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Abstract:

In this paper, we propose a new P2P Honeynet architecture called HAMACK
that bypasses the Sybil attack protection mechanisms introduced recently in
KAD. HAMACK is composed of distributed Honeypeers in charge of monitoring
and acting on specific malicious contents in KAD by controlling the indexation
of keywords and files. Our architecture allows to: (1) transparently monitor all
the requests sent to the targeted contents in the network, (2) eclipse malicious
entries of the DHT, and (3) attract the download requests of peers searching
for malicious contents towards the Honeypeers by poisoning the DHT references
with fake files and sources. Early results on the KAD network demonstrate the
applicability and the efficiency of our approach.
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HAMACK: une Architecture de Honeynet

permettant de lutter contre les Contenus

MAlveillants diffusés dans KAD

Résumé : Nous proposons dans ce rapport une nouvelle architecture de Hon-
eynet appelée HAMACK capable de dépasser les protection récemment in-
troduites dans KAD pour lutter contre l’attaque Sybil. HAMACK est com-
posé de Honeypeers distribués chargés de superviser et d’agir sur des contenus
spécifiques partagés dans KAD en contrôlant l’indexation des mots-clés et des
fichiers. Notre architecture permet de: (1) superviser de manière transparente
toutes les requêtes destinées aux contenus ciblés dans le réseau, (2) éclipser les
références malveillantes de la DHT, et (3) attirer les requêtes de téléchargement
des pairs cherchant des contenus malveillants vers les Honeypeers en polluant
ces références de la DHT avec des fichiers et des sources falsifiés. Les résultats du
déploiement sur le réseau KAD réel montrent que notre méthode est applicable
et très efficace.

Mots-clés : réseaux P2P, DHT, attaque Sybil, honeypot, KAD, supervision
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1 Introduction

Peer-to-peer (P2P) networks are now commonly used to share files within the
Internet. They offer lots of advantages compared to the client-server scheme
by giving possibility to gather and share a large amount of resources with the
collaboration of many individual peers. However, peer-to-peer networks also
provide support for harmful and malicious activities that can voluntarily propa-
gate strongly undesirable contents1. As peer-to-peer systems are self-organized,
dynamic and do not have a centralized infrastructure, it is not obvious to collect
information to measure them and to observe the behavior of malicious users.

With passive monitoring we can observe, from one point, the P2P traffic
without sending additional data into the network. [6] collected 24 hours traces
from an eDonkey server and pointed out the correlation between the set of
peers active for some given data. [10] used passive monitoring at several routers
to monitor flows in FastTrack, Gnutella and Direct-Connect. However, these
approaches do not allow to study specific contents at the network scale. Active
monitoring removes this drawback but is more intrusive in the sense that some
traffic (queries, files) is injected in the network to gather more information
concerning the P2P system. Many crawlers have been used to study the different
P2P protocols like Gnutella [13], Napster [9], e-Donkey [4] [17] and KAD [15]
[11]. Alone, a crawler can just observe the network without acting on it. In the
case of KAD, a crawler just discovers the peers but not the shared contents.
To have a better view of the network and to control it, [12] associated to the
crawler a Sybil attack which consists in creating a very large number (∼ 216)
of fake peers, controlled by one computer, and placing them actively in the
part of the DHT to observe. Recent protection mechanisms have however been
introduced [2] in KAD to make this intrusive approach inefficient.

In this paper, we propose to apply the concept of honeypot in the context of
the KAD network, to monitor and act on specific malicious contents2 and users
in a widely deployed P2P system. A honeypot is classically used to attract
malicious users trying to penetrate illegally in an unauthorized system. In the
existing research works related to P2P honeypots [5] [1] [7], the solutions consist
in advertising fake files as normal users in order to log the download queries
received for these files, but without any guaranty to attract all peers looking
for the studied content. Our solution surpasses classical honeypots because it
allows to attract absolutely all the users searching for a given content, and also
to control these malicious contents. Our approach is based on a P2P honeynet
architecture composed of fully distributed honeypots we defined as Honeypeers.
Its originality with regards to active monitoring is that we can transparently
monitor all the requests sent to the targeted contents in the network, eclipse
malicious entries of the DHT, and attract the download requests of malicious
peers towards our Honeypeers by poisoning the DHT references with fake files
and sources. Our strategy to take the control over DHT entries does not rely on
Sybils injection and bypasses all the protection mechanisms introduced recently
in KAD to fight against Sybil attacks.

This document is structured as follows. Section 2 describes the background
of KAD, the Sybil attacks and the last inserted protections. We then present,

1This work is funded by the French ANR Rechearch Project MAPE (Measurement and
Analysis of Peer-to-peer Exchanges for pedocriminality fighting and traffic profiling)

2given by a law enforcement agency
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in Section 3, the approach to design HAMACK and its features allowing to
monitor, eclipse and poison malicious contents of the network. The section 4
assesses the efficiency of our architecture by modeling the KAD search process.
Section 5 and 6 respectively present the implemented architecture of HAMACK
and the results of experiments done on the real KAD network. Finally, Section
7 concludes the paper and outlines our future works.

2 KAD and the Sybil attack

2.1 Overview of KAD

KAD is a structured P2P network based on the Kademlia distributed hash table
routing protocol [8]. KAD is implemented by the eMule and aMule open source
clients, allowing users to share files on this network. Mainly used in European
countries and in China [11], the estimated number of concurrent online users
is around 2.5 millions, which makes KAD the widest deployed structured P2P
network today.

Each node of KAD has a 128bits ”KADID” setting its position in the DHT.
All the routing tasks are based on the XOR metric used to evaluate the distance
in the DHT between two peers, or between a peer and a content. Two types of
requests are used to discover the network: the Hello REQ is used by a peer to
announce itself, and the Kademlia REQ is used to discover new peers close to a
specific address. Some contacts are selected to fill the routing table following a
specific scheme. The routing table is composed of groups of K-contacts (called
a K-bucket), organised like a tree so that the group at level i has contacts at a
distance between 2128−i and 2127−i from the current peer, regarding the XOR
metric. In other words, the deeper the contact is in the tree, the closer it is
to the current node and the better is its knowledge of this part of the DHT
(knowing the same number of contacts for a zone always smaller). Routing is
done in an iterative way and with parallel lookups, and will be described in
detail further.

As a file sharing application, the purpose of the KAD DHT is to index files
and keywords. When a new file is shared, the raw data and all the keywords
composing its name are hashed separately with a MD5 function generating a
KADID for each piece of information. Those KADIDs are then published in the
DHT. The peers able to index a file or a keyword are all those that are close
enough to the published hash. This distance is called the ”tolerance zone” of
a KADID, and is set to the first common 8bits (most significant). The double
indexing allows the retrieval of a file, being given a set of keywords. To publish
a file, two types of requests are sent:

❼ KADEMLIA2 PUBLISH KEY REQ requests are sent towards the hash
of the keyword to associate a keyword with a file

❼ KADEMLIA2 PUBLISH SOURCE REQ requests are sent towards the
hash of the file to associate a file with a source (a peer sharing the file)

After accepting a publication request for a given resource, a peer is in charge
of indexing this specific content, and to answer to the related Search requests.

INRIA



HAMACK: a Honeynet Architecture against MAlicious Contents in KAD 5

2.2 The Sybil attack

The Sybil Attack, as described by Douceur [3], consists in creating a large
number of fake peers called the ”Sybils”, and placing them in a strategic way
in the DHT to take control over a part of it.The efficiency of the Sybil attack is
tight to the number of successfully injected Sybils, in spite of possible protective
mechanisms of the P2P network. We will show that, in the case of KAD, another
strategy can achieve the same results as a Sybil attack without triggering any
protection.

Recent investigations showed that KAD was highly affected by the Sybil
attack, resulting in important outages in the network by using few resources.
Steiner et al [12] were the first to successfully launch a real Sybil attack on
KAD, resulting in the full control of a part of the DHT. The attack is divided in
two steps. The first step consisted in crawling the P2P network thanks to many
route requests (Kademlia REQ), to progressively discover more and more peers
in the network. When almost all nodes of a zone are known by the crawler, the
second step consisted in polluting the routing table of each node discovered with
Sybils. Steiner et al injected 216 Sybils from a single computer in a small zone of
KAD. They were able to catch most of the Publish and Search requests within
this zone. They achieved an eclipse attack making some keywords indexed on
the Sybils disappear from the DHT.

Since, the latest versions of the major KAD clients have introduced new pro-
tection mechanisms based on local detection of suspicious behaviors, in order
to limit the efficiency of the attacks. We described and evaluated these mech-
anisms in our previous work [2]. First, sending many requests from a single
source is now detected and considered as flooding, which reduces the crawler
efficiency. Second, it is no longer possible to infect a peer’s routing table with
Sybils showing the same IP address or very close IP addresses (same /24 sub-
network). Finally, the identity of a peer is now checked before being added or
updated in the routing table. The IP address of a new peer is checked by a three-
way handshake to avoid Sybils to use spoofed IP addresses. Moreover, KADID
spoofing is also prevented by associating a public key to each KADID newly
announced. KADID spoofing exploited in a large scale allowed to partition the
DHT [16].

The new protection mechanisms avoid the injection of several Sybils from a
single IP address. Doing a massive Sybil attack on KAD becomes extremely ex-
pensive regarding the number of IP addresses involved. Even the more localized
attacks described in [12], which used a limited number of Sybils (32 Sybils to
eclipse the particular keyword ”the”) is no longer possible. Indeed, the Sybils
were directly injected in the routing table, which is now protected. Moreover,
the crawler used to discover the network is now limited by the flooding protec-
tion. To design HAMACK, we had to adopt a novel strategy, neither relying on
a crawler, nor on Sybils injection in routing tables.

We will show that localized attacks can still be effective with a reasonable
amount of distributed resources. In fact, the main weakness allowing localized
attacks to be performed is the possibility left to the peers to freely choose their
KADID, which remains possible. Our assumption is that if a few numbers of
modified clients choose their KADIDs very close to a given targeted hash (i.e.
closer than any other peer randomly chosing its KADID), and considering the

RR n➦ 6994
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Filename Nb of Sources Size
"Matrix 2 Reloaded dvdrip.avi” 362 695.21MB
"Matrix Revolutions spanish.avi” 328 625.23MB
"Game Enter the Matrix DVD.iso” 298 681.19MB
"Matrix Realoaded cd1 divx.avi” 8 679.74MB

Table 1: 4 results returned by a search request for the keyword ”matrix”

very efficient KAD search algorithm ”return the X closest nodes...”, the requests
will arrive at these nodes with a very high probability.

3 HAMACK features

This part aims to describe our honeynet architecture and its features. As they
are distributed and autonomous, we prefer to call our modified clients ”Hon-
eypeers” rather than Sybils.

3.1 Our approach to design an attractive Honeypot

When designing HAMACK, our objective was to make the most attractive Hon-
eypot for malicious users in KAD. A naive honeynet approach would contain
several clients that announce fake contents. But expecting a good visibility for
the files promoted by such honeynet would involve a huge amount of resources.
In fact, when a user searches for a given content, several different pieces of in-
formation are returned to help him find the right file. Table 1 shows an example
of a search results for a typical shared content.

The name of the file and its size are important data that can be controlled by
a classical Honeynet, whereas the number of sources can not be handled easily.
Unfortunately, this information is capital because it allows to sort the search
results, the best files being those with the highest number of sources. Files with
a high number of sources are very popular, and consequently, more trustworthy
and downloaded faster than the others. Typically, the last result of the search
shown in table 1 should be discarded by users. While in eDonkey the number of
sources is returned by the server, in KAD, it is computed by the peers in charge
of indexing this file.

Previously, the easiest solution to increase the estimated number of sources
displayed for a given file was to publish it with many Sybils; but it has become
really resource consuming since IP address limitations have been set in KAD.
Another solution consists in taking control over the indexing scheme of KAD
to control all the information returned about the file, including the estimated
number of sources.

Finally, by controlling the indexation mechanism, many more applications
are possible. The features of HAMACK are the following, all appearing trans-
parent for the final user:

❼ Passive monitoring: monitoring all the Search and Publish requests for
malicious keywords and files

INRIA
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Figure 1: Message exchange when eclipsing content

Figure 2: Message exchange when poisoning a keyword

❼ Eclipsing contents: removing malicious keywords and files from the net-
work

❼ Index poisoning: replacing the malicious files linked to a keyword with
fakes showing a high number of sources

❼ Promoting Honeypots: replacing the peers sharing a file with Honeypots

They are described in details in the forthcoming subsections and in figure ??.

3.2 Passive monitoring and eclipsing contents

The simpliest and quietest behavior consists in transparently monitoring the
network by logging all the requests passing through the Honeypeers, partic-
ularly those concerning the targetID. Then, the Honeypeers answer to each
request like a normal client, not disturbing the network. When a KADEM-
LIA2 PUBLISH KEY REQ message is received, HAMACK stores the follow-
ing information from the request message: the sender IP address and port,
the keywordID, the list of fileIDs and for each fileID the list of tags containing
the file properties (full name, size). A KADEMLIA2 PUBLISH SOURCE REQ
message contains fewer fields: the sender IP address and port, the fileID, the
KADID, IP address and port of the source. This feature allows HAMACK to
monitor the activity of malicious files (what peers are sharing them) and of
malicious keywords (what are the new published files).

The second behavior aims to eclipse a target ID from the network as de-
scribed in figure 1. To eclipse a keyword or a file, the Honeypeers have to
behave differently. First, the Honeypeers have to bypass two constraints con-
cerning the maximum number of references that a peer can store. The first

RR n➦ 6994
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constraint limits the total number of references that any peer can store in order
to limit the weight of a single peer in the network. The second constraint limits
the maximum number of references stored for a particular KADID (either key-
word or file) to avoid that too popular entries become over-referenced against
the others. Our Honeypeers bypass these limitations in order to always answer
positively to any Publish request. Otherwise, if these limits were reached, de-
nied requests can be sent to normal peers and escape to HAMACK. Second,
the Honeypeers have to deny all the incoming Search requests for the target
ID. As HAMACK manages to acknowledge all the Publish requests, denying
the Search requests simply removes the contents of the DHT. This feature is
interesting because it allows HAMACK to remove malicious contents from the
network, and by doing so, to prevent users from accessing it.

3.3 Index poisoning and promoting Honeypots

The index poisoning is the most interesting feature of HAMACK. It makes
possible to capure all requests emitted by a malicious peer from the beginning,
with the keyword search, to the end, with the final download request. The first
step is the same as eclipsing a keyword by attracting all the Publish requests
for the targeted keyword. Then, instead of denying the Search requests, all
the Honeypeers composing HAMACK will answer with a list of fake files when
requested. Because HAMACK has a total control of the responses, each fake
file will appear to be very attractive, with a high number of sources. We can
choose whether all the list is composed of fakes, or only a part of it. In the
first case, setting properly the parameters of the list of fake files is important in
order not to be detected, as all the good references will be eclipsed.

Then, when a malicious user selects a fake file, HAMACK must receive the
Search sources requests to finally answer with the KADIDs of the Honeypeers,
as shown in figure 2. To capture easily the Search Source requests for all the fake
files, the fake FileIDs are generated to be extremely close (96bits) to the targeted
keyword. With this optimization, every Search Source request will be attracted
in the same way than the initial search of keyword, the Honeypeers staying in the
same place of the DHT. When sending the Search Source responses, HAMACK
provides the list of the Honeypeers (KADID,IP,port) in order to attract the
final Download request of the malicious user. The relevancy of this feature is to
assess the intention of the malicious user. HAMACK does not only assume that
a user is malicious based on the initial search of keywords, but proposes fake
files characterised by full malicious names, and checks the malicious behaviour
with the final Download request.

4 HAMACK exploiting the KAD search proce-

dure

The key point of our architecture is the control of the indexation mechanism.
This part aims to demonstrate how efficient our architecture is against KAD
publication and search functions. We will analyse in the forthcoming section
the overall publish and search procedures in KAD, and describe in details how
our Honeypeers take advantage of it. In opposite to [12], we do not consider the

INRIA
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direct injection of Sybils in routing tables, but we focus our study on control-
ling the sequence of events and messages happening during the search process,
without abnormally affecting the routing tables.

4.1 Positioning the Honeypeers

The first step to settle our honeynet is to position precisely the Honeypeers
according to the keyword or the file over which we want to take the control. So,
the main parameter to consider is the targeted KADID. To compute it and get
the 128bits address, we need to apply the same MD5 hash function as the one
used in a KAD client to the keyword or the file. When this KADID is known,
it is given as a parameter to each Honeypeer which can then derivate its own
KADID from it. This derivation function simply copies the first 96bits from the
targeted KADID and chooses the remaining 32bits randomly.

Even if the Honeypeers do not synchronise themselves when choosing their
KADID, the risk of collision for few Honeypeers on 32bits is insignificant. Let N
be the mean number of peers closer to the target than one of the Honeypeers.
N is given by the probability for a peer to randomly choose a KADID with
the same 96bits than the Honeypeers multiplied by the number of peers in the
network. According to the latest estimations, the number of peers participating
in KAD remains by much under 5 millions. The result in (1) shows that 96bits
is a sufficient prefix to be sure that no other peer will be placed closer to the
target that our Honeypeers.

N =
232

2128
× 5 × 106 = 6.31 × 10−23 (1)

4.2 Attracting the requests during the search procedure

As our Honeypeers are the closest to the targeted content, the critical point is
to be sure that they will be able to attract all the requests, given the publish
and search functions of KAD. We will show in this subsection that KAD is very
efficient in routing, and that is its great weakness when considering localized
attacks.

All services in KAD involving lookups in the DHT are achieved thanks to the
”Search” object. Every keyword or file that has to be published, or every search
done by a user, will generate an autonomous ”Search” object in charge of all
the process until its ending. Several Search objects can be managed by a client
at the same time for different purpose, but all are distinct and autonomous.

The search process can be divided in two separate parts. The first part
consists in finding online peers in the tolerance zone of the target to fill the
array of ”possible” contacts in the Search object. This array contains all the
suitable contacts found and ordered by distance. This part is done by sending
several KADEMLIA REQ in parallel with the target ID as parameter. Routing
is done in an iterative way with parallel lookups, as described in figure 3: asking
at first the 3 closest contacts of the routing table for even closer nodes toward
the target ID, waiting for their responses and then reiterating by asking the
best of the newly received contacts. Only the contacts that have successfuly
answered to a KADEMLIA REQ are considered as available and can be used
for the next step. While closer contacts can be found in the last responses,

RR n➦ 6994
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Figure 3: Message exchange in the search procedure

the Search keeps looking for even closer contacts, without sending the specific
service requests. In the last version of the KAD clients (eMule 0.49c and aMule
2.2.4), the contacts received from a KADEMLIA RES are now verified in the
same way than contacts added in the routing table, in particular: only one
KADID is allowed per IP address, and no more than 2 IP addresses are allowed
from the same /24 subnet. These new constraints also motivate our distributed
architecture.

The second part consists in sending specific service messages to the ”possi-
ble” peers, regarding the type set for the search object (for example KADEM-
LIA2 PUBLISH KEY REQ to publish a keyword), and then analysing the re-
sponses to continue or stop the Search. The effective starting condition of the
function sending service requests is important. In fact, this function is executed
when the Search has not received any new contact within the 3 last seconds,
which means that the last found peers fail to provide any closer contacts to keep
the Search going on. Then, the service requests are sent to the closest peers
discovered. The stop conditions of the Search are the following: if it got more
positive responses for the service than the replication rate, or if it triggers a
timeout. To protect from churn, a publication is considered as successful when
at least 10 peers have acknowledged it.

When a KADEMLIA REQ arrives on a Honeypeer for the targeted hash,
it answers with the list of all the other Honeypeers composing HAMACK and
activated for this content. As the list of contacts managed by the Search object
is always sorted by distance, all the Honeypeers are placed in the best positions
to receive service requests. So, as soon as a publishing peer gets one of the Hon-
eypeers among the routing responses, all the following specific requests emitted
by this peer will be sent to HAMACK. Therefore, the probability to attract all
the requests emitted by a peer is approximated by the probability to find at
least one of the Honeypeers before the Search object begins the transmission of
service requests, we calculate this probability in the following paragraph.

INRIA
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Figure 4: KAD routing table scheme

4.3 Analysis of HAMACK efficiency

Since the first study on the KAD routing scheme [14], it has been confirmed [16]
[2] that the routing table of KAD is slightly different from the proper binary
tree defined in Kademlia [8]. Figure 3 compares the two trees. Basically, the
routing table of KAD is far more efficient because more contacts are stored at
each level. With the knowledge of the routing table and of the search procedure,
we are able to estimate the probability to attract the first service request for a
target of HAMACK, considering the distance of the source.

We assume that the initial peer and each intermediate step have a full routing
table filled according to their respective place in the DHT. Moreover, we consider
that the initial peer is far from the tolerance zone of the target so that it will
need more hops before finding the Honeypeers. We also make the assumption
that there is no partition in the P2P network and that the Honeypeers are well
referenced by the other peers.

So, let H be the number of Honeypeers returned at a given step of the
Search, and (1 − Pn(H = 0)) or Pn(H ≥ 1) be the probability to find at least
one Honeypeer at the nth step of the Search. As the Honeypeers know each
others and collaborate through KADEMLIA RES, we consider that the fact
to find at least one Honeypeer leads to the capture of all following requets by
HAMACK. Let NH be the number of Honeypeers used by HAMACK and NPn

the number of potential peers that can be chosen at step n of the Search. At the
begining of the lookup, the peer has to bootstrap the Search by requesting the
3 closest contacts of its routing table (equation 2). Then at each step (equation
3), 3 routing requests are sent towards the closest contacts and each will return
4 responses among a choice of NPn closer contacts, so that the Honeypeers
have to be found among the 12 responses. To find Pn(H), we can compute
the probabilities to choose i Honeypeers among NH at each step, which is
represented by the hypergeometric law with parameters (12, NH, NPn+NH)

RR n➦ 6994
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and to sum all the positive values of i.

P0(H ≥ 1) =
i=3∑

i=1

Ci

NH
× C3−i

NP0

C3
NP0+NH

(2)

Pn(H ≥ 1) =

i=12∑

i=1

Ci

NH
× C12−i

NPn

C12
NPn+NH

(3)

Let NP be the total number of peers in the network. Looking at the real
KAD routing table, the initial peer has at least one 10-bucket to cover 1/16 of
the network. So, the first 3 contacts used to bootstrap the Search are chosen
among NP/24 peers. Within a 10-bucket, the contacts are not ordered but we
have to translate the fact to pick up the 3 closest contacts in probability. We
assume that the KADIDs within a 10-bucket are uniformly distributed, so that
choosing the 3 closest contacts among 10 improves, in average, 2 more bits of
the target. So a more realistic value is:

NP0 =
NP

26
(4)

Then, looking at the figure 3, the contacts requested for the next step have
a view of the zone considered for the target at least 3 times better. In fact, the
inital peer, being far away from the target, picked up the contacts to bootstrap
the Search from one of its top 10-bucket with an index between 5 and 15. These
bootstrap contacts, when requested, will then look in their bucket with index
0 to find closer contacts. In the worst case, the targetID will hit the following
10-buckets with the indexes 1’-3”-7”’ to find the next contacts. That means that
in the worst case, considering the routing table of KAD, the Search will move
forward by 3bits. As the structure of the routing table does not change with
the depth, this reasoning is true for every step. Finally, if we want the worst
case to be realistic by adding 2 more bits when choosing the best 3 contacts in
a bucket, each step improves the Search of 5 bits in our model.

NPn =
NP

26 × 25×n
(5)

The numerical application of these probabilities with the parameters (NP =
5× 106,NH = 20) are displayed in table 2. We see that at least one Honeypeer
will be returned with nearly 10% of probability after the first step, and with
93% after the second. This result demonstrates that the routing in KAD ensures
that the Honeypeers will be discovered during the Search process and attract
all the next service requests. Practical experiments will confirm these results.

5 Implementation

This part describes how HAMACK is implemented to achieve its purpose.

5.1 Honeypeers

The main constraint to be addressed by HAMACK comes from the IP address
limitation inserted in the lastest version of the major KAD clients. So, all the
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n NPn + NH Pn(H ≥ 1)
0 78145 0.00077
1 2461.5 0.0931
2 96.5 0.928
3 22.4 1

Table 2: Probability to find at least 1 honeypeer at the nth step of the search

Honeypeers running for a specific target ID must have different IP addresses in
order not to be denied. Moreover, no more that 2 Honeypeers can belong to the
same subnet. To fit with these constraints, we chose to run HAMACK from a
slice of PlanetLab Europe, as described by figure 5.

The Honeypeers execute a modified aMule client in its daemon version
(aMuled) which is light and remotely manageable. This client has been mod-
ified in order to achieve the features described in section 3. Basically, many
functions processing the incoming packets and many parameters of KAD were
adapted. The behavior to adopt for a Honeypeer (spying, eclipsing, poisoning),
the target ID and other parameters are set in a specific configuration file read
by the modified client.

Several Perl scripts were written to easily deploy HAMACK on PlanetLab
and change the behavior of the Honeypeers when needed. They are gathered
and executed from a separate computer called the Manager. Writing these
scripts was facilitated by the homogenous architecture of PlanetLab, so that
each Honeypeer runs the same task in the same environment. The first version
of HAMACK only manages one target ID but the scalability is not an issue.
Given the very low resource consumption of aMuled, a single node can easily
handle dozens of clients on different ports, so that HAMACK will investigate
many contents at the same time in the next release.

5.2 Database

The second major component of HAMACK is the database that stores the in-
formation captured by the Honeypeers. The database is implemented in a Post-
greSQL server and secured by an additional SSL module to avoid unauthorised
connections. Most of the access to the database are writing but the Honeypeers
can also read the different tables if needed: for example to get the KADID,IP
and port of the other Honeypeers in charge of the same target ID to collaborate.
We designed the different tables to easily anonymize the IP address of the peers
if needed. When a new IP address is seen by HAMACK, the database attributes
a new index to it and remembers this reference for a whole execution. Finally,
the IP address field can be dropped without loosing too much information.

6 Measurements

To develop and evaluate HAMACK, we made several experiments on the real
KAD network. As we absolutely wanted to not disturb the network, we chose
the keyword ”document” as our test target ID because it is quite well indexed
but insignificant when doing a research on KAD. In a first time, we study
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Figure 5: Network architecute of HAMACK

different parameters affecting HAMACK efficiency before evaluating the final
architecture.

6.1 Setting the parameters

The execution time needed for an experiment was the first parameter to study
for two reasons. On one hand the uptime of a peer is a classical parameter
used to distinguish which peer should remain in the routing table to improve its
stability, so that peers staying for a long time in the network are better known.
On the other hand, our Honeypeers implement a function that makes them
periodicaly announce themselves in the network. Graph 6 shows, for every
interval of six hours, the number of Publish requests received by HAMACK
over 4 days. We waited two hours before counting the requests to have the
Honeypeers known in the network. We can clearly see that on the medium and
long run, the time has absolutely no impact on HAMACK efficiency. We also see
that every day, the number of requests received during the afternoon (∼ 40000)
between 12h-18h or 18h-00h (GMT+1), is higher that in the morning (∼ 30000)
between 00h-06h or 06h-12h. This result is coherent with the fact that KAD
is mainly used in European countries, as presented in [11]. According to this
result, the next experiments are based on a full day capture.

The number of Honeypeers is also an important parameter to be able to
efficiently use our resources. The minimum number of Honeypeers to involve
should be 10, like the replication factor to publish a content. But usually, more
than 10 service requests can be sent and all have to be captured. The reason-
able minimum number of Honeypeers tried in our experiment is 15. Graph 7
shows the evolution of HAMACK efficiency when the number of Honeypeers
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Figure 6: Impact of the execution time on HAMACK efficiency

Figure 7: Impact of the number of Honeypeers on HAMACK efficiency

varies. The results show that 15 Honeypeers achieve a very good attractivity
for HAMACK but using 20 Honeypeers improves the efficiency. Using 25 Hon-
eypeers shows an insignificative decrease of performances, simply meaning that
there is no purpose to use more that 20 Honeypeers.

After studying the environment parameters, we investigated three parame-
ters related to the Honeypeers behavior. Firstly, we condidered the impact of the
collaboration among Honeypeers. In the first case, the Honeypeers do not have
a priori knowledge of the others and simply discover themselves through KAD
mechanisms that fill their routing table. In the second case, the Honeypeers ex-
plicitely know each other and always promote themselves in KADEMLIA RES.
Figure 8 shows how this modification performs. We can see that the collabora-
tion of Honeypeers increases the efficiency of HAMACK (∼ 22%). This means
that, by default, few normal peers were announced in the KADEMLIA RES
returned by the Honeypeers for the target ID, decreasing the performance of
HAMACK.
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Figure 8: Impact of the collaboration between Honeypeers

Figure 9: Impact of the size of Kademlia RES

Secondly, we defined the strategy of collaboration to use. Two strategies
are possible. The first is compliant with the very last version of the KAD
clients (eMule 0.49c ans aMule 2.2.4) which drops any KADEMLIA RES con-
taining more that 4 contacts. The second uses the full list of Honeypeers in the
KADEMLIA RES which should give better results with oldest clients. This pro-
tection being very recent (less than 2 months), we thought that most of clients
would not have been updated. Figure 9 shows how many Publish requests are
received in one day with both strategies. When fitting the protection against
the flooding of contacts in KADEMLIA RES, the number of Publish requests
received increases a lot (∼ 45%). This means that clients are quickly updated
by the users after a new release and that this new constraint has already to be
considered.

Finally, we measured the impact of active announcements. The result of
figure 10 does not show a significative improvement of HAMACK efficiency
when forcing the Honeypeers to announce themselves actively in the network,
to gain visibility. The basic KAD behavior is sufficient to be assured that a peer
is well known in the network.
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Figure 10: Impact of active announcement on HAMACK efficiency

6.2 Evaluation of HAMACK efficiency

Evaluating the efficiency of our architecture is a real challenge. How to be sure
that HAMACK effectively attracts all the emitted Publish requests? As we can
not have a probe behind each peer of the KAD network during our experiments,
we designed two experiments to give us a good indication of the efficiency of the
architecture.

The first experiment consisted in publishing a keyword managed by HAMACK
from 6 different sources that we monitored. Each source had a different place
in the DHT and was bootstraped from a different set of contacts, in order to
avoid any misleaded measurements due to unproper initial conditions. Then,
we can compare for every publication, how many sent requests were captured
by HAMACK and if the distance of the publishing peer affects the performance
of the architecture. Figure 11 shows that all the Publish requests sent by our
monitored clients are captured by the Honeypeers. Moreover, these very good
results were confirmed by several search attempts performed on the targeted
keyword ”document” when eclipsed by HAMACK: all the Search requests were
captured by the Honeypeers, and the global search finished without finding a
single result.

The second experiment was to consider how many Publish resquests are
seen by HAMACK from the same peer in a short period of time. We know that
the publication process waits for 10 positive responses before stopping to send
Publish requests. Given that, each time that HAMACK sees less than 10 times
the same request from a peer during the short period of time of a publication
process, it means that the other requests have been received by normal peers.
As our architecture also attracts the Search requests, HAMACK can still control
the content even if few Publish requests are missed. This experiment is a good
indicator of how HAMACK performs. The results displayed in figure 12 are
extremely encouraging. Very few distinct publications are seen with less than 8
requests (509/5669). As expected, a very high number of distinct publications
are seen around 10. The high number of publications for which more that
10 requests are captured can seem to be strange. In fact, during the publish
process, many KADEMLIA2 PUBLISH KEY REQ messages can be sent when
the peer has almost finished the publication (for example 9 acknowledgments
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Figure 11: Number of Publish requests sent and captured considering the dis-
tance of the publishing peer

Figure 12: Number of Publish requests received for each replication rate

out of 10 needed). When receiving the 10th response, the Search will stop but
all the previously sent requests will still be considered and processed.

We also evaluated how well HAMACK is distributed on the Honeypeers. To
do so, we counted the number of Publish requests captured by each Honeypeer in
one day. We found out that the load distribution between Honeypeers is related
to the distance between each Honeypeer and the target. Figure 13 shows the
load on every Honeypeers ordered by their distance to the target. Even if the
Honeypeers share 96bits with the target, the freedom to choose their KADID
in the left 32bits is sufficient to see the efficiency of the KAD search algorithm
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Figure 13: Distribution of the load on the Honeypeers composing HAMACK

trying to find the closest contacts. We can clearly see in the results that the
Honeypeers with IDs (1-13) chose the same 97th bit than the target, while the
Honeypeers (14-22) chose the other value, resulting in a sensible decrease of
their attractivity compared to the others.

Finally, we evaluated the attractivity of fake files announced by HAMACK.
In this last experiment, HAMACK poisoned the keyword ’spiderman’ with 4
files, 2 well shared and 2 with a low number of sources, while eclipsing the
other references for this keyword during one day. The search results returned
by a KAD client during our test are displayed in figure 15. We can see that
our attack succeeds to eclipse the real entries and to replace them with our 4
fake files. Figure 14 shows for each of these fake files, the proportion of first
Search Source requests received from a distinct peer. The results show that
the well shared files are chosen in first by 96% of the users, which confirms the
great importance of the number of sources. This experiment also illustrates how
malicious users will be cheated by HAMACK in future real applications.

7 Conclusion

We have described HAMACK, an efficient honeynet that bypasses the most
recent protections of KAD against the Sybil attack. HAMACK uses several
Honeypeers set very close to malicious references of the DHT and these Hon-
eypeers are able to take control over them. Our appproach does not rely in the
injection of Sybils and is absolutely non intrusive for the network besides the
targeted contents. Quiet monitoring of all the incoming requests and eclipsing
the malicious contents are some interesting features of HAMACK, to study and
protect the network. But the most accomplished feature is the possibility to an-
nounce many files for a given keyword with realistic and attractive attributes,
in particular the number of sources. Through the announcement of fake files,
HAMACK is able to attract and capture all the requests of a malicious peer:
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Figure 14: Proportion of first Search Source requests received for each fake file
announced by HAMACK

Figure 15: Result of a search for ”spiderman” under eclipse and poison (4 fake
files)

from the search of a keyword, to the final download request, assessing the actions
of malicious users.

To achieve these features, HAMACK exploits the weakness of KAD allowing
to freely choose the KADID of a peer and relies on the very efficient search
process of the KAD DHT. As described in our model, a search launched on
a target of HAMACK will be captured by the Honeypeers with a very high
probability (≥ 93%). Our work highlights a new dilemna of KAD which has
to choose between its routing efficiency and the safety of its indexed contents.
HAMACK is implemented by a lightweight architecture and fully fonctionnal.
It uses modified aMuled clients deployed on PlanetLab nodes, and coupled with
a secured database. The first experiments run on the real KAD network helped
to set the parameters of the architecture. They showed 3 important results:
1- the coordination between Honeypeers increases the efficiency of HAMACK,
2- the architecture has to fit with the latest constraints inserted in KAD and
3- a low upper bound of needed Honeypeers. Then, several experiments were
run and showed that HAMACK is extremely efficient to attract all the requests
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of the target IDs, resulting in the total control of the contents. Finally, our
final experiment poisoning a real content confirmed the great importance of
controlling the number of sources to make an efficient honeypot.

Our future work will consist in enabling HAMACK to target many IDs at the
same time, by running several Honeypeers by node. Then, we will use HAMACK
to study and fight against different types of malicious contents spreading in P2P
networks, like viruses, or more generaly to study any phenomenon related to
contents in P2P networks. To close the loop, we work on a revocation mechanism
to protect the network against malicious users detected by HAMACK.
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