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Abstract

We discuss floating-point filters as a means of restricting the precision needed for arithmetic
operations while still computing the exact result. We show that interval techniques can be used to
speed up the exact evaluation of geometric predicates and describe an efficient implementation of
interval arithmetic that is strongly influenced by the rounding modes of the widely used IEEE 754
standard. Using this approach we engineer an efficient floating-point filter for the computation
of the sign of a determinant that works for arbitrary dimensions. We validate our approach
experimentally, comparing it with other static, dynamic and semi-static filters.

1 Introduction

Numerical inaccuracy in the evaluation of arithmetic predicates is one of the main
obstacles in implementing geometric algorithms robustly [23]. There are numerous
approaches to get the problem under control, among which the immediate solution
of exact computation stands out because of its generality [22]. In a series of ideas
stemming from [13], the exact computation paradigm was refined to an exact predicate
paradigm. In this model, the computation is separated into numerical and combinatorial
parts, where numerical inaccuracies can only occur in the numerical part, signs and
other discrete information is extracted by predicates (such as orientation of three points
in the plane) and the combinatorial part is only manipulation of pointers and is free of
any numerical problem. To ensure correct behavior it suffices that the predicate be
evaluated correctly, which is different from requiring all numerical computation to be
exact. Of course, exact computation guarantees exact predicate computation, but other,
more efficient approaches have been proposed [1, 3, 4, 8, 21].

For faster yet exact computation, arithmetic filters were proposed in [13, 18]. They
make use of the fact that usually only the exact sign of some expression is wanted and
not its exact value. The basic idea of an arithmetic filter is to compute an approximation
of the expression and an upper bound on the numerical error. The sign of this approx-
imation is correct provided that the error bound is small enough. Otherwise the com-
puted approximation is useless and hence other methods (more accurate filters or exact

1This research was partially supported by the ESPRIT IV LTR Project No. 21957 (CGAL). A preliminary
version has appeared in Proc. 14th ACM Symp. Comput. Geom. pages 165-174.



computation) have to be used. Filters have shown efficient both in practice [14, 21] and
in theory [9].

The work done so far mainly concerns static and semi-static filters where the error
bounds, or at least parts of it, are determined at compile time. Purely static filters are
restricted to integral, division-free expressions of small bounded depth and require that
good upper bounds on the input variables are known in advance, which is sometimes
not the case. Semi-static filters remedy most of the problems, but divisions and square
roots can only be handled at the price of a significantly reduced quality of the resulting
error bounds. Moreover, to apply a semi-static filter to a certain expression the com-
plete structure of this expression has to be preprocessed. If the preprocessing is done
by a precompiler, this usually implies some syntactical restrictions to the user program.
On the other hand, dynamic filters have none of the mentioned drawbacks, since both
the approximation and the error bound are computed at run-time, but they are often
considered too inefficient for the use in computational geometry. First advances have
been made to incorporate dynamic filters into the LEDA reals [6].

In this paper, we propose to use interval analysis [19, 20, 16] for more efficient
dynamic filters. The technique is based on carefully engineered interval arithmetic.
Each number is represented by an interval which is guaranteed to contain it. Interval
arithmetic is very simple to use and yields the most flexible dynamic floating-point
filters we know of. Divisions can be handled as well as square roots and hence the
technique is not limited to rational expressions. Of course, the intervals grow wider as
roundoff errors propagate. With the IEEE 754 standard for floating-point computations
[17], the computed intervals are locally optimal in the sense that every single operation
results in the smallest possible interval. Consequently, the produced filters have the
maximal achievable probability of success. On the other hand, interval arithmetic is
still relatively fast. We measure it to be roughly 3-8 times slower than straightforward
floating-point evaluation. Our implementation of interval arithmetic is based on the
rounding modes of the IEEE 754 standard.

Many geometric predicates boil down to computing the sign of a determinant.
Much effort has already been made towards the exact evaluation of signs of deter-
minants, using various specific solutions such as Clarkson’s or the lattice method [8,
1, 4], or using general solutions such as exact integer arithmetic [13] or modular arith-
metic [3]. For d x d determinants, the complexities range from O(d? log d) (Clarkson
or lattice) to O(d* logd) (modular) or even O(d* logdloglogd) (exact integer arith-
metic) with a potentially large constant in the asymptotic bounds. For all these meth-
ods we observe that they are, practically, several orders of magnitude slower than the
straightforward, inexact floating-point evaluation, although Clarkson’s and the lattice
methods are adaptive: their running times are O(d?) for matrices which are close to
orthogonal and worsen gradually the more ill-conditioned the matrix is. By contrast,
filters have the same running time for all matrices, only they may fail to report a helpful
answer. In this paper we design a new, fast floating-point filter for computing the sign
of a determinant based on interval analysis. Its running time is O(d®) with a small con-
stant and therefore very close to the (not certified) floating point computation. It fails
only for matrices which are singular or nearly singular. We also give a simplified filter
for small dimensions, which has a weaker probability of success but is very fast. As
this version of the filter crucially uses divisions, semi-static or static error computation



is not used.

There are two intrinsic limitations to the use of interval arithmetic. The first limita-
tion is that interval arithmetic may fail to detect that an expression is zero, which often
indicates a geometric degeneracy. In such a case the computed interval enclosure nec-
essarily contains zero, but this makes it impossible to deduce the sign of the expression
unless the interval is the single point {0}. Of course, point intervals are only obtained
if no rounding error occurred in our computation, and this only happens reliably when
the bit length of the input data is small with respect to the machine precision and to the
complexity of the computation.

The second limitation is that, although the computed intervals are optimal for every
single operation, they can grow arbitrarily wide for a cascaded sequence of operations
(of a priori unbounded depth, as is the case in some recursive or iterative algorithms).
For the specific problem of evaluating the sign of a determinant, the latter limitation is
none: We show how to combine interval arithmetic with a posteriori error computation
to a filter whose effectiveness decreases in practice only very slowly with the dimen-
sion. This means that our filter can come into effect for matrices of almost arbitrarily
large dimensions.

Our paper is organized as follows. In section 2 we lay out a classification of filters
into static, semi-static, and dynamic filters and we discuss their usage in precompiled,
hand-coded and fully packaged cascaded computation. In section 3 we introduce the
basic notions of interval arithmetic and describe our implementation, along with its
use in deriving filters for generic expressions. In section 4 we present a new filter for
computing the sign of a determinant using a posteriori error analysis and interval arith-
metic. In the discussion of section 5, we give an overview of the efficient methods to
obtain verified enclosures in intervals, and see why they do not apply to the problems
considered here. We introduce a heuristic measure of the effectiveness of interval anal-
ysis for a given expression and justify the effectiveness of the approach of section 4.
In section 6 the approach is validated experimentally with a new implementation of
interval arithmetic that relies on the rounding modes of the IEEE 754 standard. Beside
the mentioned applications we also consider other geometric predicates, such as those
encountered in geometric optimization or Delaunay sweep algorithms.

2 Arithmetic filters

Generally speaking, a geometric predicate is a mapping from some finite-dimensional
Euclidean vector space to a discrete set. In practice, these predicates are only computed
by use of +,—, -, /,+/~, comparisons <, and boolean expressions thereof.2 We may
therefore restrict our attention to computing the signs of expressions. An expression
E=&(x1,...,x,) is adirected acyclic graph where each leaf holds an input variable
x; and each internal node holds an operator in {+,—,-, /,+/ } whose arguments are
expressions given by the children of that node. The input variable may be assigned a
value in a computable subset of the reals (such as a floating-point value).

2Divisions and square roots can always be eliminated, but the resulting expressions may be arbitrarily
complex (see e.g. [2].)



By exact evaluation, we mean that each node of the expression is evaluated ex-
actly in a bottom-up manner. Of course, numerical errors may occur if we perform
the computation using an approximate type (like some fixed precision floating-point
arithmetic). In the undesirable case, these numerical errors may affect the sign of ex-
pression. By an error bound, we mean a quantity E that upper bounds the numerical
error that occurs at the root node of £. This bound may depend on the concrete val-
ues assigned to the input variables, or it may be the supremum over a bounded input
domain.

Filters are used to evaluate the sign in a robust manner, while being far quicker
than the exact evaluation, in most cases. A filter never returns a wrong answer, but may
declare that it cannot safely determine the correct answer by returning NO_IDEA.

In our discussion, we will focus on single precision® floating-point filters, for which
the expression and the error bounds are evaluated in the floating-point domain, because
they have a speed comparable to the simple floating-point evaluation. We distinguish
mainly three kinds of such filters, described below. All of them compute a numerical
approximation & of £.

Fully static: Upper bounds |z;| < X; are known for each ¢, and £ contains only the
operations +, —, -, V- This makes it possible to precompute a fixed error bound

E for the approximation & which holds for all inputs. For a particular input, the
filter fails if £] < E, otherwise the sign of £ is known safely.

Semi-static: No useful upper bounds on the input variables are known, but there is a
simple formula E = E(z1,. .. ,z,) that gives an error bound for a particular in-
put, even if E is evaluated with single precision. The structure of E is computed
at compile-time and E itself is evaluated at run-time. The expression E has a
structure very similar to E if £ is division-free. Again, for a particular input the
filter fails if and only if £| < E.

Dynamic: The computation of E is carried along with the evaluation of £ and all
computations are done completely at run-time. Typically, for each operation of
&, asimple rule determines the error bound for the result of that operation based
on its operands and on error bounds on them.

Several arithmetic filters can be combined into one by a simple chain. Here we usually
start with a cheap filter that has a relatively low probability of success. Only if this
filter fails, we apply a second filter that is more expensive to apply but has a higher
probability of success. If the second filter fails, we apply a third filter, and so on. Exact
computation can be considered the last of filters, which never fails. The cost of the
total computation can then be expressed by the costs of the different filters and by their
conditional probabilities of success [9].

Static filters are implemented for instance in LN [14], semi-static filters are de-
scribed in [1, 5], and dynamic filters are given in EXPR [22] and LEDA [6]. Also
Shewchuk [21] approximates £ up to first order error terms, then up to second order
errors etc., until the sign can be safely determined. This procedure combines a dynamic

3Single precision here means a precision of 53 bits, used by IEEE 754 doubles.



filter according to our description with exact computation, since it can reduce the error
to zero if needed.

A static filter does the floating-point evaluation of £ plus one extra comparison,
whose running time is usually negligible. Hence its running time is nearly the same
as for straightforward floating-point evaluation. The cost of a semi-static filter exceeds
that of a static filter by the cost of computing the error bound E, which is typically
about as much as for the computation of £. Finally, the cost of a dynamic filter is a
constant factor times that of the floating-point evaluation.

3 Interval analysis

The major tool used within our filter is interval analysis. The use of interval analysis
in the context of matrix operations was originally proposed by Moore [19] and further
promoted through a research group directed by Kulisch; see [16] for a survey of the
available computational methods. In [16], interval analysis is successfully applied to
many basic computation tasks in numerical linear and nonlinear algebra. The problem
of computing the sign of determinants considered in the present paper seems to have
been overlooked so far in the interval analysis community, however.

3.1 Interval arithmetic

Interval arithmetic deals with intervals [z] = [z, Z] of real numbers. The basic interval
operations are defined essentially as in [16]. Namely, if both operands [z] = [z,7Z],
[y] = [y, 7] are finite intervals we set

[z]+[y] = [z+y,T+7]

[z] — [y] [z —7,7 —y]
[z] - [y] [min{zy, 2y, Ty, Ty}, max{zy, 29, Ty, Ty }]
[x]/[y] — { }[f{:] : [l/y, 1/ ] if0 ¢ [y]v

otherwise
]2 = [2'/2,7/?] , ifo< z
R , Otherwise

As for the definition of the square root, it can in certain specific cases be modified
as follows: [z]'/2 = [0,Z'/?] if z < 0 < . This is only safe, however, when the argu-
ment of the square root can be shown mathematically to be nonnegative. In that case,
the modified definition gives a more meaningful result even though the lower bound of
the argument has been rendered negative by roundoff error propagation. This happens
in particular if interval arithmetic is used only inside some well-known expression like
a geometric predicate. For a general interval arithmetic number type however, in case
the interval contains negative values, we have no other safe decision than to say that
the expression is ill-formed, hence the definition above.

Since the computed intervals [z] in general have bounds z, Z that are not contained
in the given finite set F of floating-point numbers, we compute in each arithmetic step



the smallest interval Glz] = [z, AT] that encloses [z] such that 7z and AZ are
contained in . This means that 7z (respectively AZ) is the numbers in F next to
z and Z when rounding downwards (respectively upwards). Then the approximate
floating-point interval operations are given by

[zloy] = <]+ 1)
[z] © [y] O (le] = [v])
[z] © [y] O ([«] - [y])
[z]oy] = <(«l/lv])-

This notation is adapted to interval functions like f([z]) = (el*] — 1)[z] by writing
fo([z]) for the smallest floating-point interval containing f([z]). For the rest of the
paper we assume that interval expressions are evaluated using the approximate interval
operations @, ©, ®, @ and sqrte ([z]) = <O ([z]'/?).

3.2 Engineering floating-point filters with interval arithmetic

Let £ be an arithmetic expression over the operations {+, —, -, /,+/ }. If the expres-
sion is applied to real numbers x4, ... , z,, we denote the resulting interval enclosure
by [£] for clarity. In our application, £ is the expression used to evaluate a geometric
predicate, with exact input (i.e. points, not intervals). For instance, the orientation of
three points, or the intersection test of two segments. We discuss more predicates in
section 6. The task is to certify the sign of this expression, returning NO_IDEA in as
few cases as possible.

In fact, our interval methods can be applied when the input have interval values.
These intervals may arise from uncertainty in the input (e.g., when the input is subject
to imprecise measurement) as well as from approximate intermediate calculations. But
in the case of geometric predicates, the input is given exactly. This is because we want
to use interval arithmetic as a preliminary stage for exact computation. Note that when
the input is an interval, the predicate does not have a uniquely defined output value. For
interval-type input matrices this means that the determinant does not necessarily have
a unique sign. This fact cannot be altered by later using exact arithmetic. In that case,
we need a completely different, “fuzzy” model of computation that deals with multiple
predicate values. We do not discuss such a model here (see e.g. [10]).

The naive filter implementation consists of evaluating [£] for a given input. When
evaluating the sign of [£], if 0 € [£] we return NO_IDEA. Otherwise the sign can be
safely inferred. (Note that if an interval is R in the intermediate computation we can cut
short and return NO_IDEA without further ado.) This approach has been implemented
in CGAL by the last author.* Experience shows that it is very efficient (somewhat
slower than a semi-static filter, and about 3 to 8 times slower than inexact floating-
point computation) and that it rarely fails on non-degenerate instances, even those for
which a semi-static filter fails.

Determinants are particular, division-free expressions which can be evaluated by
developing along a row or a column. The resulting expression is only efficient up to

4http: // www. cs. uu. nl / CGAL/



dimension 5 [13], however, beyond which other methods (such as LU decomposition)
are more efficient. In the next section, we develop filters for determinants and LU
decomposition.

4 Computing the sign of a determinant

Let IF be a set of fixed precision floating-point numbers. The problem that we consider
in this section is the following: given a matrix A € F%? over F, safely compute the
exact sign of det(A4). This is an important problem in computational geometry since
many geometric predicates are expressible by determinants.

In this section we design fast floating-point filters, with running time O(d®) compa-
rable to floating-point computation, without imposing any restriction on the input. The
filters are applicable also if the input is not exactly representable in ¢, The filters
fail only for matrices that are singular or nearly singular. Our first filter is of use mostly
for small dimensions. Our second filter, while being less efficient by a constant factor,
almost always succeeds even for dimensions up to d = 800.

4.1 Naive interval arithmetic

Our first algorithm is a straightforward use of interval arithmetic. One of the standard
methods in numerical analysis to compute a determinant det(A) uses the LU decom-
position P - A = L - U where P is a permutation matrix, L is lower triangular and
U is upper triangular. Of course, using fixed precision arithmetic we will get only an
approximate decomposition P - A ~ L - U. The determinant of P is 1 and can be
computed without rounding error, and det(L) is 1 since the diagonal elements of L are
all equal to 1 by construction (their corresponding intervals are points {1}). So the
product of the diagonal elements wu; ; of U gives an approximation of +det(A4). We
therefore compute an interval enclosure of these approximations.

Algorithm 1 (returns the sign of det(A), if successful)

1. Compute P - A = [L] - [U] with partial pivoting as in [15], except that all
operations are performed in interval arithmetic instead of floating-point.

2. Ifoneof the intervals [u; ;] on the diagonal of [U] contains zero, return NO_IDEA.
Otherwise, return sign(det(P)) - [, sign([us,;]) where sign([u;,;]) is the sign of
any number in [u; ;].

Remark 1. Step 1 can always be completed, since the division by a “pivot” interval
containing 0 is a regular interval operation that results in [—oo, oo]. In that case, how-
ever, it is more relevant to terminate early, and simply return NO_IDEA.

Remark 2. The lower triangular part [L] does not have to be computed explicitly, since
it is not needed in the sign calculation and its determinant is known to be 1 exactly.

We measured that algorithm 1 is only at most 2.6 times slower than with naive
floating-point calculation. This running time only depends on our implementation of



interval arithmetic and does not depend on the entries (random or degenerate) nor on
the dimension. Indeed,

Lemma 1 Algorithm 1 takes at most d® /3 + O(d?) interval operations (1 operation =
1 addition + 1 multiplication).

See section 6 for more detailed measurements.

The probability of success, however, crucially depends on the dimension. Algo-
rithm 1 is best applied to matrices of small dimension. Indeed, for large dimensions,
the complexity of step 1 means that the intervals grow very large and therefore the
probability of finding a pivot which does not contain O decreases (see section 5 for
a heuristic justification of this). In practice, the algorithm is useless for large matri-
ces. For large matrices with a special structure, like certain sparse matrices, diagonally
dominant matrices and block matrices of small block size, however, it might still be
useful.

Note that algorithm 1 cannot be enhanced by the standard trick of multiplying A
with an approximate inverse A;,, to make it diagonally dominant. As already men-
tioned, it is as hard to compute the sign of det(A;,, ) as that of det(A). Another possible
preconditioning matrix is L;,,, P where L, is an approximate inverse of L whose de-
terminant is known to be 1. In fact, the resulting interval enclosure [f]] of L, PA is
nearly upper triangular. Unfortunately, the following Gaussian elimination that makes
[[7] truly upper triangular incurs intervals that are not smaller, or even larger than those
obtained by doing Gaussian elimination directly on A. We do not know how to find a
preconditioning matrix whose determinant is both easy to compute and leads to reduced
interval sizes.

To be complete, observe that this approach not only gives us the sign but an interval
enclosure of the value of det(A), by computing sign(det(P)) - [[,[us,s). Again, we do
not need to compute the diagonal elements [Z; ;] of [L], which are all point intervals
equal to 1.

4.2 A posteriori method

For well-conditioned matrices the floating-point approximation of L and U is usually
quite reliable, although it cannot always be certified by direct application of interval
arithmetic as we mentioned in the previous section. In the rest of the section we shall
investigate under what circumstances we can conclude that det(P - A) has the same
sign as [, sign(u;,;). Since P- A ~ L-U we expectthat A~* ~ U 'L~ P. Because
we cannot evaluate U ~* and L' exactly, we invert U and L numerically to matrices
Uino = U1 and L;,, =~ L~ which gives the approximate inverse

B := Uiy Lins P

of A. Note that by the triangular structure of L and U, L;,, still has all diagonal
elements equal to 1 and the diagonal elements of U;y, are 1 @ wu;,;. This shows that
det(B) has the same sign as det(U)det(P). Since det(4) = det(B)~ldet(B - A) it
follows that det(A) has the same sign as det(B) if we can show that det(B - A) > 0.
Here we use the following lemma, valid for any norm such that ||Fz|| < ||F|| - [|=]|
(usually called a matrix norm).



Lemma2 Let ||F|| < 1 for some fixed matrix norm. Then ||(I + F)~1|| < m and
det(I + F) > 0.

Proof. I+ F'isanon-singular matrix since for a vector z # 0 we have

(T + F)z|| = [l + Fa|| > [lz|| - (|1Fzl| > [lz]| - [|F[l[lz]] = (1 = [[E{D]l]| > 0.
This also shows that [|(1 + F) || < y=jz. Consider the mapping D from [0, 1] to
R such that D(t) = det(I + ¢ - F). D is continuous and D(0) = 1. Since [ + ¢ - F
is non-singular by the argumentation above, D(t) is always nonzero for ¢ in [0, 1]. By
continuity of D, this means that D(1) = det(/ + F) > 0.

Using the lemma, checking that det(B - A) > 0 can be done by checking whether
the defect matrix E = I — B - A has norm less than 1 for some matrix norm of our
choice. To this end, assume we have an interval enclosure [I — B - A] = ([e; ;])s,; of
I — B - A. Using the norm || - ||oo We have to test whether the sum of the maximal
possible absolute values of e; ; is smaller than 1 in every row. We denote the maximal
row sum in this calculation by ||[I — B - A]||e. The description of our algorithm for
the computation of sign(det(A)) is as follows. Note that the algorithm either returns
+1, —1, or the string NO_IDEA (if the filter fails).

Algorithm 2 (returns the sign of det(A), if successful):

1. Compute a numerical decomposition P - A =~ L - U with partial pivoting as in
[15]. If this is not possible for numerical reasons, return NO_IDEA.

2. Compute numerical inverses Us,, ~ U~ and L;,,, ~ L~!. In case of exponent
overflow in the floating-point computation, return NO_IDEA.

3. Compute ||[I — BA]||oo Where [I — B - A] is computed as I — Uipy(Liny (PA))
by using interval arithmetic.

4. 1f |[I — BA]|lo < 1, return sign(det(P)) [, sign(u; ;). Otherwise return
NO_IDEA.

Remark 3. The computation of the numerical LU decomposition in Step 1 can fail if
all elements of a pivot column are zero. In practice this occurs if A is singular or very
nearly singular.

Remark 4. If Step 1 was correctly completed, Step 2 can only fail because of exponent
overflow.

Remark 5. There seems to be no easy way to improve the approximate inverse B
if the quality does not turn out to be sufficient in Step 3. The reason is that B does
not only have to be a good approximate inverse of A, but also sign(det(B)) has to be
computable exactly.

Lemma 3 Algorithm 2 takes at most d* + O(d?) floating-point operations and d® +
O(d?) interval operations (1 operation = 1 addition + 1 multiplication).



Proof. The computation of the LU decomposition takes d®/3 + O(d?) operations,
and so does each inversion of a triangular matrix. This accounts for the floating-point
operations. Now we count the interval operations. We have to compute two products
of a full matrix with a triangular matrix, of which each one requires d®/2 + O(d?)
operations. All other computations require only O(d?) operations.

Let us now give a rough estimate for the running time of algorithm 2 with respect
to the unfiltered evaluation of sign(det(A4)) ~ sign(det(P))]], sign(u; ;) (which we
call the “floating-point algorithm™). Hammer et al. [16] report that interval compu-
tations roughly take double time than ordinary floating-point calculations. In our own
C++ implementation, this (clearly optimal) overhead was for matrix computations only
nearly achieved; an overhead factor of about 3 to 4 is realistic, though. Our measure-
ments showed that algorithm 2 takes in fact 9 to 12 times longer than Algorithm 1. If
algorithm 1 returns a result, it always outperforms algorithm 2. On the other hand, al-
gorithm 2 has a higher probability of success since the computed intervals are smaller.
See section 6 for detailed measurements.

For the sake of completeness, we sketch how to compute not only the sign of the
determinant but also a verified enclosure for the value of the determinant. We need a
slightly stronger version of Lemma 2 that uses the Euclidean matrix norm.

Lemma4 For ||F||s < 1, we have [det(I + F) — 1| < (1 + ||F|[2)® — 1.

Proof. Leto;,i =1,...,d bethe (nonnegative) singular values of the matrix I + F.
As we already know by Lemma 2, det(Z 4+ F') > 0 and hence det(I + F) = [], 0.
Now recall that the singular values of I (which are all 1) and the o; can differ by at
most || F||2, see Corollary 8.6.2 of [15]. This implies that

det(I + F) = 1| = [[Joi =1 <A +|IFl2)"~1. 4

We can apply Lemma 4 in the context of Algorithm 2 with FF = B - A — I. If the
coefficients of F are all bounded by ¢, we can bound the || F|k by dy and this bound
is hopefully much smaller than 1. Hence in this case by Lemma 4

e=|det(B-A)—1|=|det(I + F) = 1| < (1 +dp)! =1~ d*p < 1.

Assume we know a bound n > 0 such that e < 7, then we have an enclosure of
[y] = [1 —n,1+ 7] for det(B - A). By evaluating [z] = [det(B)] = [],[us,:] ! using
interval arithmetic we obtain the desired enclosure [y]/[z] of det(4). One possible
value of 7 is readily obtained by setting n = (1 + dp)? — 1 as in Lemma 4, but it is
very not very accurate. To derive a better bound 7, one can either use interval arithmetic
again, or else one can use classical numerical analysis.

5 Discussion

5.1 A heuristic measure of quality

It turns out that the interval evaluation of expressions is not always effective, depending
on the particular structure of the expression. This notion of effectiveness is related to
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the size of the resulting intervals, not to the time necessary to evaluate the interval
expression. This is because the interval evaluation incurs only a constant overhead
over the usual floating-point approximation. ® Important types of expressions that are
well suited for interval evaluation are dot products or inner products of vectors and the
derived operations of matrix-matrix product and matrix-vector product. The following
interval degree Ideg(£) € Z is a heuristic, asymptotic measure for the average relative
width of the interval [£] and hence for the quality of the interval evaluation of £. For an
expression & consisting of a single input number z we set Ideg(€) = 0 and inductively,
if £ is computed from expressions X', ) by the operations {+, —, %, /,+/ } we set

Ideg(X +Y) = max{ldeg(X),ldeg())}
)}

Ideg(X —Y) = max{ldeg(X), ldeg(

ldeg(X -Y) = 14 max{ldeg(X),ldeg(¥)}
Ideg(X/Y) = 1+ max{ldeg(X),ldeg(¥)}
Ideg(X1/?) = Ideg(X).

In this notation, the mentioned products all have interval degree 1. On the other hand,
many of the basic operations in linear algebra have larger interval degree. For example,
the degrees of computing det(A), of computing decompositions P - A = L - U, and
of solving triangular systems for a d dimensional matrix are all ©(d). Typically, the
computed intervals are useless if Ideg(£) has the same order of magnitude than the
used mantissa length p of the floating-point numbers and are very useful if Ideg(€) is
a small constant. As an example for the calculation of interval degree we prove the
following lemma.

Lemmab5 The interval solution of a triangular system T'- [x] = b with exact input data
has interval degree d, where d is the dimension of 7" and b.

Proof. Without loss of generality, we consider forward substitution with a lower tri-
angular matrix ' = (t;,5)i,;. In the basic step d = 0 we have z; = by /t1,; which
has interval degree 1. For d > 1 assume by induction that z4,... , x4_1 have interval
degree at most d and ldeg(x4—1) = d — 1. From the formula

d—1

T4 =baftaa— Y xi(ta;/ta,q)

=1

we see that since ldeg(tq,;/tq,q) = 1, each product z;(t4 ;/ta,q) has interval degree
at most d. Because the latter term has interval degree d for j = d, the whole sum has
interval degree d. Our statement follows by induction.

Experiments with a randomly chosen matrix A show that the interval solution of a
system A[z] = b using a LU decomposition of A in fact incurs an uncertainty in the
last ©(d) places of the interval bounds, even if A is tridiagonal. Another simple lemma
is that Gauss elimination is of interval degree 2d.

5This overhead depends on the particular platform given by hardware architecture, programming lan-
guage and compiler.
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Given that many of the most important computations in linear algebra have non-
constant interval degree, we can now better understand the efficiency of algorithm 2.
Algorithm 2 is applicable even for very large dimensions; it was successfully tested
up to d = 800. Note that I — U;py(Liny (PA)) computed in step 3 of this algorithm
is a computation of constant interval degree 3, because Uj;,, and L;,, are humerical
(and not interval) approximations of U ! and L~!. Thus the a posteriori certification
of the quality of the floating point solution has a much smaller interval degree, while
the quality of that solution depends only on the condition number of the matrix and
involves no catastrophic interval error propagation.

Let us stress again that our notion of interval degree gives a purely heuristic and
asymptotic estimate of the usefulness of interval arithmetic. Our point is that interval
arithmetic can be useful for expressions with small bounded interval degree or else if
the problem has small dimension. Nevertheless, our interval degree is logarithmically
related to the index of [5] (if we do not count additions), and this index gives a bound
on the relative error of a computation. For problems of large interval degree in large
dimensions, interval arithmetic can still be useful if the input data has an appropriate
(sparse) structure.

5.2 General techniques

As we just said, many of the most important computations in linear algebra have non-
constant interval degree. How can we save the interval method? There are several
powerful complementary approaches of which we cite the following three.

1. Aposteriori error analysis: Compute first a candidate for the solution by conven-
tional floating-point arithmetic and then use this candidate to compute an interval
enclosure for the solution by interval arithmetic.

2. Preconditioning: First bring the problem in a form that is better suited for inter-
val computation, by applying an appropriate preconditioning transformation.

3. Fixed point theorems: Reformulate the problem such that the solution is ex-
pressed as the limit of an iteration process z « f(z) where f(z) has small
interval degree in the unknown z. Try to find an interval I such that f(I) C I
can be shown (again by interval arithmetic). Now use an appropriate fixed point
theorem like the classical one by Banach or the more sophisticated by Brouwer
[20] and try to prove that the iteration converges to a solution contained in I.

These methods work well for many of the basic problems in numerical mathe-
matics, including solutions of linear and nonlinear systems, global optimization and
automatic differentiation [16]. Applying the methods to the computation of a determi-
nant is not straightforward, however. We have shown in section 4.2 how to do it for
the a posteriori method. The standard way of preconditioning in the case of a linear
problem is to first multiply the matrix A with an approximate inverse 4;,, of A and
then apply e.g. Gaussian elimination to the resulting interval matrix. This is not helpful
in our case because it is no easier to compute the determinant sign for the approximate
inverse of A than for A itself. Finally, the fixed point method does not seem to work: If
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A is a symmetric matrix, then we could compute the determinant as the product of the
eigenvalues of A. Given an approximate eigenvector ' and an approximate eigenvalue
A" of A, we could further use a Newton-Raphson iteration that converges to the desired
solution of (A — AI)xz = 0 as in [16]. However, in the case of a non-symmetric matrix
A, only the absolute value of det(A) is expressible by the product of the singular values
of A. Hence we cannot handle the general case in this way.

There are also certain restrictions to the interval method. First of all, interval arith-
metic almost always fails if the matrix is singular or nearly singular. In such cases
the user should apply one of the exact algorithms. Second, the interval method of algo-
rithm 2 can in general not benefit (much) from sparsity in the matrix A. This is because
it computes an approximate inverse of A, which is usually a dense matrix. On the other
hand, algorithm 1 can often profit from sparsity, but it is essentially restricted to small
dimensions. It is an open problem how to design a more efficient filter for computing
the determinant sign of general large sparse matrices.

6 Experimental Validation

We experiment with our filter in a variety of settings encountered by geometric algo-
rithms.

Implementation of basic interval operations. We implemented interval operations
by C++ operators, using the rounding mode of the IEEE Standard 754. Since we
maintain here the upper interval bound and the negative of the lower interval bound
we can always round upwards, except for the square root operation. Let two intervals
[z] = [-z,%] and [y] = [—y,y] be given. For addition we compute the smallest
interval [z] = [—z,%] such that [z] + [y] C [2] by setting z = A(z + y) and Z =
A(Z + 7). Subtraction is implemented very similarly. Multiplications and divisions
are slightly more complex because they require some case distinctions for the various
possible signs of z, Z, y, . For the square root operation we take the square root of the
lower bound, rounding downwards, and the square root of the upper bound, rounding
upwards.

We stress that the advantage of taking the negative of the lower interval bounds
is that within a sequence of rational operations the rounding mode never has to be
adjusted, if once set to +oo. For completeness, we also implemented a safer (but less
efficient) version where the rounding mode is set and reset within each operator call,
which we call below our “protected” implementation.

To implement interval arithmetic we derived two C++ classes with overloaded
operators +,—, -, /,+/, an efficient version (I nt er val_nt_advanced, “Advanced”)
where the user is responsible to have upwards rounding active throughout the inter-
val computations, and a protected version (I nt er val nt, “Protected”). The imple-
mentation is available in CGAL and independently at http://www-sop. inria.
fr/prisme/personnel/pion/. Although it is only possible to evaluate the effi-
ciency of our implementation in a concrete sequence of interval operations, we measure
Interval _nt_advanced to be roughly 2 to 8 times slower than floating point com-
putation, without counting the rounding mode selection.
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Isolated geometric predicates. This section presents some benchmarks on isolated
well known low-dimensional predicates, to show the overhead caused by the use of
various filters, compared to the pure floating-point computation.

For comparison, we evaluate the semi-static filter given in [5]. Furthermore we
also tested two other, completely different dynamic filters that are improved versions
of the filter used in the number type leda_real [6], which we call “AbsFilter” and
“RelFilter”. These filters use standard error analysis to dynamically propagate absolute
and relative errors for each arithmetic operation.

The considered predicates are the standard orientation and in-sphere predicates,
and a specific in-circle predicate for the Voronoi diagram of line segments that asks
whether a point lies in the circle circumscribed to two lines and a point site. The latter
predicate involves three square root operations but no divisions.

Points are represented in Cartesian coordinates, and lines by their equations. We used
the following expressions:

T2 —T1 X3 — L1

orientation2 =
(plap21p3) Yo — Y1 Y3 — 1

T2 =1 T3 —T1 Tg—T1

orientation3(py, p2,p3,p4) = | Y2 —y1 Y3 —Y1 Y4 — Y1
29 —21 R3—2R1 R4—21

To—2T1 Y2—Y1 22— 21 (w%+y2+z§ —(
. T3— 1 —y1 zm—z1 (23 +y5+23) —
insphere3(p1, po,ps, p1) = | zi—zi “—n Ewg+zi+é —E
(

Ty —T1 Y5 — Y1 2y — 21 x5+y5+z5

vvvv

where the 3x3 and 4x4 determinants are computed by developing along the last
row recursively and with dynamic programming to factor in the common 2x2 sub-
determinants. The implementation of the in-circle predicate follows from [7], Section
2.3.1.3. The benchmarks of Tables 1 were made on a Ultra Sparc Ili, 333 MHz, with
the GNU C++ compiler version 2.95 and using the flag -O2.

As our experiments show, the variant “Advanced” is always the fastest. Hence in
all other experiments, we will use only this filter variant. Table 1 documents only
differences in the running times, without accounting for the subsequent computations
in case of failure.

Since we are using random entries, the probabilities of success of these filters are
very high. In a more real situation, the filters may have different probabilities of suc-
cess. For a fair comparison, one needs to evaluate them within some geometric algo-
rithm. In both sections below, we leave aside the running time (also called efficiency)
to concentrate on the success rates (also referred to as efficacy) of our filters.

Computing deter minants.

We investigate the efficacy of Algorithms 1 and 2 on some nearly singular matrices.
Our test matrices have all floating-point entries close to 1 but with a random perturba-
tion of order 277, i.e., after the pth bit. The efficacy of Algorithm 1 was measured as
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Filter Insphere | Orientation | Orientation Incircle

3D 3D 2D | 2D (llp_p)
Pure f.-p. 1.00 1.00 1.00 1.00
Semi-static 2.64 1.99 1.68 1.82
Advanced 8.30 3.27 2.56 5.90
Protected 41.3 19.7 10.9 19.0
AbsFilter 44.5 12.5 6.24 21.4
RelFilter 44.2 19.8 9.78 21.7

Table 1: Running time overhead caused by the use of various filters, compared to
pure floating-point computation (without error checking and correctness guarantee).
The time taken by subsequent computations in case of filter failure is not taken into
account.

the maximal relative error of a pivot element, averaged over a large number of random
choices for the matrix elements. Here the relative error of a pivot element approxi-
mated by the interval [z, y] not containing 0 is defined as (y — x)/|z + y|. Note that
this value is always smaller than 1 but can be arbitrarily close to 1. If 0 € [z,y] we
set the error to 2.5 The results for various values of the dimension and the perturbation
parameter p are shown in Figure 2. Likewise, we measure the efficacy of Algorithm 2
in terms of the quantity 6 = [[[I — BA]||c, if this norm is smaller than 1 and otherwise
we set & = 2. The average values of § for Algorithm 2 are shown in Figure 3.

|n || p:1| p:6| p=12|p:18| p:24| p:32|p:40|

6 1.7e-13 | 5.2e-12 | 2.1e-10 | 9.8e-08 | 9.3e-06 | 0.00085 0.063
12 2e-11 | 1.1e-09 | 3.4e-08 | 1.4e-06 | 0.00014 0.027 >1
18 || 4.8e-10 2e-07 | 1.3e-06 8e-05 0.0053 0.67 >1
24 || 4.6e-08 | 1.6e-06 | 0.00016 0.016 0.23 >1 >1
32 || 5.4e-06 | 0.00013 0.011 0.51 > 1 > 1 > 1
40 0.0015 0.061 0.93 > 1 > 1 > 1 > 1
48 0.15 >1 >1 >1 >1 >1 >1

Table 2: The average maximal relative error of a pivot for the naive method

Another meaningful parameter to investigate the quality of the filter is the minimal
value k£ = k(n) of the parameter p such that the failure rate gets above 50%. In table
4 we display this number k&, first for Algorithm 1 and then for Algorithm 2. A dashed
entry means “fails always.” We conclude from Tables 2, 3 and 4 that Algorithm 2
is much less sensitive to the dimension than Algorithm 1. In particular, Algorithm 2
can handle fairly difficult input matrices of large sizes. On the other hand, Algorithm
1 is pretty useless for dimensions greater than the mantissa length. Empirically, we
find that the number k(n) decreases linearly with n for Algorithm 1 and decreases

61t would be undesirable to set the error to oo because otherwise a single pivot interval containing 0
would make the average error infinite. If this consistently happens, though, any relative error higher than 1
means failure for the sign determination, and the value 2 fulfills this purpose as well as occ.
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|n || p=1| p:6|p:12|p:18| p:24| p=32|p:40|
6 2.6e-13 | 7.7e-12 | 5.4e-10 | 4.5e-08 | 2.6e-06 | 0.00056 0.097
12 || 4.3e-12 | 5.8e-11 | 2.4e-09 | 2.7e-07 | 1.9e-05 0.0031 0.47
18 || 7.9e-12 | 1.3e-10 | 6.8e-09 | 1.6e-06 | 5.5e-05 0.007 0.98
24 || 7.2e-12 | 4.4e-10 | 1.2e-08 | 1.5e-06 | 6.4e-05 0.017 >1

32 || 1.2e-10 | 6.8e-10 le-07 1le-06 | 9.2e-05 0.02 >1
40 || 2.7e-11 | 7.9e-10 | 3.3e-08 | 2.5e-06 0.0002 0.026 >1
48 || 3.8e-11 | 8.3e-10 | 8.4e-08 | 4.2e-06 | 0.00092 0.1 >1

Table 3: The average defect norm for the a posteriori method

[method,n || 6] 8] 10 |12 [ 14 [ 16 [ 20 [ 24 [ 28 [ 32 [ 40 [ 48 | 56 |
Algorithm 1 || 46 | 44 | 42 | 40 | 37 | 35 | 32 | 28 | 24 | 21 | 13 5 -
Algorithm 2 || 45 | 44 | 43 | 42 | 42 | 41 | 40 | 39 | 39 | 39 | 38 | 38 | 36

Table 4: The minimal value of p for which the interval filters fail for at least 50% of
the cases.

sub-linearly with n for Algorithm 2. Note that we could not determine the maximum
dimension for which Algorithm 2 still works, simply because this value is so large that
the matrix inversion is not practically feasible anymore. The maximal value that was
(successfully) tested was n = 800.

And in a sweep algorithm for Voronoi. We have incorporated a floating-point filter
into our implementation of the sweep algorithm for building Voronoi diagrams [11, 12].
The predicates involve orientation tests, comparing the ordinates of a point and of an
intersection of two parabola, and comparing between elements of a set of abscissae of
points or maximum abscissae of circumscribed circles. The latter is the more demand-
ing predicate as it uses square roots and has ldeg 4, but its exact computation with
integers would require 20-fold precision. The predicates are illustrated in Figure 1 and
the expressions used to compute them are given below (beside the orientation test given
before). The first is a well known expression to compute the center and radius of a cir-
cumscribed circle. First let D,, D,,, D, and D be the cofactors of z, y, z2+y?and 1
in the expansion with respect to the last column of

x1 X2 X3 x
Cocyclicit = W% Y2 Y3 A
y y(p1,P2,DP3,P) a2 +y? 224y a4yl a?+y?
1 1 1 1

Note that the equation of the circumscribed circle is Cocyclicity(p1, p2, p3, p) = 0. We
compute D,, D,,, D, and D by the following expressions:

D o—_| =y (@ tz)(@—21) + (2 + 1) (y2 — 1)
.=
ys—y1  (z3+z1)(z3 —21) + (y3 + y1) (Y3 — 1)
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D. = 22— 21 (T2t z1)(@2 —21) + (y2 +y1)(y2 —¥1)
Y z3 —x1 (3 +21)(x3 —x1) + (Y3 +y1)(ys — y1)

D, = —orientation2(py, pa, ps),

1 Y1 zi +yi
D=|xz2—21 yo—11 (22 +x1)(22—21)+ (2 +91)(Y2 — 1)
r3—21 yz—y1 (w3 +21)(x3 —21) + (y3 +y1)(y3 — 1)

The value of D is computed again by dynamic programming, as in orientation3. This
yields

D, , D D;+Dj
9D, '° T D, ~ 4D?

T, =
Hence the quantity used by the algorithm is computed by

X_maximum(pi, p2,p3) = Tc + V1.2

The second formula we need is the intersection of two parabolas with foci p; and p,
and common director of equation = x;. Note that y_intersect depends on the order
of the arguments, as there are two intersections; the other intersection is obtained by
switching the argument p; and p,. We compute it by the following method:

a=2xy— 21, b= —2y1(x2 — x1) + 2y2(x1 — 21),

¢ = (1 — 22) (122 — (21 + T2)T1),

y-intersect(p1, p2, ;) = +T\/7ac

The entire algorithm is then evaluated with interval arithmetic as explained in section
3.2. Note that we actually compute once and for all an interval enclosure of the inter-
mediate various quantities, and not each time they appear in a predicate.

We ran the program on a variety of configurations. The first configuration is ran-
dom; the second is a perturbed grid and the third is a perturbed circle; finally, we ran
the program on a degenerate circle. All numbers were generated between % and 1 with
53 bits of precision, and perturbed by ¢ € [10~7,10~2]. We compare our dynamic
filter with the semi-static filter of [5].

There was a slight difference in the overall running time between using the dy-
namic filter and using the semi-static filter. The time spent in the portion of the code
performing arithmetic operations was only about twice more for the interval filter than
for the semi-static filter, which is consistent with the results of Table 1. This is only
about a third of the overall computation time. Neither filter made a mistake on the
random cases, nor did the standard floating-point implementation. More interestingly,
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Y4 °

P2 ot & y.intersect(p1, pa, 1)

b3 poe

- xl
X_maximum(py, p2, p3)

Figure 1: The constructions for the sweep algorithm. The predicates in the algorithm
compare two y_intersect, or an input abscissa with a x_maximum, or two x_maximum
values. The expressions computing these values are given in the text.

on perturbed grid or circle, we clearly demonstrate the efficiency of the interval fil-
ter, which rarely fails, whereas the semi-static filter shows the weakness of its bounds.
For perturbed circular configurations, the interval filter fails consistently at least once
only for perturbations smaller than 10~7. We give in table 5 the number of failures of
both filters on these two cases. Since we didn’t use exact arithmetic, in case of unsafe
comparisons, we used either the median value or one of the bounds of the interval to
conclude. This is not robust, and the dashes indicate when the floating-point computa-
tion failed and the overall algorithm crashed because of inconsistencies. Interestingly,
we saw that the median value of the interval may be a more stable approximation than
the floating-point computation.

In the case of degenerate points, neither filter can of course detect the degeneracies,
but they have similar running times, even though the filters always fail. The running
time of the algorithm is therefore a function of the exact arithmetic used in case of
failures of filters, which is outside the scope of this paper.

circular +& grid +¢

1000 points 70x 70 points

semi-static | dynamic | semi-static | dynamic

1072 11 0 20 0
1073 39 0 22 0
10~* 43 0 41 0
1078 76 0 53 0
10~¢ 106 0 - 8
1077 - 1 - 62

Table 5: Number of failures of the filters for the sweep algorithm for Voronoi on differ-
ent almost degenerate distributions. Dashes mean that unsafe comparisons (when the
filter fails but we still try to conclude) lead to corrupt data structure and failure of the
algorithm.

Portability issues.
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Our implementation of interval arithmetic contains some non-portable code for the
adjustment of the IEEE754 rounding modes. There are mainly two ways to implement
the rounding control. The first is to use appropriate library routines shipped with the
compiler, if available. Unfortunately, there is no uniform interface for the rounding
control, and function names tend to change with new compiler versions. Moreover,
the reliability of the library functions is sometimes a problem. The second way is to
directly use assembly code for manipulating the control word of the floating-point unit
(FPU) in the processor. Although the programming in assembly code is technically
demanding, it has the big advantage that it removes the dependency of the code from
the used compiler version. In our implementation we use well-tested combinations of
both methods. A general interface for the FPU access for some of the main Unix plat-
forms (including Intel386, SPARC, MIPS, and alpha) will soon be available as a part
of the LEDA extension package Numbers. The latest version of this package can be
downloaded at http://www.mpi-sb.mpg.de/"burnikel/Numbers._html.

7 Conclusion

We have presented an effective interval technique for computing signs of determinants,
which is a problem that frequently arises in computational geometry. In contrast to
the straightforward application of interval arithmetic to Gaussian elimination such as
in Algorithm 1, which only works for relatively small dimensions, our new Algorithm
2 can handle even very large-dimensional, fairly ill-conditioned matrices. Algorithm 2
is not more than one order of magnitude slower than the naive, inexact floating-point
computation and is faster than all the exact methods. It remains an interesting open
problem to design an efficient filter for large-dimensional sparse or structured matrices,
that takes advantage of the structure of the matrix.

We have also investigated the general use of interval arithmetic in dynamic arith-
metic filters for various low-dimensional geometric predicates. Interval arithmetic
gives the user much more flexibility than static or semi-static error bounds, because
divisions and square roots can be handled without greatly decreasing the probability of
success of the filters. Using interval arithmetic it is neither necessary to restrict the in-
put domain of the filters, as in the case of static filters, nor is it necessary to precompile
the user program as in the case of semi-static filters. Our implementation of interval
arithmetic is particularly efficient, because it avoids the expensive manipulation of the
IEEE754 rounding mode preceding every interval operation, and is significantly faster
than other dynamic filters.

For low-dimensional geometry, we have packaged our interval filter for the CGAL
library.” Our package is available independently at http://www-sop.inria.
fr/prisme/personnel/pion/. Experiments show that it rarely fails on non-
degenerate instances that make the semi-static filter fail. Hence, we recommend inter-
val arithmetic as the ultimate level of filter before resorting to efficient exact arithmetic.
In most cases, we expect that resorting to exact arithmetic will not be needed. Should
this be the case, however, several options are available depending on the type of oper-
ations used by the predicate. For rational operations, a general purpose bignum library

“http://ww. cs. uu. nl / CGAL/
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like GMP, CLN or packageLEDA integers, will suffice. The most general method we
know of are the LEDA reals [6] which perform adaptive exact computation and handle
arbitrary algebraic operations (by means of separation bounds).
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