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Thème COM — Systèmes communicants

Équipes-Projets Maestro & Mascotte

Rapport de recherche n° 6854 — February 2009 — 12 pages

Abstract: Congestion in wireless ad-hoc and sensor networks not only causes packet loss, and increases
queueing delay, but also leads to unnecessary energy consumption. In a wireless ad-hoc and sensor network,
two types of congestion can occur: node-level congestion, which is caused by buffer overflow in the node, or
link-level congestion, when wireless channels are shared by several nodes and collisions occur when multiple
active nodes try to seize the channel at the same time.

We study a measure of link-level congestion in a static wireless ad-hoc and sensor network randomly deployed
over an area. The measure considered on this paper is the inverse of the greatest eigenvalue of the adjacency
matrix of the random graph. This measure of congestion gives an approximation of the average quantity of
wireless links of a certain length that a node have on the wireless ad-hoc and sensor network.

We review the results to find this measure of congestion in a Bernoulli random graph and we use tools
from random graph theory and random matrix theory to extend this measure of congestion on a Geometric
random graph.
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Congestion in Randomly Deployed Wireless Ad-Hoc and Sensor

Networks

Résumé : Congestion in wireless ad-hoc and sensor networks not only causes packet loss, and increases
queueing delay, but also leads to unnecessary energy consumption. In a wireless ad-hoc and sensor network,
two types of congestion can occur: node-level congestion, which is caused by buffer overflow in the node, or
link-level congestion, when wireless channels are shared by several nodes and collisions occur when multiple
active nodes try to seize the channel at the same time.

We study a measure of link-level congestion in a static wireless ad-hoc and sensor network randomly deployed
over an area. The measure considered on this paper is the inverse of the greatest eigenvalue of the adjacency
matrix of the random graph. This measure of congestion gives an approximation of the average quantity of
wireless links of a certain length that a node have on the wireless ad-hoc and sensor network.

We review the results to find this measure of congestion in a Bernoulli random graph and we use tools
from random graph theory and random matrix theory to extend this measure of congestion on a Geometric
random graph.

Mots-clés : Wireless Ad-Hoc Networks, Wireless Sensor Networks, Random Graph Theory, Random
Matrix Theory.
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1 Introduction

Wireless ad-hoc and sensor networks have gained much interest as inexpensive, energy-efficient, and minia-
turized wireless devices are beginning to mature and take hold commercially. Wireless ad-hoc and sensor
networks can be rapidly deployed as they do not require much existing infrastructure. Because of that,
they are expected to find applications in many different settings, such as home appliance, disaster recovery,
inventory tracking, battlefield surveillance, etc.

Congestion on this type of network is crucial as not only causes packet loss, and increases queueing delay, but
also leads to unnecessary energy consumption, which causes lifetime reduction of the network. In wireless
ad-hoc and sensor networks, extending the lifetime is important since all nodes contribute to collect the
environment data and the early death of a node may lead to an incomplete monitoring. In a wireless ad-
hoc and sensor network, two types of congestion can occur : node-level congestion, which is caused by
buffer overflow in the node, or link-level congestion, when wireless channels are shared by several nodes and
collisions occur when multiple active nodes try to seize the channel at the same time.

We will work on link-level congestion on randomly deployed static wireless ad-hoc and sensor networks.
Wireless ad-hoc and sensor networks consist of nodes which share a common communication medium. On
these networks, the signals intended for a receiver can cause interference at other receivers. The nodes on
these networks cooperate in routing each other’s data packets and communicate with each other over a
wireless channel without any centralized control.

A wireless ad-hoc and sensor network can be seen as a graph G with a finite sets of nodes, and links connecting
pairs of nodes (its ends). We consider the boolean model of connectivity, i.e., two nodes are connected if the
distance between them is inferior to a certain threshold (called range of connectivity), otherwise they are
disconnected.

A path P in a graph G is a sequence x0, l1, x1, . . . , lk, xk where each xi is a node, each li is an link, and the
ends of link li are the nodes xi−1 and xi. The length of the path P is k, i.e., the number of links on the
path P (see Fig. 1). The network is connected if each node is connected by means of a path to every other
node in the network.

On this setting, Gupta and Kumar [1] derived the critical power at which a node in the network needs to
transmit in order to ensure that the network is connected with probability one as the number of nodes in
the network goes to infinity.

The main theorem of that paper is the following:

Theorem [Gupta-Kumar] [1] If n nodes are randomly located, uniformly i.i.d., in a disc of unit area and
each node transmits at a power level so as to cover an area of πr2(n) = log n+γn

n , then the resulting network
is asymptotically connected with probability one as n → +∞ if and only if γn → +∞.

On the rest of this paper we will assume that the network is connected, i.e., the range of connectivity is
greater than the threshold given by Gupta-Kumar’s Theorem.

Our goal is to provide for different randomly deployed wireless ad-hoc and sensor network topologies, the
congestion of the network. In this paper we relate the notion of congestion to the number of paths of length k
and the spectral radius of the generated graph. Using tools of random graph theory and random matrix
theory we are able to determine the number of paths of length k there is on the network with k large enough
and to relate this quantity to the congestion of the network.

2 Number of Paths of Length k and Congestion on the Network

In the following section, we analize the relationship between the number of paths of length k in a wireless ad-
hoc and sensor network and the link-level congestion over this network. In order to obtain this relationship
we need to define some concepts of graphs and analyze the asymptotic behavior of the number of paths of
length k.
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Figure 1: Path of length 4.

The adjacency matrix of a graph G, denoted A, is the matrix with rows and columns labelled by graph
vertices, defined as

Aij =

{

1 if i and j are connected by an link,
0 otherwise.

The spectral radius of a graph G, denoted λA, is the size of the largest eigenvalue of the adjacency matrix
of the graph that can be written as

λA = sup
x∈Rd\{0}

〈x, Ax〉
〈x, x〉 .

Let A denote the adjacency matrix of a graph G. Then (Ak)ij is the number of paths of length k connecting
the i-th and j-th vertices (proof by induction).

If we denote ~1 the vector with all its components equal to 1s, then

~1∗Ak~1 =
∑

i,j

Ak
ij

is equal to the number of paths of length k on the graph G.

The adjacency matrix is symmetric, then by spectral decomposition we have A =
∑

λivi where vi is the
eigenvector of A associated with the eigenvalue λi. Remember that as A is a symmetric matrix, then the
eigenvectors of A associated with distinct eigenvalues are orthogonal.

The next theorem shows the importance of the spectral radius of a graph G.

Theorem [Perron-Frobenius][2] Let A be an irreducible matrix with non-negative entries and spectral
radius λA. Then

1. λA > 0,

2. λA is an eigenvalue of A,

3. There is a unique eigenvector vA (up to a scale factor) with non-negative entries such that

AvA = λAvA,

4. λA is an algebraically simple eigenvalue of A.

INRIA
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From this theorem, the following result holds:

(~1∗Ak~1)1/k =
(

∑

aiv
∗
i Ak

∑

ajvj

)1/k

=
(

∑

aiv
∗
i

∑

ajA
kvj

)1/k

=
(

∑

aiv
∗
i

∑

ajλ
k
j vj

)1/k

=
(

∑

|ai|2λk
i

)1/k

.

This implies
lim

k→+∞
(~1∗Ak~1)1/k = λA.

From this result we obtain that the number of paths of length k in G is approximately λk
A, for k large enough.

Definition.- [Congestion Number] Given a graph G we define the congestion number as the inverse of
the spectral radius of the graph λ−1

A .

The intuitive explanation to this definition is that while more paths of a fixed length we have in order to send
information, we can split the information on these paths and coordinate it to arrive with the same number
of hops at the receiver. This has the advantage of equalizing source-destination delays of packets that belong
to the same class, which allows one to minimize the amount of packets that come out of sequence. This is
desirable since in data transfers, out of order packets are misinterpreted to be lost which results not only in
retransmissions but also in drop of systems throughput.

The following proposition give us another relationship between the spectral radius and on this case the degree
of the nodes. The degree of a node in a graph is the number of links that connects to the node.

Proposition.- [3] Let dmin denote the minimum degree of G, let d̄ be the average degree, and let dmax be
the maximum degree of G. For every graph G,

max{d̄,
√

dmax} ≤ λA ≤ dmax.

2.1 Discussion

A fundamental question about any network is whether or not it is κ-connected, i.e., for each pair of different
nodes there exists at least κ link-disjoint paths in the graph connecting them of a fixed length that allow
them to split their information and to send it through different paths. Additional requirements can be
imposed, for instance the links can have small congestion.

We are conscious that the measure of congestion considered on this work has the limitation that the number of
paths of fixed length are not necessarily link disjoint which would be an reasonable additional requirement. In
that sense, a better measure would consider the possibility of splitting the information on independent paths
without collision. However, for tractability reasons we consider this measure which is a good approximation
and we can obtain explicit results.

3 Analysis Tools

In randomly deployed wireless ad-hoc and sensor networks the placement of the nodes and the links, which
depend on the range of connectivity, are random. In order to derive the relation between congestion and
spectral radius of a graph and to determine the spectral radius for different graphs, we use tools from random
graph theory and random matrix theory. In the asymptotic case, it enables us to have a tractable expression
of the number of paths of a fixed length. Similar tools have been used on [1] and [4] to analyze wireless
ad-hoc and sensor networks.

RR n° 6854
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3.1 Random Graphs

In this section we introduce some basic notions of random graphs.

Given n nodes, x1, . . . , xn, in Rd with d = 2 or 3, we denote by G(n, r(n)) the graph with set of nodes
{x1, . . . , xn} and with links connecting all those nodes xi, xj , that satisfy ‖xi −xj‖ < r(n) where r(n) is the
range of transmission and ‖·‖ is some norm in Rd. We shall call G(n, r(n)) a geometric graph.

When the nodes are independent and identically distributed on D with a specific probability density function,
the geometric graph G(n, r(n)) is called a geometric random graph.

In the following, the domain on which nodes are deployed is the d-dimensional cube D = [−1/2, 1/2]d where
d = 2 or 3.

On this domain each node is deployed with uniform distribution, i.e.,

fU (x) :=

{

1 if x ∈ [−1/2, 1/2]d,
0 otherwise.

The most familiar random graph model, initiated by P. Erdös and A. Rényi [5, 6], consists of a graph with
set of nodes {x1, . . . , xn}, obtained by including some of the links of the complete graph, each link being
included independently with probability p. The graph derived by the latter scheme is called a Bernoulli
random graph and is denoted G(n, p).

Bernoulli random graphs (also called Erdös-Renyi random graphs) have been intensively studied and many
of their properties are by now well understood; see Bollobás [7] as a reference.

Bernoulli random graphs have the property of independence between the connectivity of different links,
while for Geometric random graphs, if node xi is close to node xj , and node xj is close to node xk, then xi

will be fairly close to xk. In wireless ad-hoc and sensor networks, this property is more realistic than the
independence of links as in the Bernoulli random graphs.

Examples of Bernoulli random graphs G(n, p) for different p’s and of Geometric random graphs G(n, r) for
different r’s can be found in figures 2 and 3, respectively.
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(a) Bernoulli random graph G(n, p)
with n = 20 and p = 0.01
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(b) Bernoulli random graph G(n, p)
with n = 20 and p = 0.08
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(c) Bernoulli random graph G(n, p) with
n = 20 and p = 0.8

Figure 2: Bernoulli random graphs

From the figures 4(a) and 4(b) done by simulation, we see that the convergence of the k-th root of the
numbers of paths of length k converges very fast to the spectral radius with respect to k on these two
settings.

3.2 Random Matrix Theory

The main application of random matrix theory lies on the derivation of asymptotic results for large random
matrices. In many practical cases, the eigenvalue distribution of large random hermitian matrices converges
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(a) Geometric random graph G(n, r)
with n = 20 and r = 1/6
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(b) Geometric random graph G(n, r)
with n = 20 and r = 1/3
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(c) Geometric random graph G(n, r)
with r = 2/3

Figure 3: Geometric random graphs
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(a) In a Geometric random graph.
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(b) In a Bernoulli random graph.

Figure 4: Convergence of the k-th root of the number of paths of length k (depicted as a dashed curve) to
the spectral radius of the graph λA (solid curve) with respect to k.
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8 Silva, Reyes & Debbah

to a definite probability distribution, called empirical distribution or density of states. In particular, we can
also find the value or bounds of the largest or smallest eigenvalues of large random hermitian matrices.

In this work we will use random matrix theory to derive the spectral radius of a Geometric random graph.

Definition.- An Euclidean random matrix is an n × n matrix, A, whose entries are a function of the
positions of n random points in a compact set D of Rd.

More precisely, if n nodes, x1, . . . , xn, are located randomly, uniformly i.i.d., in a square of unit area D and
the matrix A is defined as

A := (F (xi − xj))1≤i≤j≤n

where F is a measurable mapping from Rd to C. Then A is an Euclidean random matrix.

We consider the boolean model of connectivity, i.e., two nodes are connected if the distance between them
is inferior to a certain threshold and otherwise they are disconnected. Therefore, if n nodes are located
randomly, uniformly i.i.d., in a square of unit area and each node transmits at a power in order to cover an
area of r(n), then the adjacency matrix of this random graph is given by

Aij = 1{‖xi−xj‖≤r(n)}

where

1{‖xi−xj‖≤r(n)} =

{

1 if ‖xi − xj‖ ≤ r(n)
0 otherwise.

We would like to determine for this adjacency matrix the maximum eigenvalue or spectral radius and relate
it to the congestion on the network.

In order to determine the congestion number, we explicit recent results of Bordenave on Geometric random
graphs. Following the paper of Bordenave [8], we assume that the discrete Fourier transform of F is defined
for all k ∈ Zd where

F̂ (k) =

∫

D

F (x)e−2πik·xdx

We assume that almost everywhere (a.e.) and at 0, the Fourier series of F exists and

F (x) =
∑

k∈Zd

F̂ (k)e2πik·x

A sufficient condition for the existence of the Fourier series of F (a.e.) is that

∑

k∈Zd

|F̂ (k)| < +∞

and F to be continuous at zero.

Let’s define An = A/n and

µn =

n
∑

i=1

δλi(n)/n

where {λi(n)}1≤i≤n is the set of eigenvalues of A and δ is the dirac function. Notice that {λi(n)/n}1≤i≤n is
the set of eigenvalues of An.

Let’s define the measure
µ =

∑

k∈Z

δF̂ (k)

The following theorem gives us the convergence of the empirical distribution or density of states to a non-
random distribution characterized by the Fourier transform of the function F .

Theorem [Bordenave][8] In the previous setting

lim
n→+∞

µn(K) = µ(K) a.e.

INRIA
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for all Borel sets K with µ(∂K) = 0 and 0 /∈ K̄.

The following corollary gives us a formula to compute the spectral radius of a graph.

Corollary[8] The convergence of the spectral radius of An, almost surely, is given by

lim
n→+∞

max
1≤i≤n

|λi(n)|
n

= max
k∈Zd

|F̂ (k)|.

Having this corollary in mind we can compute for different norms the spectral radius of a graph.

The following norms will be considered:

‖x‖∞ := max{|x1|, . . . , |xn|} (Infinity norm), (1)

‖x‖p :=

(

n
∑

i=1

|xi|p
)1/p

(p-norm) ∀p > 1, (2)

‖x‖1 :=

n
∑

i=1

|xi| (Manhattan norm). (3)

Note that with the infinity norm case we obtain a closed form expression given by

F (x) = 1{max1≤i≤d|xi|≤r}(x),

for which its discrete Fourier transform writes as

F̂ (k) = rd
d
∏

i=1

sin(2πkir)

2πkir

where k = (k1, . . . , kd) ∈ Z.

Then for the infinity norm the spectral radius is given by rd.

The figures 6(a) and 6(b) give us the asymptotic convergence of the spectral radius of the adjacency matrix
to the maximum of the Fourier transform over the d-dimensional integer lattice with respect to the number
of nodes on the network.

There is a similar result on the spectral radius of a Bernoulli random graph A that we put for completeness.

Theorem [Füredi-Komlós][9] Let aij , i ≥ j, be independent (not necessarily identically distributed) ran-
dom variables bounded with a common bound K. Assume that for i > j, the aij have a common expectation
µ and variance σ2, further that E(aii) = ν. Define aij for i < j by aij = aji (the numbers K, µ, σ2, ν will
be kept fixed as n will tend to infinity).

If µ > 0 then the distribution of the largest eigenvalue of the random symmetric matrix A = (aij) can be
approximated in order 1/

√
n by a normal distribution of expectation

(n − 1)µ + ν + σ2/µ

and variance 2σ2.

The result of this theorem stems from the analysis of the largest eigenvalue of non-zero mean random matrices
with independent entries.

From this theorem in our case the constants are K = 1, µ = p, ν = 0 and σ2 = p(1−p) and then the expected
spectral radius of a Bernoulli random graph is (n − 1)p + (1 − p).

RR n° 6854
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(a) In a Geometric random graph.
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(b) In a Bernoulli random graph.

Figure 5: Convergence of the k-th root of the number of paths of length k (depicted as a dashed curve) to the
estimation of the spectral radius (solid curve) given by Bordenave’s Theorem and Füredi-Komlós’ Theorem,
respectively, with respect to k.
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(a) In a Geometric random graph.
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(b) In a Bernoulli random graph.

Figure 6: Convergence of the largest eigenvalue (dashed curve) to the asymptotic approximation (solid curve)
given by Bordenave’s Theorem and Füredi-Komlós’ Theorem, respectively.

INRIA



Congestion in Wireless Ad-Hoc/Sensor Networks 11

4 Conclusions and Future Work

In this contribution, we have provided a model to deal with congestion of randomly deployed wireless nodes.
For various cases of random graphs (Bernoulli random graphs and Geometric random graphs), we have
provided, in the case of large networks, the congestion number which is linked to the number of connected
paths of a given length. Quite remarkably, the mean congestion number can be explicitly derived using
asymptotic results of random matrix theory and the results holds even for a not so large number of nodes.
Further studies will focus on providing central limit theorems on the congestion number in order to have a
better assessment of the quality of service in the network. Other realistic models (beside the boolean model
for connectivity) will also also studied in combination with other random distribution of the nodes.
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