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Abstract

This paper is devoted to the determination of the origin point in forest fires pro-

pagation using a control algorithm. The forest fires propagation are mathema-

tically modelled starting from a reaction diffusion model. A V.O.F. formulation

is also used to determine the fraction of the area which is burnt. After having

developed the objective functional and its derivative, results from an optimiza-
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tion process based on the simplex method is presented. It is shown that the

ignition point and the final time of the fire propagation are precisely recovered,

even for a realistic, non horizontal, terrain.

Key words: Forest fire; reaction diffusion model; optimization

1 INTRODUCTION

The simulation of forest fire propagation has several purposes. The prevision of

the fire front can help fire fighters to optimize the distribution of fire fighting

means, which supposes real time simulation. Another application of simulation

is fire prevention. By using terrain data, computer models of propagation can

provide information on dangerous areas. The possibility for such models to take

into account some aspects of the fire fighting means, such as chemical retardants,

is highly desirable as well. In this paper we are concerned by applications

dedicated to the analysis of the fire departure. Very often the fire is detected

after a while, the exact position and time of the ignition are not known and the

determination of the position would be valuable information for fire men who

are in charge of the expertise of the fire. The aim of this paper is to address

the question of the determination of these initial conditions. The model of

propagation, or direct model, considered is a simplified version of the reaction

diffusion model proposed in Ref [1]. It is a two dimensional model set on the

surface of propagation with a non local heat source term modelling the radiative

transfer. The fire front is given by an iso line T = cte of the temperature field.
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We have introduced a Volum Of Fluid (V.O.F.) like formulation using a function

which represents the burnt area density. This is a quite different strategy that

the one used by Ferragut et al. [2] and Asencio et al. [3] where the fire boundary

is obtained by a multivalued operator. The interest of a V.O.F. formulation

is that the determination of the critical conditions is formulated as an optimal

control problem set with the burnt area density.

The paper is organized as follows: Paragraph 2 is devoted to the presenta-

tion of the considered reaction diffusion model, and of the V.O.F. formulation.

In paragraph 3 the objective function is introduced and the differential of the

functional is computed. The fourth paragraph is devoted to numerical applica-

tions.

2 DIFFUSION REACTION PROPAGATION MO-

DELS

2.1 General description of the model

The model considered is deduced from the balance of energy and the balance of

mass for the solid fuel:

(1−Φ)ρ(Cs+HuCl)
∂T

∂t
= ∇·(λ∇T )+h(Tf −T )+(1−Φ)ρ

∂Hu

∂t
LevδT=Tev

+Mr.

(1)

In this relation T , ρ and Φ represent the temperature, the density of wood,
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and the porosity of the vegetation, Cs and Cl stand for the heat capacity of

the dried wood and of water, Hu is the humidity, Tf is the temperature of

the ambient gas. Mr is the radiative flux coming from flames. This model

corresponds to a case where the totality of the energy received by the fuel is

used for evaporating the water during the process of drying. If the water is

free (not inside the vegetal) one has to change the value of the "latent" heat

Lev. In the zone where pyrolysis occurs, an equation modeling the kinetic of

decomposition must be considered:

∂ρ

∂t
= −ρf(T ). (2)

Indeed the preceding model can be summed up as follows:

(i) In the zone before the evaporation front, denoted by zone I, such that:

T < Tev and ρ > ρext,

(1 − Φ)ρ(Cs + Hu0Cl)
∂T

∂t
= ∇ · (λ∇T ) + Mr + h(Tf − T ), (3)

where Cs is the heat capacity of the solid constituent of vegetation, Cl is

the heat capacity of the water, Hu0 is the initial humidity; h is the heat

loss coefficient, Tf is the temperature of the gaseous phase.

(ii) In the evaporation zone, denoted by zone II, such that:

T = Tev, Hu > 0 and ρ ≥ ρext

−(1 − Φ)ρLev

∂Hu

∂t
= Mr − h(T − Tf ). (4)
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Lev is an evaporation latent heat and ρext denotes the extinction density

of wood.

(iii) In the intermediary zone between the evaporation zone and the burning

zone, denoted by zone III, such that:

Tev < T < Ti, Hu = 0 and ρ ≥ ρext

(1 − Φ)ρCs

∂T

∂t
= ∇ · (λ∇T ) + Mr − h(T − Tf ). (5)

Ti is the ignition temperature.

(iv) In the burning zone, denoted by zone IV , such that:

T ≥ Ti, Hu = 0 and ρ ≥ ρext

(1 − Φ)ρCs

∂T

∂t
= ∇ · (λ∇T ) + Mr − h(T − Tf ). (6)

The variation of mass due to chemical reactions is:

∂ρ

∂t
= −ρA exp (−E/RT ), (7)

where A is a constant and E is the activation energy of the pyrolysis.

(v) the burnt zone, denoted by zone V, such that:

ρ = ρext

(1 − Φ)ρCs

∂T

∂t
= ∇ · (λ∇T )Mr − h(T − Tf ). (8)
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All the preceding described regions are illustrated in the following figure 1:

2.2 Flame model

The vegetation is supposed to be thin and set on a plane Sf . The flame is

supposed to be at constant known temperature Tf and each flame element is

supposed to be directed by a unit vector F parallel to the velocity of the gas

Vf , the emitting point is denoted by P and the receiving point by M , O is the

flame foot (cf. Figure 2).

The global unit vectors of the global co-ordinates system are denoted by

(e1, e2, e3), e3 being the vertical direction. The vector n is the unit normal to

the upper plane, (i.e. unit normal to the receiving surface) of the vegetation at

point M . The angle between F and the vertical is denoted by αf = (e3, F ).

The flame elements are supposed to have a length lf . If the fire front is supposed

to be thin, one can show, that the radiative heat flux is given by convolution

integral calculated on the burning zone denoted by Sf :

Mr =

∫

Sf

φ(y)G(x − y) dy1dy2

= Kf

BT 4

π

∫

Sf

(F (1 − cosθf ) − w(cosβ − cos(β + θf ))) · n

r sin2 β
dx1dx2,

(9)

with, cf. appendix A for notation and derivation, r being the distance bet-

ween the emitting and the receiving points, and Kf the absorption coefficient

of the flame.

The velocity of the gas is the sum of the vertical velocity of the gases and of

the wind
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Vf = vg + V (10)

where vg =
√

ghf e3 is the vertical flame gas velocity, hf being the flame

height and V is the wind velocity.

2.3 V.O.F. FORMULATION

In fact the propagation of fire in the preceding modeling is a free boundary

problem. Let us derive a V.O.F. formulation [4]. For sake of simplicity let us

assume that there is no humidity that is Hu = 0. Let χ(x, t) the characteristic

function of the burning zone, i.e. such that χ(x, t) = 1 if the point x lies in the

burning zone at time t and χ(x, t) = 0 elsewhere. The characteristic function,

considered as a distribution, satisfies the equation:

∂χ

∂t
+ ∇χ · w = 0. (11)

In relation (11) w is the normal velocity of the fire front, it is equal to:

w = −

∂T

∂t
|∇T |2

∇T

∣

∣

∣

∣

∣

∣

∣

T=Ti

. (12)

We can consider now a mollifier mh(x), i.e. a function such that mh(x) > 0,

∫

R2 mh(x) dx = 1 and the function tends to a Dirac distribution when h → 0.

This function can be chosen as smooth as desired, so that the function defined

by the convolution:
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α(x, t) = (χ ∗ mh)(x, t) =

∫

R2

χ(y, t)mh(x − y) dy (13)

is a regular approximation of the characteristic function χ. Now an approxi-

mation of the system of propagation is:

(1 − Φ)ρCs

∂T

∂t
= ∇ · (λ(α)∇T ) + Mr(α) − h(T − Tf ), (14)

∂α

∂t
+ ∇α · w = 0, (15)

∂ρ

∂t
= −ρA exp (−E/RT ), (16)

and now the radiative heat is given by:

Mr =

∫

R2

α(y, t)φ(y)G(x − y) dy1dy2. (17)

The velocity w is an extension of the front velocity given by:

w = −

∂T

∂t
|∇T |2

∇T. (18)

The system (13)-(18) is now set on the whole plane R
2. The study of the

numerical algorithm for solving this system is not addressed in this paper.
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3 The control algorithm for the determination of

the ignition point

3.1 Definition of the objective function and computation

of its differential

Let us consider now at time tf a burnt area whose characteristic function is

denoted by χf , to which it corresponds by convolution a function αf . In fact

we are interested in finding the position (x0, y0) and the time t0 of ignition. Let

us add to the system (14)-(18) the initial conditions

χ(x, y, t0) = δx=x0, y=y0
(19)

T (x, y, t0) = Tiδx=x0, y=y0
, (20)

Or the related relations written with the regularized function α.

It is now natural to set the problem as an optimal control problem.

Find (x0, y0, t0) such that J =

∫

R2

|χ(x, y, tf ) − χf (x, y)|2 dx dy is minimum.

(21)

The numerical calculation of the integral J in the problem (21) will be

replaced by the approximation:

Ja =

∫

R2

|α(x, y, tf ) − αf (x, y)|2 dx dy. (22)
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In fact J is an integral calculated on the domain Ω−Ωf , Ω being the domain

whose characteristic function is χ and can be written:

J =

∫

Ω−Ωf

dx dy. (23)

In practice, the constrained optimization problem (21) can be solved using

two different class of algorithms. The first class is composed by the stochastic

algorithms like the genetic ones. These kinds of algorithms permits to find the

global optimizer of an objective function but for a prohibitive computational

time in engineering applications. The second class, composed mainly by the

gradient-based methods, seems to be more efficient but does not guaranteed to

converge towards the global optimizer. Under theses remarks it is thus clear that

a balance between the computational time and the performance of the solution

has to be made. In order to reduce the computational costs involved during

stochastic process Armijanov [5] has developed a new class of genetic algorithm

where the range of the exploration region is re-adapted for each generation.

Stochastic procedures are also often used with interpolation methods [6, 7]. In

this paper we choose to solve the constrained optimization problem (21) with two

deterministic methods. The first one is the Polack-Ribière conjugate gradient

algorithm, which requires the determination of the differential of J , coupling

with a backtracking Armijo line search. The second one is the non linear Nelder

Mead simplex method [8] which does not require the differentiability of the

objective functional. Both algorithms have been used numerically, and for sake

of completeness we give the differential of the objective functional with respect to
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x0, analog results would be obtained for the other components. The differential

of J can be written:

∂J

∂x0
=

∫

R2

2 (χ(x, y, tf ) − χf (x, y))
∂χ

∂x0
dx dy (24)

The term
∂χ

∂x0
being solution of the system of equations:

(1−Φ)

(

ρCs

∂T ′

∂t
+ ρ′Cs

∂T

∂t

)

= ∇· (λ(χ′)∇T )+∇· (λ(χ)∇T ′)+Mr(χ
′)−hT ′,

(25)

∂χ′

∂t
+ ∇χ′ · w + ∇χ · w′ = 0, (26)

∂ρ′

∂t
= −χ′ρA exp (−E/RT ) − χρ′A exp (−E/RT ) − χρ

E T ′

R T 2
A exp (−E/RT ),

(27)

Mr =

∫

R2

χ′(y, t)φ(y)G(x − y) dy1dy2. (28)

The notation T ′ stands for
∂T

∂x0
, and the initial conditions are:

T ′(x, y, t0) = Tiδ
′

x=x0, y=y0
, (29)

χ′(x, y, t0) = δ′x=x0, y=y0
(30)

The distribution δ′x=x0, y=y0
is defined by:
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〈ϕ, δ′x=x0, y=y0
〉 = −

∂ϕ

∂x
(x0, y0) (31)

for any function with compact support in R
2.

In fact the terminal position of the fire front will never be known exactly, we

will consider perturbations δχf of the boundary. Let us consider virtual motion:

x 7→ x + ετ (x) (32)

in such a way that every points x is moved up to first order in ε. Let us

defined the translated characteristic function:

χf (ε) = χf (x + ετ (x)). (33)

Then the variations of the characteristic function are defined by:

δχf = ε
∂χf

∂ε
(ε = 0) = ε∇χf · τ = −εδ∂Ωf

n · τ . (34)

In relation (34), δ∂Ωf
stands for the Dirac distribution on ∂Ωf , n is the

unit outward normal. Then we can compute the variation, or sensitivity of the

objective functional:

δJ = J (χf +δχf )−J (χf ) = −2

∫

Ωf

(χ−χf )δχf dx dy+

∫

Ωf

(δχf )2 dx dy. (35)

The computation of δJ must be done for χ = χf then:

δJ =

∫

Ωf

(δχf )2 dx dy = ε2

∫

∂Ωf

τ2 ds, (36)
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where ds denotes the curvilinear coordinate along the line boundary ∂Ωf .

In equation (36) we have set τ = τ ·n. As a function defined on the boundary

∂Ωf of the final domain, τ is a periodic function of the arc length s and can be

developed in Fourier series:

τ =
∑

n

τn exp(−2iπns/L), (37)

where L is the total length of ∂Ωf . With these notations, the sensitivity of

the functional is:

δJ = ε2
∑

n

τ2
n. (38)

4 Some computational application

In order to test the algorithm we have first considered a propagation on a ho-

rizontal terrain with a uniform density of vegetation, the parameters of the

propagation model are the one considered in table 1. Note that we have not

taken into account for this simulation the diffusivity term ∇ · (λ∇T ) in equa-

tions (1) (and in the other ones derived from this one) because the value of the

parameter λ is not physically yet well defined.

The ignition point is arbitrary chosen such that x0 = y0 = 1000m. After

tf = 120mn of propagation the fire front being a circle has been perturbed by

a sinus, that is

13



Table 1: Parameters values of the propagation model.

Cs = 2 400 J.kg−1.K−1 Cl = 4 180 J.kg−1.K−1

δ = 1 m Kf = 0.2 m−1

h = 20 J.m−2.s−1.K−1 Lev = 2.250 × 10
6 J.kg−1

Ta = 300 K Tev = 373 K

hf ≃ 2 m Tf = 1200 K

δχf = −εδ∂Ωf
n · τ = a sin(ωsδ∂Ωf

). (39)

So that the equation for the new boundary is

ρ = r + a sin(2πnrθ/2πr) = r + a sin(nθ) (40)

in polar co-ordinate. This new curve is considered as the noisy perturbated final

fire front, see figure 3.

As mentioned before, two optimization algorithms have been used, Polack-

Ribière conjugate gradient and Nelder Mead simplex, see ref [8]. The most

efficient has revealed to be the simplex and the results described here are the

one obtained by this way.

Figure 5 represents the evolution of the calculated at each iteration fire

ignition point position versus the optimization iterations numbers. It is noti-

ceable that after thirty iterations, the value of the objective function stops to

decrease significantly (see figure 4), the real ignition point, i.e. x0 = 1000m

and y0 = 1000m, is precisely recovered.
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After the same optimization iterations numbers, the final propagation time

tf = 120mn is also precisely recovered as we can see in figure 6.

In order to test the efficiency of this study we have secondly taken under

consideration a much more complicated case. We have thus considered a pro-

pagation on a non horizontal terrain, with a uniform density of vegetation and

with the same parameters as in the previous case. The topology of the ter-

rain under consideration is composed by two distinct bumps as one can show in

figure 8. The z-coordinates of the terrain is given by

z(x, y) = z0+hb1 exp
−(x − xb1)

2

A
exp

−(y − yb1)
2

A
+hb2 exp

−(x − xb2)
2

A
exp

−(y − yb2)
2

A
,

where z0 = 1m, the coordinate of the center of the first and second bumps

are (xb1, yb1) = (1010m, 1030m) and (xb2, yb2) = (970m, 970m) respectively,

the relative maximal height of the first and second bumps are hb1 = 3m and

hb2 = 2m respectively, and the value of the smooth factor surface A is 1000m2.

The ignition point is once again arbitrary taken to be x0 = y0 = 1000m.

After tf = 120mn of propagation the fire front, which is not a circle now, has

been perturbed by a sinus too (see figure 9).

Once again, after thirty iterations the value of the objective functional tends

to zero (see figure 10). The ignition point x0 = y0 = 1000m and the final time

tf = 120mn are also precisely recovered (see figures 11 and 12 respectively).

The sensitivities of the objective function is now studied. Several numerical

optimizations have been done for different values of the parameters a located

between 1 and 10 by steps equal to 1, for a fixed value n = 20, see equation (40)
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for the signification of a and n. Each numerical optimization gave rise to an op-

timal value Jmin of the objective function which is nothing else that δJ because

J (χf ) = 0. These values are plotted in figure 7. It is noticeable as foreseen in

relations (37) and (38) that the optimal value Jmin vary approximatively as the

square of the parameters a. Indeed, the more the fire front is perturbated and

the more it is difficult to recovered the ignition point.

This simple numerical experiments show that it is possible to recover the

initial point and time of the departure of the fire, in an deterministic way, using

an optimal control formulation and a simplex optimisation algorithm. However,

the question on the existence and uniqueness of the optimal solution of such an

optimization problem is still an open question. Numerically, it has to be precise

that the same solutions are obtained in a stochastic way using a standard genetic

algorithm. It is shown in practice that this kind of algorithms almost give the

optimal solution, but for high numerical costs.

5 Conclusion

This paper is dedicated in a first approach to the finding of the ignition point in

forest fires propagation. The problem as been set as an optimal control problem.

The diffusion has not taken into account for a sake of simplicity and because

diffusivity has been obtained after an homogenization process and its value is

not clearly determined. This will be the purpose of an other paper. The objec-

tive functional and its derivatives versus each control parameters were derived.
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This gradient has been used in a conjugate gradient optimization method, but

the simplest and effective optimization method is the simplex one. Using this

optimization method the ignition point and the final time of forest fires propa-

gation were precisely recovered even for a realistic non horizontal terrain where

only noisy measurement of the fire line is available. This will be extended to a

diffusive model and with a fire front randomly perturbated. These results could

be very helpful for firemen who are in charge of an expertise of the fire.
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A Derivation of the relation (9)

Let us now derive relation (9).

We will assume that the flame and the vegetation are grey medium with

constant absorption coefficients Kf , Kv. Then if the temperature Tf of the

flame is constant the integration of the radiative transfer equation gives for the

intensity

i(s) =
BT 4

f

π

(

1 − e−Kf (s2−s1)
)

e−Kv(s−s3) + Kv

∫ s

s3

ib(s)e
−Kv(s−s) ds. (41)

If the flame is assumed thin
(

1 − e−Kf (s2−s1)
)

≃ Kf (s2 − s1) = Kf

∫ s2

s1

ds

and the preceding relation becomes:

i(s) = Kf

BT 4
f

π
e−Kv(s−s3)

∫ s2

s1

ds + Kv

∫ s

s3

ib(s)e
−Kv(s−s) ds. (42)

Then the radiative flux density received by a surface with normal ni is:

qr(M)·ni = Kf

BT 4
f

π

∫

Ωf

e−KvaM

PM2
u·ni dΩ(P )+Kv

BT 4
v

π

∫

Ωv

e−KvAM

AM2
u·ni dΩ(P )

(43)

Where Ωf is the domain occupied by the flame and Ωv is the domain occupied

by the vegetation. In the limit δ → 0 the right hand side of (42) reduces to:

qr(M) · n = Kf

BT 4
f

π

∫

Ωf

1

PM2
u · n dΩ(P ) (44)

This triple integral can be reduced to a double integral. Let us consider

that each element of flames is directed by a unit vector F , n is the unit vector
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normal to the plane Πv which is the top of vegetation at the receiving point

M ,f is the unit vector representing the direction of the orthogonal projection

of the flame F on the plane, see figure 2.

If we consider an absolute co-ordinate system (O, e1, e2, e3) (not drawn on

figure above), we define the following angles:

(e3, F ) = αf , (F , OM) = β. (45)

The emitting point on the flame is the point P , the point O is the flame foot

, and we consider the radial co-ordinate r, such that:

‖PM‖ = ρ, OP = ξF , and OM = rw. (46)

Then PM = OM − OP = rw − ξF , and u · n =
1

ρ
(rw · n − ξF · n).

In the triple integral of the right hand side of (44) we integrate first along

the flame, with the previous notations, we obtain:

Mr = −qr(M) · n = −Kf

BT 4
f

π

∫

Sf

dx dy

cos αf

∫ lf

0

1

ρ3
(rw · n − ξF · n) dξ (47)

In (47) Sf is the burning surface and lf the local flame length. The simple

integrals
∫ lf
0

ξ
ρ3 dξ and

∫ lf
0

r
ρ3 dξ can be evaluated. Let us consider the triangle

OPM and the different angles in this triangle cf. figure below.

Then we have the following relations:

ρ

sin β
=

r

sin α
=

ξ

sin θ
with α + β + θ = π. (48)
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Then θ can be used as parameter. The derivation of (48) gives:

dξ = r
sin β

sin2(β + θ)
dθ = r

sin β

sin2 α
dθ. (49)

Then:

I1 =

∫ lf

0

r

ρ3
dξ =

1

r sin2 β

∫ θf m

0

sin(β + θ) dθ =
1

r sin2 β
(cos β − cos(β + θf m

))

(50)

I2 =

∫ lf

0

ξ

ρ3
dξ =

1

r sin2 β

∫ θf m

0

sin θ dθ =
1

r sin2 β
(1 − cos θf m

) (51)

Once (50) and (51) are put in the integral one obtains:

Mr = Kf

BT 4
f

π

∫

Sf

{

F (1 − cos θf m
) − w(cos β − cos(β + θf m

))
}

· n

r sin2 β
dx dy.

(52)

With θf m
and β solutions to the equations:

cos β = F ·
OM

r
, and cot θf m

=
r

lf sin β
− cot β. (53)

B Description of the optimal control algorithm

We consider the following optimisation problem:

min
x

J (x) (54)

with J : R
n 7→ R is a continuous function. The gradient of the objective

function J according to some control parameters x is noted ∇J .
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As it was mentioned in §3.1, we use the Polack-Ribière conjugate gradient

algorithm coupling with a backtracking Armijo line search.

B.1 Polack-Ribière conjugate gradient algorithm

Choose an initial iterate x0. Calculus of J0 = J (x0) and ∇J0 = ∇J (x0). The

algorithm is initialized by a steepest descent step, d0 = −∇J0.

While a stopping criterium is not satisfied, do:

1. Determination of a step αk (see §B.2). Calculus of a new iterate xk+1 =

xk + αkdk;

2. Evaluation of a new gradient ∇Jk+1 ;

3. Construction of a new direction of descent dk+1 = −∇Jk+1 + βk+1dk,

with βk+1 =
∇J T

k+1(∇Jk+1 − ∇Jk)

∇J T
k ∇Jk

4. k=k+1

B.2 Backtracking Armijo line search

The Armijo condition writes:

J (xk + αkdk) ≤ J (xk) + ω1 αk 〈∇Jk, dk〉, (55)

where ω1 is a small parameters (usually ω1 = 10−4).

Initialisations: choose a step α1
k > 0 and a parameter τ ∈ ]0, 1[. i = 1.

1. Test: the step αi
k is accepted if it verifies the Armijo relation (55) :

J (xk + αi
kdk) ≤ J (xk) + ω1 αi

k 〈∇Jk, dk〉,
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If not:

2. Choose αi+1
k ∈ [ταi

k, (1 − τ)αi
k]

3. i = i + 1 and αk = αi
k. Return to 1.

The parameter τ is usually taken to be equal to 10−2.

Usually, only 2 or 3 evaluations of the objective function are necessary for

one main step of this optimal control algorithm, composed by the determination

of the direction of descent d plus the line search (determination of the step α).
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Figure 1: Different zones related to the spreading in a one dimensional propa-

gation, the evaporation zone is the interval ]x−

ev, x+
ev[.
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Figure 4: Variation of the functional as a function of the number of iterations.
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Figure 5: Variation of initial positions versus the number of iteration.
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Figure 6: Variation of duration time versus the number of iteration.
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Figure 8: Topology of the non-uniform terrain.
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Figure 9: Real and perturbated fire front. Non-uniform terrain.
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Figure 10: of the functional as a function of the number of iterations. Non-

uniform terrain.
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Figure 11: Variation of initial positions versus the number of iteration. Non-

uniform terrain.
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Figure 12: Variation of final time versus the number of iteration. Non-uniform

terrain.
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