 4D-ON assimilation window will not be consistent with the dynamic and then will provide a

quality forecast. Figures ?? and ?? show that it is not the case: after the assimilation on the left part of

the graph (under the grid) a one month forecast is performed starting from analysed state at the end of

the assimilation window. Due to model errors the RMS of error become more and more important, but

the deviation is roughly the same for 4D-Var than for smoothed 4D-ON i.e. the analysed state obtained

by optimal nudging is as consistent as by classical 4D-Var (but closer to the true state).

6 Conclusion

In this paper is presented a new data assimilation method, starting from 4D-Var and nudging. We have

shown that, provided the change of variable introduced in section ?? is done, the 4D-ON gives encouraging

results compared to 4D-Var. Indeed owing to spatial and temporal smoothing the 4D-ON gives better

results than 4D-Var. Moreover it is very easy to implement (low algorithm modification - all new terms

are already calculated) even if the theory is quite complicated.

The experiment on Burger’s equation (section ??) shows that the control of entire G matrix is not

necessary and even harmful. Therefore the control can be restricted to a few scalar coefficients without

lost quality.

Thanks to this simplification and due to the current growth of computational means, the extra cost

induced by the control of nudging terms (roughly +10%) is not really a limitation to practical applications

and the 4D-ON could be successfully implemented in the near future on a variety of meteorological or

oceanographic problems.
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In parallel to its implementation in realistic models, further development can be carried out: In the

considered case CQ the diffusion operator included in operator Q is the same as the background diffusion

operator CB but there is no reasons to that, the model error and the background error do not have

necessarily the same correlation structures. Finding the adequate balance could be a natural future

development of this method.

A Links between Kalman Filter and Optimal Nudging

In this section we will point out that in a linear case, the Kalman filter and the Optimal Nudging method

introduced in previous section, will provide the same results. This equivalence is based on a demonstration

provided by Li and Navon (2001) for a more classical 4D-Var.

Let now consider Optimal nudging for a discrete linear model where the Gi are considered to be n×m

matrices







x0 = xb + δx0

xi+1 = M(ti,ti+1)xi + Gi+1(y
o
i+1 − Hi+1(M(ti,ti+1)xi))

(19)

For the sake of simplicity, we note di = yo
i −Hi(M(ti,ti)xi−1) and c = (δx0,G1, ..,Gn). We would like

to minimize the cost function :

J(c) =
1

2

n∑

i=0

〈
R−1(Hi(xi) − yo

i ),Hi(xi) − yo
i

〉
+

1

2

n∑

i=0

〈
Q−1

i Gidi,Gidi

〉
+

〈
B−1δx0, δx0

〉

where 〈., .〉 denotes the “classical” Euclidean inner product, and (.,.) the Frobenius inner product between

two matrices : (A, B) =
∑

j

∑

i aijbij .

First of all, we can note that there exists a relationship between those two inner products. If X is a n

vector, Y a m vector and B a n × m matrix then

〈X, BY〉 =
(

X.YT , B
)

If the model errors are assumed to be Gaussian, Li and Navon (2001) have shown the additive properties

of a 4D-Var, i.e. that solving the optimisation problem on the whole data assimilation period provide the

same results as splitting our data assimilation period in two subspaces 1..n1 and n1..n and defining two

costs functions as :

J1(c) =
1

2

〈
B−1δx0, δx0

〉
+

1

2

n1∑

i=0

(...)
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and

J2(c) =
1

2

〈

(Pa
xn1

)−1(xn1
− x̂n1

),xn1
− x̂n1

〉

+
1

2

n∑

i=n1+1

(...)

where Pa
xn1

is the analysis error covariance matrix of first data assimilation subsequence (which can be

obtained by the computation of the Hessian matrix of J1 (Rabier and Courtier, 1992) and x̂n1
is the

analysed state (the result of this assimilation).

In order to compare optimal nudging with Kalman Filter, we assume that we have already performed

the data assimilation on a former subspace of observations{y1, ..,yk−1}, and so we know Pa
xn1

and x̂n1
.

We wish to minimize the following cost function :

Jk(ck) =
1

2

〈

(Pa
xk−1

)−1(xk−1 − x̂k−1),xn1
− x̂n1

〉

+
1

2

〈
R−1(Hk(xk) − yo

k),Hk(xk) − yo
k

〉

+
〈
Q−1

k Gkdk,Gkdk

〉
(20)

Using

xk−1 = M−1
k,k−1(xk − Gkdk)

The cost function could be rewritten as :

Jk =
1

2

〈

(Pa
xk−1

)−1(M−1
k,k−1(xk − Gkdk) − x̂k−1),M

−1
k,k−1(xk − Gkdk) − x̂k−1

〉

+
1

2

〈
R−1Hk(xk) − yo

k,Hk(xk) − yo
k

〉

+
1

2

〈
Q−1

k Gkdk,Gkdk

〉
(21)

Then our problem is to find (x̂k, Ĝk) as







∂Jk

∂xk
= 0

∂Jk

∂Gk
= 0

(22)

Using (??), (??) becomes :







0 = HT
k R−1(Hk(x̂k) − yo

k) + M−T
k,k−1(P

a
xk−1

)−1[M−1
k,k−1(x̂k − Ĝkdk) − x̂k−1]

0 = Q−1
k Ĝkdkd

T
k + M−T

k,k−1(P
a
xk−1

)−1M−1
k,k−1Ĝkdkd

T
k

+ M−T
k,k−1(P

a
xk−1

)−1[x̂k−1 − M−1
k,k−1x̂k]

(23)
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according to (??) we obtain

Ĝkdk = H−1
Qk

M−T
k,k−1(P

a
xk−1

)−1[x̂k−1 − M−1
k,k−1x̂k] (24)

where HQk
= Q−1

k + M−T
k,k−1(P

a
xk−1

)−1M−1
k,k−1

Using (??) into (??) leads to

0 = HT
k R−1(yo

k − Hk(x̂k))

+M−T
k,k−1(P

a
xk−1

)−1(I + M−1
k,k−1H

−1
Qk

M−T
k,k−1(P

a
xk−1

)−1)[x̂k−1 − M−1
k,k−1x̂k]

We can rewrite it as

[HT
k R−1Hk + M−T

k,k−1(P
a
xk−1

)−1M−1
k,k−1

+M−T
k,k−1(P

a
xk−1

)−1M−1
k,k−1H

−1
Qk

M−T
k,k−1(P

a
xk−1

)−1M−1
k,k−1][Mk,k−1x̂k−1 − x̂k]

= HT
k R−1[Mk,k−1x̂k−1 − yo

k] (25)

If we pose

P
f
k = Mk,k−1P

a
xk−1

MT
k,k−1 + Qk (26)

Using a matrix inversion lemma 2 :

H−1
Qk

= Qk − Qk(Pf
k)−1Qk

= Mk,k−1P
a
xk−1

MT
k,k−1(P

f
k)−1Qk (27)

Introducing (??) in (??) and (??) × (Pf
k)−1

[HT
k R−1Hk + (Pf

k)−1][Mk,k−1x̂k−1 − x̂k] = HT
k R−1[Mk,k−1x̂k−1 − yo

k] (28)

we can retrieve, using another matrix formula3 :

x̂k = Mk,k−1x̂k−1 + P
f
kH

T
k [HkP

f
kH

T
k + R]−1[yo

k − Mk,k−1x̂k−1]

It is exactly the expression of x̂k in the Kalman Filter. It shows that, in theory and when the model

is linear, the optimal nudging leads to the same results as the Kalman filter which is optimal.

2(AT B−1A + C−1)−1 = C − CA
T (ACA

T + B)−1AC

3(A−1 + B
T
C

−1
B)−1

B
T
C

−1 = AB
T (C + BAB

T )−1 whenever the inverses exist (see Wunsch , 1996 pp 99)
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B The PALM assimilation coupler
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[4] Le Dimet, F.-X. and Charpentier, I. 1998. Méthodes du second ordre en assimilation de données in

Equations aux Dérivées Partielles et Applications, Gauthier-Vilars, Paris, 107-125.

[5] Courtier, P. 1997. Dual formulation of four dimensional variational assimilation. Q. J. Roy. Meteorol.

Soc. 123, 2449-2462.

[6] Derber, J. 1989. A variational continuous assimilation technique. Mon. Wea. Rev., 117, 2437-2446.

[7] Derber, J. and Bouttier, F. 1999. A reformulation of the background error covariance in the ECMWF

global data assimilation system. Tellus 51A, 195-221 .

[8] Ide, K., Courtier, P., Ghill, M. and Lorenc, A. C. 1997. Unified notation for data assimilation:

operational, sequential and variational. J. Meterol. Soc. Japan 75-B, 181-189

[9] Kalman, R. E. 1960. A New Approach to Linear Filtering and Prediction Problems,” Transaction of

the ASME–Journal of Basic Engineering, 35-45 (March 1960).

[10] Krishnamurti, T. N. , Jishan, X., Bedi, H. S., Ingles, K. and Oosterhof, D. 1991. Physical

initialization for numerical weather prediction over the tropics. Tellus 43A, 53-81.

[11] Gilbert, J.-C. and Lemarechal, C. 1989. Some numerical experiment with variable storage quasi-

Newton algorythms. Math. Prog., B25, 407-435.

[12] Lellouche, J.-M., Devenon, J.-L. and Dekeyser, I. 1994. Boundary control of Burgers’ Equation-A

Numerical Approach Computers Math Applic. 28, 33-44.

20



[13] Li, Z. and Navon, I. M. 2001. Optimality of variational data assimilation and its relationship with

the Kalman filter and smoother. Q. J. Roy. Meteorol. Soc. ,127 Part B, 661-684.

[14] Lorenc, A. C. 1986. Analysis methods for numerical weather prediction. Q. J. Roy. Meteorol. Soc.

112, 1177-1194.

[15] Lorenc, A. C., Bell, R. S. and Macpherson, B. 1991. The Meteorological Office analysis correction

data assimilation scheme. Q. J. Roy. Meteorol. Soc. 117, 59-89.

[16] Lyne, W. H., Swinbank, R. and Birch, N. T. 1982. A data assimilation experiment and the global

circulation during the FGGE special observing periods. Q. J. Roy. Meteorol. Soc. 108, 575-594.

[17] Jazwinski, A. H. 1970. Stochastic processes and filtering theory. Academic Press, New York.

[18] Ménard, R. 1993. Kalman Filtering of Burger’s Equation and its Application to Atmospheric Data

Assimilation. PhD thesis, McGill University, Montréal, Canada.
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Table 1: norm of the error and CPU time for both raw and smoothed methods according to the form of G

Form Size of Raw Interpolated
of G control RMS CPU RMS CPU

G is a full matrix E × M × N 45.06 57.80s 38.49 57.69s
G is a diagonal matrix M × N 65.30 6.90s 17.57 7.43s
G is a scalar coefficient N 64.23 9.74s 17.33 3.63s

4D-Var E 73.73 5.82s
Without assimilation 248.21
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Figure 1: Transpose of the estimated G as a full matrix
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Figure 2: SSH for forecast model (left) and true state (right) at initial time step
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Figure 3: Location of the observations (ground track of satellites)
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Figure 4: Evolution of the value of the different terms of the cost function
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on assimilation window and one month forecast
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and one month forecast
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