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Abstract. A possible alternative to topology fine-tuning for Neural Net-
work (NN) optimization is to use Echo State Networks (ESNs), recurrent
NNs built upon a large reservoir of sparsely randomly connected neu-
rons. The promises of ESNs have been fulfilled for supervised learning
tasks, but unsupervised ones, e.g. control problems, require more flexi-
ble optimization methods – such as Evolutionary Algorithms. This paper
proposes to apply CMA-ES, the state-of-the-art method in evolutionary
continuous parameter optimization, to the evolutionary learning of ESN
parameters. First, a standard supervised learning problem is used to vali-
date the approach and compare it to the standard one. But the flexibility
of Evolutionary optimization allows us to optimize not only the outgo-
ing weights but also, or alternatively, other ESN parameters, sometimes
leading to improved results. The classical double pole balancing control
problem is then used to demonstrate the feasibility of evolutionary (i.e.
reinforcement) learning of ESNs. We show that the evolutionary ESN ob-
tain results that are comparable with those of the best topology-learning
methods.
Keywords: Neural networks, Evolutionary algorithms, Control

1 Introduction

It has long been known to Neural Networks practitioners that a good design for
the topology of the network is an essential ingredient for a successful application
of Neural Networks to a given learning task. The critical issue then becomes
that of learning the appropriate weights. Echo State Networks (ESNs) [12], that
were recently proposed for supervised learning of time series, can be seen as an
alternative approach based on a large reservoir of neurons with random, constant
(non-learned) and sparse connectivity. Learning is thus restricted to the outgoing
connections only. In the supervised learning case, this efficiently transforms the
learning process into a simple quadratic optimization problem. The situation
changes dramatically with unsupervised learning tasks, such as control ones:
no input-output example being available, the learning problem can no longer be
set as quadratic. Evolutionary Computation provides a possible solution for such
situations, as long as some fitness is available. This paper addresses the following
issues: are Evolutionary Algorithms (EAs) a viable method to train ESNs in



general and on reinforcement learning tasks in particular? Furthermore, are ESNs
an alternative to topology learning in the framework of control problems? Finally,
Evolutionary Algorithms can learn to adjust more than just the weights of the
outgoing connections of the ESN. Does this improve the learning power of ESNs?

The paper is organized as follows. Section 2 introduces ESNs and our evolu-
tionary algorithm. The supervised task case (time-series prediction) is addressed
in Section 3. Moreover, Evolutionary Learning opens up the field of reinforce-
ment learning to ESNs. We address this issue with a canonical example, the
double pole balancing problem [17, 10, 4], in Section 4. Finally, Section 5 sums
up the paper and sketches directions for on-going and further researches.

2 Background

2.1 Echo State Networks

Echo state networks (ESN) are discrete time, continuous state, recurrent neural
networks using a sigmoidal activation function for all neurons [12]. A typical ESN
is shown in figure 1: the input layer is totally connected to the hidden layer (the
reservoir) whose neurons are themselves totally connected to the output layer.
Note that the output layer can also be connected backward to the reservoir.
To generate the reservoir, one connects N neurons randomly (with independent
uniform distribution) up to a user-defined connection density α. The weight of
these connections are randomly chosen, then scaled so that the spectral radius of
the reservoir, ρ (i.e. the largest modulus among the eigenvalues of the reservoir
weight matrix) is less than a prescribed value < 1 (see e.g. [13]). The main point
in ESN is that only the weights from the reservoir nodes to the output ones
are to be learned. Any supervised learning problem using some mean-square
error objective thus reduces to a quadratic optimization problem that can be
quickly solved by any deterministic optimization procedure, even for very large
values of N . ESNs have been shown to perform surprisingly well in the context
of supervised learning, in particular for time series prediction. They have also
been successfully used in the context of (supervised) robot control learning [14].
The idea beyond Evolutionary Learning for Echo State Networks is to replace
the gradient descent used to optimize the outgoing weights in Jaeger’s approach
[13] by an Evolutionary Algorithm (EA). We first present the Evolutionary Algo-
rithm that will be used throughout the paper, the Covariance Matrix Adaptation
Evolution Strategy, aka CMA-ES.

2.2 CMA-ES

The CMA-ES is a well-established and state-of-the-art Evolutionary Algorithm
in continuous domain evolutionary computation [8, 9, 7]. At iteration step t,
λ > 1 offspring individuals x ∈ R

n are generated by sampling a multi-variate
normal distribution: x = m

t + σt × N (0, Ct), where m
t is the average of the

best individuals of the previous generation, N (0, Ct) is a normally distributed



Fig. 1. Schematic view of an Echo State Network. Plain arrows stand for weights that
are randomly chosen and remain fixed, while dashed arrows represent the weights to
be optimized.

variable with mean 0 and n × n covariance matrix Ct, and σt > 0 is a scaling
parameter, the step-size. After those λ individuals have been sampled, evaluated
on f , and sorted according to their objective function values, the distribution
parameters m

t, σt, and Ct are updated for a new iteration step using the sorted
population and cumulated information about the whole optimization path. It
has been shown experimentally that the covariance matrix Ct approximates the
inverse of the Hessian matrix of the problem at hand near the optimum, and
CMA-ES can hence be considered a quasi-second order optimization method.
Importantly, CMA-ES is almost a parameter-free algorithm. Only the number
of offsprings λ is crucial to the evolution success and must possibly be adapted
to account for the ruggedness of the fitness landscape at hand. In our case,
the default value [9], that increases logarithmically with the dimension n of the
problem (number of unknown parameters): λ = 4+3 ln(n), was found to be well
adapted.

3 Supervised Learning of ESN

In order to validate the Evolutionary approach to ESN learning, we first replicate
Jaeger’s initial setting [12], but using an Evolutionary Algorithm in lieu of its
gradient-based quadratic optimization procedure.

3.1 The Original Settings

In this toy example, the aim is to train the network to produce a univari-
ate time-series output, yteach(n) = 1

2
u7(n) (where n is time) from a univari-

ate input given by u(n) = sin(n/5). The network output is given by y(n) =

f(
∑N

i=1
wout

i × xi(n)), where wout
i denotes the weight of the i-th output con-

nection, xi(n) is the state of the i-th neuron, f(x) = (1 − e−ax)/(1 + e−ax)



and a is the half-slope of f at zero activation. Like in Jaeger’s original pa-
per, the reservoir consists of N = 100 randomly connected neurons (indepen-
dent uniform distribution). Its weights are set to 0, +0.4 or -0.4 with prob-
abilities 0.95, 0.025, 0.025 respectively (sparse connectivity of 5%). They are
then scaled so that the spectral radius of the reservoir is ρ ≈ 0.88. The input
weights (from the input to all neurons in the reservoir) are set to +1 or −1
with equal probability. Direct links from inputs to outputs or backward links
from outputs to the reservoir are not used here. The fitness to minimize is the
Mean Square Error of the network, computed between time steps 101 and 300:
msetrain = 1/200

∑

300

n=101
(y(n) − atanh(yteach(n)))2.

3.2 Which parameter to optimize?

In Jaeger’s original paper [12], the output weights were optimized with a gradient
method, resulting in a reported error mse ≈ 3.5 × 10−15 [12]. But a critical
parameter in ESN tuning seems to be the spectral radius, that is usually advised
to be < 1 [12] though different values have been proposed in the literature
for different problems. Hence it seems a good idea to use the spectral radius
as a free parameter to be optimized by CMA-ES: it only adds one dimension
to the problem. The procedure goes as follows: the weights of the recurrent
connections within the reservoir are first scaled so that the spectral radius of
the connection matrix takes the value prescribed by the additional optimized
parameter. The weights are of course set back to their original values before
the evaluation of next individual. Jaeger’s original sigmoidal function was tanh,
corresponding to the case a = 2 for the transfer function f above. However, if
both the output weights and the sigmoid slopes a are optimized, the dimension
of the optimization problem is twofold. Hence, we examined the case where only
the slopes a are optimized.

3.3 Comparative Measures

Because CMA-ES, like all EAs, is a stochastic optimization procedure, no strong
conclusion can be drawn in absence of a thorough statistical analysis of the
performances. Here 15 different networks have been used, and for each network, 5
runs of CMA-ES were launched with different random seeds (and hence starting
points). To have a global performance measure, we used an estimator of the
success performance called the “SP1 measure” [7, 1], which is the number of
evaluation of the fitness function that is needed to reach a given fitness level,
divided by the fraction of runs that did reach that fitness value. SP1 can thus be
viewed as the computational effort required to reach a given performance level.

3.4 Results

Three variants of the ESN evolutionary optimization have thus been compared:
(i) optimizing the output weights only, denoted Std in the following; (ii) op-
timizing the output weights plus the spectral radius, denoted Rho; and (iii)
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Fig. 2. Comparative SP1 measures for the case N = 100, in log-log scale.

optimizing the sigmoidal slopes only, denoted Slopes. Figure 2 shows the SP1
plots for a 100 neuron reservoir and confirms that CMA-ES (Std) can be as
precise as the gradient method reported in [12] (i.e. with a mse of the order
of 10−15), though undoubtedly requiring a much greater computational effort.
Interestingly, the results show that optimizing only the reservoir slopes (Slopes)
yields precisions that are also similar to the original ESN learning method. Note
however that with smaller reservoir sizes (e.g. N = 30), optimizing the reser-
voir neuron slopes (Slopes variant) yielded even better fitness than the standard
procedure (not shown). This, however, has a cost and requires almost 100-folds
more evaluations, due to the fact that very few runs do find such low fitness
values. Finally, Figure 2 also evidences that increasing the search space fails to
improve precision: the Rho variant yields the worst precision in this supervised
task. Taken together, these results validate the use of Evolutionary Learning for
supervised tasks. We now turn to the study of a reinforcement learning task.

4 Reinforcement Learning of ESN

The double pole balancing problem without velocity information is a benchmark
learning task for the evaluation of neuroevolution methods - i.e. methods that
evolve both the topology and the weights of neural networks [17, 6, 5, 10, 4]. Al-
beit they don’t belong to supervised learning methods, evolutionary methods are
based on the evaluation of some individual fitness. This fitness can be consid-
ered as a feedback or a kind of reward emitted by the environment, so that such
neuroevolution methods are considered as reinforcement learning methods. The
system consists of a cart (mass =1 kg) moving along the x axis, and two poles of
different lengths (l1 = 1 m, l2 = 0.1 m) and masses (m1 = 0.1 kg, m2 = 0.01 kg)
that are connected to the cart by a hinge. The poles have a single degree of
freedom (their angle θ1 and θ2 w.r.t. the vertical). The challenge is to keep



both poles up (i.e. within given bounds for their angles) as long as possible
using the ESN output, which is interpreted as a force Fx applied to the cart
(Fx ∈ [−10 N, 10 N]). In all experiments (in this paper as well as in previous
works), the dynamics of this mechanical system was solved using fourth-order
Runge-Kutta method with a step size of 0.01 s.

4.1 Fitness(es)

To avoid heavy computational cost many, if not all, previous works in the
evolutionary literature addressing the double pole balancing problem [6, 5, 17,
10, 4] have used a simplified fitness (thereafter referred to as Fcheap): a sin-
gle trial is run for every individual in the population, starting from the same
state (θ1(0) = 4.5o, θ̇1(0) = θ2(0) = θ̇2(0) = x(0) = ẋ(0) = 0). The simu-
lation stops if one of the poles falls, i.e. the system leaves the success domain
x ∈ [−2.4 m, 2.4 m] and θ1, θ2 ∈ [−36o, 36o] (no solution found) or if the poles re-
main up for 1, 000 time steps (successful individual). The fitness function Fcheap

is then:
Fcheap = 10−4t + 0.9fstable, with

fstable =







0 if t < 100
0.75

∑t

i=t−100
(|x(i)| + |ẋ(i)| + |θ1(i)| + |θ̇1(i)|)

otherwise

where t denotes the number of time steps during which the system remained
inside the success domain and fstable quantifies the cart stability during the
last 100 time steps. At every generation, the best individual for fitness Fcheap

undergoes two generalization tests. The first test is passed if the individual keeps
the system within the success domain during 100, 000 further time steps. The
second test is passed if the individual as well succeeds in balancing the system for
1, 000 time steps starting from 625 different initial positions. When one individual
succeeds for at least 200 of those 625 trials, the run is stopped and this individual
is returned as the solution.

However, though this simplified fitness does save a lot of computational re-
sources, it is a poor fitness with respect to the overall goal of the optimiza-
tion. For instance, individuals are commonly obtained that have a very high
fitness but never pass the first generalization test, while some others pass all
generalization tests but with a rather low Fcheap. Hence we propose here a
new fitness (Fgen.) that takes into account all 3 tests described above: Fgen. =
Fcheap + 10−5nI + 30nS/625 where nI is the number of iterations where the
system was maintained within the success domain during the first generalization
test, and nS is the number of generalization trials passed by the controller during
the second one. The constants 10−5 and 30 were chosen by trial and error.

4.2 Experimental conditions

The size of the reservoir was fixed here to N = 20: initial experiments indicated
that larger reservoirs did not improve the results. To study the variability with



respect to the reservoir topology, 20 different reservoirs were generated and 11
independent runs of CMA-ES were made for each reservoir. Each reservoir was
initialized as described in section 3.1, except for the fixed weights: here, the
reservoir connectivity was 10% and non-zero weights were randomly initialized
between [−1, 1]. At the beginning of each run, the activity of all neurons in the
reservoir was zeroed, and the network was run for 20 iterations before control
actually began and the fitness started to accumulate. As mentioned in Section
2.2, CMA-ES is almost a parameter-free algorithm. However, Igel advises in
his paper [10] to impose a lower bound on the actual lower eigenvalue of the
covariance matrix during CMA-ES runs. Indeed, our preliminary results con-
firmed that, without this constraint, the solutions systematically evolves toward
“Bang-Bang” types of motor control, that do not seem very efficient for the task
at hand. We were able to solve this issue by imposing a lower bound of 0.05 on
the step-size σ. Finally, the presented results were obtained with the Std and
Rho variants of the evolutionary ESN learning (Section 3.2).

4.3 Results and Discussion

All results are summarized in Table 1. Every line in the table gives the results of
one variant of the algorithm (two spectral radii, 0.6 and 0.95 were tried for the
Std variant, and variant Std - Opt will be discussed later). For each variant, the
220 runs (11 runs for each of the 20 different reservoir initializations) are here
grouped together. Each sub-table shows the average number of needed evalua-
tions averaged over the successful runs (column Avg Eval.), its standard
deviation (Std Dev.), the number of tests (out of 625) passed during the third
generalization test (Generalization), and, most importantly, the percentage of
success (% success), i.e. of runs where the best individual did pass the 3 tests.
Using the “cheap” fitness Fcheap, a first striking result is the very low perfor-
mance of the Std variants (whatever the spectral radius): less than 7% of the runs
did pass the 3 generalization tests in these cases. Things are better for the Rho
variant: more than half of the runs succeeded, with an average cost of 23, 571
evaluations, which amounts to an SP1 value of about 45, 300. This value is still
worse than NEAT (≈ 33, 000 evaluations [17]) and AGE (≈ 25, 000 evaluations
[4]), but within the same order of magnitude.

As expected, the results really improve when using the new fitness, that takes
into account the generalization ability of the network: the Rho variant almost
always find a solution (except for one run out of 220). Even the Std ones improve
a lot over their results with the cheap fitness. More importantly, using the new
fitness allows all variants to reach performances that are comparable to those of
NEAT (≈ 33, 000 evaluations [17]) and AGE (≈ 25, 000 evaluations [4]), though
of course those results can hardly be compared, as they were obtained using a
different fitness. Indeed, the found SP1 values for Std-0.60, Std-0.95, and Rho
variants respectively were 19, 342, 19, 808 and 21, 658.
Spectral Radius. It has always been advocated by ESN pioneers that the
upper bound on the spectral radius was important for successful ESN use, and
the results for both Std variants with different spectral radius seem to confirm



Table 1. Experimental results for the double pole balancing.

Cheap Fitness New Fitness

Method Avg. Std. Genera- % Avg. Std. Genera- %
Eval. Dev. lization success Eval. Dev. lization success

Std - 0.95 14960 6291 234 6.8% 16303 11511 209 82.3%
Std - 0.60 16639 17037 225 6.8% 16886 11073 211 87.3%
Rho 23571 10175 241 52.7% 19796 6770 224 91.4%
Std - Opt 19168 21782 232 9.5% 15965 11813 208 86.8%

this. However, the most remarkable fact here is that for all settings, the Rho
variant, that explicitly optimizes the spectral radius, almost always gives the
best results. This is surprising when compared to the situation in the supervised
context (Section 3.4), where the Rho variant performed the worst of all.

Further experiments were run, using the Std variant but fixing the spectral
radius to the final value found by the Rho method (see the lines “Std – Opt”
in Table 1). Though it generally slightly improves the results over an arbitrary
value like 0.6 or 0.95, it does not allow to reach the same level of performance as
the Rho method itself. The important feature is thus that ρ is allowed to vary
during the optimization, and not the final value it reaches. A final advantage
about the Rho variant, is that it seems to be able to provide controllers that
generalize very well, if evolution (using the new fitness) is continued after the
first network has passed the 200-tests of the last generalization test: all resulting
networks are able to successfully solve more than 500 out of the 625 test cases,
with a peak at 555 for one network. Unfortunately, the previously published
studies do not report this kind of result, except for one sentence in [4] that men-
tions that one network successfully solved 525 test cases.
Reservoir topologies. The results obtained with the the double pole problem
were found to vary a lot among the different (random) realizations of the con-
nections (i.e. the non-zero weights) in the reservoir, for the same value of the
density of connection. Indeed, in the case of methods with low performance, all
the successful runs often stem from a small number of initial reservoir topolo-
gies, while a majority the initial reservoir topologies fail to generate even a single
success. Together with the differences noted in the supervised learning context,
this makes a clear picture that the topology of the reservoir matters. Why, and
how to take advantage of this fact, is left to further work.

The question is now open: whereas reservoir computing has been proposed as
a possible alternative to fine tuning of the weights in Neural Networks, it might
be the case that tuning the topology of the reservoir allows to obtain more
efficient ESNs. Further work will address this research question, and two main
directions can be imagined. The network can be built using different topological
classes (e.g. small world, scale free, . . . ); identifying classes of networks that are
efficient for a given type of problem (i.e. such that randomly built networks from
this class have a very high probability to solve the problem at hand) would indeed
relieve the programmer from the task of optimizing the topology, restricting the



search space to a fraction of the parameter space, where CMA-ES proved to
be an efficient tool. It might be the case, however, that for reservoir computing,
problem-specific topology tuning is nevertheless required anew for each problem.
The main difficulty will then be to design efficient techniques for tuning the
topology of large networks, as most existing methods do not really scale up to
hundreds of neurons or more. Some hints have been recently given with Hyper-
NEAT [16] on the one hand, and with the different approaches based on Genetic
Regulatory Networks, starting with AGE, though other GRN approaches can be
envisioned, too (see e.g. [2]).

5 Conclusion

Several recent studies have attempted to couple EAs with ESNs, mostly using
supervised learning [15]. A limited number of works have used reinforcement
learning to optimize ESNs with EAs, in which the network tasks were time series
predictions [18, 11] or robust spatial pattern formation (“flag” problems [3]). To
our knowledge, our study is the first one to show the feasibility of the EA-
ESN couple for motor control tasks. On addition, previous articles restricted
evolutionary optimization to the reservoir weights [15] or more frequently the
outgoing weights of the ESN. Here we show that optimizing additional ESN
parameters could indeed be efficient.

In a supervised context, the results on a standard time series prediction
problem reach the same precision when optimizing the output weights than the
original results obtained using quadratic optimization, and further optimizations
fail to improve this precision. For reinforcement learning tasks, the good news
is that the Evolutionary Learning of ESNs works. Moreover, optimizing more
than just the outgoing weights does improve the results. Furthermore, there
seems to be a high dependency of the results on the topology of the reservoir,
at least for the small sizes experimented with here. Hence, the results presented
here do not satisfactorily answer the question of where ESNs stand between the
two extremes of neuroevolution today: evolutionary optimization of the weights
of a fully recurrent neural network (as proposed in [10]) and carefully crafted
developmental systems that evolve the topology of highly efficient NNs for a
given task [17, 4]. Further experiments using more reliable test problems, and
larger reservoir sizes, are needed to definitely address this issue. Additionally,
a side take-home lesson from this paper concerns the usefulness of the double
pole balancing problem as a benchmark for evolutionary control in general: the
answer is clearly negative for us now (but had been claimed by others before),
at last with the kind of fitness used up to now to tackle the problem.

6 Acknowledgments

The simulator of the double pole balancing problem relies on the source code
kindly provided by Kenneth O. Stanley.



References

1. A. Auger and N. Hansen. Performance evaluation of an advanced local search
evolutionary algorithm. In Proc. CEC’05, 2005.

2. W. Banzhaf. Artificial Regulatory Networks and Genetic Programming. In R. Riolo
and B. Worzel, editors, Genetic Programming Theory and Practice, chapter 4, pages
43–62. Kluwer, 2003.

3. A. Devert, N. Bredeche, and M. Schoenauer. Robust multi-cellular developmental
design. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and
evolutionary computation, pages 982–989, New York, NY, USA, 2007. ACM.
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