
HAL Id: inria-00390356
https://inria.hal.science/inria-00390356

Submitted on 2 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast Continuous Collision Detection between Rigid
Bodies

Stephane Redon, Abderrahmane Kheddar, Sabine Coquillart

To cite this version:
Stephane Redon, Abderrahmane Kheddar, Sabine Coquillart. Fast Continuous Collision Detection
between Rigid Bodies. Computer Graphics Forum, 2002, 21 (3), pp.279-287. �10.1111/1467-8659.t01-
1-00587�. �inria-00390356�

https://inria.hal.science/inria-00390356
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2002 / G. Drettakis and H.-P. Seidel
(Guest Editors)

Volume 21 (2002), Number 3

Fast Continuous Collision Detection between Rigid Bodies

Stéphane Redon∗, Abderrahmane Kheddar† and Sabine Coquillart∗

∗i3D - INRIA - France, [stephane.redon,sabine.coquillart]@inria.fr
†CEMIF-SC - Université d’Evry - France, kheddar@iup.univ-evry.fr

Abstract

This paper introduces a fast continuous collision detection technique for polyhedral rigid bodies. As opposed to
most collision detection techniques, the computation of the first contact time between two objects is inherently part
of the algorithm. The method can thus robustly prevent objects interpenetrations or collisions misses, even when
objects are thin or have large velocities. The method is valid for general objects (polygon soups), handles multiple
moving objects and acyclic articulated bodies, and is efficient in low and high coherency situations. Moreover, the
method can be used to speed up existent continuous collision detection methods for parametric or implicit rigid
surfaces. The collision detection algorithms have been successfully coupled to a real-time dynamics simulator.
Various experiments are conducted that show the method’s ability to produce high-quality interaction (precise
objects positioning for example) between models up to tens of thousands of triangles, which couldn’t have been
performed with previous continuous methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Animation - Virtual Re-
ality

1. Introduction

Collision detection (CD) is still a fundamental problem in
numerous domains. Typical examples are computer graph-
ics (physically-based modeling, animation), robotics (mo-
tion planning, collision avoidance), industrial applications
(virtual prototyping, assembly tests) and video games. More-
over, haptics research has created the need of algorithms able
to achieve kilohertz rates. Collision detection methods are
usually split into two categories:

Discrete methods Most previous collision detection meth-
ods are discrete: they sample the objects motions
and detect objects interpenetrations (see for example
1, 2, 6, 10, 11, 12, 13, 17, 25, 29). As a result, these methods may
miss collisions (tunneling effect). While an adaptative
time-step and predictive methods can be used to correct
this problem in offline applications, this may not be suit-
able in interactive applications when a relatively high and
constant frame-rate is required. Moreover, discrete colli-
sion detection requires backtracking methods to compute
the first contact time, which is necessary in constraint-
based analytical dynamics simulations. Depending on the

Figure 1. Precise car door positioning. The continuous collision de-
tection technique described in this paper allows to precisely (without
any objects interpenetration) and interactively position the door. The
car skeleton is about 29000 triangles. The door is about 16000 trian-
gles (3d models ©Renault).

© The Eurographics Association and Blackwell Publishers 2002. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

object complexity, however, the computational cost of
backtracking may be unpredictably large, mainly because
estimating the penetration depth is a difficult problem, for
example when many triangles have penetrated or if the
object is concave or non-connex. Such typical problems
are encountered in the interaction technique described in
Snyder27. In haptics, the penetration problem is a major
cause of instability15.

Continuous methods As opposed to these methods, continu-
ous methods compute the first time of contact during the
collision detection. This computation is inherently part
of the algorithm. While more suitable to robust inter-
active dynamics simulations (to guarantee collision-free
motions), continuous methods are usually slower than
discrete methods, and are often abandonned for discrete
ones27.

This paper contributes to the field by introducing a fast
continuous method, able to compute collision times between
rigid polyhedral objects composed of tens of thousands of
triangles at interactive rates (Figure 1). To our knowledge
(see Section 2), this is not possible for previous continuous
methods. The collision detection algorithms require no par-
ticular topology (objects can be polygon soups), can han-
dle multiple moving objects and are efficient for slow and
fast objects. Moreover, the method handles acyclic articu-
lated bodies and can be used to speed up previous contin-
uous collision detection methods for parametric or implicit
rigid surfaces.

The algorithms described in this paper rely upon the ef-
fective integration of interval arithmetic (IA) and hierarchies
of oriented bounding boxes (OBBs). Both approaches ben-
efit from each other. Interval arithmetic is used to robustly
compute collision times between objects features (vertices,
edges and faces), and to derive a conservative continuous
overlap test between moving OBBs from a well-known dis-
crete overlap test. Conversely, the bounding boxes help to
cull many irrelevant elementary tests (edge/edge, vertex/face
and face/vertex tests), which made previous interval methods
unpractical for complex polyhedral objects.

The next section describes previous work on continuous
methods. Section 3 provides an overview of the method. It
details the fixed in-between rigid motion assumption, recalls
basic principles of interval arithmetic and of bounding vol-
ume hierarchies. Section 4 introduces the continuous over-
lap test between moving OBBs and presents the elementary
CD tests (edge/edge, vertex/face and face/vertex). Section 5
briefly explains how our method may be used to speed up CD
methods for parametric or implicit rigid surfaces. Section 6
describes several optimizations. The algorithms described in
this paper have been coupled to dynamics algorithms24. Sec-
tion 7 presents various experiments conducted to test the in-
teractive simulator. Finally, Section 8 concludes and gives
future research directions.

2. Previous work

There are relatively few continuous collision detection (CD)
techniques. Canny 5 uses a parameterization of the objects
trajectories based on quaternions and computes the collision
time by solving low-order polynomials, but the algorithm’s
high complexity doesn’t allow real-time interaction between
large models. Redon et al.22 use screwings to parameterize
the trajectories of rigid polyhedral bodies and obtain a mo-
tion similar to the one in Canny 5. The approach is extended
to hierarchies of bounding spheres in Redon et al.23 to con-
tinuously detect collisions between rigid polyhedral bodies
in real-time. However, since spheres don’t fit objects well,
the approach can only handle moderately complex objects
(a few thousands of triangles). Moreover, the algorithm han-
dles only one mobile object. It is noted in 23, though, that
using arbitrary in-between rigid motions over successions of
small time intervals allows realistic real-time dynamics sim-
ulations.

Cameron 4 introduces spatio-temporal extrusion to deter-
mine contact between moving CSG objects. However, due
to the high computational cost of the extrusion operation,
the object motions are piecewise translational.

Von Herzen et al.30 use Lipschitz bounds and binary
subdivision to find the first contact time between time-
dependent parametric surfaces. Hierarchies of bounding
spheres and axis-aligned bounding boxes are computed dur-
ing collision detection to speed up the method. Duff 8 uses
interval arithmetic and binary subdivision to detect colli-
sions between boolean combinations of implicit surfaces.
Snyder et al.28 use interval arithmetic and interval Newton
methods to significantly speed up these approaches, and use
a simple culling test based on bounding spheres to adress the
n-body problem. While the algorithm has many interesting
features and is pratical for computer graphics animations, it
is not efficient enough to handle real-time interaction, even
for rigid bodies27. General polyhedral objects may be con-
sidered as unions of parametric surfaces. However, none of
interval-based methods able to handle parametric surfaces
(30, 28) use hierarchies of bounding volumes to speed up the
detection between unions of objects. Consequently, detect-
ing a collision between two complex polyhedral objects is
turned into an artificial and unpractical n-body problem (for
example, see the multiple elements algorithm in Snyder et
al.28).

Mirtich21 uses physical laws to bound the times of impact,
and is able to perform collision checks only when necessary.
However, the lower bounds may be difficult to obtain for
multibodies or complex motions, and the resultingly varying
timestep may not be suited for interactive applications.

Note that some methods perform discrete CD on bound-
ing volume hierarchies and continuous CD between poly-
hedral primitives19. Some other methods perform pseudo-
continuous CD by bounding at runtime the initial and fi-
nal object’s (or bounding-volume’s) positions9. However,

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

these methods don’t ensure that the whole object trajectory is
bounded and thus may miss collisions. The only case when
bounding the initial and final object positions is valid is the
much simpler one of a single moving vertex. In this case,
some methods achieve continuous collision detection at hap-
tic rates14.

3. Overview

3.1. Arbitrary in-between rigid motions

As in Redon et al.23, this paper uses arbitrary in-between
rigid motions. Successive objects’ positions, determined at
fixed instants by the dynamics simulator or by the user in-
terface, are interpolated with an arbitrarily fixed rigid mo-
tion. Arbitrary meaning that the in-between motion must
be continuous and rigid, in order to get a truly continuous
collision detection method. Precisely, interpolations are per-
formed between the objects’ positions at time ti and the in-
tentional objects’ positions at time ti+1. Typically, t0, t1, . . .
correspond to the display times. Thus, the interpolations oc-
cur between frames. Provided that the simulation timestep
is small, the difference between the actual objects’ motions
and the interpolated ones is negligeable. Note that this ap-
proximation principle is similar to the one used in dynamics
simulations: the dynamics equations are discretized and low-
order approximations are used to move the objects between
the instants chosen by the simulator.

The in-between rigid motion used in this paper, though,
differs from the one in23. The arbitrary in-between motion
used in23 is designed to obtain an algebraic collision test, for
which there is a closed-form contact time, and thus is non-
natural in dynamics simulations. This isn’t required in the
present paper since interval arithmetic is used to find roots
of functions. Consequently, the in-between rigid motion we
use is simply a continuous screwing, with constant rotational
and translational velocities.

For clarity, let us assume that the current time interval
is [0,1] (between two frames for example). The screwing-
based in-between motion in a reference frame R0 is a 4×4
homogeneous matrix:

S(t) = P−1V(t)P t ∈ [0,1] (1)

where V(t) is a z-axis screwing, and P is the transformation
matrix from R0 to the screwing local frame. If ω and s are
respectively the total amount of rotation and translation dur-
ing the current time interval, then:

V(t) =









cos(ω.t) −sin(ω.t) 0 0
sin(ω.t) cos(ω.t) 0 0

0 0 1 s.t
0 0 0 1









(2)

for t ∈ [0,1]. For acyclic articuled bodies, these screwing-
based motions can be composed, starting from the root of
the graph describing the body.

Note that other in-between motions can be arbitrarily cho-
sen, provided they are continuous and rigid. For example,
one solution consists in linearly interpolating the six inde-
pendent parameters describing the object’s position and ori-
entation between successive frames.

3.2. Interval arithmetic

A good introduction to interval arithmetic for computer
graphics can be found in Snyder26. The use of interval arith-
metic to detect collisions between parametric or implicit sur-
faces is explored in Von Herzen et al., Duff8, and Snyder et
al.28.

Briefly, interval arithmetic consists in computing with in-
tervals instead of numbers. The definition of a real interval
[a,b] is:

I = [a,b] = {x ∈ IR, a 6 x 6 b}

This can be generalized to vector-valued intervals:

In = [a1,b1]× ...× [a1,b1]

=
{

x = (x1,...,xn) ∈ IRn, ai 6 xi 6 bi ∀i, 1 6 i 6 n
}

The set of intervals of real numbers is denoted by IIR, while
the set of vector-valued intervals is denoted by IIRn. Elemen-
tary operations on real numbers can be transposed to inter-
vals:

[a,b]+ [c,d] = [a+ c,b+d]

[a,b]− [c,d] = [a− c,b−d]

[a,b]× [c,d] = [min(ac,ad,bc,bd),max(ac,ad,bc,bd)]

1/ [a,b] = [1/b,1/a] if a > 0 or b < 0

[a,b]/ [c,d] = [a,b]× (1/ [c,d])

(3)

For vector-valued intervals in IIRn, the operations are per-
formed for each coordinate.

In the algorithms described in this paper, intervals are
used to bound function ranges on intervals. Precisely, for any
given function f : IR → IR, an inclusion function f̃ :IIR →IIR
is associated to f , such as:

x ∈ I ⇒ f (x) ∈ f̃ (I) (4)

for any interval I. The ideal inclusion functions are those
which exactly bound the function range, whatever the inter-
val I.

From equations (1) and (2), the only inclusion functions
required are those of the sine and cosine functions. More-
over, in the continuous overlap test derived in Section 4,
one more inclusion function is required for the abs function
(abs : x → |x|). For these functions, inclusion functions are
easily computed26. Then, appropriate elementary operations
(equation (3)) are recursively applied to compute inclusion

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

functions for the coordinates of a vertex or a vector. The co-
ordinates of a mobile vertex in frame R0 are:

xG(t) = P−1V(t)PPoxo (5)

where xo are the vertex coordinates in the object frame, and
Po is the transformation matrix from the local object frame
to the reference frame R0. Consequently, the coordinates in-
clusion functions are:

x̃G(t) = P−1Ṽ(t)PPoxo (6)

where operations are performed on intervals, according to
equation (3).

The interest of inclusion functions is that they provide
a simple way to robustly compute the roots of a function
f : I → IR. The simplest of these methods is the recursive
binary subdivision method. Let’s assume that an inclusion
function f̃ is available. Then f̃ (I) = [a,b] is computed. If
a > 0 or b < 0, then there can’t be any root in I. Other-
wise, there may be a root (may only since f̃ (I) may not fit
exactly f ’s range over I, and/or f may not be continuous).
In this case, interval I is cut into two equal intervals [a,m]
and [m,b], where m = 1/2(a + b), and the computations are
now performed on smaller intervals. This process is recur-
sively performed until an interval width is smaller than a
pre-determined threshold (the user-defined precision of the
collision detection, see Section 4). In this case, the algorithm
declares that a root has been found. It can be shown that if
f is continuous on interval I, then the algorithm can’t miss
any root.

Note, however, that if f (x) = 0 over a non-empty inter-
val, then the method returns only a finite number of intervals
containing all the roots. The number of intervals returned
depend on the pre-determined threshold. In Snyder et al.28,
multidimensional interval-based root-finding is performed to
detect collision between time-varying parametric or implicit
surfaces.

3.3. Bounding volume hierarchies

Using bounding volume hierarchies (BVH) is a common
strategy in collision detection and other domains (ray-tracing
for example), which is naturally related to interval-based
root-finding. Briefly, overlap tests between bounding vol-
umes are used to cull many irrelevant elementary tests be-
tween objects parts. Let’s assume, for example, that each
of the two objects currently processed by the CD algo-
rithm is bounded by a sphere. If the spheres don’t over-
lap, then there can’t be any collision between the objects.
If the spheres do overlap, however, then there may be a col-
lision between the objects (may only since the spheres prob-
ably don’t exactly fit the objects). In this case, the spheres
are replaced by unions of smaller spheres and overlap tests
between spheres are recursively performed. When spheres
sizes are smaller than a pre-determined threshold, exact tests

are performed between the object geometries (for exam-
ple, triangle/triangle collision tests, in the case of triangle
soups). For rigid objects, the hierarchies of bounding vol-
umes are usually computed offline. Typical bounding vol-
umes are spheres16, axis-aligned bounding boxes, oriented
bounding boxes12, 13, k-dops17 and spherical shells18.

We choose to use OBB hierarchies because of their per-
formance in a wide range of applications, especially close-
proximity situations. The hierarchies are binary trees built in
a classical way12, 13. We noticed that the tightest hierarchies
were usually obtained with the min-max method12.

4. Continuous collision detection

This section describes the integrated collision detection al-
gorithms: a well-known discrete overlap test between OBBs
is extended to the continuous case, and the continuous
CD functions for polyhedral primitives (vertices, edges and
faces) are detailed. The precision problem, which is natu-
rally handled by interval arithmetic, is also adressed.

4.1. Collision detection between OBBs

4.1.1. Discrete overlap test

The most efficient discrete overlap test between two static
OBBs is probably the one described by Gottschalk et al.13,
which relies upon the separating axis theorem.

Let us assume that the first OBB is described by three axes
e1, e2 and e3, a center TA, and its half-sizes along its axes a1,
a2 and a3. In the same way, the second OBB is described by
its axes f1, f2 and f3, its center TB, and its half-sizes along
its axes b1, b2 and b3. The separating axis theorem states
that two static OBBs overlap if and only if all of fifteen sep-
arating axis tests fail. A separating test is simple: the axis a
separates the OBBs if and only if

|a ·TATB| >
3

∑
i=1

ai|a · ei|+
3

∑
i=1

bi|a · fi| (7)

The fifteen sufficient axes are deduced from the OBBs axes:

a ∈ {ei, f j , ei × f j , 1 6 i 6 3, 1 6 j 6 3} (8)

4.1.2. Continuous overlap test

Since we want to continuously detect collisions, we must
determine whether two moving OBBs overlap during a time
interval [t0, t1], and not only at the initial or final position. An
important point is that we only need a conservative overlap
test. While an overlap occuring between two OBBs must be
detected, it is not fundamentally a problem to declare that
an overlap has occured when it hasn’t. When the OBB hi-
erarchies traversal terminates, no collision can have been
missed. Note that conservative tests are used in other col-
lision detection methods, for example k-dops17. While the
discrete OBB test is an exact test, the continuous test intro-
duced in this section is a conservative one.

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

The continuous overlap test is constituted of two steps:

1. Perform a continuous version of the fifteen separating
axis tests.

2. If the OBBs are found to overlap for the current time in-
terval, perform a subdivision test, to determine whether
the current time interval should be subdivided.

Continuous separating axis tests The first step is easily de-
rived from the discrete overlap test and interval aritmetic.
Both sides of inequality (7) are continuous functions of
time depending on OBBs time-dependent positions. Both
functions can be bounded using interval arithmetic, as de-
scribed in Section 3. Now let [l1, l2] denote a bound on the
left side of inequality (7), and let [r1,r2] denote a bound
on the right side of the same inequality. If l1 > r2, then the
axis a is separating the OBBs over the whole time inter-
val. The first step thus consists in performing fifteen such
continuous separating axis tests.
This first step, however, can only detect an axis which
separates two OBBs during the whole interval. Yet, the
OBBs may not overlap during a time interval, and be sep-
arated by different axes during the motion. This can’t be
detected by the first step of the continuous test: the fif-
teen continuous separating axis tests fail, and the OBBs
are found to overlap. In interval-based root-finding meth-
ods, this problem is solved by subdividing the interval,
or by using more sophisticated methods to reduce the in-
terval width, like Newton interval methods26, 28. In order
to avoid automatic subdivisions or computationally inten-
sive methods, we propose as a second step a simple sub-
division test. This test is an heuristic similar in spirit to
Newton interval methods, since it depends on the OBBs
velocities, but is far cheaper to compute.

Subdivision test Generally, an axis separating the OBBs at a
given instant won’t be separating during the whole time
interval when objects move too fast relatively to their
sizes. This is exactly what the subdivision test adresses:
briefly, the OBBs are projected on their relative velocity
directions. First, the relative velocity of the OBBs centers
at the beginning of the time interval are computed. This
amounts to consider that the second OBB is static. As-
suming TA is expressed in the reference frame R0, then
its velocity can be derived from equation (5):

v(TA) = P−1
A V′

A(t0)PATA

where t0 is the lower bound of the current time inter-
val, PA and VA(t0) describe the screwing associated to
the first object. V′

A(t0) is computed simply from equa-
tion (2) by differentiating the matrix elements with respect
to time. Similar relations hold for the second OBB. Let
vr = v(TA)−v(TB) denote the OBBs centers relative ve-
locity. Then (t1 − t0)|vr| is approximately the length of
the relative path followed by the OBBs centers during the
time interval. Thus, the time interval [t0, t1] is subdivided

if and only if:

3

∑
i=1

ai|vr · ei(t0)|+(t1 − t0)|vr| > k.(
3

∑
i=1

bivr · fi(t0)|)

where k is a pre-determined constant. If the time inter-
val isn’t subdivided, then the OBBs are declared to have
overlapped. Our experiments indicate that most false hit
results can be culled when k = 0.2.

4.2. Collision detection between primitives

For polyhedral objects, continuous collision detection is
somewhat simpler, though more time-consuming, than dis-
crete collision detection since all contact configurations im-
ply at least one of the three non-degenerate contact types:
vertex/face, face/vertex, and edge/edge. Moreover, each CD
test can be formulated so that the first contact time is a root
of a time-dependant function5, 22, 23.

For the edge/edge case, a collision is first detected be-
tween the lines containing the edges. If a(t)b(t) denotes the
first edge and c(t)d(t) denotes the second edge, then a colli-
sion occurs when:

a(t)c(t) · (a(t)b(t)× c(t)d(t)) = 0 (9)

The solutions of this equation are computed thanks to the
interval-based root-finding method described in Section 3.
A solution in [0,1] is kept if and only if the corresponding
contact point belongs to the edges.

For the vertex/face and face/vertex cases, a collision is
first detected between the vertex and the plane containing
the face. If a(t) denotes the vertex and b(t)c(t)d(t) denotes
the triangle, then a collision occurs when:

a(t)b(t) · (b(t)c(t)×b(t)d(t)) = 0 (10)

In this case, too, solutions are computed using an interval-
based root-finding method. A solution tr in [0,1] is kept if
and only if a(tr) is inside the triangle b(tr)c(tr)d(tr).

Note that during the recursive root-finding, when a time
interval [tl , tr] is subdivided into two intervals [tl , tm] and
[tm, tr], solutions are first recursively looked for in [tl , tm]. If
and only if no valid solution is found in this interval, then the
second interval [tm, tr] is recursively examined. This allows
the process to be stopped as soon as the first contact time has
been found.

4.3. Collision detection precision

The subdivision method used in the primitive-primitive tests
depends on a threshold, which defines the maximal width of
an interval that can be subdivided, and thus determines the
collision detection precision. The threshold is computed at
runtime and depends on the location of the object features.

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

If dt denotes a small time interval, then the length dl of the
helical path followed by an object vertex p is:

dl = |p′(t)|dt

=
√

s2 +ω2(x2 + y2)dt

where s and ω are the associated screwing parameters and
x and y are the first two coordinates of p in the screwing
local frame. Let ε0 denote the maximum error allowed on p’s
position when the subdivision method completes. Then dl <
ε0 must hold for the last time interval returned. To enforce
this, a valid time interval (one which may contain a root)
must be subdivided as long as

dt >
ε0

√

s2 +ω2(x2 + y2)
(11)

Since the contact position can’t be known in advance, a
similar bound is computed for each of the four vertices a, b,
c and d of the current elementary CD test. The interval width
threshold is then defined as the lowest of these four bounds.
Since the objects primitives (vertices, edges and faces) are
convex, this ensures that the error allowed on the contact
position will be enforced.

5. Extension to parametric or implicit surfaces

Using interval analysis to detect collisions between paramet-
ric or implicit surfaces amounts to compute at runtime axis-
aligned bounding-boxes on the objects. For example, let

P :

{

IR3 → IR3

x → y = P(x)
(12)

denote a parametric surface, and let X denote an interval in
IIR3. Then Y := P̃(X) is an interval in IIR3. From the inclu-
sion function definition, Y is an axis-aligned box bounding
the object part described by X . However, as noted in Sny-
der et al.28, evaluating Y may be highly time-consuming for
complex objects, since the structure describing the object (or
its inclusion function) has to be traversed.

For rigid parametric or implicit surfaces, a hierarchy of
oriented bounding boxes can be precomputed and our con-
tinuous OBB/OBB overlap test may be used to quickly cull
irrelevant tests, whatever the underlying objects complexity.
The actual objects geometry is then tested using Snyder et
al.’s algorithms only when two leaf-nodes collide.

6. Optimizations

This section describes several optimizations added to the
system.

Discrete tests In order to avoid unnecessary continuous
OBB/OBB overlap tests, a discrete overlap test is per-
formed for the OBBs initial and final positions before
each continuous one. If these discrete tests find that the

Figure 2. First test application: playing with bunnies. The user can
test typical interaction situations (object positioning, slow and fast
motions resulting in collisions).

static OBBs overlap, then the continuous test isn’t re-
quired and thus isn’t performed. Since our implementa-
tion of the continuous overlap test is approximately five
times slower than the one of the discrete overlap test, this
results in a significant speedup in high coherency situa-
tions. However, it is unuseful in general configurations.

Passing the current collision time As in Redon et al.23, when
two objects are processed by the CD functions, a cur-
rent collision time (CCT) is maintained and passed to the
CD functions. For example, when a collision between two
edges has been detected at tc ∈ [0,1], then the next tests
(for the pair of objects currently processed) examine only
the smaller time interval [0, tc].

Directional traversal When descending an OBB, the child
which center is the closest to the center of the OBB be-
longing to the other object is processed first. Combined
to the previous optimization, this allows to rapidly find a
preliminary CCT when two fast objects collide, and thus
help avoid a quadratic growth of the number of OBB/OBB
tests, as would happen if one object passed completely
through the other.

Partial tests Van den Bergen29 notices that an axis separat-
ing two OBBs is generally an OBB axis, and removes the
other nine axes. This results in a moderate speedup in our
system. We observed that these nine axes are often useful
to separate rotating objects.

Coherence tables We have implemented the coherence tables
method introduced in Gottschalk12. Briefly, the method
consists in storing the terminal nodes of the bounding
volumes test tree. When detecting a collision, the bound-
ing volume hierarchies are tested beginning from the ter-
minal nodes of the previous frame. This may be highly
memory-consuming, especially for large objects. More-
over, because of the use of the preliminary discrete test,
this results in a low speedup (15%), which roughly corre-
sponds to the theoretical limit given by Gottschalk, since

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

Figure 3. Second test application: a car skeleton bounces on a large
cubic floor. The car is manipulated by the user.

a continuous test is approximately five times slower than
a discrete one.

Surprisingly, a usual ’trick’ didn’t speed up the computa-
tions. Pre-computed values of required trigonometric func-
tions (equation (2)) were stored in look-up tables. However,
this gave no significant result. We conjecture that the com-
piler already uses such a strategy.

Some low-level optimizations have yet to be tried. For
example, many processors offer local parallelism through
SIMD instructions (single instructions, multiple data). Lin
et al. report that a SIMD version of the discrete OBB/OBB
overlap test allows a factor 2-3 speedup20. Our continuous
version should probably benefit from a SIMD implemen-
tation. Since profiling reveals that roughly half of the total
time is spent during overlap tests between OBBs, this could
speed up the whole interactive dynamics simulation signifi-
cantly. For now, one continuous overlap test is about a few
microseconds on a 1 GHz Pentium PC.

7. Results

A portable collision detection library based upon the algo-
rithms described in this paper has been implemented in C++
and has been successfully tested on Windows and Unix sys-
tems. The library has been coupled to analytical (constraint-
based) dynamics algorithms24 which take advantage of the
precise contact information (first contact instant, contact po-
sition and contact normal) sent by the CD functions. The
coupling is performed in a classical way3. The resulting sim-
ulator, running on a 1GHz Pentium PC with 256 Megabytes
of memory and the Windows 2000 operating system, is able
to perform interactive simulations with models up to tens
of thousands of triangles. While it is generally difficult to
compare collision detection methods (mainly because CD
librairies are not public domain, and because it is difficult to

Figure 4. A highly-detailed door (16000 triangles). This door is used
in the third test application.

estimate librairies performance on nowadays faster proces-
sors from old data), we believe that this couldn’t be achieved
with previous continuous methods, essentially for the rea-
sons exposed in Section 2.

Several interactive sessions have been specifically de-
signed to test the simulator. No 3D peripherals have been
used for interaction. The interface is a 2D mouse, which is
sometimes tedious for precise tasks. For sure, the use of a
spaceball and stereo glasses would greatly increase the qual-
ity of interaction. During an interactive session, the user is
able to navigate the scene and can check the validity of col-
lision detection. Moreover, he or she can choose at runtime
between a first-order or a second-order simulation. Depend-
ing on the world order, the mouse commands the object’s
velocities or accelerations.

The first application involves 3D models of a few thou-
sand triangles (see Figure 2). It has been designed to test sev-
eral typical interaction situations (object positioning, slow
and fast motions resulting in collisions). This application al-
lows the simulator to be tested for correctness and robust-
ness. As predicted, using arbitrary in-between motions on
small time intervals isn’t conflicting with realism require-
ments (according to the user’s eye).

Two other applications have been designed to test the ap-
proach’s scalability. The first one involves a skeleton of a
"Renault Scénic" car model (29000 triangles). The car skele-
ton, manipulated by the user, bounces on a large cubic floor
(Figure 3). In the second application, the user must position
a car door (16000 triangles, Figure 4) in the car skeleton used
in the bouncing test application. Despite unadapted interac-
tion peripherals, the car door can be positioned precisely and
interactively with no difficulty (Figures 1 and 5). Continuous

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

Figure 5. Third test application: the door being interactively po-
sitioned in the car skeleton. Continuous collision detection and
constraint-based simulation allows the user to precisely and intu-
itively position the door. No interpenetration ever occurs.

collision detection, which allows us to achieve very precise
object/object interaction, seems essential to the success of
this kind of task.

8. Conclusion and future work

This paper has described a fast continuous collision detec-
tion technique which relies upon the effective integration of
arbitrary in-between rigid motions, interval arithmetic and
OBB hierarchies. An efficient continuous overlap test be-
tween two OBBs has been derived from a well-known dis-
crete test. The continuous test consists of two steps. The first
step is an interval-based version of the separating tests. The
second step is a subdivision test which heuristically deter-
mines whether the current time interval should be subdivided
when the OBBs are found to overlap. Various optimizations
have been described and experimented with. The collision
detection algorithms have been coupled to an analytical dy-
namics simulator which takes advantage of the contact infor-
mation (first contact time, contact position and contact nor-
mal). This interactive dynamics simulator has allowed us to
demonstrate the resulting high-quality interaction for models
composed of tens of thousands of triangles: the interactive
simulation is both robust and precise, since no interpenetra-
tion ever occurs.

As noted in the introduction, a major cause of instability
in haptics comes from uncontrolled object inter-penetration,
since in most algorithms the force exerted by the haptic pe-
ripheral depends on the amount of penetration. Actually, the
amount of penetration isn’t required when a virtual coupling
method is used7. Thus, we plan to explore haptic interaction
with the simulator based upon the algorithms described in
this paper.

Figure 6. Engine removal. The engine is easily removed from the car
door thanks to a 2D mouse (20000 triangles) (3d models ©Renault).

Aknowledgements

The authors would like to thank Arnaud Buissé for proof-
reading the submission version, Tangui Morvan for imple-
menting an inventor parser able to convert the Renault mod-
els, and Renault for providing the car models. The model
parts are ©Renault. The authors would also like to thank the
INRIA DISC Multimedia team for producing the accompa-
nying videos. Also, many thanks go to the anonymous re-
viewers for interesting and useful remarks. This work has
been funded by the French Ministry of Research through an
AMX grant and the RNTL PERF-RV project.

References

1. G. Baciu, S. K. Wong, and H. Sun. RECODE: An
Image-Based Collision Detection Algorithm. Journal of
Visualization and Computer Animation, Vol. 10, No. 4,
1999 pp. 181-192. 1

2. D. Baraff. Curved surfaces and coherence for non-
penetrating rigid body simulation. Computer Graphics,
Vol. 24, No. 4, 1990, pp. 19-28. 1

© The Eurographics Association and Blackwell Publishers 2002.

Redon et al. / Fast Continuous Collision Detection between Rigid Bodies

3. D. Baraff. Interactive simulation of solid rigid bodies.
IEEE Computer Graphics and Applications, Vol. 15,
1995, pp. 63 - 75. 7

4. S. A. Cameron. Collision detection by four-dimensional
intersection testing. IEEE Trans. Robotics and Automa-
tion. 6, 3 (June 1990), pp 291-302. 2

5. J. F. Canny. Collision detection for moving polyhedra.
IEEE Trans. Patt. Anal. Mach. Intell. 8,2 (March 1986),
pp 200-209. 2, 5

6. J. Cohen, M. Lin, D. Manocha and M. Ponamgi. I-
COLLIDE: an interactive and exact collision detection
system for large-scale environments. In Proceedings
of ACM Interactive 3D Graphics Conference, ACM,
Monterey, CA, 1995, pp. 189-196. 1

7. J. Colgate, M. Stanley, and J. Brown. Issues in the
haptic display of tool use. In Int. Conf. on Intelligent
Robots and Systems, (Pittsburgh), August 1995. 8

8. T. Duff. Interval Arithmetic and Recursive Subdivision
for Implicit Functions and Constructive Solid Geome-
try. Computer Graphics, 26(2), July 1992, pp. 131-138.
2, 3

9. J. Eckstein and E. Schoemer. Dynamic collision detec-
tion in virtual reality applications. In 7th International
Conference in Central Europe on Computer Graph-
ics and Visualization and Interactive Digital Media,
WSCG’99, pp. 71-78. 2

10. A. Garcia-Alonso, N. Serrano and J. Flaquer. Solv-
ing the collision detection problem. IEEE Computer
Graphic and Applications, 13(3), 36-43 (1994). 1

11. E. G. Gilbert, D. W. Johnson and S. S. Keerthi. A fast
procedure for computing the distance between objects
in three-dimensional space. Journal of Robotics and
Automation, 4, 193-203 (1988). 1

12. S. Gottschalk. Collision queries using oriented bound-
ing boxes. PhD Thesis. 1999. 1, 4, 6

13. S. Gottschalk, M. C. Lin, and D. Manocha. OBB-Tree:
A Hierarchical Structure for Rapid Interference Detec-
tion. In SIGGRAPH 96 Conference Proceedings, An-
nual Conference Series. ACM SIGGRAPH, Addison
Wesley, August 1996. 1, 4

14. A. Gregory, M. Lin, S. Gottschalk and R. Taylor. Fast
and accurate collision detection for haptic interaction
using a three degree-of-freedom force-feedback device.
In Computational Geometry: Theory and Applications.
3

15. A. Gregory, A. Mascarenhas, S. Ehmann, M. Lin and
D. Manocha. Six degree-of-freedom haptic display of
polygonal models.In Proc. IEEE Visualization, 2000. 2

16. P. M. Hubbard. Collision detection for interactive
graphics applications. Ph.D. Thesis, April 1995. 4

17. J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral,
K. Zikan. Efficient Collision Detection Using Bound-
ing Volume Hierarchies of k-DOPs. IEEE Transactions
on Visualization and Computer Graphics, March 1998,
Volume 4, Number 1. 1, 4

18. S. Krishnan, A. Pattekar, M. Lin and D. Manocha.
Spherical Shell: A Higher Order Bounding Volume for
Fast Proximity Queries. Appeared in Proceedings of
WAFR’98. 4

19. C. Lennerz, E. Schoemer and T. Warken. A Framework
for Collision Detection and Response. In 11th Euro-
pean Simulation Symposium, ESS’99, pp. 309-314. 2

20. M. C. Lin, A. Gregory, S. Ehmann, S. Gottschalk, and
R. Taylor. Contact Determination for Real-Time Haptic
Interaction in 3D Modeling, Editing and Painting. Proc.
1999 Workshop for PhanTom User Group. 7

21. B. Mirtich. Impulse-based dynamic simulation of rigid
body systems. PhD Thesis. Fall 1996. 2

22. S. Redon, A. Kheddar and S. Coquillart. An Alge-
braic Solution to the Problem of Collision Detection
for Rigid Polyhedral Objects. In Proceedings of Inter-
national Conference on Robotics and Automation, pp
3733-3738, April 2000. 2, 5

23. S. Redon, A. Kheddar and S. Coquillart. CONTACT:
arbitrary in-between motions for continuous collision
detection. In Proceedings of IEEE ROMAN’2001, Sep.
2001. 2, 3, 5, 6

24. S. Redon, A. Kheddar and S. Coquillart. Gauss’
least constraints principle and rigid body simulations.
In proceedings of IEEE International Conference on
Robotics and Automation, may 2002 2, 7

25. M. Shinya and M. Forque. Interference detection
through rasterization. The Journal of Visualization and
Computer Animation, 2, 131-134 (1991). 1

26. J. Snyder. Interval analysis for Computer Graphics.
Computer Graphics, 26(2),pages 121-130, July 1992.
3, 5

27. J. Snyder. An interactive tool for placing curved sur-
faces without interpenetration. In Proceedings of ACM
SIGGRAPH, pages 209-218, 1995. 2

28. J. Snyder, A. Woodbury, K. Fleischer, B. Currin, and
A. Barr, Interval Methods for Multi-point Collisions
between Time-Dependent Curved Surfaces. Computer
Graphics, 27(2), pp. 321-334, Aug. 1993. 2, 3, 4, 5, 6

29. G. Van den Bergen. Efficient collision detection of com-
plex deformable models using AABB trees. Journal of
Graphics Tools, 2(4):1-14, 1997. 1, 6

30. Von Herzen, B., A.H. Barr, and H.R. Zatz, Geometric
Collisions for Time-Dependent Parametric Surfaces.
Computer Graphics, 24(4), August 1990, pp. 39-48. 2

© The Eurographics Association and Blackwell Publishers 2002.

