N

HAL

open science

Walking in a Triangulation

Olivier Devillers, Sylvain Pion, Monique Teillaud

» To cite this version:

Olivier Devillers, Sylvain Pion, Monique Teillaud. Walking in a Triangulation. Proceedings of the
17th Annual Symposium on Computational Geometry, Jun 2001, Boston, United States. pp.106-114,

10.1145/378583.378643 . inria-00344519

HAL 1d: inria-00344519
https://inria.hal.science/inria-00344519
Submitted on 5 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://inria.hal.science/inria-00344519
https://hal.archives-ouvertes.fr

Walking in a triangulation-

Olivier Devillers

ABSTRACT

Given a triangulation in the plane or a tetrahedralization in
3-space, we investigate the efficiency of locating a point by
walking in the structure with different strategies.

1. INTRODUCTION

Given a triangulation 7 of n vertices in the plane and a point
p, finding the triangle of 7 containing p is a fundamental
problem in computational geometry. Several sophisticated
structures exist to answer such location queries in optimal
O(log n) time [13, 9] but they are often too complicated and
some practitioners may prefer to implement simpler tech-
niques, such as traversing the triangulation using adjacency
relations between triangles. This idea can be used directly
to locate a point in a triangulation from a known starting
point. It is also possible to choose a good starting point in
some clever way [12, 10, 5].

There exists different strategies to find the triangle contain-
ing the query point p from the triangle containing a source
point g. The simplest strategy, that we will call the straight
walk, consists in visiting all triangles along the line segment
gp [11]. A second strategy, the orthogonal walk, visits the
triangles along an isothetic path moving from ¢ to p by
changing one coordinate at a time. Finally, we call wisi-
bility walk the following strategy, popular for the Delaunay
triangulation: from a triangle ¢ not containing p, we move
to the neighbor of ¢ through an edge e if the line supporting
e separates t from p; there may be one or two such edges for
a triangle t, if there are two we may move to any of these
two neighbors. This walk is used for the Delaunay triangu-
lation because in that case it can be proved that it actually
reaches the right triangle [7, 4, 8]. In the case of an arbitrary
triangulation the walk may loop. We consider a variant of

*INRIA - BP 93 - 06902 Sophia Antipolis CEDEX - France.
Firstname.Lastname@sophia.inria.fr. Fax: +33 4 92 38
76 43. http://www-sop.inria.fr/prisme/. This work was
partially supported by the ESPRIT IV LTR Project No.
28155 (GALIA).

SCG'01, June 3-5, 2001, Medford, Massachusetts, USA.

Sylvain Pion

Monique Teillaud

the visibility walk: the stochastic walk in which we decide
that if we can choose between two neighbors of ¢, then the
choice is done at random.

All these walking strategies generalize to higher dimensions.

The purpose of this paper is to study the performances of
the different strategies from both theoretical and practical
points of view, in R*> and R®. Hardly anything is known
on this topic. The only theoretical result states that the
number triangles visited by the straight walk in a Delaunay
triangulation of n random points in the plane, to reach a
point p from a point ¢ is O(|gp|+/n), where |gp| denotes the
distance from ¢ to p [2, 6].

We are interested in counting not only the number of sim-
plices visited by a walk, but also the cost of visiting one
simplex. We consider the robustness issues raised by the
implementation of the different strategies.

Section 2 defines the framework of this study. Then we give
a detailed description of the different strategies (Sections 3,
4 and 5) in dimensions 2 and 3 together with complexity
results. We prove in Section 5.2 that the stochastic walk
actually has a zero probability of looping forever, in any di-
mension. In Section 6 we present some experimental results
on the implementation of the different strategies.

2. FRAMEWORK

Let S be a set of n points in R?,d = 2,3. We will consider
triangulations (simplicial complexes) whose domain covers
the whole convex hull of S. All the simplices of a triangula-
tion are positively oriented.

Given such a triangulation 7 of S, we study different strate-
gies to reach a query point p starting from a given starting
vertex ¢ of 7, walking in 7 by using adjacency relations
between the simplices of 7.

It is not straightforward to decide which strategy is the best
one. The paths followed by the different strategies have
different lengths in terms of number of simplices. The num-
ber of evaluations of predicates (simple geometric questions)
when visiting a given simplex also depends on the strategy,
as well as the nature itself of the predicates involved.

There are theoretical results on the number of triangles vis-
ited by the straight walk in the plane, but nothing is known

about the visibility walk.

The basic predicate in the straight walk (Section 3) and
the visibility walk (Section 5) is the orientation predicate,
which is defined over d + 1 points by the sign of a d dimen-
sional determinant, expressed below for 2 and 3 dimensions

respectively:

When two points have all but one coordinate equal, the ex-
pression of orientation simplifies to a determinant of dimen-
sion d—1. We take advantage of this in the orthogonal walk
(Section 4), which uses mostly comparisons of coordinates
in dimension 2 and more generally lower dimensional ori-
entation predicates, which are faster and of course more ro-
bust than the full dimensional orientation tests, since they
involve lower degree computations. The orthogonal walk
only uses the d dimensional orientation predicate a constant
number of times.

. . . ,31: — Oz Yz — Oz ‘
orientation(o =sign

(o, B,7)=sig (‘ﬁy_ay Yy —ay

Bae—az Yo —az by —ay

orientation(c, B,v, 6)=sign By —oy y—ay by —ay

/Bzfaz 72 — Oz 62 — Oz

The algorithms also use basic operations such as:

e neighbor(t through pq) returns the triangle sharing
edge pq with the triangle t.

e l=vertex of t, 1#q, l#r; chooses 1 as the third
vertex of a triangle whose two vertices are already
known.

(the same notation will be used in the pseudo-code given in
Appendix).

These two operations are similar in 3 dimensions for the
neighbor of a tetrahedron or the fourth vertex of a tetrahe-
dron. They need a constant number of pointers access or
comparisons; the exact number depends on the internal rep-
resentation of the triangulation, which may be any variant
of the DCEL or may be based on simplices or vertices as in
CcGAL [1].

3. STRAIGHT WALK

3.1 2dimensions

This method consists in traversing all the triangles of the tri-
angulation 7 that are intersected by the line segment orig-
inating from a given vertex ¢ of 7 and ending at the query
point p. This is performed using the adjacency relations
between the triangles.

More precisely, the algorithm first performs an initialization
step: from one triangle incident to ¢ we turn around ¢ until
a triangle intersected by the ray g¢p is found. During this
initialization step, one orientation test is needed for each
visited triangle and the number of visited triangles is at
most the degree of ¢, thus at most n triangles.

Once the initialization step is completed, the straight walk
really starts. At a given step of the walk, we traverse some

triangle ¢, and the ray ¢p goes out of ¢ through edge e. By
testing on which side of e lies p, we decide if ¢ contains p
or if the walk must go on. In the later case, the walk goes
to the neighbor of ¢ through e and the new vertex of that
triangle is located with respect to the line ¢gp to decide by
which edge of that triangle the ray gp goes out (see Figure 1-
left). Therefore, the number of orientation tests performed
for each visited triangle is exactly 2. The straight walk can-
not visit the same triangle twice, thus the worst case length
of a straight walk is at most the number of triangles of the
triangulation which is less than 2n.

Of course, visiting a linear number of triangles seems big,
but the general idea of the walking strategy is that in prac-
tice you visit less triangles in a reasonable triangulation,
although the 2n + O(1) bound is tight, as shown by Fig-
ure 1-right. In the special case of Delaunay of points evenly
distributed, it can be proven that the number of visited tri-
angles during the walk is O(|pg|\/n) [2].

We give a pseudo-code for a detailed description of the walk
(see Appendix).

3.2 3 dimensions
The principle of the walk is similar in higher dimension al-
though a little bit more intricate.

Given vertex g of 7 and a query point p, the initialization
step consists in finding the tetrahedron incident to ¢ in-
tersected by the ray ¢p, starting from another tetrahedron
incident to ¢g. This problem is in fact the 2 dimensional
problem of locating the ray ¢p in the set of rays having ¢
as origin and triangulated by the tetrahedra incident to ¢ in
7. This initialization step is thus solved by the 2D Straight
Walk algorithm. Notice that the orientation test for three
rays emanating from ¢ is the usual orientation test in three
dimensions. The results of the previous paragraph on the
number of visited triangles or the number of predicates per
triangle apply here.

After this initialization, the main part of the walk begins.
At a given step, we know that the ray goes out of some
tetrahedron ¢ by a facet e, then we must decide if the walk
terminates in ¢ by looking on which side of e lies p (see
Figure 2). If the walk continues in the neighbor of ¢ through
e, then the ray gp goes out of that neighbor by a facet which
is determined by two orientation tests involving ¢, p, the new
vertex and a vertex of e.

Thus the number of orientation tests per visited tetrahedron
is exactly 3. As in two dimensions, the number of visited
tetrahedra is clearly bounded by the number of tetrahedra of
T since a tetrahedron cannot be visited twice. This number
is quadratic in the worst case and a quadratic bound may
be reached as shown by the example of Figure 3.

3.3 Degenerate cases

The above algorithms do not handle degenerate cases. When
the ray ¢p goes exactly through a vertex of the triangulation,
or through an edge in 3D, the next cell traversed by the ray
is not a neighbor of the previous one. In such a case, the
algorithm must perform a kind of initialization step to be
able to continue the walk.

Figure 1: The straight walk.

Figure 2: Straight walk in 3 dimensions (main loop).

Figure 3: A quadratic example for the straight walk in three dimensions.

Actually coding a robust version of the straight walk which
handles degenerate cases yields to an intricate code.

4. ORTHOGONAL WALK

The cost of evaluating an orientation predicate increases
with the dimension, thus an idea to improve the efficiency
of the algorithm consists in decomposing the walk in pieces
parallel to the coordinate axis and to get an orthogonal walk
(see Figure 4 left).

If the ray pq is parallel to a coordinate axes, then the ori-
entation tests of the straight walk involving both p and ¢
become simpler as noticed in Section 2. This is the case of
the orientation tests involved in the initialization phase and
of the tests to decide by which edge of the triangle (resp.
facet of the tetrahedron) the ray goes out. It remains one
test per triangle (resp. tetrahedron) to decide if the walk
ends in that tetrahedron; this test cannot be simplified in
general, but a cheaper sufficient condition for the ray to con-
tinue can be evaluated first: if p is further than the triangle
bounding box in the axis direction, then the walk continues
and only otherwise the orientation test is performed.

In the worst case, the orthogonal walk can visit the same
simplex at most d times, thus the worst case length of an
orthogonal walk is trivially linear in the number of simplices
of the triangulation. A bound of 4n + O(1) can be reached
in 2 dimensions (Figure 4 right). The orthogonal walk can
be quadratic in 3 dimensions as shown by the example of
Figure 3.

For the special case of the Delaunay triangulation of random
points in the plane, the number of visited triangles during
the walk is O((|pa| + |ag|)v/n) [2]. In the orthogonal walk,
the dimension of the orientation tests decreases, compared
to the straight walk, but the number of visited triangles in-
creases. This increase can be estimated, in the case of a uni-
form distribution, by the average ratio between the length
of the straight and the orthogonal walks over all directions,
which is the average, on the unit sphere in d dimensions, of
the sum of the absolute values of the coordinates, which can
be shown to be 4/7 = 1.27 in 2 dimensions, and 3/2 in 3
dimensions.

We give in Appendix a detailed pseudo code description of
the algorithm in two dimensions. The two dimensional ori-
entation tests are replaced by comparison of coordinates de-
noted by below, above, left or right in the pseudo code.

5. VISIBILITY AND STOCHASTIC WALKS
5.1 Description

The vistbility walk is extremely simple. Let us describe it in
2D. The 3D case is similar, triangles just have to be replaced
by tetrahedra and edges by facets. The algorithm starts
from a triangle incident to the starting vertex q. Then, for
each visited triangle ¢, the first edge e is tested. If the line
supporting e separates t from p, which reduces to a single
orientation test, then the next visited triangle is the neigh-
bor of ¢t through e. Otherwise, the second edge is tested in
the same way. In case the test for the second edge also fails,
then the third edge is tested. The failure of this third test
means that the goal has been reached and that ¢ contains p.

Figure 5: A cycle for the visibility walk.

In addition to its simplicity, the advantage of this walk is
that it does not have to deal with degeneracies. If, for an
edge e, p lies on the supporting line of e, then the method
will look at the next edge. At least one of the edges of each
triangle is such that its supporting line strictly separates the
triangle from the query point. The only degeneracies to be
considered, namely the different cases when p lies on the
boundary of a triangle, occur at the end of the walk, when
the goal is reached.

The visibility walk is not completely specified: it depends
on the implementation of the triangulation, since there is
no intrinsic numbering of the edges of a triangle, no intrin-
sic definition of the “first” edge. The straight walk can be
seen as a possible particular execution of the visibility walk
algorithm. This is not the case for the orthogonal walk.

The visibility walk in a Delaunay triangulation always ter-
minates, in any dimension [4]. Unfortunately, for non Delau-
nay triangulations, the visibility walk may fall into a cycle,
even in 2D, as illustrated by the famous example of Fig-
ure 5. Non-Delaunay triangulations (e.g. the constrained
Delaunay triangulation) are also interesting in practice and
they cannot be eluded. Therefore, to avoid infinite loops
into cycles of non-Delaunay triangulations, a little bit of
randomness can be introduced into the algorithm. As al-
ready noticed, the visibility walk depends on the numbering
of the edges of the triangles. Using this degree of freedom,
we may choose between different possible visibility walks.

The stochastic walk is obtained by replacing the access to
the first edge of ¢ by the access to a random edge of t. This
ensures that, if the walk enters a cycle of the triangulation,
it cannot loop into this cycle forever. The termination of the
stochastic walk in any kind of triangulation will be proven
in the next section.

The stochastic walk performs 1 to 3 orientation tests in each
visited triangle. More precisely, suppose a triangle has only
one edge whose supporting line separates it from p, then,
this edge is chosen as the first one with probability 1/3,
and only one test is needed, the previous one is chosen with
probability 1/3, and two tests are performed, or the next
one is chosen, and three tests are performed. This amounts

Figure 4: The orthogonal walk.

to1/3-141/3-2+41/3-3 = 2. In the case when the triangle
has two edges whose supporting lines separate it from p, the
number of tests is 2/3-1+1/3-2 =4/3. Thus, the average
number of orientation tests is less than 2, whereas it is 2 for
the straight walk. Similar computations show that in 3D,
the average number of tests is less than 2.5, whereas it is 3
for the straight walk.

A variant of the stochastic walk is the remembering stochas-
tic walk whose pseudo-code is given in Appendix. In a given
triangle, the visibility (stochastic or not) walk can test the
edge where it comes from, and thus performs an orientation
test that was already performed in the previous visited tri-
angle. This can be avoided by remembering, for each visited
triangle, the edge that was just crossed by the walk. Then,
before testing an edge, it compares it with the remembered
edge. This comparison consists of a constant number of
comparison of pointers, as mentioned in Section 2. Com-
putations analogous to the ones done above for the variant
without memory lead to an average number of orientation
tests less than 1.5 in two dimensions and less than 3 in three
dimensions. It is not clear whether remembering the edge
and performing the comparisons for each triangle is less ex-
pensive in practice than a useless orientation test in some
triangles. The two variants will be compared experimentally
in Section 6.

5.2 Expected validity of the stochastic walk

Let us analyze the algorithm in dimension d.

Given p, we define the directed graph G, from 7, as follows.
The nodes of G are the simplices of 7 (we will use the same
notation for a simplex and its associated node), and there is
an oriented arc from node t to node t' if the corresponding
simplices are adjacent through a facet e, in such a way that
t' and p lie on the same side of e (see Figure 6).

LEMMA 1. Given a facet e shared by simplices t and t'

AL LY
NP
—_ »\./,

Figure 6: The directed graph G of neighborhood re-
lationships towards p.

and such that the arc of G is oriented from node t to mode
t', the probability that a stochastic path reaching t goes to t'

s greater than dl?.

Proor. If the path goes through ¢, then a facet of ¢ hav-
ing p on the other side must be chosen to continue the sto-
chastic path. e may be chosen first, then the stochastic
path uses it since p is on the good side of e; this happens
with probability dl? (the d + 1 facets have equal probabil-
ity). If another facet is chosen first, then p may be on the
wrong side and e can be chosen after; this happens with
a probability depending of the geometric configuration, the
probability is just lower bounded by zero to get the result
of the lemma. [

THEOREM 2. Given a triangulation T and a query point
p in dimension d, the stochastic walk terminates with prob-
ability 1.

ProorF. The out-degree of a node of G is between 1 and
d. As noticed before, the graph G may have cycles, but we
will prove that the stochastic walk cannot cycle forever and
will necessarily reach the only sink of the graph G, i.e. the
simplex S containing p.

Let us label all the nodes of G by their distances to S in
G, where the distance between a node to S is the minimum
number of arcs to be followed to reach S from this node (by
the definition of G, there is always a path from any node to
S). Then by construction, for any node t of label k, there
exists an arc of G from ¢ to at least one node of label k£ — 1.
Thus if ¢ is visited, then a node of label k — 1 is visited with
probability higher than z1; by Lemma 1.

Assume that a stochastic walk visits N; nodes of label k.

Then Ni_1 > ;VT’“l and by an immediate induction: Nj <

(d + 1)*No. This relation clearly proves that No # 0. So,
the walk terminates and reaches S, which is the only node
of label 0. [

Additionally, this proof yields an exponential bound on the
length of the stochastic walk:

A A A+1
Cost <Y Ny <> (d+1)* < %
k=0 k=0

(No = 1) where A is the maximal length (in terms of number
of arcs) of a shortest path in G from any node to S. Since
the straight walk is a particular case of visibility walk, A is
bounded by the longest straight walk in the triangulation,
that is A = O(n) in two dimensions and A = O(n?) in three
dimensions.

Unfortunately, for very special configurations of points, this
exponential length of the stochastic walk can actually be
reached.

The triangulation depicted on Figure 7 consists of one cen-
tral triangle containing the point p to be located and k lay-
ers of cycles around it. These cycles go through a rectangle
formed by k x k* small squares.

Any triangle having two outgoing arcs in graph G, in this
example, is as shown in Figure 7: the ingoing edge e is chosen
first with probability 1/3, then the walk must cross the next
edge e, which forces the walk to follow a cycle. e’ can also
be chosen first with probability 1/3. So, the walk stays in
the cycle with probability 2/3. The edge e" allows the walk
to leave the cycle. It is crossed only when it is chosen first,
which occurs with probability 1/3.

Let a stochastic walk start in triangle ¢ defined in the figure.
It reaches p through edge « if, for each visited triangle, it
chooses the edge out of the cycle, which occurs with prob-
ability (1/3)*. It reaches p through edge 3 if it chooses i
times the edge of the cycle, then it chooses the edge in the
cycle, then it chooses k — i times the edge out of the cycle.
This occurs with probability k.(2/3).(1/3)*. Analogously, it
crosses edge v with probability (*31).(2/3).(1/3)F.

Thus, the walk enters the k x k” rectangle by one of the
k edges § with probability 1 — (1/3)* — £.(2/3).(1/3)* —
(47) (2/3)%.(1/3)".

Let us consider a path entering the rectangle through 6.
Giving a tight bound on the probability that such a path
goes out of the rectangle through one edge of ¢ is quite com-
plicated. Let us use a loose bound equal to (1/2)¥ 1. If the
path does not go out through &, then it necessarily reaches
its starting triangle ¢, and using the previous bound, this
occurs with probability greater than 1 — (1/2)*~1,
Summarizing, a path starting at ¢ reaches ¢ again with prob-
ability greater than

1 21 22 1 1
(-5 455 0 ge) (1)

2k% + 8k + 9 1
2 1- 3k+2 T gk—1"

So, the expected number of times that ¢ is visited is greater

o 2k248k+9 1) _ 1
than Ej:o (1 — Tgbfr — sE=T _1) = Wy, T The
3k+2 ok—1
shortest cycle from ¢ to ¢ is obtained by traversing the tri-
angles having a vertex on the convex hull of the points. Its
length is k* + 2k + 6. So, we get an expected length for
k2 42k46 > gk+1
2k2+8k+9+ 1 = .
3kF2 ok—1

Moreover, this triangulation has (k+1)(k>+1)+2(k+1) <
(k +1)® vertices. Thus, we proved the following result:

stochastic walk greater than

THEOREM 3. There exists a triangulation T of n points
in dimension 2 and a query point p, such that the expected
length of the stochastic walk is greater than 2V,

6. EXPERIMENTAL RESULTS

We experimented different walking strategies for locating
points in a Delaunay triangulation of 100,000 or 1,000,000
points evenly distributed in a square or in a cube (5 different
sets in each case) and on a set of 145,300 points in three-
dimensional space belonging to the boundary of a 3D object
(these points have been measured by a 3D laser scanner on
a dental prothesis (courtesy of KREON Industrie). We then
locate 100,000 random points to average the location time.
The walk was performed in the standard way, starting the
walk at some known vertex of the triangulation, or as a tool
in the Delaunay hierarchy [5] which walks in a hierarchy of
more and more refined samples; using this method, locating
a query involves few (O(logn)) walks visiting a relatively
small number of triangles.

The algorithms are coded in C+-+. The orientation tests
use the usual floating point arithmetic. Robustness issues
due to degenerate cases or rounded computations are solved
by perturbation and static filtering, which do not have a
significant influence on the running time for these random
data.

For each strategy we count the number of visited triangles or
tetrahedra (A), the number of full dimensional orientation
predicates (forient) and the running time (benchmarks on a
Sun Ultral0 440MHz).

The four strategies presented above are compared in Table 1.
In fact, since the tests were performed on Delaunay trian-
gulations, the visibility walk (without randomness) does not
cycle.

Walk Hierarchy
A | Horient | us || A | Horient | us
per point per point
100,000 random points
Stochastic 2D 356 611 | 229 || 23 49 | 41
Visibility 2D 360 617 | 216 || 23 44 | 39
Rem. stoch. 2D 356 611 | 242 23 49 42
Rem. visib. 2D 360 472 | 211 || 23 35| 39
Straight 2D 332 664 | 240 20 42 43
Orthogonal 2D 424 3| 212 | 27 9| 43
Stochastic 3D 167 325 | 183 || 30 69 | 65
Visibility 3D 184 381 | 187 || 30 74| 65
Rem. stoch. 3D 167 261 | 176 || 30 56 | 64
Rem. visib. 3D 184 301 | 178 || 30 59 | 66
Straight 3D 157 466 | 204 || 25 75 | 70
Orthogonal 3D 198 11 | 206 || 42 21 | 86
1,000,000 random points
Stochastic 2D 1102 1880 | 793 || 29 61 | 48
Visibility 2D 1115 1897 | 771 || 29 56 | 47
Rem. stoch. 2D || 1102 1880 | 843 29 61 49
Rem. visib. 2D 1115 1454 | 759 28 42 45
Straight 2D 1025 2051 | 825 || 24 52 | 50
Orthogonal 2D 1319 3736 | 33 11 | 50
Stochastic 3D 335 641 | 402 || 35 80 | 82
Visibility 3D 359 736 | 420 || 36 87 | 81
Rem. stoch. 3D 335 516 | 392 || 35 65 | 81
Rem. visib. 3D 359 581 | 403 || 35 67 | 81
Straight 3D 309 919 | 438 || 31 91 | 86
Orthogonal 3D 417 12 | 452 48 21 | 109
dental prothesis (145,300 points)

Stochastic 3D 136 281 | 135 || 41 95 74
Visibility 3D 155 329 | 137 44 104 74
Rem. stoch. 3D 136 225 | 132 || 42 78 72
Rem. visib. 3D 155 261 | 130 44 82 72
Straight 3D 125 363 | 146 || 39 111 | 80
Orthogonal 3D 142 42 | 138 80 42 | 111

Table 1: Experimental results

Soeo_ie
next i T~

. ‘Ya
b TAs probability 2/3 NN
v ~_ N T
. ~_ - 7 ili
) B S e T probability 1/3
< > “~ Ve A
\ S // NS S~ X
3
K2\ s 3 N T~ //\
3
VALK > < T~ o
\ N / \\ RS - P
\ AN / N RN ~ -
\ \v/ N ~ \\\
\ \\ //\ W\\ T~
\ AN / \\ \\\
\ N/ RS T~
Nz N X =~
\ N I = - S \\\
\ N - —T=S8 e
. N =<8 > ="
. X' S o2
\ 4, e T
\ A P
\ o _ - s o7
\ / / p.\ _ - Z it
\ w s EST - s
/ /s ~ =
\ P - -
\\ / ////// -7
// //
1, -
\
\ 17,/ ///
e -7
-y L=
vz~

Figure 7: The stochastic walk may have exponential length.

The running times of all strategies are of the same order.

The straight walk has the best performances in terms of
visited simplices, both theoretically and experimentally, but
it has the worst cost per triangle. Another drawback of the
straight walk is the management of degenerate cases which
make the code quite intricate, especially in three dimensions.

For walks of large length in terms of visited simplices, the
orthogonal walk is faster. In fact it will be the right choice
when using expensive arithmetic (e.g. multi-precision exact
arithmetic).

7. CONCLUSION AND OPEN PROBLEMS

We presented four strategies for walking in a triangulation
to locate a point: the straight walk, the visibility walk with
or without memory, and the orthogonal walk. We studied
them from both theoretical and practical points of view.

The best method to implement is the stochastic visibility
walk, since it performs experimentally a little bit better than
the straight and the orthogonal walks, and since it is easier
to code and does not encounter any problem with degenerate
cases. The orthogonal walk can also be considered when
an expensive arithmetic is used or when a large number of
simplices must be traversed.

Open questions remain about the stochastic visibility walk.
We showed that it always terminates, but it can have an ex-
ponential complexity on cases that are very pathologic, both
in the choice of the triangulation and in the choice of the
query point. It might be possible to get results under some
hypotheses on the triangulation and on the query point: Is
the expected complexity in the case of a Delaunay trian-

gulation of n random points in dimension d equal to ¢/n?
Would it be possible to get an amortized complexity for the
successive locations of n points incrementally inserted into
a Delaunay triangulation?

8.
(1]

2]

(3]

[4]

[5

—_—

[6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

Jean-Daniel Boissonnat, Olivier Devillers, Monique
Teillaud, and Mariette Yvinec. Triangulations in
CGAL. In Proc. 16th Annu. ACM Sympos. Comput.
Geom., pages 11-18, 2000.

P. Bose and L. Devroye. Intersections with random
geometric objects. Technical report, School of
Computer Science, McGill University, 1995.
Manuscript.

M. de Berg, M. van Kreveld, R. van Oostrum, and
M. Overmars. Simple traversal of a subdivision
without extra storage. International Journal on
Geographical Information Science, 11:359-373, 1997.

L. De Floriani, B. Falcidieno, G. Nagy, and
C. Pienovi. On sorting triangles in a Delaunay
tessellation. Algorithmica, 6:522-532, 1991.

Olivier Devillers. Improved incremental randomized
Delaunay triangulation. In Proc. 14th Annu. ACM
Sympos. Comput. Geom., pages 106-115, 1998.

Luc Devroye, Ernst Peter Miicke, and Binhai Zhu. A
note on point location in Delaunay triangulations of
random points. Algorithmica, 22:477-482, 1998.

H. Edelsbrunner. An acyclicity theorem for cell
complexes in d dimensions. Combinatorica,
10(3):251-260, 1990.

Paul-Louis George and Houman Borouchaki.
Triangulation de Delaunay et maillage. Applications
auz éléments finis. Hermes, Paris, France, 1997.

D. G. Kirkpatrick. Optimal search in planar
subdivisions. STAM J. Comput., 12(1):28-35, 1983.

C. Lemaire. Triangulation de Delaunay et arbres
multidimensionnels. Thése de doctorat en sciences,
Ecole des Mines de St-Etienne, France, 1997.

K. Mehlhorn and S. Ndher. LEDA: A Platform for

Combinatorial and Geometric Computing. Cambridge

University Press, Cambridge, UK, 1999.

Ernst P. Miicke, Isaac Saias, and Binhai Zhu. Fast
randomized point location without preprocessing in
two- and three-dimensional Delaunay triangulations.
In Proc. 12th Annu. ACM Sympos. Comput. Geom.,
pages 274-283, 1996.

F. P. Preparata. Planar point location revisited.
Internat. J. Found. Comput. Sci., 1(1):71-86, 1990.

Appendix: pseudo-code

Algorithm 2D Straight Walk(q,p)
// traverses the triangulation 7T,
//following the line segment from q to p.
// t=gqrl is a triangle of 7.
if orientation(rqp)<0 while orientation(lgp)<0 {
r=1;
t=neighbor(t through ql);
l=vertex of t, l#q, l#r; }
else do {
1=r;
t=neighbor(t through qr);
r=vertex of t, r#q, r#l;
} while orientation(rqp)<0;
// end of initialization step
// now gp has v on its right and | on its left.
while orientation(prl)<0 {
t = neighbor(t through rl);
s = vertex of t, s#r, s#l;
if orientation(sqp)<0 r=s; else 1l=s; }
// t contains p.

Algorithm 38D Straight Walk(q,p)
// traverses the triangulation 7T,
//following the line segment from q to p
// t = uvwq is a tetrahedron of T .
if orientation(vugp)>0 while orientation(wuqp)>0 {
V=W;
t=neighbor(t through quw);
w=vertex of t, w#u, w#v, w#q; }
else do {
W=V;
t=neighbor(t through quv);
v=vertex of t, v#u, v#w, v#q;
} while orientation(vugp)<0;
// now v and w lie on opposite sides of plane ugp,

// vuqp is positively oriented and wugp negatively.

while orientation(vwgp)>0 {
t = neighbor(t through qvw);
s = vertex of t, s#vV, s#w, s#q;
if orientation(sugp)>0 v=s; else w=s; }
u = vertex of t, s#v, s#wW, s#q;
// end of initialization step,
// qp intersects triangle uvw,
// wvgp, vuqp and uwqp are positively oriented.
while orientation(uwvp)>0 {
t = neighbor(t through uvw);
s = vertex of t, s#u, s#v, s#u;
if orientation(usqgp)>0
// qp does not intersect triangle
if orientation(vsqgp)>0
// qp intersects triangle vsw,

u=s;
else
// qp intersects triangle usv,
w=s;
else

usw,

// qp does not intersect triangle usv,

if orientation(wsqgp)>0
// qp intersects triangle usw,
v=s;
else
// qp intersects triangle vsw,
u=s;
// t contains p.

Algorithm 2D Orthogonal Walk(q,p)
// traverses the triangulation 7T,
//using the orthogonal walk from q to p,
// t=gqrl is a triangle of 7.
// wlog, we assume p is above and to the right of q.
a=point (xp,yq);
if r below q while 1 below q {
r=1; t=neigbor(t through ql); l=vertex of t#qr;}
else do {
1=r; t=neigbor(t through qr); r=vertex of t#ql;
} while r above q;
// q has T below and | above.
while ((r and 1 at left of «) or orientation(arl)<0){
t = neighbor(t through rl);
s = vertex of t#rl;
if s above q 1l=s; else r=s; }
// a inside t
1 = vertex of t#rl;
r = vertex of t#rl;
// p has r at right and | at left.
while ((r and 1 below p) or orientation(prl)<0) {
t = neighbor(t through rl);
s = vertex of t#rl;
if s at left of p l=s; else r=s;}
// t contains p.

Algorithm Remembering Stochastic Walk(q,p)
// traverses the triangulation 7T,
//using the remembering stochastic walk
// from q to p. t=gqrl is a triangle of 7.
previous=t; end=false;
while (not end) {
e = random edge of t;
if (p not neighbor of previous through e)
and (p on the other side of e)
{previous=t;t=neighbor(t through e);}
else {
e = next edge of t;
if (p not neighbor of previous through e)
and (p on the other side of e)
{previous=t;t=neighbor(t through e);}
else {
e = next edge of t;
if (p not neighbor of previous through e)
and (p on the other side of e)
{previous=t;t=neighbor(t through e);}
else end=true;

}
}
// t contains p.

