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Lutz Kettnef  Kurt Mehlhor  Sylvain Piort  Stefan Schirfd  Chee Yap
February 8, 2007

Abstract

The algorithms of computational geometry are designed foaahine model with exact real
arithmetic. Substituting floating-point arithmetic foretlassumed real arithmetic may cause im-
plementations to fail. Although this is well known, there aro concrete examples with a com-
prehensive documentation of what can go wrong and why. mghper, we provide a case study
of what can go wrong and why. For our study, we have chosen itwpls algorithms which are
often taught, an algorithm for computing convex hulls inpfene and an algorithm for computing
Delaunay triangulations in space. We give examples thaerttad algorithms fail in many differ-
ent ways. We also show how to construct such examples systaithaand discuss the geometry
of the floating-point implementation of the orientation gicate. We hope that our work will be
useful for teaching computational geometry.

1 Introduction

The algorithms of computational geometry are designed feaehine model with exact real arithmetic.
It is well-known that substituting floating-point arithnefor the assumed real arithmetic may cause
implementations to fail. However, there are no concretepreimensive examples. There is neither a
paper nor a textbook that systematically discusses whagjocamrong and provides simple examples
for the different ways in which floating-point implementais can fail. Due to this lack of examples,

instructors of computational geometry have little mateiva demonstrating the inadequacy of
floating-point arithmetic for geometric computations,

students of computational geometry and implementers ahgéac algorithms still have to learn
about the seriousness of robustness problems by experettoe difficulties while program-
ming.
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702 —-713.
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Figure 1: Results of a convex hull algorithm using doubleegsion floating-point arithmetic with the
coordinate axes drawn to give the reader a frame of referefice algorithm makes gross mistakes
(from left to right): The clearly extreme poip is left out. The convex hull has a large concave corner
with a (non-visible) self intersection ne@p and ps, which are close together. The convex hull has
a clearly visible concave chain (and no self-intersectidpgtails on these examples are explained in
Section 4.

In this paper, we provide a case study of what can go wrong dndwith geometric algorithms
when executed with floating-point arithmeticively. For our study, we have chosen two simple algo-
rithms which are often taught, an algorithm for computingvex hulls in the plane and an algorithm
to compute Delaunay triangulations in space.

The convex hullCH(S) of a setSof points in the plane is the smallest convex polygon coirigin
S A point p € Sis calledextremein Sif CH(S) # CH(S\ p). The extreme points db form the
vertices of the convex hull polygon. Convex hulls can be trooged incrementally. One starts with
three non-collinear points iBand then considers the remaining points in arbitrary ondéren a point
is considered and lies inside the current hull, the pointiply discarded. When the point lies outside,
the tangents to the current hull are constructed and theshupidated appropriately. We give a more
detailed description of the algorithm in Section 4.1 anddtvpleteC++ program in the appendix.

Figure 1 shows point sets (we give the numerical coordinateke points in Section 4) and the
respective convex hulls computed by the floating-point enpntation of our algorithm. In each case
the input points are indicated by small circles, the comgbatmvex hull polygon is shown in green, and
the alleged extreme points are shown as filled red circles.ekamples show that the implementation
may make gross mistakes. It may leave out points that are\clegreme, it may compute polygons
that are clearly non-convex, and it may even run forever.

The first contribution of this paper is to provide a set of amses that make the floating-point
implementations fail, often in disastrous ways. The comgukesults do not resemble the correct
results in any reasonable sense.

Our second contribution is to explain why these disasteppéia The correctness of geometric
algorithms depends on geometric properties, e.g., a pembltside a convex polygon if and only if it
can see one of the edges from the outside. We give exampleghiich a floating-point implementation
violates these properties: a point outside a convex polygahsees no edge and a point not outside
that sees some edges (both in a floating-point implementatidsees”). We give examples for all
possible violations of the correctness properties of onvew hull algorithms.

Our third contribution is to show how such examples can besttoated systematically or at least
semi-systematically. This should allow others to do sinstadies.



We believe that the paper and its companion web page will B&ug teaching computational
geometry, and that even experts will find it surprising arsdrirctive in how many ways and how badly
even simple algorithms can be made to fail. The companionpaglé contains the source code of all
programs, the input files for all examples, and installapoocedures. It allows the reader to perform
our and further experiments.

Numerical analysts are well aware of the pitfalls of floatpmint computation [For70]. Forsythe’s
paper and many numerical analysis textbooks, see for exaf@pl91, page 9], contain instructive
examples of how popular algorithms, e.g., Gaussian elitiwinacan fail when used with floating
point arithmetic. These examples have played a guidingirotbe development of robust numeri-
cal methods. Our examples are in the same spirit, but caraterdn the geometric consequences of
approximate arithmetic. While sophisticated machinerg developed for making numerical compu-
tations reliable over the past 50 years, a correspondindhimey for geometric computation does not
yet exist to the same extent. However, significant progress wade over the past 15 years and we
point the reader to approaches to reliable geometric cangpirt the conclusions: the exact computa-
tion paradigm, algorithms with reduced arithmetic demamqgbroximate algorithms with a correctness
proof in floating-point arithmetic, and perturbation metholn our recent courses on geometric com-
puting, we have used the warning negative examples of tigerp@a raise student awareness for the
problem and then discussed the approaches mentioned inrbkisions.

This paper is structured as follows. In Section 2 we discsggtound rules for our experiments.
In Section 3 we study the effect of floating-point arithmedit one of the most basic predicates of
planar geometry, the orientation predicate. In Section 4digseuss the incremental algorithm for
planar convex hulls and in Section 5 we briefly discuss anemental algorithm for 3d Delaunay
triangulations. We provide a discussion of failures of tifevgrapping in an accompanying report
available on the companion web page of our paper. In Sectiwa @iscuss two frequently suggested
simple approaches for making the planar convex hull algarimore robust and argue that they fail.
Finally, Section 7 offers a short conclusion and points farapches to reliable geometric computation.

Related Work: The literature contains a small number of documented fsludue to numerical
imprecision, e.g., Forrest’s seminal paper on implemerttie point-in-polygon test [For85], Fortune’s
example for a variant of Graham’s scan [For90], Shewchuldsrgle for divide-and-conquer Delaunay
triangulation [She97], Ramshaw’s braided lines [MN99,t®&c9.6.2], Schirra’s example for convex
hulls [MN99, Section 9.6.1], and the sweep line algorithmliile segment intersection and boolean
operations on polygons [MN99, Sections 10.7.4 and 10.8.4].

2 Ground Rulesfor our Experiments

Our codes are written in-€+ and the results are reproducible on any platform compliatit iEEE
Std 754-1985 floating-point standard for double precissee([Gol91, IEE87]), and also with other
programming languages. All programs and input data can bedf@n the companion web page.
Numerical computations are based on IEEE arithmetic. Itiquéar, we study machine floating-point
numbers, calledoublesthat are ubiquitous in scientific and geometric computBigch numbers have
the form+m2® wherem= 1L.mym,... msz (m; € {0,1}) is the mantissa in binary areds the exponent
satisfying—1023< e < 10242 The results of arithmetic operations are rounded to theasedouble

thttp://mww.mpi-inf.mpg.de/ kettner/proj/NonRobust/
2We ignore here so calledenormalizediumbers that play no role in our experiments and arguments.



(with ties broken using some fixed rule).

Our numerical example data will be written in decimals (farmfan consumption). Such decimal
values, when read into the machine, are internally repteddoy the nearest double. We have made
sure that our data can be safely converted in this manngca®version to binary and back to decimal
is the identity operation. However, the-€ standard library does not provide sufficient guarantees and
we offer additionally the binary data in little-endian faaitron the accompanying web page.

The programs were developed with the help @AC, the Computational Geometry Algorithms
Library,® and LEDA, theLibrary of Efficient Data Types and AlgorithhfKN04, FGK™00, MN99].

To simplify the use in the classroom, the convex hull aldgponis presented in this paper can be used
independently of these (and other) libraries.

3 Planar Orientation Predicate

Three pointsp = (px, Py), 4 = (O, 0y), andr = (rx, ry) in the plane either lie on a common line or form
a left or right turn. The triplgp,q,r) forms a left (right) turn, ifr lies to the left (right) of the line
through p andq and oriented in the direction from to g. Analytically, the orientation of the triple
(p,q,r) is tantamount to the sign of a determinant:

L by
1 o qy
1 e 1y

orientation(p, q,r) = sign(det ). Q)

We haveorientation(p,q,r) = +1 (resp.,—1, 0) iff the polyline(p,q,r) represents a left turn (resp.,
right turn, collinearity). Interchanging two points in thle changes the sign of the orientation. We
implement the orientation predicate in the straightfodvany:

orientation(p,q,r) = sign((ax — Px)(ry — Py) — (Gy — Py) (rx — Px))- )

When the orientation predicate is implemented in this abwivay and evaluated with floating-point
arithmetic, we call ifloat orient(p,q,r) to distinguish it from the ideal predicate. Since floatirarp
arithmetic incurs round-off errors, there are potenti#iigee ways in which the result dibatorient
could differ from the correct orientation:

— rounding to zero we mis-classify a- or — as a 0;
— perturbed zero  we mis-classify 0 as- or —;
— sign inversion we mis-classify a+ as— or vice-versa.

3.1 Geometry of Float-Orientation

What is the geometry dfoat orient, i.e., which triples of points are classified as left-tumght-turns,

or collinear? The following type of experiment partiallysavers the question: We choose three points
p, g, andr and then computéloat orient for points in the floating-point neighborhood pfand the
remaining pointsg andr. More precisely, leuy be the increment between adjacent floating-point
numbers in the range right gk,; for exampleu, = 2752 if p, = % anduy = 4-2753if py,=2=4. %
Analogously, we definey. We consider

float.orient((px+ Xuy, py+YW),q,r)

Shttp://www.cgal.org/
4http://www.algorithmic-solutions.com/enleda.htm
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Figure 2: The weird geometry of the float-orientation pratic The figure shows the results of
float orient(py -+ Xu, py + Y, q,r) for 0 < X,Y < 255, whereuy = u, = 273 is the increment be-
tween adjacent floating-point numbers in the consideregerafihe result is color codedyellow (red,
blue, resp.) pixels represent collinear (negative, pasitiesp.) orientation. The line througtandr is
shown in black.

for 0 < X,Y < 255. We visualize the resulting 256256 array of signs as a 256256 grid of colored
pixels® A yellow (red, blue) pixel represents collinear (negatpesitive, respectively) orientation. In
the figures in this section we also indicate an approximatiche exact line through andr in black.

Figure 2(a) shows the result of our first experiment: We uselitie defined by the pointg =
(12,12) andr = (24,24) and query it neap = (0.5,0.5). We urge the reader to pause for a moment
and to sketch what he/she expects to see. The authors exgectee a yellow band around the
diagonal with nearly straight boundaries. Even for poinithwuch simple coordinates the geometry
of float.orient is quite weird: the set of yellow points (= the points classifas on the line) does not
resemble a straight line and the sets of red or blue pointsotoesemble half-spaces. We even have
points that change the side of the line, i.e., are lying léthe line and being classified as right of the
line and vice versa.

In Figures 2(b) and (c) we have given our base points coaieinaith more bits of precision by
adding some digits behind the binary point. This enhancesacellation effects in the evaluation of
float_orient and leads to even more striking pictures. In (b), the recbretgioks like a step function at
first sight. Note however, it is not monotone, has yellow rey®nding into it, and red lines extruding
from it. The yellow region (= collinear-region) forms blacklong the line. Strangely enough, these
blocks are separated by blue and red lines. Finally, manytpchange sides. In Figure (c), we have
yellow blocks of varying sizes along the diagonal, thin gelland partly red lines extending into the
blue region (similarly for the red region), red points (tledt lupper corners of the yellow structures
extending into the blue region) deep inside the blue regiad,isolated yellow points almost 100 units
away from the diagonal.

SWe are planning a color reproduction for these images.



Figure 3: We repeat the example from Figure 2(b) and showethi@trfor all three distinct choices for
the pivot; namelyp on the left,g in the middle, and on the right. All figures exhibit sign reversal.

All diagrams in Figure 2 exhibit block structure. We now eplwhy: We focus on one dimension,
i.e., assume we keepfixed and vary onlyX. We evaluatdloat orient((pyx+ Xuy, py+Yu),q,r) for
0 < X < 255, whereuy = uy is the increment between adjacent floating-point numbetisarconsid-
ered range. Recall tharientation(p,q,r) = sign((dx — Px)(ry — Py) — (Gy — Py) (rx — Px)). We incur
round-off errors in the additions/subtractions and alsthénmultiplications. Consider first one of the
differences, sagyx — px. In (a), we havey, = 12 andpx ~ 0.5. Since 12 has four binary digits, we lose
the last four bits oK in the subtraction, in other words, the result of the sulivaa — py is constant
for 2* consecutive values of. Because of rounding to nearest, the intervals of constaluievare
(8,23, [24,39], [40,55) . ... Similarly, the floating-point result af — px is constant for 2 consecutive
values ofX. Because of rounding to nearest, the intervals of cons@nevare[16,47|, 48,69, . ...
Overlaying the two progressions gives intervialg 23], [24,39], [40,47], [48,55], ... and this explains
the structure we see in the rows of (a). We see short blocksngith 8, 16, 24, ...in (a). In (b) and
(c), the situation is somewhat more complicated. It is agrai@ that we have intervals fof, where the
results of the subtractions are constant. However, Sipgedr have more complex coordinates, the
relative shifts of these intervals are different and heneesee narrow and broad features.

Next we show that if all point coordinates differ by a factdrab most two, then the only sign
error is rounding to zero. According to Sterbenz’s theor&teT4], floating-point subtraction of two
floating-point numbera andb is exact if% < 2 <2, so there will be no cancellation in the subtraction
of point coordinates. Cancellation can only occur in thdwation of the final expression of the form
cd—ef. If cd = ef then the floating-point sign evaluation will return zerajc& the double nearest
to cd andef is the same. Itd > ef, the result of computingd in floating-point arithmetic is at least
as large as the result of computirg in floating-point arithmetic. Thus, the floating-point avation
of cd— ef results in a non-negative number. We conclude that the agiyesror is rounding to zero.
Because of this analysis, we choose our point coordinabes & larger range in our examples.

Choiceof aPivot Point:  The orientation predicate is the sign of a three-by-thréerdenant and this
determinant may be evaluated in different waysfldat orient as defined above we use the pgirds
thepivot, i.e., we subtract the row representing the paifitom the other rows and reduce the problem
to the evaluation of a two-by-two determinant. Similarlye wiay choose one of the other points as
the pivot. Figure 3 displays the effect of the different casi of the pivot point on the example of
Figure 2(b). The choice of the pivot makes a difference, lonetheless the geometry remains non-



(b)

Figure 4: Examples of the impact of extended double arittmét/e repeat the example from Fig-
ure 2(b) with different implementations of the orientatiest: (a) We evaluate gy — px)(ry — py) and
(ay — py) (rx — Px) in extended double arithmetic, convert their values to tepbecision, and compare
them. (b) We evaluatesign((ax — px) (ry — Py) — (dy — Py) (rx— Px)) in extended double arithmetic. For
both experiments, we useg = Uy = 2753, the same as for the regular double precision examples in
Figure 2. Note that there are no collinearities (yellow pgjimeported in(b).

trivial and sign reversals happen for all three choices.

Based on floating-point error-bound estimates one can gdadhat the center point w.r.t. tkxe
coordinate (or equivalently thgcoordinate) is the best choice for the pivot. This is impbeted in
the orientation test used by Fortune [For89]. However, theeasary conditional branching already
impairs the performance significantly. If one is willing tevest that time, one could also think of using
an exact implementation scheme based on floating-point fdtghniques, e.g. [FYW96, She97], see
[STO6] for results of an experimental comparison. Furthetails are beyond the scope of this paper.

Extended Double Precision:  Some architectures, for example, Intel Pentium processties IEEE
extended double precision with a 64 bit mantissa in an 80dptesentation. Does this additional
precision help? Not really, as the examples in Figure 4 ssigg@ne might argue that the number of
misclassified points decreases, but the geometfioat.orient remains fractured and exploitable for
failures similar to those that we develop below for the deyirecision arithmetic.

4 Planar Convex Hull Problem

We discuss a simple planar convex hull algorithm that coemtite convex hull incrementally. We

describe the algorithm, state the underlying geometricrapions, give instances that violate the
assumptions when used with floating-point arithmetic, amallff show which disastrous effects these
violations may have on the result of the computation.

4.1 Incremental Convex Hull Algorithm

The incremental algorithm maintains tharrent convex hull CHof the points seen so far. Initially,
CH is formed by choosing three non-collinear pointsSinit then considers the remaining points one
by one. When considering a pointit first determines whetharis outside the current convex hull
polygon. If not,r is discarded. Otherwise, the hull is updated by forming #mgénts fronr to CH



and updatingCH appropriately. The incremental paradigm is used in Andsg&hd79] and other
variants of Graham’s scan [Gra72] and also in the randonirrgeémental algorithm [CS89].

The algorithm maintains the current hull as a circularllist (vo,v1,. .., Vk_1) of its extreme points
in counter-clockwise order. The line segmefisvi.1), 0 <i < k—1 (indices are modul&) are the
edgesof the current hull. Iforientation(v;,Vvi11,r) < 0, we say that seesthe edge(vi,vi;1) and that
the edge(Vi,Vvi11) is visible from r. If orientationvi,vi;11,r) < 0, we say that the edge;,Vvii1) is
weakly visiblefrom r. After initialization, k > 3. The following properties are key to the operation of
the algorithm.

Property A. A pointr is outsideCH iff r can see an edge GH.

Property B. If r is outsideCH, the edges weakly visible fromform a non-empty consecutive sub-
chain; so do the edges that are not weakly visible from

If (Vi,Vit1),...,(Vj—1,Vj) is the subsequence of weakly visible edges, the updatedshablained
by replacing the subsequen@g,,...,vj_1) by r. The subsequende;, ...,v;) is taken in the circular
sense, i.e., if > j then the subsequence(is,...,vk_1,Vo,...,V}). From these properties, we derive
the following algorithm:

INCREMENTAL CONVEX HULL ALGORITHM (Sketch)

Initialize L to a counter-clockwise triangl@, b,c) with a,b,c € S Removea, b,c from S,
for all r € Sdo
if there is an edgevisible fromr then
Compute the sequen¢evi,Viy1), (Vie1,Viz2) ..., (Vj—1,V))) of edges that are weakly vis
ble fromr.
Replace the subsequen@g;1,...,vj_1) in L byr.
end if
end for

To turn the sketch into an algorithm, we provide more infaioraabout the substeps:

1. How does one determine whether there is an edge visibie ffo\We iterate over the edges in
L, checking each edge using the orientation predicate. lfisible edge is found, we discard
Otherwise, we take any one of the visible edges as the gjatige for the next substep.

2. How does one identify the sequen@®;, Vi;+1), (Vi+1,Vi+2) ..., (Vj—1,Vj))? Starting from a vis-
ible edgee, we move counter-clockwise along the boundary until a neakdy-visible edge is
encountered. Similarly, we move clockwise frauntil a non-weakly-visible edge is encoun-
tered.

3. How to update the lidt? We can delete the vertices(w1,...,v;—_1) after all visible edges are
found, as suggested in the above sketch (“the off-lineeggé) or we can delete them concur-
rently with the search for weakly visible edges (“the orelstrategy”). With exact arithmetic,
both strategies work equally well.

We give a detailed implementation in the appendix; it wasluee all experiments. Note that the
algorithm (correctly) reports extreme points only. Poiimtghe interior of boundary edges of the
convex hull are not reported. Duplicate points are repaotag once.

There are four logical ways to negate Properties A and B:

8
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Figure 5:(a) The convex hull illustrating Failure A The pointpy in the lower left corner is left out of

the hull. (b) Schematic view indicating the impossible situation of anpoutside the current hull and
seeing no edge of the hulklies to the left of all sides of the triang(g, q,r).

Failure A;: A point outside the current hull sees no edge of the currelht hu
Failure A,: A point inside the current hull sees an edge of the currert hul
Failure B1: A point outside the current hull sees all edges of the conudix h
Failure B,: A point outside the current hull sees a non-contiguous setlgés.

Failures A and A are equivalent to the negation of Property A. Similarly,lf&@s B and B are
complete for Property B if we take jAinto account. Are all these failures realizable? We nowraffir
this.

4.2 Single-Step Failures

We give instances violating the correctness propertieb@faigorithm. More precisely, we give se-
quences, P2, Ps, - . . Of points such that the first three points form a counteckwise triangle (and
float.orient correctly discovers this) and such that the insertion ofesdeter point leads to a viola-
tion of a correctness property (in the computations witaht orient). We also discuss how we arrived
at the examples. All our examples involve nearly or trulylinebr points; in the view of a standard
rounding-error analysis sufficiently non-collinear psintould not cause any problems. Does this
make our examples unrealistic? We believe not. Many poitst centain nearly collinear points or
truly collinear points, which become nearly collinear byweersion to floating-point representation.

Failure A1: A point outside the current hull seesno edge of the current hull:  Consider the set of
points below. Figure 5(a) shows the computed convex hulerevla point that is clearly extreme was
left out of the hull.

p1 = ( 7.3000000000000194 7.3000000000000167% float.orient(ps, p2, p3s) > 0

p2 = (24.000000000000068 24.000000000000071) float.orient(ps, p2, pa) > 0

ps = (24.00000000000005 24.000000000000053) float.orient(py, ps, p2) > 0

ps = ( 0.500000000000016210.50000000000001243 float.orient(ps, p1, pa) > 0 (??)
Ps = ( 8, 4) Pe :( 4, 9) p7 = (157 27)

ps — (2625 po—(1911)



p1: (17.3000000000000017.300000000000001 (7.3000000000000194.3000000000000167

p2: (24.0000000000000624.000000000000071 (24.0000000000000624.000000000000071
ps: (24.000000000000024.000000000000053 (24.000000000000024.000000000000053
Ps: (0.50000000000000710.5) (0.50000000000000358.5)

(@) (b)

Figure 6: The point$p1, p2, p3) form a counter-clockwise triangle and we are interestetiénctassi-
fication of points(x(pas) + Xu, Y(pa) +YU,) with respect to the edgé®s, p) and(pz, p1) incident to

p1. The extensions of these edges are indistinguishable ipitheres and are drawn as a single black
line. The red points do not “float-see” either one of the ed§@dlure A)). These are the points we
were looking for. The points collinear with one of the edgesacher, those collinear with both edges
are yellow, those classified as seeing one but not the otlyer @@ blue, and those seeing both edges
are green(a) Example starting from points in Figure g) Example that achieves “invariance” with
respect to permutation of the first three points.

What went wrong?Let us look at the first four points. They lie almost on the line x, and
float.orient gives the results shown above. Only the last evaluation @arindicated by “(??)".
Geometrically, these four evaluations say thasees no edge of the triangdlp1, p2, p3). Figure 5(b)
gives a schematic view of this impossible situation. Thetsgs, . .., pg are then correctly identified
as extreme points and are added to the hull. However, thethlgonever recovers from the error made
when consideringy, and the result of the computation differs drastically frdra torrect hull.

We next explain how we arrived at the instance above. lotuitdld us that an example (if it exists
at all) would be a triangle with two almost parallel sides aiiith a query point near the wedge defined
by the two nearly parallel edges. In view of Figure 2 such atawiight be mis-classified with respect
to one of the edges and hence would be unable to see any edge toiangle. So we started with
the points used in Figure 2(b), i.g; ~ (17,17), p2 ~ (24,24) ~ p3, where we movedg; slightly
to the right so as to guarantee that we obtain a counteriwigektriangle. We then probed the edges
incident to py with points p4 in and near the wedge formed by these edges. Figure 6(a)lizesia
the outcomes of the two relevant orientation tests. Eaclppel is a candidate for FailuresA The
example obtained in this way was not completely satisfgcgince some orientation tests on the initial
triangle (p1, p2, p3s) were evaluating to zero.

We perturbed the example further, aided by visualiiogt orient(ps, p2, ps), until we found the
example shown in (b). The final example has the nice propkayall possibldloat orient tests on

10
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Figure 7: Schematic view of Failure;BThe pointp, sees all edges of the triandlp1, p2, p3).

the first three points are correct. So this example is indggeinfrom any conceivable initialization
an algorithm could use to create the first valid triangle. uFég6(b) shows the outcomes of the two
orientations tests for our final example.

Failure A,. A pointinsidethecurrent hull seesan edge of thecurrent hull:  We take any counter-
clockwise triangle and choose a fourth point inside thengia but close to one of the edges. By
Figure 2 there is the chance of sign reversal. A concrete phafollows:

p1 = (27.643564356435643—-21.881188118811881) float.orient(ps, p2, p3s) > 0
P, = (83366336633663366 15544554455445542) float.orient(py, p2, p4) < 0 (??
P3 ( 4.0, 4.0 ) float.orient(pz, p3, pa) > 0
ps = (73415841584158414 8.8613861386138595 float.orient(ps, p1, pa) > 0

The convex hull is correctly initialized top1, p2, ps). The pointp, is inside the current convex
hull, but the algorithm incorrectly believes thaf can see the eddg;, p2) and hence changes the hull
to (p1, pa, P2, P3), @ slightly non-convex polygon.

Failure B;: A point outside the current hull sees all edges of the convex hull:  Intuition told us
that an example (if it exists) would consist of a trianglehaitne angle close ta and hence three
almost parallel sides. Where should one place the querntdaie first placed it in the extension of
the three parallel sides and quite a distance away fromitggte. This did not work. The choice that
worked is to place the point near one of the sides so that idcgee two of the sides and “float-see”
the third. Figure 7 illustrates this choice. A concrete egkmnfiollows:

p1 = ( 2000, 49.200000000000003 float.orient(py, p2, p3) > 0
p = ( 1000, 49.600000000000001 float.orient(p1, p2, pa) <0
ps = (—2333333333333333450.93333333333333 float.orient(pz, ps, pa) < 0
ps = ( 16666666666666669 49.333333333333336 float.orient(ps, p1, pa) < 0(??

The first three points form a counter-clockwise orientegnigie and according titoat orient, the
algorithm believes thap, can see all edges of the triangle. What will our algorithm tafzpends on
the implementation details. If the algorithm first searcfoesan invisible edge, it will search forever
and never terminate. If it deletes points on-line fromb will crash or compute nonsense depending on
the details of the implementation bf

Failure B,: A point outside the current hull sees a non-contiguous set of edges. Consider the
following points:
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(@) (b)

Figure 8: Visualization of the region of interest for themisip; and p, for the Failure B data set(a)
Candidates can be chosen from the red regions and must lve theldlack line.(b) Not all candidates
will give rise to a proper convex hull for the first four poinll invalid candidates are masked out in

light grey.

pp = ( 0.500000000000012430.50000000000000189 float orient(py, pa, ps) < 0 (??)
p. = ( 0.500000000000012430.50000000000000333 float orient(pa, ps, ps) > 0
ps = (24.00000000000005 24.000000000000053 ) float orient(ps, Pz, Ps) < 0
ps = (24.000000000000068 24.000000000000071) float orient(pa, p1, ps) > O

ps = (17.3000000000000Q1 17.300000000000001 )

Inserting the first four points results in the convex quadeital (p1, ps, p3, p2); this is correct. The
last pointps sees only the edg@s, p2) and none of the other three. Howeviboat orient makesps
see also the edges, ps). The subsequences of visible and invisible edges are ntigoons. Since
the falsely classified edgep:, ps) comes first, our algorithm insers at this edge, removes no other
verteX, and returns a polygon that has self-intersectiodssanot simple.

We next discuss how we found the instance illustrating FaiBs. Intuition told us that an example
(if it exists) would consist of a quadrilateral with two naparallel sides and the two other sides
being very short. A query point sitting above the middle oé ai the long sides might be able to
“float-see” the opposite side of the quadrilateral. It wontit see the two short sides. We took the
points in Figure 6(a) as a starting point, denote tlegmgp, .... We setps = 0z, p4 = Oz, Ps = 1,
and decided to look fop; and p, in the vicinity of g4. So we searched for poings nearqs with
float orient(p, p4, ps) < 0 andfloat.orient(ps, p1, p) < O that are also below the exact lines defined
by (ps, ps) and(ps, ps) (the last condition ensures thpg lies above the quadrilateral). Figure 8(a)
visualizes the region of interest for

In addition, the first four points should realize a convex liith our algorithm. In particular,
unwanted classifications froftoat orient as collinear need to be avoided. We mask all forbidden
regions in the visualization and we obtain Figure 8(b), fnehich we were able to select our example
points. We selected two points on one of the vertical redslared below the black line.

Finally, we visualize the region arounm in Figure 9. The error is small fdtoat.orient in this
region, but nevertheless there are several points reglizailure B, of which two are shown in the
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Figure 9: Closeup of the neighborhood of the fifth point treises Failure B it is the lower left one
of the two red pixels, but the other at grid-distari8@, 32) from the first also leads to failure and there
are several more candidates not shown in this limited view.

magnified view.

Further Examples. Besides the four logical possibilities above, we can loakuantitative versions:

1. The point sees only a subset of the edges visible to it. Tdefew points will be deleted frorh.

2. The point sees a superset of the edges visible to it. Tleem&my points will be deleted froin.

4.3 Global Effectsof Failures

By now, we have seen examples that invalidate the correcpreperties of the incremental algorithm
and we have seen the effect of an incorrect orientation tesh Single update step. We next study
global effects.The goal is to refute the myth that the algorithm will alwagsnpute an approximation
of the true convex hull.

The algorithm computes a convex polygon, but misses some of the extreme points:. We have
already seen such an example in Failure YWe can modify this example so that the ratio of the areas
of the true hull and the computed hull becomes arbitraritgda We do as in Failure 4 but move the
fourth point towards infinity. The true convex hull has foutreme points. The algorithm missps.

p. = (0.10000000000000000.10000000000000001 float orient(py, pz, ps) < 0
p. = (0.20000000000000000.20000000000000004 float orient(py, Pz, pa) = 0 (??
ps = (0.79999999999999998.80000000000000004 float orient( py, ps, pa) = 0 (??)
ps = (1.267650600228229.0°°,1.26765060022822910%°)  float orient(ps, py, pa) > O

Thealgorithm crashesor doesnot terminate:  See Failure B.
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Figure 10:(a) The hull constructed after processing poiptso ps. Pointsp; and ps lie close to each
other and are indistinguishable in the upper figure. The nfiagrschematic view below shows that
we have a concave corner@. The pointps sees the edgéps, p2) and(ps, ps), but doesot see the
edge(ps, p1). One of the former edges will be chosen by the algorithm asltaén of edges visible
from ps. Depending on the choice, we obtain the hulls showgb)ror (c). In (b), (P4, ps) is found as
the visible edge, and i(t), (p1, p2) is found. We refer the reader to the text for further expliemast
The figures show the coordinate axes to give the reader a fohneéerence.

Thealgorithm computesa non-convex polygon: We have already given such an example in Failure
A»,. However, this failure is not visible to the naked eye. Wetmgexe examples where non-convexity
is visible to the naked eye. We consider the points:

p1 = (24.000000000000Q5 24.000000000000053
P2 = (24.0, 6.0 )
ps = (5485 6.0 )
ps = (54.85000000000035761.000000000000121
ps = (24.00000000000006824.000000000000071
ps = (6.0, 6.0 ).

After the insertion ofp; to ps, we have the convex hullps, p2, ps, ps). This is correct. Poinps
lies inside the convex hull of the first four points; Bldat orient(ps, p1, ps) < 0. Thusps is inserted
betweenp, and p; and we obtain(p1, pz, P3, P4, Ps). However, this error is not visible yet to the eye,
see Figure 10(a).

The pointpgs sees the edgd9s, ps) and(pz, p2), but does not see the edges, p1). All of this is
correctly determined bfloat orient. Consider now the insertion process for pgmt Depending on
where we start the search for a visible edge, we will eithet five edg€ p4, ps) or the edgg p1, p2).
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In the former case, we insepg betweenp, and ps and obtain the polygon shown in (b). It is visibly
non-convex and has a self-intersection. In the latter casensertpg betweenp; and p, and obtain
the polygon shown in (c). It is visibly non-convex.

Of course, in a deterministic implementation, we will seeyame of the errors, namely (b). This is
because in our sample implementation as given in the apgemeihave. = (py, ps, P, P1), and hence
the search for a visible edge starts at efige ps). In order to produce (c) with our implementation we
replace the poinp; by the pointp, = (24.0,10.0). Thenpe sees(p,, pz3) and identifie p1, p5, p3) as
the chain of visible edges and hence constructs (c).

5 Incremental 3D Delaunay Triangulation Algorithm

The planar convex hull algorithms are simple educationahgles. A more complex, and in practice
quite relevant algorithm is the incremental constructibthe 3d Delaunay triangulation, such as the
one found in GAL. The complex algorithm consists of several phases, whiataalfail in different
ways when executed with floating-point arithmetic. We diéscthe algorithm in more detail and give
a numerical example that causes an infinite loop. It is not Baband-construct such an example, but
we provide an algorithm that easily finds many such examples.

We say that a point is in conflictwith a tetrahedron if u lies in the interior of the circumscribing
sphere ot. A Delaunay triangulation of a set of points is a triangwatin which all tetrahedra verify
the Delaunay propertythey do not conflict with any other point of the triangulatidn the degenerate
case of co-spherical points, the Delaunay triangulatiog nw be unique.

The incremental Delaunay algorithm inserts a new paiirt the current Delaunay triangulation
in two steps: point location and update. The point locatimp seturns a tetrahedron in conflict with
u. The update step removes all tetrahedra in conflict wigind populates the resulting hole with new
tetrahedra connecting with the facets of the hole, thus establishing the Delaurrapgaty for the
resulting triangulation.

One way to implement the point location step is to find a tetdabn that contains (there can
be several in the case thatis on a facet or an edge), which will a fortiori be in conflicttivi.
Several algorithms can be used here, but we focus on a spealfitg algorithm calledemembering
stochastic walkn [DPT02], which traverses the adjacency relations betwewrahedra. The walking
part is usually sped up by another algorithm that quicklygiadetrahedron near the target, using, for
example, either a hierarchy of triangulations or a smaltioam sample of the points. However, we
concentrate in this paper on studying the robustness olitigaimental walking part.

Note that inserting a point that is outside the convex huthef existing triangulation can be per-
formed similarly but uses different predicates. We are had\sng the failures that can be found in
such cases. So in the sequel, we assumetthas inside the convex hull of the previous points. Fur-
thermore, we do not consider the first phase of the increrheoretruction algorithm where an initial
full-dimensional triangulation is constructed, becaumsg phase requires additional predicates.

5.1 Failuresof the Point Location Step

By convention and ensured by the algorithm, all tetrahedlthe triangulation are positively oriented,
i.e.,orientation(p, q,r,s) is positive, where the three-dimensional orientationitedéfined analogously
to the planar orientation test in Equation 1 as:
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Figure 11: Inserting a point near the central edggp, p1) of a Delaunay triangulation made of three
tetrahedra around that central edge.
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The facet(q,r,s) of a tetrahedron opposite is said toseparatethe tetrahedron from a pointif
orientation(u,q,r,s) is negative. The definition extends analogously to the fagpposite of, r, and
s, respectively, replacing the point opposing the facet wiih the orientation predicate.

The point location algorithm starts at an initial tetrateed(p, q,r,s), iterates over its four facets,
and tests if a facet separates the tetrahedron roifrsuch a facet is found, the algorithm moves to the
neighbor tetrahedron and repeats the point location. @ther no such facet is found ands inside
or on the boundary of the tetrahedron, which meanstufiseither in conflict or is equal to one of the
vertices of the tetrahedron. The latter case can be seendiately from the return values of all the
orientation predicates performed with the facets of thaketdron and.

orientation(p, q,r,s) = sign(det

Property E. The point location algorithm terminates with a tetraheditwat contains the query point
u if the triangulation fulfills the Delaunay property amnds inside the convex hull of the triangula-
tion [Ede90].

If we use a corresponding floating-point implementationdor orientation test we observe that Prop-
erty E can fail in two ways: (1) the algorithm does not ternménar (2) the algorithm returns a tetra-
hedron that does not contain(but which may still be in conflict withu and thus not endangers the
update step). We confine ourselves to the first kind of failure

Failure E;: Thepoint location algorithm does not terminate. The termination proof relies on the
acyclicity property of the Delaunay triangulation and tlerect evaluation of the orientation predicate.
We search for a cycle among a small number of tetrahedra. dinathiedra are actually not enough be-
cause of the obvious optimization that the algorithm doddexi the tetrahedron again where it came
from. Three tetrahedra may suffice, wherdies close to the three supporting planes of the three
common facets to trigger numerical inaccuracies in thentait@n test. This suggests to build a trian-
gulation with a central edge surrounded by three tetrahatido locate a point that is approximately
on this edge as illustrated in Figure 11.

We provide a program that creates random examples of thatenahd tests them for Failure .E
At first, the program generates five random points and veriiastheir Delaunay triangulation has
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the desired shape of three tetrahedra grouped around alcedge, and if not it tries another set of
points. Then, the program generates a painear the central edge by computing a point on the edge
using approximate floating-point computations. At the ehd,program locates in the triangulation.

In fact, the point location does not terminate quite oftea tluinconsistent answers of the orientation
predicate in the volume around the edge. We give here an deatafa set that sends the algorithm
into an infinite loop:

po = (0.0924082710790905540.13265657946200804000.20816329990430305

p1 = (0.1837299342587215300.00853603951425796480.39535821959993456
p2 = (0.3827750307886255100.20509048043194156000.01038994374388430
ps = (0.2562518243116542700.63157171780930454000.16190908040221075
ps = (0.1918453251278116100.02815301654642610200.57432720440646179

u = (0.2320386264756953400.42355609485176732000.23985175657768110

6 Non-Solutions

A number of approaches have been suggested to make floaifimgmpplementations work, either of
specific algorithms or in general. We point to promising aaghes in the next section and discuss two
frequently suggested approaches that do not work in thitosec

The first approach is specific to the planar convex hull probla frequently heard reaction to our
paper is that all our examples exploit the fact that the ferat points are nearly collinear. If one starts
with a "roundish” hull, or at least starts with a hull formeain the points of minimal and maximzd
andy- coordinates, the problem will go away. We have two answeetkis suggestion: Firstly, neither
way can cope with the situation that all input points are lyeaollinear, and secondly, the example in
Figure 10 falsifies this suggestion. Observe that we havewntish” hull after the insertion of the
pointsp; to p4 and then the next two insertions lead the algorithm astrhg. ekample can be modified
to start with points of minimal and maxima! coordinates first, which we suggest as a possible course
exercise.

Epsilon-tweaking is another frequently suggested and tesaedy, i.e., instead of comparing ex-
actly with zero, one compares with a small (absolute or ik&ptolerance value epsilon. Epsilon-
tweaking simply activates rounding to zero. In the plandl éwample, this will make it more likely
for points outside the current hull not to see any edges lsecafienforced collinearity and hence at
least failure A will still occur. In our examples of Section 3, the yellow lokin our visualizations of
collinear pixels becomes wider, but its boundary remaingagured as it is in the comparison with
zero, see Figure 12.

Another objection argues that our examples are unrea$sime they contain near collinear point
triples or points very close together (actually the usuativation for Epsilon-tweaking). Of course,
the examples have to look like this, otherwise there wouldbeoroom for rounding errors. But they
are realistic; firstly, practical experience shows it. ety degeneracies, such as collinear point
triples, are on purpose in many data sets, since they refleaiesign intent of a CAD construction
or in architecture. Representing such collinear pointaspn double precision arithmetic and further
transformations lead to rounding errors that turn thegéesiinto close to collinear point triples. And
thirdly, increasingly larger data sets increase the chémbave a bad triple of points just by bad luck,
and a single failure suffices to ruin the computation.
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Figure 12: The effect of epsilon-tweaking: The figures shiogvresult of repeating the experiment of
Figure 2(a), but using an absolute epsilon tolerance vallige-010-1°, i.e., three points are declared
collinear iffloat.orientreturns a value less than or equal to 3in absolute value. The yellow region
of collinearity widens, but its boundary is as fractured afole. Figure (a) shows the boundary in
the direction of the positivg-axis, and Figure (b) shows the boundary in the directiorhefgdositive
x-axis. The figures are color coded: Yellow (red, blue, regmxels represent collinear (negative,
positive, resp.) orientation. The black lines correspanthé linesorientation(p,q,r) = +¢.

7 Conclusion

We provided instances that cause floating-point implentienis of three basic geometric algorithms
to fail. Our instances make the algorithms fail in many défg ways. We showed how to construct
such instances semi-systematically. We think that our papet its companion web page will be useful
for classroom use and that it will alert students and reseascto the intricacies of implementing
geometric algorithms.

We want to reiterate that our goal was not to show that theifspedgorithms discussed in this
paper can fail, but to give illustrative examples for what g@ wrong and why. We could have used
other algorithms and implementations as the starting mdiotr work. After all, it is well-known that
most geometric implementations fail for some inputs. Weehzhosen the specific algorithms because
they are frequently taught and because they are so simglereacan actually discuss in full detail
what goes wrong. In particular, in the incremental convelt algorithm, we kept the search for a
first visible edge as simple as possible. After all, it is lesportant how an initial visible edge is
found. It is only important which of the inspected edges arelated visible byfloat orient. Thus,
with randomized incremental algorithms, that use more istiphted strategies to search for an initial
visible edge, we would get the same kind of failures. Moreotres is not a study on the numerical
stability of planar convex hull algorithms. We see our citnottion in presenting educational examples
for the bigger problem of why and how geometric algorithms &l, studied on a level where all
aspects of the problem can still be discussed and undersiadalss. We hope that the examples will
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raise awareness for the problem and willingness to studydhieus approaches to reliable geometric
computation.

We do not want to leave our readers in despair and therefose glith some pointers to successful
approaches to reliable geometric computation. There arraleapproaches: (1) make sure that the
implementations of geometric predicates always returastirect result or (2) change the algorithm
so that it can cope with the floating-point implementatioit®feometric predicates and still computes
something meaningful or (3) perturb the input so that thetifiggpoint implementation is guaranteed
to produce the correct result on the perturbed input [HS8818505].

The first approach, known as the exact geometric computé&&cC) paradigm, has been adopted
for the software libraries EDA, CGAL and GRE LIBRARY [KN04, FGKT00, MN99, KLPY99]. In
the second approach the interpretation of “meaningful” ¢sueial and difficult problem. For convex
hull and Delaunay triangulations there are more robustrilgns [BDH96, DSB92, For89, GSS90,
JW94, JS06, KW98, LM9OQ]. For further references to theseaahes we refer the reader to [Yap04,
SchO00].
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Appendix: Implementation of the Incremental Algorithm

We describe our €+ reference implementation of our simple incremental athori We give the
details necessary to reproduce our results, for exam@esxact parameter order in the predicate calls,
but we omit details of the startup phase when we search fanttial three non-collinear points and
the circular list data structure. We offer the full workingusce code based ond@L [FGK'00],
all the point data sets, and the images from the analysis boaupanion web pagettp://www.
mpi-inf.mpg.de/ kettner/proj/NonRobust/ for reference.

We use our own plain conventionah€ point type. Worth mentioning are equality comparison
and lexicographic order used to find extreme points amorlgeal points in the startup phase.

struct Point { double x, vy; };

The orientation test returns1 if the pointsp, g, andr make a leftturn, it returns zero if they are
collinear, and it returns-1 if they form a right turn. We implement the orientation tastexplained

above withp as pivot point. Not shown here, but we make sure that alliméeliate results are repre-
sented as 64 bit doubles and not as 80 bit extended doublesi@ht happen, e.g., on Intel platforms.

int orientation( Point p, Point q, Point r) {
return sign((g.x-p.x) * (r.y-p.y) - (q.y-p.y) * (r.-x-p.x));
}

For the initial three non-collinear points we scan the igrduence and maintain its convex hull of up
to two extreme points until we run out of input points or we fanthird extreme point for the convex
hull. From there on we scan the remaining points in our maimvex _hull  function as shown below.
The circular list used in our implementation is self expiagnin its use. We assume a Standard
Template Library (STL) compliant interface and extend ithagirculators, a concept similar to STL
iterators that allow the circular traversal in the list vaittt any past-the-end position using the increment
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and decrement operators. In addition, we assume a funtiiican remove a range in the list specified
by two non-identical circulator positions.

Our mainconvex _hull function shown below has a conventional iterator-baseerfente like
other STL algorithms. It computes the extreme points in tenafockwise order of the 2d convex hull
of the points in the iterator randérst,last) . It uses internally the circular listull to store
the current extreme points and copies this list toréeilt  output iterator at the end of the function.
It also returns the modifiecesult iterator.

tenpl at e <typenanme Forwardlter, t ypenane Outputlter>
Outputlter i ncr_convex_hul | ( Forwardlter first, Forwardlter last,
Outputlter result)
{
t ypedef std:iterator_traits<Forwardlter> Iterator_traits;
typedef typenane lIterator_traits::value_type Point;
t ypedef Circular_list<Point> Hull;
typedef typenane Hull:circulator Circulator;
Hull hull; /' extreme points in counterclockwise (ccw) orientation
/| first the degenerate cases until we have a proper triangle
first = find_first_triangle( first, last, hull);
whi | e ( first I= last) {
Point p = *first;
/1 find visible edge in circular list of vertices of current hull
Circulator c¢_source = hull.circulator_begin();
Circulator c_dest = c_source;
do {
c_source = c_dest++;
i f ( orientation( *c_source, *c_dest, p) < 0) {
/I found visible edge, find ccw tangent
Circulator c_succ = c_dest++;
whi | e ( orientation( *c_succ, *c_dest, p) <= 0)
c_succ = c_dest++;
/1 find cw tangent
Circulator c_pred = c_source--;
whi | e ( orientation( *c_source, *c_pred, p) <= 0)
c_pred = c_source--;
/' c'source is the first point visible, ¢’ succ the last
if ( ++c_pred !'= c_succ)
hull.circular_remove( c_pred, c¢_succ);
hull.insert( ¢_succ, p);
break; // we processed all visible edges
}
} while ( c_source != hull.circulator_begin());
++first;
}
return std::copy( hull.begin(), hull.end(), result);
}
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