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Abstract

A generalised Weber function is given by wN (z) = η(z/N)/η(z),
where η(z) is the Dedekind function andN is any integer; the original
function corresponds to N = 2. We classify the cases where some
power we

N evaluated at some quadratic integer generates the ring
class field associated to an order of an imaginary quadratic field. We
compare the heights of our invariants by giving a general formula
for the degree of the modular equation relating wN (z) and j(z). Our
ultimate goal is the use of these invariants in constructing reductions
of elliptic curves over finite fields suitable for cryptographic use.

1 Introduction

Let K be an imaginary quadratic field of discriminant ∆ < 0. We are
interested in orders O of K having discriminant D = c2∆. The principal

order of discriminant ∆ is OK , which is generated by ω = 1+
√
∆

2
if ∆ ≡ 1

(mod 4) resp. ω =
√
∆
2

if ∆ ≡ 0 (mod 4). For any order O of discriminant
D, let KD denote the ring class field that is associated to it. It is well-
known that if j denotes the modular invariant, then KD = K(j(cω)); so
KD/K ≃ K[X ]/(HD(X)), where the class polynomial HD is the minimal
polynomial of j(cω). It can be used to obtain elliptic curves over finite fields
with a number of points known in advance, with applications to cryptology,
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2 A. Enge and F. Morain

in particular based on the Weil or Tate pairing (cf. [13]), and primality
proving [1].

Since the class polynomial has a rather large height, it is desirable to
find smaller defining polynomials to speed up the computations. There is a
long history of such studies, going back to at least Weber [27]; see, e.g., [2,
26, 20] for connections with the class number 1 problem. Generally modular
functions f and special arguments α ∈ O are considered such that the
singular value f(α) lies in KD, in which case f(α) is called a class invariant.

Our ultimate goal is to build elliptic curves having CM, and this is done
using a so-called modular equation (with integer coefficients) relating a mod-
ular function f to j. For this to be efficient, we need f(α) to have a small
height and the corresponding modular equation to be of small genus (with
a predilection for genus 0).

Part of the literature has concentrated on the functions introduced by
Weber, quotients of two η-functions with a transformation of level 2 applied
to one of them, see [23, 14, 15, 22] besides the already cited sources. This is
a perfect case for us, since the genus of the associated modular curve is 0.

Results on more general η-quotients are given in [18, 17, 19, 14, 8, 12].
All of them are obtained using the modern tool for determining the Galois
action of the class group of O on singular values of modular functions,
namely Shimura’s reciprocity law [25]. The present article is no exception
to this rule. For the sake of self-containedness and the reader’s ease, we
briefly summarise in §2 the reciprocity law in the version of [22], which is
most suited to actual computations.

In this article, we propose a systematic study of class invariants obtained
as singular values of the generalised Weber functions wN , defined and stud-
ied in §3, which are quotients of two η-functions with a transformation of
level N applied to one of them. These appear in [22, Table 1] and as a spe-
cial case of [19]. While there is some overlapping between this article and
[19], we follow a different approach: The authors of [19] use an ideal in the
class group to transform the η-function, and the norm of the ideal implic-
itly determines the level; they then proceed to prove which root of unity is
needed for twisting the function so that a minimal power of it yields a class
invariant. On the other hand, we start with a fixed level and thus a fixed
generalised Weber function and determine the minimal power yielding class
invariants without using additional roots of unity.

A first result on the “canonical” power ws
N is readily obtained in §4 by

a direct application of Shimura reciprocity. Examining the Galois action on
the singular values in §5 allows us to determine the precise conditions under
which lower powers we

N with e | s yield class invariants in §6.
While there is always some transformation level N (or, equivalently, an

ideal in the class group) such that the corresponding generalised Weber func-
tion yields a class invariant, fixing the level first as we do it in this study
implies control over the height of the class invariants. Indeed, this height, an
important measure for the complexity of computing a class polynomial, is
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asymptotically given as a function of the degrees of the modular polynomi-
als relating the modular function to the j-invariant. Thus, the generalised
Weber functions can be ordered totally with respect to their computational
efficiency, see §7, and the invariants can be compared directly to other in-
variants in the literature, cf. [7, 10].

Unlike [19], we explicitly consider levels N that are not coprime to 6, a
considerable source of complication, which is justified since the correspond-
ing functions tend to yield class invariants of lower height, see the formulæ
in §7.2 and Table 7.2. Otherwise said, the corresponding modular curves,
related to 2- and 3-torsion points on elliptic curves, have a lower genus than
would be expected from the size ofN alone. This makes it easier to construct
the associated elliptic curves with complex multiplication; in particular, [21]
shows how w3 can be used to directly write down the correct twist of the
elliptic curve with the desired number of points over a finite field.

Existing results in the literature often only state when a singular value
is a class invariant; to obtain the class polynomial, however, one needs an
explicit description of its algebraic conjugates. These can be worked out
using Shimura reciprocity again; following the approach of N -systems intro-
duced in [22], we obtain synthetic and simple descriptions of the conjugates,
and moreover determine when the class invariant has a minimal polynomial
with rational coefficients, that is, it defines the real subfield of the class field
over Q.

2 Class invariants by Shimura reciprocity

In the following, we denote by f ◦M the action of matrices M =

(

a b
c d

)

∈
Γ = Sl2(Z)/{±1} on modular functions given by

(f ◦M)(z) = f(Mz) = f

(

az + b

cz + d

)

.

For n ∈ N, let Γ(n) =

{(

a b
c d

)

≡
(

1 0
0 1

)

(mod n)

}

be the principal

congruence subgroup of level n; for a congruence subgroup Γ′ such that
Γ(n) ⊆ Γ′ ⊆ Γ, denote by CΓ′ the field of modular functions for Γ′.
One of the most important congruence subgroups is given by Γ0(n) =
{(

a b
c d

)

≡
(

∗ 0
∗ ∗

)

(mod n)

}

.

Definition 2.1. The set Fn of modular functions of level n rational over
the n-th cyclotomic field Q(ζn) is given by all functions f such that

1. f is modular for Γ(n) and

2. the q-expansion of f has coefficients in Q(ζn), that is,

f ∈ Q(ζn)
((

q1/n
))

,



4 A. Enge and F. Morain

where q1/n = e2πiz/n.

The function field extension Fn/Q(j) has Galois group isomorphic to
Gl2(Z/nZ)/{±1}, where the isomorphism is defined by the following action
of matrices on functions:

• (f ◦M)(z) = f(Mz) as above for M ∈ Γ; this implies in particular
that also the q-expansion of f ◦M has coefficients in Q(ζn);

• f◦
(

1 0
0 d

)

for gcd(d, n) = 1 is obtained by applying to the q-expansion

of f the automorphism ζn 7→ ζdn;

• any other matrix M that is invertible modulo n may be decomposed

as M ≡M1

(

1 0
0 d

)

M2 (mod n) with gcd(d, n) = 1 and M1, M2 ∈ Γ,

and

(f ◦M)(z) =

((

(f ◦M1) ◦
(

1 0
0 d

))

◦M2

)

(z).

Shimura reciprocity makes a link between the Galois group of the func-
tion field Fn and the Galois groups of class fields generated over an imagi-
nary-quadratic field by singular values of modular functions.

Theorem 2.2 (Shimura’s reciprocity law, Th. 5 of [22], Th. 5.1.2 of [24]).
Let f be a function in Fn, ∆ < 0 a fundamental discriminant and O the
order of K = Q(

√
∆) of conductor c. In the following, all Z-bases of ideals

are written as column vectors. Let a =

(

α1

α2

)

Z

with basis quotient α = α1

α2
∈

H be a proper ideal of O, m an ideal of OK of norm m prime to cn, m

its conjugate ideal and M ∈ Gl2(Z) a matrix of determinant m such that

M

(

α1

α2

)

is a basis of a(m ∩ O). If f does not have a pole in α, then

• f(α) lies in the ray class field modulo cn over K and

• the Frobenius map σ(m) acts as

f(α)σ(m) = (f ◦mM−1)(Mα).

In the following, we are particularly interested in class invariants, that is,
values f(α) that lie not only in a ray class field, but even in a ring class field.
Using Shimura’s reciprocity law, [22, Th. 4] gives a very general criterion
for class invariants, which is the basis for our further investigations.

Theorem 2.3. Let f ∈ CΓ0(n) for some n ∈ N be such that f itself and
f ◦ S have rational q-expansions. Denote by α ∈ H a root of the primitive
form [A,B,C] of discriminant D with gcd(A, n) = 1 and n | C. If α is not
a pole of f , then f(α) ∈ KD.
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The conjugates of f(α) are then derived generically in a form that is well
suited for computations in [22, Prop. 3 and Th. 7], [24, Th. 5.2.4].

Theorem 2.4. An n-system for the discriminant D is a complete system
of equivalence classes of primitive quadratic forms [Ai, Bi, Ci] = AiX

2 +
BiX + Ci, i = 1, . . . , h(D), of discriminant D = B2

i − 4AiCi, such that
gcd(Ai, n) = 1 and Bi ≡ B1 (mod 2n). Such a system exists for any n. To
these quadratic forms, we associate in the following the quadratic numbers

αi =
−Bi+

√
D

2Ai
.

Let f ∈ Fn be such that f ◦ S with S =

(

0 −1
1 0

)

has a rational q-

expansion. If f(α1) ∈ KD, then a complete system of conjugates of f(α1)
under the Galois group of KD is given by the f(αi), and the characteristic
polynomial of f(α1) over K is

HD[f ] =

h(D)
∏

i=1

(X − f(αi)).

3 The generalised Weber functions wN

In this section we examine the general properties of the function wN , with
the aim in mind of applying Theorem 2.3 to its powers.

Let z be any complex number and put q = e2iπz. Dedekind’s η-function
is defined by [5]

η(z) = q1/24
∏

m>1

(1− qm).

The Weber functions are [27, § 34, p. 114]

f(z) = ζ−1
48

η((z + 1)/2)

η(z)
, f1(z) =

η(z/2)

η(z)
, f2(z) =

√
2
η(2z)

η(z)
.

The modular invariant j is recovered via [27, § 54, p. 179]:

j(z) =
(f24 − 16)3

f24
=

(f241 + 16)3

f241
=

(f242 + 16)3

f242
.

The functions −f24, f241 and f242 are the three roots of the modular polynomial

Φc2(F, j) = F 3 + 48F 2 + F (768− j) + 4096,

that describes the curve X0(2).
For an integer N > 1, let the generalised Weber function be defined by

wN =
η(z/N)

η(z)
.
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As shown in the following, there is a canonical exponent t such that wt
N is

modular for Γ0(N). Its minimal polynomial ΦcN(F, j) over C(j) is a model
for X0(N). The other roots of this polynomial can be expressed in terms of
η, too, a topic to which we come back in §7.

We need to know the behaviour of wN under unimodular transforma-
tions, which can be broken down to the transformation behaviour of η(z/K)
for K = 1 or N . This has been worked out in [9, Th. 3].

Theorem 3.1. Let M =

(

a b
c d

)

∈ Γ be normalised such that c > 0, and

d > 0 if c = 0. Write c = c12
λ(c) with c1 odd; by convention, c1 = λ(c) = 1

if c = 0. Define

ε(M) =

(

a

c1

)

ζ
ab+c(d(1−a2)−a)+3c1(a−1)+ 3

2
λ(c)(a2−1)

24 .

For K ∈ N write

ua+ vKc = δ = gcd(a,Kc) = gcd(a,K).

Then

η
( z

K

)

◦M = ε

(

a
δ

−v
Kc
δ

u

)

√

δ(cz + d) η

(

δz + (ub+ vKd)
K
δ

)

,

where the square root is chosen with positive real part.

Theorem 3.2. The function wN has a rational q-expansion. Denote by

S =

(

0 −1
1 0

)

the matrix belonging to the inversion z 7→ −1
z
. If N is a

square, then wN ◦ S has a rational q-expansion. Otherwise, w2
N ◦ S has a

rational q-expansion.
Let the subscript 1 and the function λ have the same meaning for a

positive integer n as in Theorem 3.1, that is, n = n1 2
λ(n) with n1 odd. If

M =

(

a Nb0
c d

)

∈ Γ0(N), then wN ◦M = εwN with

(3.1) ε =

(

a

N1

)

ζ
(N−1)(−b0a+c(d(1−a2)−a))
24 ζ

c1
(N1−1)(a−1)

2
4 (−1)

λ(N)(a2−1)
8 .

Let t = 24
gcd(N−1,24)

measure how far N − 1 is from being divisible by 24,

and let e and s be such that t | s | 24 and e | s. If N1 is a square or e is
even, then we

N is modular for Γ
(

s
e

)

∩ Γ0
(

s
e
N
)

. Otherwise, we
N is modular

for Γ
(

s
e
N1

)

∩ Γ0
(

s
e
N
)

. In both cases, we
N ∈ F s

e
N ⊆ F24N .

Proof. The q-expansion of wN is rational since that of η is. Let M =
(

a b
c d

)

∈ Γ. By Theorem 3.1 applied to K = 1 and N , we have

(3.2) wN ◦M = ε

(

a
δ

−v
Nc
δ

u

)

ε

(

a b
c d

)−1√
δ
η
(

δz+(ub+vNd)
N
δ

)

η(z)
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with δ = gcd(a,N) = ua+ vNc.
In the special case M = S we obtain δ = N , v = 1, u = 0 and

wN ◦ S =
√
N
η(Nz)

η(z)
,

which proves the assertion on the q-expansion of wN ◦ S.
Assume now that M ∈ Γ0(N). Letting b = Nb0, we have δ = 1, u = d

and v = −b0 since ad− bc = 1. Thus, (3.2) specialises as

wN ◦M = ε

(

a b0
Nc d

)

ε

(

a b
c d

)−1
η(z/N)

η(z)
= εwN(z)

with

ε =

(

a

c1N1

)(

a

c1

)−1

ζ
(b0−b)a+c(N−1)(d(1−a2)−a)+3c1(N1−1)(a−1)+ 3

2
(λ(Nc)−λ(c))(a2−1)

24 ,

which proves (3.1).
We need to examine under which conditions εe = 1. The Legendre symbol

vanishes when N1 is a square, e is even or a ≡ 1 (mod N1). The exponent
of ζ24 becomes divisible by s(N − 1) and thus by 24 whenever s

e
divides b0

and c.
In the case of odd N , we have λ(N) = 0 and N = N1, and the condition

on a implies that the exponent of ζ4 is divisible by 4.
In the case of even N , the coefficient a is odd since detM = 1, and

εe = (−1)
e
(

c1
(N1−1)(a−1)

4
+λ(N)a

2
−1
8

)

.

For even e, there is nothing to show. If e is odd, then 8 | t | s implies that
a ≡ 1 (mod 8), which finishes the proof.

4 Full powers of wN

To be able to apply Theorem 2.3 directly to powers of wN , we are interested
in the minimal exponent s such that ws

N is invariant under Γ0(N) and
ws
N ◦S has a rational q-expansion. From Theorem 3.2, we recover the integer

t = 24/(gcd(N − 1, 24)) and recall that s = 2t if t is odd and N is not a
square, and s = t otherwise.

4.1 Arithmetical prerequisites

We begin with the following purely arithmetical lemma.

Lemma 4.1. Let N be an integer. For a prime p, denote by vp the p-adic
valuation. Let D = c2∆ be a discriminant with fundamental part ∆. Then D
admits a square root B modulo 4N if and only if for each prime p dividing
N , one of the following holds.
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1.
(

∆
p

)

= +1;

2.
(

∆
p

)

= −1 and vp(N) 6 2vp(c);

3.
(

∆
p

)

= 0 and vp(N) 6 2vp(c) + 1.

Proof. The Chinese remainder theorem allows to argue modulo the different
prime powers dividing N . The argumentation is slightly different for p odd
and even, and we give some hints only for p = 2.

When ∆ ≡ 1 mod 8, ∆ admits a square root modulo any power of 2.
When ∆ is even, then ∆ ≡ 8 or 12 (mod 16), and ∆ is a square modulo

8, but not modulo any higher power of 2. Therefore, c2∆ is a square modulo
4N if and only if v2(c

2) + 3 > v2(4N).
When ∆ ≡ 5 mod 8, ∆ has a square root modulo 4 but not modulo 8,

so that v2(c
2) + 2 > v2(4N) is needed in that case.

In the following, arithmetical conditions on a prime p to be representable
by the principal form of discriminant D will be needed. We take the follow-
ing form of Dirichlet’s theorem from [3, Ch. 4] (alternatively, see [4, Chap
18, G]). For an integer p, let χ4(p) =

(−1
p

)

and χ8(p) =
(

2
p

)

. The generic

characters of D = c2∆ are defined as follows:

(a)
(p

q

)

for all odd primes q dividing D;

(b) if D is even:

(i) χ4(p) if D/4 ≡ 3, 4, 7 (mod 8);

(ii) χ8(p) if D/4 ≡ 2 (mod 8);

(iii) χ4(p) · χ8(p) if D/4 ≡ 6 (mod 8);

(iv) χ4(p) and χ8(p) if D/4 ≡ 0 (mod 8).

Note that if D is fundamental (i.e., c = 1), then case (iv) cannot occur and
in case (i), we may have D/4 ≡ 3, 7 (mod 8) only.

Theorem 4.2. An integer p such that gcd(p, 2cD) = 1 is representable by
some class of forms in the principal genus of discriminant D if and only if
all generic characters χ(p) have value +1. In particular, this condition is
necessary for representability by the principal class.

4.2 Class invariants

Theorem 4.3. Let N be an integer and t = 24
gcd(N−1,24)

. If t is odd and N
is not a square, let s = 2t, otherwise, let s = t. Suppose D satisfies Lemma

4.1. Consider an N-system of forms [Ai, Bi, Ci] with roots αi = −Bi+
√
D

2Ai

such that Bi ≡ B (mod 2N), as introduced in 2.4. Then the singular values
ws
N(αi) lie in the ring class field KD, and they form a complete set of Galois

conjugates.
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Proof. Once the existence of B is verified, the form [1, B, C] with C = B2−D
4

is of discriminant D and satisfies N | C. The assertion of the theorem is
then a direct consequence of Theorems 2.3 and 3.2.

Sometimes, the characteristic polynomial of ws
N is real, so that its coeffi-

cients lie in Z instead of the ring of integers of Q(
√
D). It is then interesting

to determine the pairs of quadratic forms that lead to complex conjugates.

Theorem 4.4. Under the assumptions of Theorem 4.3, let B ≡ 0 (mod N),
which is possible whenever N is odd and N | D, or N is even and 4N | D.
Then the characteristic polynomial of ws

N is real. More precisely, if αi and
αj are roots of inverse forms of the N-system, then ws

N (αj) = ws
N (αi).

Proof. Notice that B ≡ 0 (mod N) and Bi ≡ B (mod 2N) imply −Bi ≡ B
(mod 2N), so that [Ai,−Bi, Ci], the inverse form of [Ai, Bi, Ci], satisfies the

N -system constraint; thus ws
N(αj) = ws

N

(

Bi+
√
D

2Ai

)

= ws
N (−αi). On the

other hand, q(−αi) = q(αi), which implies wN (−αi) = wN(αi) since wN

has a rational q-expansion.

These first results, direct consequences of the Shimura reciprocity law,
are meant to set the stage for the detailed and much more involved analysis
of lower powers in the following chapters. For gcd(N, 6) = 1, [19, Theo-
rem 20] determines a 48-th root of unity ζ and an exponent e | s such
that ζwe

N yields a class invariant. With a bit of work, it can be shown that
ζs/e = 1 in our context, which provides an alternative proof of Theorem 4.3
without giving the algebraic conjugates of the singular value.

5 Explicit Galois action

Throughout the remainder of this section, we assume that N is a square
or e is even, so that f = we

N and f ◦ S have rational q-expansions by
Theorem 3.2. Let α be a root of the primitive quadratic form [A,B,C] of
discriminant D with gcd(A,N) = 1. By Theorems 3.2 and 2.2, the singular
value f(α) lies in the ray class field modulo c t

e
N over K, and the Galois

action of ideals in OK can be computed explicitly. We eventually need to
show that the action of principal prime ideals generated by elements in O

is trivial, which implies that the singular value lies in the ring class field
KD. Then Theorems 3.2 and 2.4 show that the conjugates are given by the
singular values in a t

e
N -system.

We are only interested in the situation that N | C. Notice that under
gcd(A,N) = 1 this is equivalent to 4N | 4AC = B2 − D, or B2 ≡ D
(mod 4N). The remainder of this section is devoted to computing in this
case the Galois action of principal prime ideals (π) with π ∈ O coprime to
6cN on the singular values according to the arithmetic properties of N and
D. §6 applies these results to the determination of class invariants.
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To apply Shimura reciprocity in the formulation of Theorem 2.2, we
need to explicitly write down adapted bases for the different ideals. So let

a =

(

Aα
A

)

Z

be an ideal of O =

(

Aα
1

)

Z

with basis quotient α. Without loss

of generality, we may assume that p = N(π) | C by suitably modifying α:
Indeed, notice that the quadratic form associated to α′ = α−24kN for some
k ∈ Z is given by [A,B′, C ′] = [A,B+2A(24kN), A(24kN)2+B(24kN)+C].
This form still satisfies N | C ′, and furthermore f(α′) = f(α) since f is
invariant under translations by 24N according to Theorem 3.2. Since p splits
in O and is prime to c, the equation AX2+BX +C has a root x modulo p.
Choosing k ∈ Z such that k ≡ x(24N)−1 (mod p), which is possible since
p ∤ 6N , we obtain p | C ′.

Let π = u+ vAα with u, v ∈ Z. From

(5.1) p = N(π) = u(u− vB) + v2AC

and p | C we deduce that p divides u or u′ = u− vB. Using Aα = −Aα−B
and N(Aα) = AC, we compute

pa = π

(

Aα
A

)

=

(

uAα + vAC
uA− vA2α− vAB

)

=

(

u vC
−vA u− vB

)(

Aα
A

)

So if p | u, the matrix M of Theorem 2.2 is given by

M =

(

u vC
−vA u− vB

)

=

(

p 0
0 1

)

M1 with M1 =

(

u
p

vC
p

−vA u′

)

∈ Γ0(N)

since N | C and p ∤ N .
If f is invariant under M−1

1 , the rationality of its q-expansion implies
that

f ◦mM−1 = f ◦M−1
1 ◦

(

1 0
0 p

)

= f,

so that

f(α)σ(p) = f(Mα) = f

(

uα + vC

−vAα + u− vB

)

= f

(

πα

π

)

= f(α).

For p | u′, we decompose in a similar manner

M =M2

(

1 0
0 p

)

=M2S

(

p 0
0 1

)

S with M2 =

(

u vC
p

−vA u′

p

)

∈ Γ0(N),

and the rationality of the q-expansion of f ◦ S allows to conclude if f is
invariant under M−1

2 .
So we need the transformation of f under

M−1
1 =

(

u′ −vC
p

vA u
p

)

.
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Rewriting (3.1), it is given by f ◦M−1
1 = ζeθ24f with

θ =(N − 1)v

(

u′
C

Np
+ A

(

u

p
(1− u′2)− u′

))

+ 3v1A1(N1 − 1)(u′ − 1) +
3λ(N)(u′2 − 1)

2
.

(5.2)

We obtain invariance provided eθ ≡ 0 mod 24. (The treatment of M−1
2 is

completely analogous and omitted.) In the following, we classify the values
of D and B for which θ is 0 modulo some divisor of 24. It is natural to study
separately θ mod 3 and θ mod 2ξ for 1 6 ξ 6 3 depending on the value of
N . We will give code names to the following propositions for future use.

5.1 The value of θ modulo 3

To be able to use some exponent e not divisible by 3, we need to impose
3 | θ. From the reduction of (5.2) modulo 3, namely

θ = (N − 1)v

(

u′
C

Np
+ A

(

u

p
(1− u′2)− u′

))

mod 3,

we immediately see that 3 | θ for N ≡ 1 mod 3 without any further condi-
tion, which is coherent with 3 ∤ s in this case.

For N 6≡ 1 (mod 3), we impose B2 ≡ D (mod 4N) to obtain divisibility
of C by N (see the discussion above), and define r ∈ {0, 1, 2} such that

(5.3) A
C

N
=
B2 −D

4N
≡ r (mod 3).

Notice that r = 1 implies A ≡ C
N

(mod 3), while r = 2 implies A ≡ −C
N

(mod 3).

5.1.1 The case N ≡ 0 mod 3

Proposition 5.1 (PROP30). Let N ≡ 0 (mod 3), B2 ≡ D (mod 4N) and
r as in (5.3). Then 3 | θ if

(a) 3 | D and r = 1;

(b) D ≡ 1 (mod 3) and r = 2.

In these cases, B satisfies the following congruences modulo 3:

(a) 3 | B;

(b) 3 ∤ B.

Proof. Since 3 | N | C and 3 ∤ p, u2 ≡ u′2 ≡ 1 (mod 3) by (5.1) and

θ ≡ ±v
(

C

Np
− A

)

mod 3.
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(a) If 3 | B, or equivalently 3 | D, then p ≡ u2 ≡ 1 (mod 3) in (5.1). The
desired result follows from (5.3).

(b) If 3 ∤ B, which is equivalent with D ≡ 1 (mod 3), only the case 3 ∤ v
needs to be examined. Then u 6≡ u′ (mod 3) and p ≡ 2 (mod 3), and
again (5.3) allows to conclude.

5.1.2 The case N ≡ 2 mod 3

Proposition 5.2 (PROP32). Let N ≡ 2 (mod 3), B2 ≡ D (mod 4N) and
r ∈ {1, 2} as in (5.3). If D ≡ r (mod 3), then 3 | θ and 3 | B.

Proof. Notice that D ≡ r (mod 3) is equivalent with 3 | B by (5.3). Then
u′ ≡ u (mod 3) and

θ ≡ uv

(

C

Np
+
A

p
(1− u2)− A

)

(mod 3).

If 3 divides u or v, we are done.
Otherwise, u2 ≡ v2 ≡ 1 (mod 3), which implies

θ ≡ ±
(

C

Np
− A

)

(mod 3).

Writing p ≡ 1+AC ≡ 1−r (mod 3), we see that this case is possible only for
r = 2 and p ≡ 2 (mod 3), and then A ≡ −C

N
(mod 3) and 3 | C

Np
−A.

Note that the proposition does not hold for r = 0, since then 3 | D,
3 | B, 3 | AC, and exactly one of A and C is divisible by 3 (if both were,
then [A,B,C] would not be primitive), causing θ 6≡ 0 mod 3 unless one of
u or v is divisible by 3.

5.2 The value of θ modulo powers of 2

5.2.1 The case N odd

Since N1 = N and λ(N) = 0, (5.2) becomes

θ ≡ (N − 1)ρ (mod 8)

for

ρ = v

(

u′
C

Np
+ A

(

u

p
(1− u′2)− u′

))

+ 3v1A1(u
′ − 1).

So θ is divisible by 8 if N ≡ 1 (mod 8), which is the case in particular if
N is a square. Otherwise, e is supposed to be even, so eθ is divisible by 4;
if N ≡ 1 (mod 4), eθ is even divisible by 8. So the only remaining case of
interest is N ≡ 3 (mod 4); then for e ≡ 2 (mod 4), 8 | eθ is equivalent with
ρ even. We have

ρ ≡ v
(

u′C + A(u(1 + u′) + u′)
)

+ u′ + 1 mod 2.
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Proposition 5.3 (PROP21). Let N be odd. If D is odd, then θ ≡ (N −1)ρ
(mod 8) with ρ even.

Proof. Since B is odd, u′ ≡ u+ v (mod 2).
If one of v, A and C is even, then u and u′ are odd by (5.1) (so that in

fact v is even), and ρ is even.
Otherwise, v, A and C are odd, u′ = u + 1 (mod 2) and ρ is even as

well.

5.2.2 The case N even

Let N = 2λ(N)N1 with N1 odd and λ(N) > 1. We study divisibility of θ by
2ξ for increasing values of ξ. The value ξ = 3 is of interest only when e is
odd, in which case N and thus N1 are squares. We start with an elementary
remark.

Lemma 5.4. If 2 | N | C, then
(a) u and u′ are odd and

(5.4) θ ≡ (N − 1)vu′
(

C

Np
− A

)

(mod 4);

(b) moreover, if 4 | C, then 2 | vB.

Proof. (a) u and u′ are odd by (5.1), so that u′2 ≡ 1 (mod 8). Since N1

is odd, almost all terms disappear from (5.2).

(b) We have p = u2 + v(−uB + vAC) ≡ u(u− vB) mod 4. Since u is odd
by (a), we deduce that vB must be even.

As discussed above, N | C is equivalent with B2 ≡ D (mod 4N). Then
AC
N

= B2−D
4N

; by gradually imposing more restrictions modulo powers of 2
times 4N , we fix AC

N
modulo powers of 2.

Proposition 5.5 (PROP20). When N is even, θ is even in the following
cases:

(a) B2 ≡ D + 4N (mod 8N);

(b) B2 ≡ D (mod 8N) and D ≡ 1 (mod 8).

Proof. (a) The conditions imply that A(C/N) is odd, and Lemma 5.4(a)
allows to conclude since p is odd.

(b) In that case A(C/N) is even. Since A is prime to N , it is odd and
therefore C/N is even, which implies in turn 4 | C. By Lemma 5.4(b),
we get 2 | vB. Since D is odd, B is odd and v is even, and (5.4) finishes
the proof.
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Divisibility of θ by 4

We begin with a purely arithmetical lemma that will give us necessary
conditions on the parameters for the equation B2 ≡ D+ r(4N) mod (16N)
to have a solution.

Lemma 5.6. Let r ∈ {0, 1, 2, 3} and N be even. Given D, suppose the
equation B2 ≡ D + 4rN (mod 16N) admits a solution in B. Then either
D ≡ 1 mod 8 which implies B is odd, or D is even and D satisfies one of
the conditions of the following table depending on rN mod 8, which in turn
gives properties of B.

rN mod 8 condition on D ⇒ D/4 mod 8 B/2
0 4 mod 32 1 odd

16 | D 0 even
2 24 mod 32 6 0 mod 4

28 mod 32 7 odd
8 mod 32 2 2 mod 4

4 16 | D 0 even
20 mod 32 5 odd

6 8 || D 0 0 mod 4
12 mod 32 3 odd

Proof. Since B2 ≡ D mod 8, the only possible value for odd D is D ≡
1 mod 8, giving B odd. If D is even, then

(

B

2

)2

≡ D

4
+ rN mod 8

and since N is even, the above table makes sense.
Remembering that the only squares modulo 8 are {0, 1, 4}, the table is

easily constructed and left as an exercise to the reader.

Now, we are ready to extend the result of Proposition 5.5 by considering
B2 ≡ D+r(4N) (mod 16N) with r ∈ {1, 3}, which yields AC

N
≡ r (mod 4).

Note that case (b) cannot be extended and we leave the proof of this to the
reader.

Proposition 5.7 (PROP44). Let N be even, and suppose B2 ≡ D + 4N
(mod 16N) has a solution. Then θ is divisible by 4 if one of the following
conditions is met:

(a) D ≡ 1 (mod 8);

(b) 16 | D;

(c) 2 || N and 4 || D.
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Proof. If D is odd, the condition follows from Lemma 5.6. Then u′ = u−vB
leads to 2 | v and 4 | θ.

Assuming D even, Theorem 4.2 implies that χ4(p) = 1 (or, equivalently,
p ≡ 1 (mod 4)) when D/4 mod 8 ∈ {3, 4, 7, 0}, which immediately settles
case (b). When D/4 is odd, we see that we cannot have the case 4 | N when
comparing with the table of Lemma 5.6, and this gives us (c).

In the other cases, when p ≡ 3 mod 4, we get v odd since AC ≡ 2 mod 4
and there is no reason to have θ ≡ 0 mod 4.

Proposition 5.8 (PROP412). Let N be even, and suppose B2 ≡ D+ 12N
(mod 16N). Then θ is divisible by 4 if one of the following conditions is
met:

(a) D ≡ 1 (mod 8);

(b) 8 || D and 2 || N ;

(c) 4 || D and 4 | N .

In the cases of D even, B satisfies the following congruences modulo 4:

(b) 4 | B;

(c) 2 || B.

Proof. The proof for D odd as well as the case distinctions for D even are
the same as in Proposition 5.7. However, we now have AC

N
≡ −1 (mod 4).

In the cases where χ4(p) = 1 (i.e., D/4 ∈ {3, 4, 7, 0}), we get p ≡ 1
(mod 4) and C

Np
−A ≡ 2 (mod 4). Since there is no compelling reason why

v should be even, θ may or may not be divisible by 4.
So we have to turn our attention to the four other cases, i.e., D/4 ∈

{1, 2, 5, 6}, with Lemma 5.6 in mind. If 4 | B, 8 || D and 2 || N , then 2 || C,
and either v is even or p ≡ 3 (mod 4). In both cases, Lemma 5.4 shows that
4 | θ. If 2 || B and 4 || D, suppose that furthermore 4 | N . Then 4 | AC,
and again v is even or p ≡ 3 (mod 4).

Divisibility of θ by 8

As discussed at the beginning of §5.2.1, for generating class fields we are only
interested in θ mod 8 when N is a square, that is, λ(N) is even and N1 is a
square; in particular, N1 ≡ 1 (mod 8). Then the following generalisation of
Lemma 5.4 is immediately seen to hold:

Lemma 5.9. If N is an even square dividing C, then

θ ≡ (N − 1)vu′
(

C

Np
−A

)

(mod 8).
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From the results obtained for B2 ≡ D + 4rN (mod 16N) for r ∈ {1, 3},
it is natural to look at B2 ≡ D+ 4rN (mod 32N) for r ∈ {1, 3, 5, 7}. Then
AC
N

≡ r (mod 8).

Proposition 5.10 (PROP8). Let N be an even square, and suppose B2 ≡
D + 4rN (mod 32N). Then θ is divisible by 8 if one of the following con-
ditions holds:

(a) r = 3 or r = 7, and D ≡ 1 (mod 8);

(b) r = 1, and 32 | D;

(c) r = 5, and 16 || D.

In the cases of D even, B satisfies the following congruences modulo 8:

(b1) 4 || B if 4 || N ;

(b2) 8 | B if 16 | N .

(c1) 4 || B if 16 | N ;

(c2) 8 | B if 4 || N .

Proof. Since 4 | N | C, we have p ≡ u(u− vB) (mod 4) by (5.1).

For D odd, B is odd and v is even as seen in Proposition 5.7. If v is
divisible by 4, then θ is divisible by 8 by Lemma 5.9. If 2 || v, then p ≡ 3
(mod 4); if furthermore r ≡ 3 (mod 4), then 4 | C

Np
− A, and 8 | θ by

Lemma 5.9.

In the remaining cases of the proposition, 16 | D, 4 | B, r ≡ 1 (mod 4)
and p ≡ 1 (mod 4). If v is even, Lemma 5.9 implies that 8 | θ. From now
on, we assume that v is odd. Then p = u2 − uvB + AC (mod 8), and we
need to verify that 8 | C

Np
− A.

The results now follow from close inspection of

AC ≡ rN (mod 8) and

(

B

4

)2

≡ D

16
+ r

N

4
(mod 8).

Consider first the case r = 1 and 32 | D. By Theorem 4.2, we have
χ4(p) = χ8(p) = 1, which yields p ≡ 1 mod 8 and implies the desired
divisibility of C

Np
−A by 8.

Consider now r = 5; it is sufficient to show that p ≡ 5 (mod 8). If 16 || D
and 16 | N | C, then B ≡ 4 (mod 8) and p ≡ 5 (mod 8). If 16 || D and
4 || N , then AC ≡ 4 (mod 8) and 32 | D + 4rN , whence 8 | B and p ≡ 5
(mod 8).
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6 Lower powers of wN

The aim of this section is to determine conditions under which singular
values of lower powers of wN than those given in Theorem 4.3 yield class
invariants. When N is not a square, only even powers are possible by The-
orems 3.2 and 2.3. So we specialise the propositions of §5 according to the
value of N (mod 12). When N is a square, odd powers may yield class in-
variants, and we need to distinguish more finely modulo 24. Note that then
N ∈ {0, 1, 4, 9, 12, 16} (mod 24).

Throughout this section, we use the notation of Theorem 4.3. The num-
ber α is a root of the quadratic form [A,B,C] of discriminant D and N is
an integer such that A is prime to N and B is a square root of D mod-
ulo 4N according to Lemma 4.1, so that N | C. The canonical power s
such that ws

N(α) is a class invariant, that is, ws
N(α) ∈ KD, is defined as in

Theorem 4.3, and we wish to determine the minimal exponent e such that
we
N(α) is still a class invariant. The general procedure is as follows: Given

the value of N , we assemble the propositions of §5 (using their code names
throughout) and deduce from them conditions on B as well as the period
of D for which class invariants are obtained. In general, we can combine a
condition on B related to θ mod 3 and another one related to θ mod 2ξ. The
Chinese remainder theorem is then used to find compatible values. When
no particular condition modulo 3 or powers of 2 is imposed, that is, e and
s have the same 3-adic or 2-adic valuation, then Theorem 4.3 already leads
to the desired conclusion.

Once a power we
N (α) is identified as a class invariant, its conjugates may

be obtained by an M-system for M = s
e
N containing [A,B,C] as shown

through Theorems 2.4 and 3.2. In more detail, one may proceed as follows:

1. Determine a form [A,B,C] with root α satisfying gcd(A,M) = 1 and
the constraint on B so that we

N(α) is a class invariant; in general, one
may choose A = 1.

2. Enumerate all reduced forms [ai, bi, ci], i = 1, . . . , h(D) of discriminant
D, numbered in such a way that [a1, b1, c1] ≡ [A,B,C].

3. Let [A1, B1, C1] = [A,B,C]. For i > 2, find a form [Ai, Bi, Ci] ≡
[ai, bi, ci] such that gcd(Ai,M) = 1 and Bi ≡ B (mod 2M), using, for
instance, the algorithm of [22, Prop. 3], [24, Th. 3.1.10].

Then a floating point approximation of the class polynomial can be com-
puted as

hD
∏

i=1

(

X −we
N(αi)

)

with αi =
−Bi+

√
D

2Ai
. Using the algorithms of [11], one obtains a quasi-linear

complexity in the total size of the class polynomial.
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Note that the conditions on B of §5 can be summarised as B2 ≡ D+4rN
(mod 4RN), where r is defined modulo R and the only primes dividing R
are 2 and 3. For the sake of brevity, we denote such a condition by r:R.
So if no particular condition beyond B2 ≡ D (mod 4N) is required, this is
denoted by 0:1.

We will give more details for the first non-trivial cases and be briefer
in the sequel, since the results rapidly become unweildy. We add numerical
examples for these cases.

6.1 The case N odd

6.1.1 N 6≡ 0 mod 3

This is the simplest case. We may use PROP32, PROP21 or both of them.
Whenever N ≡ 2 (mod 3) and 3 ∤ D, then PROP32 applies; moreover, the
resulting condition 3 | B is automatically satisfied, and we gain a factor of
3 in the exponent. Similarly if D is odd, then PROP21 applies without any
restriction on B, and we gain a factor of 2 in the exponent.

N mod 12 s B D e proposition(s)
5 6 1:3 D ≡ 1 mod 3 2 PROP32
5 6 2:3 D ≡ 2 mod 3 2 PROP32
7 4 0:1 2 ∤ D 2 PROP21
11 12 0:1 2 ∤ D 6 PROP21
11 12 1:3 D ≡ 1 mod 3 4 PROP32
11 12 2:3 D ≡ 2 mod 3 4 PROP32
11 12 1:3 D ≡ 1 mod 6 2 PROP32+PROP21
11 12 2:3 D ≡ 5 mod 6 2 PROP32+PROP21

LettingD = c2∆, we put ω =
√

∆/4 if 4 | ∆ and ω = (1+
√
∆)/2 otherwise.

Here are some numerical examples:

N f −D HD[f ]
5 w2

5 11 X − ω − 1
5 w2

5 4 X − 1− 2ω
7 w2

7 3 X − 3ω + 1
11 w6

11 39 X4 + (27ω − 73)X3 + (1656ω − 8914)X2

+ (7947ω − 139058)X − 515016ω + 1000693
11 w4

11 8 X + 7 + 6ω
11 w4

11 28 X + 8ω − 7
11 w2

11 11 X − 2ω + 1
11 w2

11 7 X − 2ω + 3

6.1.2 The case N ≡ 3 (mod 12)

The situation becomes more intricate when gcd(N, 6) 6= 1. For N ≡ 3
(mod 12), we have s = 12, and N cannot be a square. Therefore we need
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an even exponent e. Since already the full power w12
N can only be used

when D is a square modulo 4N , we only have to consider D ∈ {0, 1, 4, 9}
(mod 12). Then PROP30 applies; moreover, PROP21 applies whenever D
is odd, resulting in the following table.

N mod 12 s B D mod 12 e propositions(s)
3 12 0:1 1, 9 6 PROP21
3 12 1:3 0, 9 4 PROP30(a)
3 12 2:3 1, 4 4 PROP30(b)
3 12 1:3 9 2 PROP30(a)+PROP21
3 12 2:3 1 2 PROP30(b)+PROP21

The entries in the first and last line for D ≡ 1 (mod 12) may seem
redundant; but note that they induce differently severe restrictions on B.
The entry D ≡ 1 (mod 12) in the third line, as well as D ≡ 9 (mod 12)
in the second line, are redundant, however: Since PROP21 does not induce
any additional restriction on B, the lower exponent is available for precisely
the same quadratic forms. In the following, we will present only tables that
have been reduced accordingly.

However, the previous table does not yet contain the full truth. A line
in the table means that if there is a solution to B2 ≡ D+4rN (mod 4RN)
with D in the given residue class D0 modulo 12, then we

N yields a class
invariant. Examining this equation modulo the part of 4RN that contains
only 2 and 3 yields further restrictions. Write N = N6N

′ such that the
only primes dividing N6 are 2 and 3 and gcd(N ′, 6) = 1. Then we need to
ensure that D + 4rN ≡ D is a square modulo N ′; this is guaranteed by
Lemma 4.1, since otherwise we would not even consider the full power ws

N .
We furthermore need to examine under which conditions

D + 4N6rN
′ is a square modulo 4RN6 and D ≡ D0 (mod 12).

Concerning the second to last line, for instance, the condition becomes

D + 12
N

3
is a square modulo 36 and D ≡ 9 (mod 12).

Thus, D + 12 N
3
≡ 9 (mod 36), and depending on N

3
mod 3, only one value

of D (mod 36) remains.
For N = 3, for instance, or more generally N

3
≡ 1 (mod 3), we obtain

the following class invariants.

B D mod 36 e
0:1 0, 12 12
0:1 9, 21 6
1:3 24 4
2:3 4, 16, 28 4
1:3 33 2
2:3 1, 13, 25 2
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To illustrate this, we give the following table of examples:

N f −D HD[f ]
3 w12

3 24 X2 − 162X + 729
3 w6

3 15 X2 − 3 (2ω − 1)X − 27
3 w4

3 12 X − 3
3 w4

3 8 X − 1− 2ω
3 w2

3 3 X − ω − 1
3 w2

3 11 X − ω

6.1.3 The case N ≡ 9 mod 12

We have s = 3 for squares in that family (for instance, N = 32n) and may
then reach wN . Otherwise, s = 6, and the only possible smaller exponent is
2.

N s B D e propositions(s)
9 mod 12, 6= � 6 1:3 0 mod 3 2 PROP30a
9 mod 12, 6= � 6 2:3 1 mod 3 2 PROP30b
9 mod 12, = � 3 1:3 0 mod 3 1 PROP30a
9 mod 12, = � 3 2:3 1 mod 3 1 PROP30b

We give two examples, one for N = 21, the second for N = 9. For the
former, we find

B D mod 252 e
0:1 0, 9, 21, 36, 57, 72, 81, 84, 93, 120, 144, 156, 165, 189, 225, 228 6
1:3 60, 105, 141, 168, 177, 204, 240, 249 2
2:3 1, 4, 16, 25, 28, 37, 49, 64, 85, 88, 100, 109, 112, 121, 133, 148, 2

169, 172, 184, 193, 196, 205, 217, 232

N f −D HD[f ]
21 w6

21 24 X2 + (108 + 102ω)X − 6345 + 2754ω
21 w2

21 3 X + ω + 4
21 w2

21 20 X2 + (−2 + 4ω)X − 19− 4ω

For N = 9, we get:

B D mod 108 e
0:1 9, 36 3
1:3 0, 45, 72, 81 1
2:3 1, 4, 13, 16, 25, 28, 37, 40, 49, 52, 1

61, 64, 73, 76, 85, 88, 97, 100

N f −D HD[f ]
9 w3

9 72 X2 − 18X + 27
9 w9 27 X − ω − 1
9 w9 8 X − 1− ω
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6.2 The case N even

A look at §5 immediately shows the complexity of the results when N is
even. We distinguish the cases λ = 1 (in which N cannot be a square) and
λ > 2 with N a square or not.

6.2.1 The case λ = 1

Three values are concerned, namely N mod 12 ∈ {2, 6, 10}. We have s = 24
for N mod 12 ∈ {2, 6}, whereas s = 8 for N ≡ 10 (mod 12).

N mod 12 s B D e proposition(s)

2 24 1:2 — 12 PROP20a
2 24 0:2 1 mod 8 12 PROP20b
2 24 1:3 1 mod 3 8 PROP32
2 24 2:3 2 mod 3 8 PROP32
2 24 1:4 1, 4 mod 8; 0 mod 16 6 PROP44
2 24 3:4 1 mod 8; 8 mod 16 6 PROP412ab
2 24 1:2∩1:3 1 mod 3 4 PROP20a+PROP32
2 24 1:2∩2:3 2 mod 3 4 PROP20a+PROP32
2 24 0:2∩1:3 1 mod 24 4 PROP20b+PROP32
2 24 0:2∩2:3 17 mod 24 4 PROP20b+PROP32
2 24 1:4∩1:3 1, 4 mod 24; 16 mod 48 2 PROP44+PROP32
2 24 1:4∩2:3 17, 20 mod 24; 32 mod 48 2 PROP44+PROP32
2 24 3:4∩1:3 1 mod 24; 40 mod 48 2 PROP412ab+PROP32
2 24 3:4∩2:3 17 mod 24; 8 mod 48 2 PROP412ab+PROP32

6 24 1:2 — 12 PROP20a
6 24 0:2 1 mod 8 12 PROP20b
6 24 1:3 0 mod 3 8 PROP30a
6 24 2:3 1 mod 3 8 PROP30b
6 24 1:4 1, 4 mod 8; 0 mod 16 6 PROP44
6 24 3:4 1 mod 8; 8 mod 16 6 PROP412ab
6 24 1:2∩1:3 0 mod 3 4 PROP20a+PROP30a
6 24 1:2∩2:3 1 mod 3 4 PROP20a+PROP30b
6 24 0:2∩1:3 9 mod 24 4 PROP20b+PROP30a
6 24 0:2∩2:3 1 mod 24 4 PROP20b+PROP30b
6 24 1:4∩1:3 9, 12 mod 24; 0 mod 48 2 PROP44+PROP30a
6 24 1:4∩2:3 1, 4 mod 24; 16 mod 48 2 PROP44+PROP30b
6 24 3:4∩1:3 9 mod 24; 24 mod 48 2 PROP412ab+PROP30a
6 24 3:4∩2:3 1 mod 24; 40 mod 48 2 PROP412ab+PROP30b

10 8 1:2 — 4 PROP20a
10 8 0:2 1 mod 8 4 PROP20b
10 8 1:4 1, 4 mod 8; 0 mod 16 2 PROP44
10 8 3:4 1 mod 8; 8 mod 16 2 PROP412ab

The case N = 2 corresponds to Weber’s classical functions. We present
the case N = 6 in more detail, illustrating the complexity of the process.
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B D mod 288 e
0:1 0, 36, 96, 132, 144, 180, 240, 276 24
1:2 60, 252 12
1:3 48, 84, 192, 228 8
2:3 4, 16, 52, 64, 100, 112, 148, 160, 196, 208, 244, 256 8
3:4 24, 72, 168, 216 6
1:4 9, 33, 81, 105, 153, 177, 225, 249 6
1:4 108, 204 6
1:2 ∩ 1:3 156 4
1:2 ∩ 2:3 28, 124, 220 4
3:4 ∩ 1:3 120, 264 2
1:4 ∩ 1:3 57, 129, 201, 273 2
1:4 ∩ 1:3 12 2
3:4 ∩ 2:3 40, 88, 136, 184, 232, 280 2
1:4 ∩ 2:3 1, 25, 49, 73, 97, 121, 145, 169, 193, 217, 241, 265 2
1:4 ∩ 2:3 76, 172, 268 2

N f −D HD[f ]
6 w24

6 12 X + 186624
6 w12

6 36 X2 − 3888ωX + 1259712
6 w8

6 60 X2 + (432ω − 720)X + 20736
6 w8

6 32 X2 + (112 + 64ω)X − 1088− 3584ω
6 w6

6 72 X2 − 216X − 5832
6 w6

6 39 X4 + (3ω − 42)X3 + (486ω + 108)X2

+ (−648ω + 9072)X + 6561ω − 45198
6 w6

6 84 X4 + (324 + 60ω)X3 + 14688X2

+ (69984− 12960ω)X + 46656
6 w4

6 132 X4 + (144− 12ω)X3 + 2196X2

+ (5184 + 432ω)X + 1296
6 w4

6 68 X4 + (−32 + 4ω)X3 + (−204− 96ω)X2

+ (1152− 144ω)X − 752 + 256ω
6 w2

6 24 X2 − ωX − 6
6 w2

6 15 X2 + (−2ω − 2)X + 3ω − 3
6 w2

6 276 X8 + (−12 − 4ω)X7 + (132 + 6ω)X6

−144X5 − 576X4 − 864X3 + (4752− 216ω)X2

+ (−2592 + 864ω)X + 1296
6 w2

6 8 X + 2 + ω
6 w2

6 23 X3 − 6X2 + (−ω + 15)X + ω − 15
6 w2

6 20 X2 + (2− 2ω)X − 4− 2ω

6.2.2 The case λ > 2

We have to study three values of N mod 12, namely, 0, 4 and 8, for which
s = 24, 8, and 24, respectively. The cases N ≡ 0 or 4 authorise squares, so
that the results become somewhat lengthy.
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When N ≡ 4 mod 12, we find

N s B D e proposition(s)
4 mod 12 8 1:2 — 4 PROP20a
4 mod 12 8 1:2 1 mod 8 4 PROP20b
4 mod 12 8 1:4 1 mod 8 2 PROP44a
4 mod 12 8 1:4 0 mod 16 2 PROP44b
4 mod 12 8 3:4 1 mod 8 2 PROP412a
4 mod 12 8 3:4 4 mod 8 2 PROP412c

4 mod 12, = � 8 3:8 1 mod 8 1 PROP8a
4 mod 12, = � 8 7:8 1 mod 8 1 PROP8a
4 mod 12, = � 8 1:8 0 mod 32 1 PROP8b
4 mod 12, = � 8 5:8 16 mod 32 1 PROP8c

When N ≡ 8 mod 12, it cannot be a square, and the results are:

N mod 12 s B D e proposition(s)
8 24 1:2 — 12 PROP20a
8 24 1:2 1 mod 8 12 PROP20b
8 24 1:4 1 mod 8 6 PROP44a
8 24 1:4 0 mod 16 6 PROP44b
8 24 3:4 1 mod 8 6 PROP412a
8 24 3:4 4 mod 8 6 PROP412c
8 24 1:3 1 mod 3 8 PROP32
8 24 2:3 2 mod 3 8 PROP32
8 24 1:2 ∩ 1:3 1 mod 3 4 PROP20a+PROP32
8 24 1:2 ∩ 2:3 2 mod 3 4 PROP20a+PROP32
8 24 1:2 ∩ 1:3 1 mod 24 4 PROP20b+PROP32
8 24 1:2 ∩ 2:3 17 mod 24 4 PROP20b+PROP32
8 24 1:4 ∩ 1:3 1 mod 24 2 PROP44a+PROP32
8 24 1:4 ∩ 2:3 17 mod 24 2 PROP44a+PROP32
8 24 1:4 ∩ 1:3 16 mod 48 2 PROP44b+PROP32
8 24 1:4 ∩ 2:3 32 mod 48 2 PROP44b+PROP32
8 24 3:4 ∩ 1:3 1 mod 24 2 PROP412a+PROP32
8 24 3:4 ∩ 2:3 17 mod 24 2 PROP412a+PROP32
8 24 3:4 ∩ 1:3 4 mod 24 2 PROP412c+PROP32
8 24 3:4 ∩ 2:3 20 mod 24 2 PROP412c+PROP32

Finally, for N ≡ 0 mod 12, we obtain the following results:
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N s B D e proposition(s)
12 24 1:2 — 12 PROP20a
12 24 1:2 1 mod 8 12 PROP20b
12 24 1:4 1 mod 8 6 PROP44a
12 24 1:4 0 mod 16 6 PROP44b
12 24 3:4 1 mod 8 6 PROP412a
12 24 3:4 4 mod 8 6 PROP412c
12 24 1:3 0 mod 3 8 PROP30a
12 24 2:3 1 mod 3 8 PROP30b
12 24 1:2 ∩ 1:3 0 mod 3 4 PROP20a+PROP30a
12 24 1:2 ∩ 2:3 1 mod 3 4 PROP20a+PROP30b
12 24 1:2 ∩ 1:3 9 mod 24 4 PROP20b+PROP30a
12 24 1:2 ∩ 2:3 1 mod 24 4 PROP20b+PROP30b
12 24 1:4 ∩ 1:3 9 mod 24 2 PROP44a+PROP30a
12 24 1:4 ∩ 2:3 1 mod 24 2 PROP44a+PROP30b
12 24 1:4 ∩ 1:3 0 mod 48 2 PROP44b+PROP30a
12 24 1:4 ∩ 2:3 16 mod 48 2 PROP44b+PROP30b
12 24 3:4 ∩ 1:3 9 mod 24 2 PROP412a+PROP30a
12 24 3:4 ∩ 2:3 1 mod 24 2 PROP412a+PROP30b
12 24 3:4 ∩ 1:3 12 mod 24 2 PROP412c+PROP30a
12 24 3:4 ∩ 2:3 4 mod 24 2 PROP412c+PROP30b
12 24 3:8 1 mod 8 3 PROP8a
12 24 7:8 1 mod 8 3 PROP8a
12 24 1:8 0 mod 32 3 PROP8b
12 24 5:8 16 mod 32 3 PROP8c
12 24 3:8 ∩ 1:3 9 mod 24 1 PROP8a+PROP30a
12 24 3:8 ∩ 2:3 1 mod 24 1 PROP8a+PROP30b
12 24 7:8 ∩ 1:3 9 mod 24 1 PROP8a+PROP30a
12 24 7:8 ∩ 2:3 1 mod 24 1 PROP8a+PROP30b
12 24 1:8 ∩ 1:3 0 mod 96 1 PROP8b+PROP30a
12 24 1:8 ∩ 2:3 64 mod 96 1 PROP8b+PROP30b
12 24 5:8 ∩ 1:3 48 mod 96 1 PROP8c+PROP30a
12 24 5:8 ∩ 2:3 16 mod 96 1 PROP8c+PROP30b

For N = 4, these results translate as follows:

B D mod 128 e
0:1 ≡ 4 (mod 32) 8
1:2 16, 32, 80, 96 4
3:4 ≡ 20 (mod 32) 2
1:4 64 2
3:8 ≡ 1 (mod 8) 1
1:8 0 1
5:8 ≡ 48 (mod 64) 1
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N f −D HD[f ]
4 w8

4 28 X − 48ω + 32
4 w4

4 32 X2 − 8ωX − 16
4 w2

4 12 X − 2ω
4 w2

4 64 X2 + (−4 − 4ω)X + 4ω
4 w4 7 X − ω
4 w4 128 X4 + (−4 − 2ω)X3 + 6ωX2 + (8− 4ω)X − 4
4 w4 16 X − 1− ω

The precise results for N = 16 are the following:

B D mod 512 e
0:1 ≡ 16 (mod 128) 8
1:2 64, 128, 320, 384 4
3:4 ≡ 4 (mod 32) 2
1:4 256 2
3:8 ≡ 1 (mod 8) 1
1:8 0, 192, 448 1
5:8 ≡ 80 (mod 128) 1

N f −D HD[f ]
16 w8

16 112 X2 + (12288ω − 8192)X − 196608ω − 917504
16 w4

16 128 X4 + (128 + 192ω)X3 + 6656ωX2

+ (−32768 + 49152ω)X − 65536
16 w2

16 28 X + 2ω − 4
16 w2

16 256 X4 + (16− 48ω)X3 + (−288 + 288ω)X2

+ (768− 256ω)X − 256ω
16 w16 7 X − ω − 1
16 w16 64 X2 − 4X + 4
16 w16 48 X2 + 4X + 4

6.3 Reality of class polynomials

The argumentation of the proof of Theorem 4.4 carries over to the lower
powers of wN and shows that the class polynomial is real whenever for
some form [A,B,C] in the s

e
N -system the inverse form [A,−B,C] satisfies

the congruence constraints of the system as well. This is precisely the case
when B is divisible by s

e
N . In particular, this implies that N | D, and

inspection of the previous results proves the following theorem.

Theorem 6.1. Under the general assumptions of §6, the characteristic poly-
nomial of we

N(α) is real whenever N | D and s
e
N | B. For e < s, this is

possible only in the following cases:
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(a) N odd:

N s B D e
5 mod 12 6 1:3 1 mod 3 2
5 mod 12 6 2:3 2 mod 3 2
11 mod 12 12 1:3 1 mod 3 4
11 mod 12 12 2:3 2 mod 3 4
3 mod 12 12 1:3 6 mod 9 4

9 mod 12, 6= � 6 1:3 18 mod 27 2
9 mod 12, = � 3 1:3 18 mod 27 1

(b) 2 || N and 4 | D

(b1) s
e
is even and 8 || D

(b2) s
e
= 3

(c) 4 | N and 16 | D

Proof. We again start from B2 ≡ D+4rN (mod 4RN), where in fact R = s
e

is a non-trivial divisor of 24. Then the hypotheses of the theorem translate
as B = NRB′ and D = ND′, so that

(6.1) NR2B′2 ≡ D′ + 4r (mod 4R).

This immediately implies

D′ ≡ −r (mod 3) if 3 | R(6.2)

4 | D′ if 2 | R(6.3)

(a) The assertions are a direct consequence of (6.2) and (6.3), together
with the tables in §6.1.

(b) If N is even, from N | D we immediately have 4 | D.

If R is even, then moreover (6.3) yields that 8 | D. Going through
the table in §6.2.1 shows that then r is odd, and (6.1) implies that
D′ ≡ −4r ≡ 4 (mod 8) and 8 || D.

(c) If 4 | N , then (6.1) shows that 4 | D′, whence 16 | D.

We end this section with related results concerning the functions
√
Dwe

N .
Since

√
D ∈ O, a singular value

√
Dwe

N (α) is a class invariant if and only
if we

N(α) is, and integrality of the class polynomial coefficients carries over.
In some cases, however, the additional factor

√
D may lead to rational class

polynomials.
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Lemma 6.2. Let N 6≡ 1 (mod 8), α = −B+
√
D

2
and e be such that s

e
is even,

s
2e
N | B and s

e
N ∤ B. Then wN(α)

e ∈ iR.

Proof. Write wN = f0f1, where f0 = q−
N−1
24N and f1 is a power series in q1/N .

Notice that if N | B, then q1/N(α) = e2πiα/N ∈ R. So we
N(α) is real up to

the factor f0(α)
e, which itself is real up to the factor e

2πi
4

· s(N−1)
24

· 2eB
sN . This is

an odd power of i under the hypotheses of the lemma; N 6≡ 1 (mod 8) is

needed to ensure that s(N−1)
24

is odd.

Lemma 6.3. Let f be a modular function and α ∈ O such that f(α) is a
class invariant and a real number. Then HD[f ] ∈ Q[X ].

Proof. This is a trivial application of Galois theory. The complex conjugate
f(α) is a root of HD[f ]. Since f(α) = f(α), this implies that HD[f ] is a
multiple of the minimal polynomial HD[f ] of f(α), so both are the same,
and HD[f ] has coefficients in K ∩ R = Q.

Combining the lemmata yields the following result.

Theorem 6.4. Under the general assumptions of §6, the characteristic poly-
nomial of

√
Dwe

N (α) is real whenever N 6≡ 1 (mod 8), N | D, s
e
is even,

s
2e
N | B and s

e
N ∤ B.

For instance, we may apply this theorem to the cases N ∈ {2, 3, 4, 7}, in
which Propositions 5.3 or 5.5 hold:

N D B e
2 12 mod 16 ±2 12

24 mod 96 ±12 6
3 9 mod 12 ±3 6
7 21 mod 28 ±7 2
4 0 mod 32 ±4 4

As numerical examples, we find:

H−72[
√
−72w6

2] = X2 + 720X + 576,

H−51[w
6
3](X) = X2 + 6

√
−51X − 27,

H−51[
√
−51w6

3](X) = X2 − 306X + 1377.

7 Heights and comparison with other invari-

ants

Let f be a modular function yielding class invariants and Φ[f ](F, J) the
associated modular polynomial such that Φ[f ](f, j) = 0. It is shown in [7]
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that asymptotically for |D| → ∞, the height of the class invariant f(α) is
c(f) times the height of j(α), where

(7.1) c(f) =
degJ(Φ[f ])

degF (Φ[f ])

depends only on f . It is then clear that c(f r) = rc(f) for rational r. So
to obtain c(we

N), it is sufficient to determine the degrees of the modular
polynomials of the full power ws

N , where s is as defined in Theorem 4.3.

7.1 Modular polynomials for ws
N

Since ws
N is modular for Γ0(N) by Theorem 3.2, we have

Φc
N := Φ[ws

N ] =
∏

M∈Γ0(N)\Γ
(F −ws

N ◦M).

So degF Φc
N = ψ(N) = N

∏

p prime, p|N

(

1 + 1
p

)

. The degree in J is obtained

by examining the q-developments of the conjugates ws
N ◦M of ws

N .

Proposition 7.1 (Oesterlé). The cosets of Γ0(N)\Γ can be split into the
following three families:

T ν =

(

1 ν
0 1

)

, 0 6 ν < N,

S =

(

0 −1
1 0

)

,

Mk,k′ =

(

k kk′ − 1
1 k′

)

with 1 < k < N , gcd(k,N) > 1 and 0 6 k′ < µ(k) where µ(k) is the
smallest integer for which gcd(µ(k)k − 1, N) = 1.

Using (3.2), we find

Proposition 7.2.

(ws
N ◦ T )(z) = wN(z + ν)s, 0 6 ν < N,

(ws
N ◦ S)(z) =

(√
N
η(Nz)

η(z)

)s

,

(ws
N ◦Mk,k′)(z) =



ζk,k′
√

δk
η
(

δkz+ck,k′

N/δk

)

η(z)





s

,

where δk = gcd(k,N), ζk,k′ is a 24-th root of unity and ck,k′ is a rational
integer.
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The proposition shows in particular that all conjugates of ws
N have inte-

gral and that ws
N and ws

N ◦ S have rational q-expansions. The q-expansion
principle now implies that Φc

N ∈ Z[F, J ], cf. [6, §3]
Theorem 7.3.

degJ Φ
c
N =

s

24
(N − 1 + S(N))

where

(7.2) S(N) =
∑

k:1<k<N,1<δk=gcd(k,N)<
√
N

µ(k)

(

1− δ2k
N

)

.

Proof. Consider Φc
N as a polynomial in F with coefficients in Z[J ]. Following

the same reasoning as in [9], we see that the coefficient of highest degree in J
is obtained when all conjugates are multiplied together whose q-expansions
have strictly negative order; since the q-expansion of j starts with q−1, the
degree in J is then the opposite of this order. The wN(z+ν)

s have negative

order −s(N−1)
24N

and contribute a total of −s(N−1)
24

. The function ws
N ◦ S has

positive order. The conjugates coming from Mk,k′ have order s
24

(

δ2
k

N
− 1
)

,

which is negative whenever δk <
√
N .

Let us note a list of useful corollaries.

Proposition 7.4. When N = ℓn for a prime ℓ and n > 1, then

S(N) =

{

(ℓm − 1)2 if n = 2m+ 1,
(ℓm − 1)(ℓm+1 − 1) if n = 2m+ 2.

Proof. The k occurring in (7.2) are the (k1 + ℓk2)ℓ
r with 1 6 k1 < ℓ,

1 6 r 6 m and 0 6 k2 < ℓn−r−1 (so that k < N); they yield δk = ℓr and
µ(k) = 1. Hence,

S(N) =
m
∑

r=1

(ℓ− 1)ℓn−r−1
(

1− ℓ2r−n
)

=
(

ℓn−m−1 − 1
)

(ℓm − 1) .

Corollary 7.5. When N is prime or the square of a prime, then degJ Φ
c
N =

s(N−1)
24

.

Proposition 7.6. When N = p1p2 for two primes p2 > p1, then S(N) =
p2 − p1.

Proof. The case p1 = p2 is already proven. So it remains to consider p1 <√
N < p2, and the integers k contributing to S(N) are the k̃p1 with 1 6

k̃ < p2. Among these, only one is such that gcd(k − 1, N) 6= 1, namely the
k with k̃ ≡ 1/p1 (mod p2); for this one, µ(k) = 2. Therefore

S(N) =
(

(p2 − 2) · 1 + 1 · 2
)

(

1− p21
N

)

= p2 − p1.
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With some more effort, the constant coefficient Φc
N (0, J) could be ob-

tained as the product of all conjugates, but it is not needed in the following.

7.2 Heights

Knowing the degrees of the modular polynomials, we can compare class
invariants obtained from we

N among themselves and with others using (7.1).
Of special interest is the infinite family of invariants obtained in [8] from
the double η-quotients

wσ
p1,p2

(z) =





η
(

z
p1

)

η
(

z
p2

)

η
(

z
p1p2

)

η(z)





σ

,

where p1, p2 are (not necessarily distinct) primes and σ = 24
gcd(24,(p1−1)(p2−1))

.

These functions yield class invariants whenever
(

D
p1

)

=
(

D
p2

)

= 1, and in

some cases when
(

D
p1

)

= 0 or
(

D
p2

)

= 0, see [8, Cor. 3.1]. The degrees of their

modular polynomials have been worked out in [9, Th. 9], and we summarise
the results in the following table, in which ℓ and p1 6= p2 are supposed to be
prime numbers.

f c(f) degJ Φ
c
N

we
ℓ

e(ℓ−1)
24(ℓ+1)

s(ℓ−1)
24

we
ℓ2

e(ℓ−1)
24ℓ

ℓ2−1
24

if ℓ > 3

we
p1p2

e(p2−1)
24(p2+1)

s(p2−1)(p1+1)
24

we
N

e(N−1+S(N))
24ψ(N)

s(N−1+S(N))
24

we
ℓ,ℓ

e(ℓ−1)2

12ℓ(ℓ+1)
σ(ℓ−1)2

12

we
p1,p2

e(p1−1)(p2−1)
12(p1+1)(p2+1)

σ(p1−1)(p2−1)
12

Notice that asymptotically for ℓ or p1, p2 → ∞, the factors c(f) tend

to e/2
12

for we
ℓ (here, e is necessarily even), e

12
for the double η quotients

and e
24

for we
ℓ2 . For any discriminant D, there are suitable choices of primes

in arithmetic progressions modulo D such that e/2 = 1 resp. e = 1 are
reachable, and c(f) may become arbitrarily close to 1

12
resp. 1

24
. However,

at the same time, the degrees of Φc
N in F and J tend to infinity, which may

be undesirable in complex multiplication applications where the modular
polynomial needs to be factored over a finite field.

In Table 7.2, we list in decreasing order of attractiveness the functions
f together with the factors 1/c(f) they allow to gain in height compared
to j and with the degree of the modular polynomial in J , thus completing
the tables of [7] and [10, p. 21]. We limit ourselves to functions gaining a
factor of at least 13 and with degree in J at most 20. The function w2 is in
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fact the Weber function f1, and leads to the same height as the other two
Weber functions f and f2. Notice that, as indicated by the explicit formulæ,
transformation levels divisible by 2 or 3 (or, in general, small primes) tend
to yield smaller class invariants.

Table 1: Comparison of class invariants: height factor and degree in J

w2

72,1
> w4

48,1
> w2,73

37,6
> w2,97

147/4,8
> w9

36,1
= w2

2
36,1

> w16

32,6
> w25

30,1
> w3,13

28,2
= w49

28,2
> w81

27,12
> w112

132/5,5

> w132

26,7
> w172

51/2,12
> w3,37

76/3,6
= w192

76/3,15
> w3,61

124/5,10
> w5,7

24,2

= w3
2

24,1
= w2

6
24,6

= w2
4

24,1
= w2

3
24,1

> w5,13

21,4
= w2

2,13

21,2

> w2
12

144/7,14
> w5,19

20,6
> w5,31

96/5,10
> w5,37

19,12
= w2

2,37

19,6
> w7,13

56/3,6

>
w2

2,61

93/5,10
> w7,17

18,8
= w2

15
18,8

= w2
8

18,8
= w4

2
18,1

= w2
5

18,1

= w2
10

18,4
> w11,13

84/5,10
> w2

3,7

16,2
= w2

35
16,18

= w2
21

16,6
= w2

40
16,18

= w2
14

16,18
= w2

16
16,6

= w2
28

16,12
= w2

7
16,1

= w3
3

16,1
= w3

6
16,6

> w2
45

108/7,14
> w13,13

91/6,12
> w2

55
72/5,10

= w2
77

72/5,20
= w2

22
72/5,10

= w2
11

72/5,5

= w2
33

72/5,10
= w2

27
72/5,15

> w2
91

14,16
= w2

65
14,18

= w2
13

14,1
> w3

12
96/7,14

>
w3

2,17

27/2,4
= w2

85
27/2,8

= w2
34

27/2,16
= w2

17
27/2,4

>
w2

3,19

40/3,6
= w2

7·19
40/3,12

= w2
57

40/3,18
= w2

19
40/3,3

> w2
23

144/11,11

8 Outlook

The presented results concern singular values of powers of wN as class in-
variants. It is possible to obtain smaller invariants by authorising 24-th roots
of unity to enter the game. This was already done by Weber for N = 2 (the
classical f -functions) and by Gee in [16] for N = 3. For instance, ζ4w

2
7 is an

invariant for D = −40, leading to the minimal polynomial

X2 + (−5 + 2ω)X + 3− 4ω.

Similarly, when N is not a square and e is odd, then we
N ◦ S has a q-

expansion that is rational up to a factor
√
N , so that Theorems 2.3 and 2.4
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are not applicable any more. Nevertheless, we
N may yield class invariants;

this is well-known for Weber’s original functions in certain cases.
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