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Abstract:

In this paper, we study the problem of finding peers matching a given avail-
ability pattern in a peer-to-peer (P2P) system. We first prove the existence of
such patterns in a new trace of the eDonkey network, containing the sessions of
14M peers over 27 days. We also show that, using only 7 days of history, a sim-
ple predictor can select predictable peers and successfully predict their online
periods for the next week. Then, motivated by practical examples, we specify
two formal problems of availability matching that arise in real applications: dis-
connection matching, where peers look for partners expected to disconnect at
the same time, and presence matching, where peers look for partners expected
to be online simultaneously in the future. As a scalable and inexpensive so-
lution, we propose to use epidemic protocols for topology management, such
as T-Man; we provide corresponding metrics for both matching problems. Fi-
nally, we evaluated this solution by simulating two P2P applications over our
real trace: task scheduling and file storage. Simulations showed that our sim-
ple solution provided good partners fast enough to match the needs of both
applications, and that consequently, these applications performed as efficiently
at a much lower cost. We believe that this work will be useful for many P2P
applications for which it has been shown that choosing good partners, based on
their availability, drastically improves their efficiency.
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Comment trouver de bons partenaires dans un
réseau pair-a-pair en fonction de sa disponibilité

Résumé :

Dans ce papier, nous étudions le problématique de trouver des partenaires
suivant un critére de disponibilité dans un réseau pair-a-pair. Nous commencgons
par montrer l'existence de régularités de disponibilité dans une nouvelle trace
du réseau eDonkey, contenant les sessions de 14M de pairs sur 27 jours. Nous
montrons aussi que, en utilisant 7 jours d’historique, une prédicteur simple
peut sélectionner des pairs prévisibles et prédire avec succés leurs périodes de
disponibilité sur la semaine suivante. Ensuite, nous spécifions deux problémes
formels de sélection en fonction de la disponibilité, qui se présentent dans des
applications réelles: la sélection pour la déconnexion, qui recherche les pairs qui
se déconnecteront probablement en méme temps, et la sélection pour la présence,
qui recherche les pairs qui seront probablement présents en méme temps dans
le futur. Comme solution peu cotiteuse et passant & 1’échelle, nous proposons
d’utiliser des protocoles épidémiques de gestion de topologie, tels que T-Man;
nous fournissons les métriques correspondant & nos deux problémes. Finalement,
nous avons évalué cette solution en simulant deux applications pair-a-pair sur
notre trace réelle. Les simulations ont montré que notre simple solution fournit
de bons partenaires suffisamment vite pour les besoins des deux applications, et
qu’en conséquence, ces applications fonctionnent aussi efficacement & un cofit
bien moindre. Nous pensons que ce travail sera utile pour toutes les applications
pair-a-pair pour lesquels il a été montré que le choix de bons partenaires peut
augmenter considérablement les performances.

Mots-clés : disponibilité,pair-a-pair,épidémique,protocole
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Figure 1: (a): Diurnal patterns are obviously visible on the global system avail-
ability. (b) The auto-correlation on the sessions shows that the best pattern
size is one day, followed by one week. (c) Whereas availability determines the
prediction with random bitmaps, daily patterns improve the prediction with
real bitmaps (e.g. for 60% of peers (x=0.4), 50% of predictions (y=0.5) are
successful, but only 25% with random bitmaps).

1 Introduction

Churn is one of the most critical characteristics of peer-to-peer (P2P) networks,
as the permanent flow of peer connections and disconnections can seriously
hamper the efficiency of applications [0]. Fortunately, it has been shown that,
for many peers, these events globally obey some availability patterns ([18}, 19, 2]),
and so, can be predicted from the uptime history of those peers [15].

To take advantage of these predictions, applications need to be able to dy-
namically find good partners for peers, according to these availability patterns,
even in large-scale unstructured networks. The intrinsic constitution of those
networks makes pure random matching techniques to be time-inefficient facing
churn.

In this paper, we study a generic technique to discover such partners, and
apply it for two particular matching problems: disconnection matching , where
peers look for partners expected to disconnect at the same time, and presence
matching, where peers look for partners expected to be online simultaneously
in the future. These problems are specified in Section Bl We then explain that
T-Man [12], a standard epidemic algorithm for topology management, is a good
candidate to solve these problems. However, in order to converge to the desired
state or topology (here matched peers), T-Man needs an accurate metric to
compute the distance between peers. In Section Hl, we describe how T-Man
works and propose a particular metric for each of our matching problems.

To evaluate the efficiency of our proposal, we simulate an application for each
matching problem: an application of task scheduling, where tasks of multiple re-

RR n°® 6795



4 Le Blond € Le Fessant & Le Merrer

mote jobs are started by all the peers in the network (disconnection matching),
and an application of P2P file-system, where peers replicate files on other peers
to have them highly available (presence matching). To run our simulations on a
realistic workload, we collected a new trace of peer availability on the eDonkey
file-sharing network. With the connections and disconnection of 14M peers over
27 days, this trace is the largest available workload, concerning peers’ availabil-
ity. In Section Bl we show that peers in this trace exhibit availability patterns,
and, using a simple 7-day predictor, that it is possible to select predictable peers
and successfully predict their behavior over the following week.

Our simulation results, in Section B, show that our T-Man based solution is
able to provide good partners to all peers, for both applications. Using avail-
ability patterns, both applications are able to keep the same performance, while
consuming 30% less resources, compared to a random selection of partners.
Moreover, T-Man is scalable and inexpensive, making the solution usable for
any application and network size.

We believe that many P2P systems and applications can benefit from this
work, as a lot of availability-aware applications have been proposed in the lit-
erature [3, B, 17, B, 22]. Close to our work, [9] shows that strategies based on
the longest current uptime are more efficient than uptime-agnostic strategies
for replica placement; [T5] introduces sophisticated availability predictors and
shows that they can be very successful. However, to the best of our knowledge,
this paper is the first to deal with the problem of finding the best partners
according to availability patterns in a large-scale network. Moreover, previous
results are often computed on synthetic traces or small traces of P2P networks.

2 Availability Patterns in eDonkey

In this section, we describe the characteristics of the trace we collected for the
needs of this study. With a few thousand peers online at the same time, most
other traces collected on P2P systems [I8, [I0, 2] lack massive connection and
disconnection trends, for the study of availability patterns on a large scale.

2.1 The eDonkey Trace

In 2007, we collected the connection and disconnection events from the logs
of one of the main eDonkey servers in Europe. Our trace, available on our
website [I], contains more than 200 millions of connections by more than 14
millions of peers, over a period of 27 days. To analyse this trace, we first
filtered useless connections (shorter than 10 minutes) and suspicious ones (too
repetitive, simultaneous or with changing identifiers), leading to a filtered trace
of 12 million peers.

The number of peers online at the same time in the filtered trace is usually
more than 300,000, as shown by Fig. Global diurnal patterns of around
100,000 users are also clearly visible: as shown by previous studies [I1], most
eDonkey users are located in Europe, and so, their daily offline periods are only
partially compensated by connections from other continents.

For every peer in the filtered trace, the auto-correlation on its availability
periods was computed on 14 days, with a step of one minute. For a given peer,
the period for which the auto-correlation is maximum gives its best pattern
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size. The number of peers with a given best pattern size is plotted on Fig.
and shows, as could be expected, that the best pattern size is a day, and much
further, a week.

2.2 Filtering and Prediction

We implemented a straightforward predictor, that uses a 7-day window of avail-
ability history to compute the daily pattern of a peer: for each interval of 10
minutes in a day, its value is the number of days in the week where the peer
was available during that full interval.

This predictor has two purposes: (1) It should help the application to decide
which peers are predictable, and thus, can benefit from an improved quality of
service. This gives an incentive to peers to participate regularly to the system;
(2) it should help the application to predict future connections and disconnec-
tions of the selected peers. To select predictable peers, the predictor computes,
for each peer, the maximum and the mean covariance of the peer daily pattern.
For this paper, we computed a set, called predictable set, containing 19,600 peers
whose maximum is at least 5 (prediction threshold), and whose mean covariance
is greater than 28 (clear behavior). We also removed the peers whose availabil-
ity was smaller than 0.1 (useless peers) or greater then 0.9 (they would bias
positively our experiments).

For every peer in the predictable set, the predictor predicts that the peer
will be online in a given interval if the peer’s daily pattern value for that interval
is at least 5, and otherwise predicts nothing (we never predict that a peer will
be offline). The ratio of successful predictions after a week for the full following
week is plotted on Fig. It shows that predictions cannot be only explained
by accidental availability, and prove the presence of availability patterns in the
trace.

We purposely chose a very simple predictor, as we are interested in showing
that patterns of presence are visible and can benefit applications, even with a
worst-case approach. Therefore, we expect that better results would be achieved
using more sophisticated predictors, such as described in [I5], and for an optimal
pattern size of one day instead of a week.

3 Problem Specification

This section presents two availability matching problems, disconnection match-
ing and presence matching. Each problem is abstracted from the needs of a
practical P2P application that we describe afterward. But first, we start by
introducing our system model.

3.1 System and Network Model

We assume a fully-connected asynchronous P2P network of N nodes, with N
usually ranging from thousands to millions of nodes. We assume that there is a
constant bound n. on the number of simultaneous connections that a peer can
engage in, typically much smaller than N. When peers leave the system, they
disconnect silently. However, we assume that disconnections are detected after
a time Ag;se, for example thirty seconds with TCP keep-alive.

RR n°® 6795



6 Le Blond € Le Fessant & Le Merrer

For each peer x, we assume the existence of an availability prediction Pr*(t),
starting at the current time ¢ and for a period T in the future, such that Pr,(t)
is a set of non-overlapping intervals during which z is expected to be online.
Since these predictions are based on previous measures of availability for peer
x, we assume that such measures are reliable, even in the presence of malicious
peers [16], [T4].

We note |J Pr®(t) the set defined by the union of the intervals of Pr(t),
and ||S]| the size of a set S.

3.2 The Problem of Disconnection Matching

Intuitively, the problem of Disconnection Matching is, for a peer online at a
given time, to find a set of other online peers who are expected to disconnect at
the same time.

Formally, for a peer x online at time ¢, an online peer y is a better match
for Disconnection Matching than an online peer z if [t* — t¥| < [t* — t*|, where
[t,t"[€ Pr*(t), [t,t¥[€ Pr¥(t) and [t,t*[€ Pr*(t). The problem of Disconnection
Matching DM (n) is to discover the n best matches of online peers at anytime.

t
Peer x

Peery
Peer z :

The problem of disconnection matching arises in applications where a peer
tries to find partners with whom it wants to collaborate until the end of its
session.

An example of such an application is task scheduling in P2P networks. In
Zorilla [7], a peer can submit a computation task of n jobs to the system. In such
a case, the peer tries to locate n online peers (with expanding ring search) to
become partners for the task, and executes the n jobs on these partners. When
the computation is over, the peer collects the n results from the n partners.
With disconnection matching, such a system becomes much more efficient: by
choosing partners who are likely to disconnect at the same time as the peer,
the system increases the probability that (1) if the peer does not disconnect too
early, its partners will have time to finish executing their jobs before discon-
necting and he will be able to collect the results, and (2) if the peer disconnects
before the end of the computation, partners will not waste unnecessary resources
as they are also likely to disconnect at the same time.

3.3 The Problem of Presence Matching

Intuitively, the problem of Presence Matching is, for a peer online at a given
time, to find a set of other online peers who are expected to be connected at
the same time in the future.

Formally, for a peer x online at time ¢, an online peer y is a better match
for Unfair Presence Matching than an online peer z if:

1J e nlJrrol < I pre@nlJrrew)
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This problem is qualified as unfair, since peers who are always online appear
to be best matches for all other peers in the system, whereas only other always-
on peers are best matches for them. Since some fairness is wanted in the system,
offline periods should also be considered. Consequently, y is a better match than
z for Presence Matching if:

IUPret) aUpPre@ll _ [[UPr () nlU Pre()]
Ny prz@yuUpre@)] — [[UPre@) U Pre()|

The problem of Presence Matching PM (n) is to discover the n best matches
of online peers at anytime.

Peer x E— — —

Peery

Peer z

The problem of presence matching arises in applications where a peer wants
to find partners that will be available at the same time in other sessions. This
is typically the case when huge amount of data have to be transferred, and that
partners will have to communicate a lot to use that data.

An example of such an application is storage of files in P2P networks [4].
For example, in Pastiche [6], each peer in the system has to find other peers
to store its files. Since files can only be used when the peer is online, the best
partners for a peer (at equivalent stability) are the peers who are expected to
be online when the peer itself is online.

Moreover, in a P2P backup system[8], peers usually replace the replica that
cannot, be connected for a given period, to maintain a given level of data redun-
dancy. Using presence matching, such applications can increase the probability
of being able to connect to all their partners, thus reducing their maintenance
cost.

4 Uptime Matching with Epidemic Protocols

We think that epidemic protocols [20, 1], [[3] are good approximate solutions for
these matching problems. Here, we present one of these protocols, T-Man[12]
and, since such protocols rely heavily on appropriate metrics, we propose a
metric for each matching problem.

4.1 Distributed Matching with T-Man

T-Man is a well-known epidemic protocol, usually used to associate each peer
in the network with a set of good partners, given a metric (distance function)
between peers. Even in large-scale networks, T-Man converges fast, and provides
a good approximation of the optimal solution in a few rounds, where each round
costs only four messages in average per peer.

In T-Man, each peer maintains two small sets, its random view and its metric
view, which are, respectively, some random neighbors, and the current best
candidates for partnership, according to the metric in use. During each round,
every peer updates its views: with one random peer in its random view, it

RR n°® 6795
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merges the two random views, and keeps the most recently seen peers in its
random view; with the best peer in its metric view, it merges all the views, and
keeps only the best peers, according to the metric, in its metric view.

This double scheme guarantees a permanent shuffle of the random views,
while ensuring fast convergence of the metric views towards the optimal solution.
Consequently, the choice of a good metric is very important. We propose such
metrics for the two availability matching problems in the next part.

4.2 Metrics for Availability Matching

To compute efficiently the distance between peers in T-Man, the prediction
Pr*(t) is approximated by a bitmap of size m, pred*, where entry pred”[¢] is 1
if [i x T/m, (i4+ 1) x T/m] is included in an interval of Pr®(t) for 0 < i < m.

4.2.1 Disconnection Matching

The metric computes the time between the disconnections of two peers. In
case of equality, the PM-distance of E2Z2 is used to prefer peers with the same
availability periods:

DM-distance(z,y) = |I* — IY|+ PM-distance(z, y) where
I" = min{0 < i < m|pred”[i] = 1 A pred”[i + 1] = 0}

4.2.2 Presence Matching

The metric first computes the ratio of co-availability (time where both peers
were simultaneously online) on total availability (time where at least one peer
was online). Since the distance should be close to 0 when peers are close, we
then reverse the value on [0,1]:

2o<i<m Min(pred” [i],predV[i])
=1- ZU;i<nL max (pred®[i],pred¥[i])

Note that, while the PM-distance value is in [0,1], the DM-distance value is
in [0,m].

PM-distance(z, y)

5 Simulations and Results

We evaluated the performance of T-Man plus the metrics of Section B2, by
simulating the two applications of Section Bl on the eDonkey trace of Section

5.1 General Simulation Setup

A simulator was developed from scratch to run the simulations on a Linux 3.2
GHz Xeon computer, for the 19,600 peers of the predictable set from Section 222
Their behaviors on 14-days were extracted from the eDonkey trace: the first 7
days were used to compute a prediction, and that prediction, without updates,
was used to execute the protocol on the following seven days. During one round
of the simulator, all online peers in random order evaluate one T-Man round,
corresponding to one minute of the trace. As explained later, both applications
were delayed by a period of 10 minutes after a peer would come online to allow

INRIA
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Impact of Disconnection Matching for P2P scheduling

30000 Aborted Tasks xXxxx
Completed Tasks ——1
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Figure 2: A task is a set of three remote jobs of 4 hours started by every peer, ten
minutes after coming online. A task is successful when the peer and its partners are
still online after 4 hours to collect the results. Using availability predictions, a peer
can decide not to start a task expected to abort, leading to fewer aborted tasks. Using
disconnection matching, it can find good partners and it can still complete almost as
many tasks as the much more expensive random strategy.
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Impact of Presence Matching for P2P File Storage
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Figure 3: 10 minutes after coming online for the first time, each peer creates a given
number of replica for its data. Co-availability is defined by the simultaneous presence
of the peer and at least one replica. Using presence matching, fewer replicas are needed
to achieve better results than using a random choice of partners. Even the 7th day,
using a 6-day old prediction, the system still performs much more efficiently, almost
compensating the general loss in availability.
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T-Man to provide a useful metric view. The computation of a complete run did
not exceed two hours and 6 GB of memory footprint.

5.2 Evaluation of Disconnection Matching

The task scheduling application of Section was simulated to evaluate the
performance of T-Man and the DM-distance metric. In the simulations, every
peer started a task after 10 minutes online: a task ran three jobs of 4 hours on
remote partners, and was completed if the peer and its partners were still online
after 4 hours to collect the results. A peer could decide not to start a task if
the prediction of its own availability forecast that he would go offline before
completion of the task. The number of aborted/completed tasks is plotted
on Fig. B for the first day, the seventh day and the whole week for either
disconnection matching (uptime) or random choice (random peer chosen in T-
Man random view).

Prediction of availability decreased a lot the number of aborted tasks, and,
with fewer started tasks, disconnection matching completed almost the same
number of tasks as random matching, even over the full week, when the predic-
tion was supposed to be less accurate (see auto-correlation in Section EZTI).

5.3 Evaluation of Presence Matching

The P2P file storage of Section B3 was also simulated with T-Man and the
PM-distance metric. Every peer replicated its data on its partners, ten minutes
after coming online for the first time, in the hope of using its remote data the
next time it would be online. The co-availability of the peer and at least one
replica is plotted on Fig. B for different number of replicas.

Using presence matching, fewer replicas were needed to achieve better results
than using a random choice of partners. As in the previous simulations, week-old
predictions performed still better than random choice.

6 Discussion and Conclusion

In this paper, we showed that epidemic protocols for topology management can
be efficient to find good partners in availability-aware networks. Simulations
proved that, using one of these protocols and appropriate metrics, such applica-
tions can be less expensive and still perform with an equivalent or better quality
of service. We used a worst-case scenario: a simple predictor, and a trace col-
lected from a highly volatile file-sharing network, where only a small subset
of peers provide predictable behaviors. Consequently, we expect that a real
application would take even more benefit from availability matching protocols.

In particular, until this work, availability-aware applications were limited to
using predictions or availability information to better choose among a limited set
of neighbors. This work opens the door to new availability-aware applications,
where best partners are chosen among all available peers in the network. It is a
useful complement to the work done on measuring availability[16, [T4] and using
these measures to predict future availability[T5].
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