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Abstract: Principal component analysis is a basic component of many geometric computing
and processing algorithms. It is most commonly used on point sets, although applicable as
well to sets of arbitrary primitives through the computation of covariance matrices. In this
paper we provide closed form formulas of covariance matrices for sets of 2D and 3D geometric
primitives such as segments, circles, triangles, iso rectangles, spheres, tetrahedra and iso
cuboids. We also describe the method of deriving covariance matrices for their dimensional
variants such as disks, balls etc. We �nally discuss the �exibility and added value of the
present approach by discussing its potential use in applications. Our implementation will
be available through the next release of the CGAL library.
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Analyse en composante principale dans CGAL

Résumé : L'analyse en composantes principales est un outil de base pour le calcul géométrique
et le traitement numérique de la géométrie. On l'utilise pour estimer des normales à
partir de nuages de points, pour calculer un tenseur d'inertie d'un solide, ou encore pour
l'approximation de surfaces. Bien que l'analyse en composantes principales soit utilisée le
plus souvent à partir de nuages de points, on peut l'appliquer à tout ensemble de primitives
géométriques (sans les échantillonner au préalable) en calculant la matrice de covariance
associée en forme close. On décrit dans cet article les formules des matrices de covariance
d'ensembles de primitives géométriques 2D et 3D telles que des segments, cercles, disques,
triangles, rectangles alignés avec les axes, sphères, boules, tétraèdres et parallélépipèdes
alignés avec les axes. On discute la valeur ajoutée apportée par une telle approche ainsi
que leur utilisation potentielle dans les applications. L'implantation associée sera disponible
dans la prochaine version de la bibliothèque CGAL.

Mots-clés : Analyse en composantes principales.
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1 Introduction

Principal Component Analysis (PCA) is a data analysis tool for determining a linear sub-
space of input data such that the variance of the projection of the data onto the subspace
is maximized [Jol02]. More speci�cally, PCA amounts to compute an orthogonal coordinate
system such that the greatest variance of the orthogonal projection of the data lies on the
�rst coordinate (so-called principal component), the second greatest variance lies on the
second coordinate, and so on. Equivalently, the linear subspaces spanned by the principal
components minimize the sum of squared distances from the data to their projection onto
these subspaces. At the intuitive level, PCA provides a way to reduce the dimensionality of
complex data so as to reveal the simpli�ed structure that underlies them.

PCA is one of the most popular tool for data analysis, used in applications ranging from
statistics to geometric computing through mechanical engineering. For geometric applica-
tions, PCA is commonly used either in data space or in a transformed space for dimen-
sionality reduction, normal estimation [MNG04], surface reconstruction [Hop94], surface
approximation [CSAD04], shape alignment and matching [WBZ05], inertia tensors [BB04],
to cite a few. PCA is mostly used on point set data in statistics and geometric applications,
or on polyhedra in mechanics. Although one way to generalize it to arbitrary objects can
be achieved through uniform sampling, it is more accurate and often faster to derive closed
forms when they exist. In this paper we specialize these derivations to sets of various 2D
and 3D geometric primitives, and list potential geometry processing applications.

2 Point Sets

In principal component analysis, least squares analysis is used to determine the required
linear subspace. The main idea is to compute the covariance matrix of the points in the
point set, perform its eigen decomposition and then determine an n-dimensional subspace
along the eigenvectors corresponding to the top n eigenvalues. Eigenvectors corresponding
to large eigenvalues are the directions in which the data has a strong component, or equiv-
alently large variance. We now brie�y describe this method.

Let P = {pi}ni=1 be a set of points in 3D and c their center of mass. Consider the same
point set P but now centered at the center of mass {qi = pi − c}ni=1. The covariance matrix
of P is de�ned as:

CP =
1
n

n∑
i=1

 x2
i xiyi xizi

xiyi y2
i yizi

xizi yizi z2
i

 =
1
n

n∑
i=1

qiq
T
i

After an eigendecomposition of C, choosing the eigenvector corresponding to the top n

eigenvalues gives us n principal components.

Now consider P = {si}ni=1 where each si is a continuous set of points in the space
resulting in an object such as a segment, triangle, tetrahedron etc. If x represents the
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4 Gupta, Alliez, Pion

coordinate vector of points in space relative to the center of mass of the set of objects P ,
the covariance matrix Ci of each si is,

Ci =
∫

si

xxT dx

For the set P , the covariance matrix is de�ned as C =
∑n

i=1 Ci. We can then similarly do an
eigen-decomposition of C and choose the eigenvector corresponding to the top n eigenvalues
to give us n principal components. Thus, performing Principal Components Analysis on a
set of objects requires calculating the covariance matrix corresponding to each object and
using it to calculate the covariance matrix of the object set as a whole. We now describe a
method to achieve this goal for a set of geometric objects.

3 Other Geometric Primitives

In this section, we describe the algorithm used for constructing the covariance matrix of
any object set. We use a set of 2D triangles as an example to illustrate the algorithm. The
notation used is as follows: if u refers to any object or set of objects, Mu is the second order
moment of u with respect to the origin; mu is the mass of u (area in 2D, volume in 3D), cu

is the center of mass of u and Cu is the covariance matrix of u.

For each type of object s, we �rst construct a canonical geometry of the same class
whose covariance matrix can be easily calculated and which can be mapped onto an ar-
bitrary object of this class. We call such a geometry a standard object. Suppose o is
a standard object corresponding to the class of objects like s. For the class of triangles
st = {(x1, y1), (x2, y2), (x3, y3)}, the standard object is ot = {(0, 0), (1, 0), (0, 1)}. The sec-

ond order moment of ot with respect to the origin is Mot =
[

1/12 1/24
1/24 1/12

]
. Next, we �nd

an a�ne transformation that maps the standard object onto an arbitrary object. Let xo be
the point coordinates on o and xs, the coordinates of corresponding points on s; we need to
�nd the a�ne transformation matrix As and the o�set vector Vs such that xs = Asxo + Vs.

Thus, for the class of triangles, At =
[

x2 − x1 x3 − x1

y2 − y1 y3 − y1

]
and Vt = [x1, y1]T . Using this

transformation and the second order moment Mo of the standard geometry, we can �nd the
second order moment Ms with respect to the origin of the arbitrary object.

Ms =
∫

s

xsx
T
s dxs.

=
∫

s

(Asxo + Vs)(Asxo + Vs)T dxs

=
∫

s

(Asxo + Vs)(xT
o AT

s + V T
s )dxs

INRIA



PCA in CGAL 5

Ms =
∫

s

(Asxox
T
o AT

s + AsxoV
T
s + Vsx

T
o AT

s + VsV
T
s )dxs

= As

(∫
o

xox
T
o

ms

mo
dxo

)
AT

s +
(∫

s

Asxo dxs

)
V T

s

+Vs

(∫
s

(Asxo)T dxs

)
+ VsV

T
s

(∫
s

dxs

)
=

(
ms

mo

)
(AsMoA

T
s ) +

(∫
s

(xs − Vs) dxs

)
V T

s

+Vs

(∫
s

(xs − Vs)T dxs

)
+ VsV

T
s ms

=
(

ms

mo

)
(AsMoA

T
s ) + ms(xs − Vs)V T

s + Vsms(xT
s − V T

s )

+VsV
T
s ms where xs is the centroid

Ms =
(

ms

mo

)
(AsMoA

T
s ) + ms

(
csV

T
s + Vsc

T
s − VsV

T
s

)
For the set of triangles, mo = 1/2 and ms = 4s = 1/2 |At|; where 4s is its area. Thus,
Ms = |At|AtMotA

T
t + 1

2 |At|
(
csV

T
t + Vtc

T
s − VtV

T
t

)
.

Now consider a set P = {si}ni=1 of objects.

MP =
n∑

i=1

Msi

mP =
n∑

i=1

msi

cP =
1

mP

(
n∑

i=1

msicsi

)

RR n° 6642



6 Gupta, Alliez, Pion

To calculate the combined covariance matrix CP ,

CP =
∫

P

(xP − xP )(xP − xP )T dxP .

=
∫

P

(xP − xP )(xT
P − xP

T )dxP .

=
∫

P

xP xT
P − xP xT

P − xP xP
T + xP xP

T dxP .

= MP − xP

∫
P

xT
P dxP −

∫
P

xP dxP xP
T

+xP xP
T

∫
P

dxP .

= MP −mP xP xP
T .

CP = MP −mP cP cT
P .

Thus, the closed form formula for the covariance matrix of a set of objects is given by,

CP =
n∑

i=1

[(
msi

mo

)
(AsiMoA

T
si) + msi

(
csiV

T
si + Vsic

T
si − VsiV

T
si

)]

− 1
(
∑n

i=1 msi)

(
n∑

i=1

msicsi

)(
n∑

i=1

msic
T
si

)

The covariance formula above is general and applies to arbitrary sets of primitives. Ap-
pendix A and B show several standard objects and their associated order-2 moment w.r.t.
origin, transformation matrix and o�set vectors. It is interesting to note that when the
union of all primitives can be decomposed into a set of primitives sharing the same base
point as center of mass, the formula simpli�es to the sole a�ne transform part. Let cP be
the center of mass of the union of all primitive objects in the set such that all of them have
a vertex at cP . Translate the axes such that the origin is at cP . Thus, the standard object
o′ with respect to the new origin is given by xo′ = xo + cp and its second order moment
w.r.t cP is Mo′ = Mo. Now, we just need to scale o′ to �t all objects in the set. Thus, we
can �nd a matrix A such that xs = Asxo′ . So, the covariance of the set P is given by

CP =
n∑

i=1

(
msi

mo

)
AsiMoA

T
si

A concrete example use of this formula has been used in [ACSTD07] to calculate the
covariance matrix of unions of Voronoi cells for surface normal estimation from noisy point
sets. Consider a bounded Voronoi cell V . The covariance matrix of a Voronoi Cell can be
calculated by �rst computing its center of mass o and decomposing it into tetrahedra. The

INRIA



PCA in CGAL 7

decomposition is performed in a star fashion such that all tetrahedra ti share the same base
point which coincides with o. This decomposition is always possible as the Voronoi cell is
convex.
Since all tetrahedra consist of a common vertex at the center of mass of the voronoi

Figure 1: A�ne Transform of a standard tetrahedron to an arbitrary one

cell, we can transform the origin to the center of mass. For a single arbitrary tetrahedron
s = (a, b′, c′, d′), o = (a, b, c, d) is the standard geometry. Note that s and o have a common
vertex a which is the center of mass of the voronoi cell. For an a�ne transformation to map
o onto s, the transformation matrix As is de�ned as:

As =

(b′ − a′).x (c′ − a′).x (d′ − a′).x
(b′ − a′).y (c′ − a′).y (d′ − a′).y
(b′ − a′).z (c′ − a′).z (d′ − a′).z


The order-2 moment matrix Mo of the canonical standard tetrahedron o with respect to

the origin is:

Mo =
∫ 1

x=0

∫ 1−x

y=0

∫ 1−x−y

z=0

x2 xy xz
yx y2 yz
zx zy z2

 dzdydx

=
1

120

2 1 1
1 2 1
1 1 2



The mass of s is ms = |As|/6 and the mass of o is mo = 1/6. For the voronoi cell V
decomposed into a set of tetrahedra V = {si}ni=1, its covariance matrix CP thus is,

CP =
n∑

i=1

|Asi |AsiMoA
T
si

RR n° 6642



8 Gupta, Alliez, Pion

4 Implementation

The algorithm described in this paper is generic and can be applied to various types of
geometries. This power will be available in the next release of the CGAL library [c] for most
�nite primitives of the 2D and 3D kernel: 2D and 3D Points, 2D and 3D segments, 2D and
3D triangles, 2D rectangles, 3D cuboids, 3D tetrahedra, 2D circles and 3D spheres.

The API follows the STL paradigm. The user must at least provide an iterator range
of primitives, and the type of linear subspace to be �tted (2D line, 3D line, or 3D plane).
The function returns a scalar ∈ [0; 1] indicating the quality of the �t related to ratios of the
covariance eigenvalues (0 for isotropic data sets, 1 for zero error �t). For example one can
�t a line to a 2D point set by calling the function CGAL::linear_least_squares_�tting_2(-
points.begin(),points.end(),line) or a 3D line to a set of tetrahedra by calling
CGAL::linear_least_squares_�tting_3(tetrahedra.begin(),tetrahedra.end(),line). or a 3D plane
to a set of spheres by calling CGAL::linear_least_squares_�tting_3(spheres.begin(),spheres.end(),-
plane). The user can �t a point as well by calling CGAL::centroid(begin,end).

Furthermore, the user can provide an additional optional argument specifying the di-
mension of the primitive to be considered. By default, this argument is the dimension of
the primitives in the container (0 for points, 1 for segments, 2 for triangles, rectangles and
spheres, 3 for tetrahedra and cuboids). The user can, for e.g., �t a linear subspace to a set
of balls (instead of spheres) by specifying 3 as dimension, or can �t the edges of a set of
tetrahedra by specifying 1 as dimension, or the boundary triangles of a set of tetrahedra by
specifying 2, without having to �ll another container of primitives. For cases where the user
wants to �t more than just one primitive we also propose the functions std::pair<Line,Plane>
CGAL::least_squares_line_plane_�tting_3(begin,end) and CGAL::Triple<Point,Line,Plane>
CGAL::least_squares_point_line_plane_�tting_3(begin,end)

5 Applications

From the general application point of view, the main added value of the present geomet-
ric computations becomes relevant when the discretization of a shape is provided by more
complex primitives than points, such as segments, triangles, tetrahedra, etc. The proposed
closed forms are more accurate and often more e�cient than the common uniform point
sampling followed by point-based PCA.

Example potential applications are shape alignment (i.e., �nding canonical frames) and
computation of moment of inertia for surface triangle meshes, without having to uniformly
point sample the mesh. The same would be valid for embedded graphs where the primitives
would be 2D or 3D segments for the graph edges, or for solids once properly discretized into
tetrahedra. For various data analysis applications, a common approach consists of carrying
on PCA computations on point sets living in a so-called feature space. Instead of weighting

INRIA



PCA in CGAL 9

the points as commonly done, one could replace these weighted points by balls.

One recent trend consists of elaborating upon integral approaches for geometric data
analysis and processing (see e.g., [PWY∗07]), in order to reduce the dependence to the
input discretization. This work can be seen as one step further in the same direction.

6 Conclusion

This work proposes closed-form computations of covariance matrices of sets of various 2D
and 3D geometric primitives, together with a generic implementation for the next release
of the CGAL library. The main added value is to remove the need for the user to point
sample a shape in order to perform approximate PCA computations, and to perform direct
computations over more elaborate discretizations.

As future work we plan to extend these closed forms to a richer set of primitives, such
as sets of anisotropic versions of the current handled primitives or primitives in higher
dimension. We plan to enrich the API so as to handle containers of mixed primitives with
homogeneous dimensions, so as to �t linear subspaces e.g. to sets of tetrahedra, cuboids and
balls. Another extension is to handle weighting functions, such as radial Gaussian kernels
used, e.g., for normal estimation or MLS surface �tting. Finally, we want to extend this work
to unions of primitives, as well as to arbitrary Boolean operations over sets of primitives.
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A Standard Geometries of Various Shapes

(0,1)

(0, 0) (1,0) x axis

y axis

Std. 2D Segment: {(1, 0), (0, 1)}.

(0,1)

(0,0) (1,0) x axis

y axis

Std. 2D Triangle: {(0, 0), (1, 0), (0, 1)}.
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(0, 1)

(0,0)

(1, 0)

x axis

y axis

1

Std. 2D Circle/Disk:{center = (0, 0), r = 1}

(0,1)

(0,0) (1,0) x axis

y axis

(0,0)

Std. 2D Axis-Aligned Rectangle: {(0, 0), (1, 1)}.

(0, 0, 1)

(0, 0, 0)

(1,0,0) x axis

z axis

(0,1,0)

y axis

Std. 3D Segment: {(1, 0, 0), (0, 1, 0)}.

(0,0,1)

(0, 0, 0)

(1,0,0) x axis

z axis

(0,1,0)

y axis

Std. 3D Triangle: {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
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(0,0,0) (1,0,0)

x axis

(0,0,1)

(0,1,0)

y axis
z axis

Std. 3D Sphere: {center = (0, 0, 0), r = 1}.

(0,0,1)

(0,0,0)

(1,0,0) x axis

z axis

(0,1,0)

y axis

Std. 3D Tet:{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}.

(1,1,1)

(0,0,0)

(1,0,0) x axis

z axis

y axis

(0,0,1)

(1,1,0)

(0,1,1)

Std. 3D Cuboid: {(0, 0, 0), (1, 1, 1)}.
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