
HAL Id: inria-00423058
https://inria.hal.science/inria-00423058

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Identifying Query Incompatibilities with Evolving XML
Schemas

Pierre Genevès, Nabil Layaïda, Vincent Quint

To cite this version:
Pierre Genevès, Nabil Layaïda, Vincent Quint. Identifying Query Incompatibilities with
Evolving XML Schemas. ICFP’09, Aug 2009, Edinburgh, United Kingdom. pp.221-230,
�10.1145/1596550.1596583�. �inria-00423058�

https://inria.hal.science/inria-00423058
https://hal.archives-ouvertes.fr

Identifying Query Incompatibilities
with Evolving XML Schemas

Pierre Genevès

CNRS

pierre.geneves@inria.fr

Nabil Layaı̈da Vincent Quint

INRIA

{nabil.layaida,vincent.quint}@inria.fr

Abstract

During the life cycle of an XML application, both schemas and
queries may change from one version to another. Schema evolu-
tions may affect query results and potentially the validity of pro-
duced data. Nowadays, a challenge is to assess and accommodate
the impact of these changes in evolving XML applications. Such
questions arise naturally in XML static analyzers. These analyzers
often rely on decision procedures such as inclusion between XML
schemas, query containment and satisfiability. However, existing
decision procedures cannot be used directly in this context. The
reason is that they are unable to distinguish information related to
the evolution from information corresponding to bugs. This paper
proposes a predicate language within a logical framework that can
be used to make this distinction.

We present a system for monitoring the effect of schema evo-
lutions on the set of admissible documents and on the results of
queries. The system is very powerful in analyzing various scenarios
where the result of a query may not be anymore what was expected.
Specifically, the system is based on a set of predicates which allow
a fine-grained analysis for a wide range of forward and backward
compatibility issues. Moreover, the system can produce counterex-
amples and witness documents which are useful for debugging pur-
poses. The current implementation has been tested with realistic
use cases, where it allows identifying queries that must be refor-
mulated in order to produce the expected results across successive
schema versions.

Categories and Subject Descriptors D.3.4 [Software]: Program-
ming Languages—Processors; D.2.4 [Software]: Engineering—
Software/Program Verification

General Terms Languages, Standardization, Verification

Keywords XML, Schema, Queries, Evolution, Compatibility

1. Introduction

XML is now commonplace on the web and in many information
systems where it is used for representing all kinds of information
resources, ranging from simple text documents such as RSS or
Atom feeds to highly structured databases. In these dynamic en-
vironments, not only data are changing steadily but their schemas

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $10.00

also get modified to cope with the evolution of the real world enti-
ties they describe.

Schema changes raise the issue of data consistency. Existing
documents and data that were valid with a certain version of a
schema may become invalid on a new version of the schema (for-
ward incompatibility). Conversely, new documents created with the
latest version of a schema may be invalid on some previous versions
(backward incompatibility).

In addition, schemas may be written in different languages, such
as DTD, XML Schema, or Relax-NG, to name only the most popu-
lar ones. And it is common practice to describe the same structure,
or new versions of a structure, in different schema languages. Doc-
ument formats developed by W3C provide a variety of examples:
XHTML 1.0 has both DTDs and XML Schemas, while XHTML
2.0 has a Relax-NG definition; the schema for SVG Tiny 1.1 is a
DTD, while version 1.2 is written in Relax-NG; MathML 1.01 has
a DTD, MathML 2.0 has both a DTD and an XML Schema, and
MathML 3.0 is developed with a Relax-NG schema and is expected
to have also a DTD and an XML Schema. An issue then is to make
sure that schemas written in different languages are equivalent, i.e.
they describe the same structure, possibly with some differences
due to the expressivity of the language [Murata et al. 2005]. An-
other issue is to clearly identify the differences between two ver-
sions of the same schema expressed in different languages. More-
over, the issues of forward and backward compatibility of instances
obviously remain when schema languages change from a version to
another.

Validation, and then compatibility, is not the only purpose of
a schema. Validation is usually the first step for safe processing
of documents and data. It makes sure that documents and data are
structured as expected and can then be processed safely. The next
step is to actually access and select the various parts to be handled
in each phase of an application. For this, query languages play a
key role. As an example, when transforming a document with XSL,
XPath queries are paramount to locate in the original document the
data to be produced in the transformed document.

Queries are affected by schema evolutions. The structures they
return may change depending on the version of the schema used by
a document. When changing schema, a query may return nothing,
or something different from what was expected, and obviously
further processing based on this query is at risk.

These observations highlight the need for evaluating precisely
and safely the impact of schema evolutions on existing and future
instances of documents and data. They also show that it is important
for software engineers to precisely know what parts of a processing
chain have to be updated when schemas change. In this paper
we focus on the XPath query language which is used in many
situations while processing XML documents and data. The XSL
transformation language was already mentioned, but XPath is also
present in XLink and XQuery for instance.

2. Analysis Framework

The main contribution of this paper is a framework that allows the
automatic verification of properties related to XML schema and
query evolution. In particular, it offers the possibility of checking
fine-grained properties of the behavior of queries with respect to
successive versions of a given schema. The system can be used for
checking whether schema evolutions require a particular query to
be updated. Whenever schema evolutions may induce query mal-
functions, the system is able to generate annotated XML documents
that exemplify bugs, with the goal of helping the programmer to un-
derstand and properly overcome undesired effects of schema evo-
lutions.

The system relies on a predicate language (presented in Sec-
tion 4) specifically designed for studying schema and query com-
patibility issues when schemas evolve. In particular, predicates al-
low characterizing in a precise manner nodes subject to evolution.
For instance, predicates allow to distinguish new nodes selected by
the query after a schema change from new nodes that appear in the
modified schema. Predicates also allow to describe nodes that ap-
pear in new regions of a schema compared to its original version, or
even in a new context described by a particular XPath expression.
Predicates, together with the composition language provided in the
system allow to express and analyze complex settings.

The system has been fully implemented [Genevès and Layaı̈da
2009] and is outlined in Figure 1. It is composed of a parser for
reading the text file description of the problem (which in turn
use specific parsers for schemas, queries, logical formulas, and
predicates), compilers for translating schemas and queries into their
logical representations, a solver for checking satisfiability of logical
formulas, and a counter example XML tree generator (described in
[Genevès et al. 2008]).

We first introduce the data model we consider for XML docu-
ments, schemas and queries.

XML Trees with Attributes An XML document is considered
as a finite tree of unbounded depth and arity, with two kinds of
nodes respectively named elements and attributes. In such a tree,
an element may have any number of children elements, and may
carry zero, one or more attributes. Attributes are leaves. Elements
are ordered whereas attributes are not, as illustrated on Figure 4.
In this paper, we focus on the nested structure of elements and
attributes, and ignore XML data values.

Type Constraints As an internal representation for tree gram-
mars, we consider regular tree type expressions (in the manner of
[Hosoya et al. 2005]), extended with constraints over attributes. As-
suming a set of variables ranged over by x, we define a tree type
expression as follows:

τ ::= tree type expression
∅ empty set
() empty sequence
τ | τ disjunction
τ, τ concatenation
l(a)[τ] element definition
x variable
let x = τ in τ binder

The let construct allows binding one or more variables to
associated formulas. Since several variables can be bound at a
time, the notation x = τ is used for denoting a vector of variable
bindings (possibly with mutual recursion).

We impose a usual restriction on the recursive use of variables:
we allow unguarded (i.e. not enclosed by a label) recursive uses of
variables, but restrict them to tail positions1. With that restriction,

1 For instance, “let x = l(a)[τ], x | () in x” is allowed.

tree types expressions define regular tree languages. In addition,
an element definition may involve simple attribute expressions that
describe which attributes the defined element may (or may not)
carry:

a ::= attribute expression
() empty list
list | a disjunction

list ::= attribute list
list, list commutative concatenation
l? optional attribute
l required attribute
¬l prohibited attribute

We use the usual semantics of regular tree types found in
[Hosoya et al. 2005] and [Genevès et al. 2008].

Our tree type expressions capture most of the schemas in use
today [Murata et al. 2005]. In practice, our system provides parsers
that convert DTDs, XML Schemas, and Relax NGs to this internal
tree type representation. Users may thus define constraints over
XML documents with the language of their choice, and, more
importantly, they may refer to most existing schemas for use with
the system.

Queries The set of XPath expressions we consider is given by
the syntax shown on Figure 2. The semantics of XPath expressions
is described in [Clark and DeRose 1999], and more formally in
[Wadler 2000]. We observed that, in practice, many XPath expres-
sions contain syntactic sugars that can also fit into this fragment.
Figure 3 presents how our XPath parser rewrites some commonly
found XPath patterns into the fragment of Figure 2, where the no-
tation (axis::nt)k stands for the composition of k successive path
steps of the same form: axis::nt/.../axis::nt

| {z }

k steps

.

query ::=
/path absolute path
path relative path
query | query union
query ∩ query intersection

path ::=
path/path path composition
path[qualifier] qualified path
axis::nt step

qualifier ::=
qualifier and qualifier conjunction
qualifier or qualifier disjunction
not(qualifier) negation
path path
path/@nt attribute path
@nt attribute step

nt ::= node test
σ node label
∗ any node label

axis ::= tree navigation axis
self | child | parent
descendant | ancestor
descendant-or-self
ancestor-or-self
following-sibling
preceding-sibling
following | preceding

Figure 2. XPath Expressions.

select("a//b[ancestor::e]",
type("XHTML1-strict.dtd",
"html"))

XML Problem Description (Text File)

Parsing and
Compilation

let $X=e & <1>$X...

Logical formula over
binary trees with
attributes

Satisfiability Test

Unsatisfiable (property proved)

Satisfiable
Synthesis

Satisfying binary
tree with
attributes

binary to n-ary
Sample XML
document inducing
a bug

Figure 1. Framework Overview.
.

nt[position() = 1] nt[not(preceding-sibling::nt)]

nt[position() = last()] nt[not(following-sibling::nt)]

nt[position() = k
|{z}

k>1

] nt[(preceding-sibling::nt)k−1
]

count(path) = 0 not(path)

count(path) > 0 path

count(nt) > k
|{z}

k>0

 nt/(following-sibling::nt)k

preceding-sibling::∗[position() = last() and qualifier]

 preceding-sibling::∗[not(preceding-sibling::∗) and qualifier]

Figure 3. Syntactic Sugars and their Rewritings.

The next Section presents the logic underlying the predicate lan-
guage. Section 4 describes predicates for characterizing the impact
of schema changes. Finally, experiments on realistic use cases are
reported in Section 5.

3. Logical Setting

It is well-known that there exist bijective encodings between un-
ranked trees (trees of unbounded arity) and binary trees. Owing
to these encodings binary trees may be used instead of unranked
trees without loss of generality. In the sequel, we rely on a simple
“first-child & next-sibling” encoding of unranked trees. In this en-
coding, the first child of an element node is preserved in the binary
tree representation, whereas siblings of this node are appended as
right successors in the binary representation. Attributes are left un-
changed by this encoding. For instance, Figure 5 presents how the
sample tree of Figure 4 is mapped.

<r c=" " a=" " b=" ">
<s d=" ">
<v/><w/><x e=" "/>
</s>
<t/>
<u/>
</r>

XML Notation

a
b c

d

e

r

s t u

v w x

Figure 4. Sample XML Tree with Attributes.

The logic we introduce below, used as the core of our frame-
work, operates on such binary trees with attributes.

3.1 Logical Formulas

The concrete syntax of logical formulas is shown on Figure 6,
where the meta-syntax 〈X〉� means one or more occurences of

a
b c

d

e

r

s

t

u

v

w

x

Figure 5. Binary Encoding of Tree of Figure 4.

X separated by commas. The reader can directly use this syntax
for encoding formulas as text files to be used with the system
[Genevès and Layaı̈da 2009]. This concrete syntax is used as a
single unifying notation throughout all the paper.

ϕ ::= formula
T true
F false
l element name
p atomic proposition
start context
ϕ | ϕ disjunction
ϕ & ϕ conjunction
ϕ => ϕ implication
ϕ <=> ϕ equivalence
(ϕ) parenthesized formula
ϕ̃ negation
<p>ϕ existential modality
<l>T attribute named l
$X variable

let 〈$X = ϕ〉� in ϕ binder for recursion
predicate predicate (See Section 4)

p ::= program inside modalities
1 first child
2 next sibling
-1 parent
-2 previous sibling

Figure 6. Concrete Syntax of Formulas.

The semantics of logical formulas corresponds to the classical
semantics of a µ-calculus interpreted over finite tree structures. A
formula is satisfiable iff there exists a finite binary tree with at-
tributes for which the formula holds at some node. This is formally
defined in [Genevès et al. 2007], and we review it informally below
through a series of examples.

Sample Formula Tree XML

a & <1>b

a

b <a>

a & <1>(b & <2>c)

a

b

c <a><c/>

e & <-1>(d & <2>g)

d

e g
<d><e/></d><g/>

f & <-2>(g & ~<2>T) none none

Table 1. Sample Formulas and Satisfying Trees.

There is a difference between an element name and an atomic
proposition2: an element has one and only one element name,
whereas it can satisfy multiple atomic propositions. We use atomic
propositions to attach specific information to tree nodes, not related
to their XML labeling. For example, the start context (a reserved
atomic proposition) is used to mark the starting context nodes for
evaluating XPath expressions.

The logic uses modalities for navigating in binary trees. A
modality <p>ϕ can be read as follows: “there exists a successor
node by program p such that ϕ holds at this successor”. As shown
on Figure 6, a program p is simply one of the four basic programs
{1, 2, -1, -2}. Program 1 allows navigating from a node down to
its first successor, and program 2 allows navigating from a node
down to its second successor. The logic also features converse pro-
grams -1 and -2 for navigating upward in binary trees, respectively
from the first successor to its parent and from the second successor
to its previous sibling. Table 1 gives some simple formulas using
modalities for navigating in binary trees, together with sample sat-
isfying trees, in binary and unranked tree representations.

The logic allows expressing recursion in trees through the re-
cursive binder. For example the recursive formula:

let $X = b | <2>$X in $X

means that either the current node is named b or there is a sibling
of the current node which is named b. For this purpose, the variable
$X is bound to the subformula b | <2>$X which contains an oc-
curence of $X (therefore defining the recursion). The scope of this
binding is the subformula that follows the “in” symbol of the for-
mula, that is $X. The entire formula can thus be seen as a compact
recursive notation for a infinitely nested formula of the form:

b | <2>(b | <2>(b | <2>(...)))

Recursion allows expressing global properties. For instance, the
recursive formula:

~ let $X = a | <1>$X | <2>$X in $X

expresses the absence of nodes named a in the whole subtree of the
current node (including the current node). Furthermore, the fixpoint
operator makes possible to bind several variables at a time, which
is specifically useful for expressing mutual recursion. For example,
the mutually recursive formula:

2 In practice, an atomic proposition must start with a “ ”.

let
$X = (a & <2>$Y) | <1>$X | <2>$X,
$Y = b | <2>$Y

in $X

asserts that there is a node somewhere in the subtree such that this
node is named a and it has at least one sibling which is named
b. Binding several variables at a time provides a very expressive
yet succinct notation for expressing mutually recursive structural
patterns (that are common in XML Schemas, for instance).

From a theoretical perspective, the recursive binder let $X =
ϕ in ϕ corresponds to the fixpoint operators of the µ-calculus. It
is shown in [Genevès et al. 2007] that the least fixpoint and the
greatest fixpoint operators of the µ-calculus coincide over finite tree
structures, for a restricted class of formulas called cycle-free for-
mulas. Translations of XPath expressions and schemas presented
in this paper always yield cycle-free formulas (see [Genevès et al.
2008] for more details).

3.2 Queries

The logic is expressive enough to capture the set of XPath expres-
sions presented in Section 2. For example, Figure 7 illustrates how
the sample XPath expression:

child::r[child::w/@att]

is expressed in the logic. From a given context in an XML docu-
ment, this expression selects all r child nodes which have at least
one w child with an attribute att. Figure 7 shows how it is ex-
pressed in the logic, on the binary tree representation. The formula
holds for r nodes which are selected by the expression. The first
part of the formula, ϕ, corresponds to the step child::r which se-
lects candidates r nodes. The second part, ψ, navigates downward
in the subtrees of these candidate nodes to verify that they have at
least one immediate w child with an attribute att.

att

#

r ϕ

s

r

v

w

ϕ∧ψ

Translated Query: child::r[child::w/@att]

Translation:
r & (let $X=<-1># | <-2>$X)
| {z }

ϕ

& <1>let $Y=w & <att>T | <2>$Y
| {z }

ψ

Figure 7. XPath Translation Example.

This example illustrates the need for converse programs in-
side modalities. The translated XPath expression only uses forward
axes (child and attribute), nevertheless both forward and backward
modalities are required for its logical translation. Without con-
verse programs we would have been unable to differentiate selected
nodes from nodes whose existence is simply tested. More gener-
ally, properties must often be stated on both the ancestors and the
descendants of the selected node. Equipping the logic with both
forward and converse programs is therefore crucial. Logics without
converse programs may only be used for solving XPath emptiness
but cannot be used for solving other decision problems such as con-
tainment efficiently.

A systematic translation of XPath expressions into the logic is
given in [Genevès et al. 2007]. In this paper, we extended it to

deal with attributes. We implemented a compiler that takes any
expression of the fragment of Figure 2 and computes its logical
translation. With the help of this compiler, we extend the syntax
of logical formulas with a logical predicate select("query", ϕ).
This predicate compiles the XPath expression query given as pa-
rameter into the logic, starting from a context that satisfies ϕ. The
XPath expression to be given as parameter must match the syn-
tax of the XPath fragment shown on Figure 2 (or Figure 3). In
a similar manner, we introduce the predicate exists("query", ϕ)
which tests the existence of query from a context satisfying ϕ, in
a qualifier-like manner (without moving to its result). Addition-
ally, the predicate select("query") is introduced as a shortcut
for select("query", #), where # simply marks the initial context

node of the XPath expression3. The predicate exists("query") is
a shortcut for exists("query", T). These syntactic extensions of
the logic allow the user to easily embed XPath expressions and for-
mulate decision problems out of them (like e.g. containment or any
other boolean combination). In the next sections we explain how
the framework allows combining queries with schema information
for formulating problems.

3.3 Tree Types

Tree type expressions are compiled into the logic in two steps: the
first stage translates them into binary tree type expressions, and
the second step actually compiles this intermediate representation
into the logic. The translation procedure from tree type expres-
sions to binary tree type expressions is well-known and detailed
in [Genevès 2006]. The syntax of output expressions follows:

τ ::= binary tree type expression
∅ empty set
() empty tree
τ | τ disjunction
l(a)[x, x] element definition
let x = τ in τ binder

Attribute expressions are not concerned by this transformation to
binary form: they are simply attached, unchanged, to new (binary)
element definitions. Finally, binary tree type expressions are com-
piled into the logic. This translation step was introduced and proven
correct in [Genevès et al. 2007]. Originally, the translation takes a
tree type expression τ and returns the corresponding logical for-
mula. Here, we extend it slightly but crucially: the logical trans-
lation of an expression τ is given by the function tr(τ)ψϕ defined
below, that takes additional arguments ϕ and ψ:

tr(τ)ψϕ
def
= F for τ = ∅, ()

tr(τ1 | τ2)
ψ
ϕ

def
= tr(τ1)

ψ
ϕ | tr(τ2)

ψ
ϕ

tr(l(a)[x1, x2])
ψ
ϕ

def
= (l & ϕ & tra(a) & s1(x1) & s2(x2)) | ψ

tr(let xi = τi in τ)ψϕ
def
= let $Xi = tr(τi)

ψ
ϕ in tr(τ)ψϕ

The addition of ϕ and ψ (respectively in a new conjunction and
a new disjunction) is a key element for the definition of predi-
cates in Section 4. More precisely, this allows marking type sub-
expressions so that they can be distinguished in predicates, as ex-
plained in Section 3.4. In addition, ϕ and ψ are either true, false, or
simple atomic propositions. Thus, it is worth noticing that their ad-
dition does not affect the linear complexity of tree type translation.
The function s·(·) describes the type for each successor:

sp(x) =

8

<

:

˜<p>T if x is bound to ()
˜<p>T | <p>$X if nullable(x)
<p>$X if not nullable(x)

3 This mark is especially useful for comparing two or more XPath expres-
sions from the same context.

according to the predicate nullable(x) which indicates whether the
type T 6= () bound to x contains the empty tree.

The function tra(a) compiles attribute expressions associated
with element definitions as follows:

tra(())
def
= notothers(())

tra(list | a)
def
= tra(list) & notothers(list)

tra(list, list
′)

def
= tra(list) & tra(list

′)

tra(l?)
def
= l |˜l

tra(l)
def
= l

tra(¬l)
def
=˜l

In usual schemas (e.g. DTDs, XML Schemas) when no attribute is
specified for a given element, it simply means no attribute is al-
lowed for the defined element. This convention must be explicitly
stated in the logic. This is the role of the function “notothers(list)”
which returns the negated disjunction of all attributes not present
in list. As a result, taking attributes into account comes at an extra-
cost. The above translation appends a (potentially very large) for-
mula in which all attributes occur, for each element definition. In
practice, a placeholder atomic proposition is inserted until the full
set of attributes involved in the problem formulation is known.
When the whole formula has been parsed, placeholders are re-
placed by the conjunction of negated attributes they denote. This
extra-cost can be observed in practice, and the system allows two
modes of operations: with or without attributes4. Nevertheless the
system is still capable of handling real world DTDs (such as the
DTD of XHTML 1.0 Strict) with attributes. This is due to (1) the
limited expressive power of languages such as DTD that do not al-
low for disjunction over attribute expressions (like “list | a”); and,
more importantly, (2) the satisfiability-testing algorithm which is
implemented using symbolic techniques [Genevès et al. 2008].

Tree type expressions form the common internal representation
for a variety of XML schema definition languages. In practice, the
logical translation of a tree type expression τ are obtained directly
from a variety of formalisms for defining schemas, including DTD,
XML Schema, and Relax NG. For this purpose, the syntax of logi-
cal formulas is extended with a predicate type(" ·", ·). The logical
translation of an existing schema is returned by type("f", l) where
f is a file path to the schema file and l is the element name to be
considered as the entry point (root) of the given schema. Any oc-
curence of this predicate will parse the given schema, extract its
internal tree type representation τ , compile it into the logic and re-
turn the logical formula tr(τ)FT.

3.4 Type Tagging

A tag (or “color”) is introduced in the compilation of schemas with
the purpose of marking all node types of a specific schema. A tag
is simply a fresh atomic proposition passed as a parameter to the
translation of a tree type expression. For example: tr(τ)Fxhtml is the
logical translation of τ where each element definition is annotated
with the atomic proposition “xhtml”. With the help of tags, it
becomes possible to refer to the element types in any context. For
instance, one may formulate tr(τ)Fxhtml | tr(τ ′)Fsmil for denoting the
union of all τ and τ ′ documents, while keeping a way to distinguish
element types; even if some element names are shared by the two
type expressions.

Tagging becomes even more useful for characterizing evolu-
tions between successive versions of a single schema. In this set-
ting, we need a way to distinguish nodes allowed by a newer

4 The optional argument “-attributes” must be supplied for attributes to be
considered.

schema version from nodes allowed by an older version. This dis-
tinction must not be based only on element names, but also on
content models. Assume for instance that τ ′ is a newer version of
schema τ . If we are interested in the set of trees allowed by τ ′ but
not allowed by τ then we may formulate:

tr(τ ′)FT &˜tr(τ)FT

If we now want to check more fine-grained properties, we may
rather be interested in the following (tagged) formulation:

tr(τ ′)Fall &˜tr(τ)˜old complement
T

In this manner, we can distinguish elements that were added in
τ ′ and whose names did not occur in τ , from elements whose
names already occured in τ but whose content model changed in
τ ′, for instance. In practice, a type is tagged using the predicate
type("f", l, ϕ, ϕ′) which parses the specified schema, converts it

into its logical representation τ and returns the formula tr(τ)ϕ
′

ϕ .
This kind of type tagging is useful for studying the consequences
of schema updates over queries, as presented in the next sections.

4. Analysis Predicates

This section introduces the basic analysis tasks offered to XML ap-
plication designers for assessing the impact of schema evolutions.
In particular, we propose a mean for identifying the precise rea-
sons for type mismatches or changes in query results under type
constraints.

For this purpose, we build on our query and type expression
compilers, and define additional predicates that facilitate the formu-
lation of decision problems at a higher level of abstraction. Specif-
ically, these predicates are introduced as logical macros with the
goal of allowing system usage while focusing (only) on the XML-
side properties, and keeping underlying logical issues transparent
for the user. Ultimately, we regard the set of basic logical formulas
(such as modalities and recursive binders) as an assembly language,
to which predicates are translated.

We illustrate this principle with two simple predicates designed
for checking backward-compatibility of schemas, and query satis-
fiability in the presence of a schema.

• The predicate backward incompatible(τ, τ ′) takes two type
expressions as parameters, and assumes τ ′ is an altered version
of τ . This predicate is unsatisfiable iff all instances of τ ′ are also
valid against τ . Any occurrence of this predicate in the input
formula will automatically be compiled as tr(τ ′)FT &˜tr(τ)FT.

• The predicate non empty("query", τ) takes an XPath expres-
sion (with the syntax defined on Figure 2) and a type ex-
pression as parameters, and is unsatisfiable iff the query al-
ways returns an empty set of nodes when evaluated on an
XML document valid against τ . This predicate compiles into
select("query", tr(τ)FT & #) where the top-level predicate
select("query", ϕ) compiles the XPath expression query into
the logic, starting from a context that satisfies ϕ, as explained in
Section 3.2. This can be used to check whether the modification
of the schema does not contradict any part of the query.

Notice that the predicate non empty("query", τ) can be used

for checking whether a query that is valid5 against a schema re-
mains valid with an updated version of a schema. In other terms,
this predicate allows determining whether a query that must always
return a non-empty result (whatever the tree on which it is eval-
uated) keeps verifying the same property with a new version of a
schema.

5 We say that a query is valid iff its negation is unsatisfiable.

A second, more-elaborate, class of predicates allows formulat-
ing problems that combine both a query query and two type expres-
sions τ, τ ′ (where τ ′ is assumed to be a evolved version of τ):

• new element name("query", τ, τ ′) is satisfied iff the query
query selects elements whose names did not occur at all in
τ . This is especially useful for queries whose last navigation
step contains a “*” node test and may thus select unexpected
elements. This predicate is compiled into:

ẽlement(τ) & select("query", tr(τ ′)FT)

where element(τ) is another predicate that builds the disjunc-
tion of all element names occuring in τ . In a similar manner,
the predicate attribute(ϕ) builds the logical disjunction of
all attribute names used in ϕ.

• new region("query", τ, τ ′) is satisfied iff the query query se-
lects elements whose names already occurred in τ , but such that
these nodes now occur in a new context in τ ′. In this setting,
the path from the root of the document to a node selected by the
XPath expression query contains a node whose type is defined
in τ ′ but not in τ as illustrated below:

node selected
by query path from root to

selected node
contains node in
τ ′ \ τ

XML document valid against τ ′ but
not against τ

The predicate new region("query", τ, τ ′) is logically defined
as follows:

new region("query", τ, τ ′)
def
=

select("query", tr(τ ′)Fall &˜tr(τ)˜ old complement
T)

&˜added element(τ, τ ′)

& ancestor(old complement)

&˜descendant(old complement)

&˜following(old complement)

&˜preceding(old complement)

The previous definition heavily relies on the partition of tree
nodes defined by XPath axes, as illustrated by Figure 8. The
definition of new region("query", τ, τ ′) uses an auxiliary
predicate added element(τ, τ ′) that builds the disjunction of
all element names defined in τ ′ but not in τ (or in other terms,
elements that were added in τ ′). In a similar manner, the pred-
icate added attribute(ϕ,ϕ′) builds the disjunction of all
attribute names defined in τ ′ but not in τ .

The predicate new region("query", τ, τ ′) is useful for check-
ing whether a query selects a different set of nodes with τ ′ than
with τ because selected elements may occur in new regions of
the document due to changes brought by τ ′.

• new content("query", τ, τ ′) is satisfied iff the query query
selects elements whose names were already defined in τ , but
whose content model has changed due to evolutions brought by
τ ′, as illustrated below:

self

an
ces
tor

descendant

p
re
ce
d
in
g

fo
llo
w
in
g

following-sibling

preceding-sibling

child

parent

Figure 8. XPath axes: partition of tree nodes.

node selected
by query subtree for

selected node has
changed (new
content model)

XML document valid against τ ′ but
not against τ

The definition of new content("query", τ, τ ′) follows:

new content("query", τ, τ ′)
def
=

select("query", tr(τ ′)Fall &˜tr(τ)˜ old complement
T)

&˜added element(τ, τ ′)

&˜ancestor(added element(τ, τ ′))

& descendant(old complement)

&˜following(old complement)

&˜preceding(old complement)

The predicate new content("query", τ, τ ′) can be used for
ensuring that XPath expressions will not return nodes with
a possibly new content model that may cause problems. For
instance, this allows checking whether an XPath expression
whose resulting node set is converted to a string value (as in,
e.g. XPath expressions used in XSLT “value-of” instructions)
is affected by the changes from τ to τ ′.

The previously defined predicates can be used to help the pro-
grammer identify precisely how type constraint evolutions affect
queries. They can even be combined with usual logical connectives
to formulate even more sophisticated problems. For example, let us
define the predicate exclude(ϕ) which is satisfiable iff there is no
node that satisfies ϕ in the whole tree. This predicate can be used
for excluding specific element names or even nodes selected by a
given XPath expression. It is defined as follows:

exclude(ϕ)
def
=

˜ancestor-or-self(descendant-or-self(ϕ))

This predicate can also be used for checking properties in an iter-
ative manner, refining the property to be tested at each step. It can
also be used for verifying fine-grained properties. For instance, one
may check whether τ ′ defines the same set of trees as τ modulo
new element names that were added in τ ′ with the following for-
mulation:

˜(τ <=> τ ′) & exclude(added element(τ, τ ′))

This allows identifying that, during the type evolution from τ to τ ′,
the query results change has not been caused by the type extension
but by new compositions of nodes from the older type.

In practice, instead of taking internal tree type representations
(as defined in Section 2) as parameters, most predicates do actually
take any logical formula as parameter, or even schema paths as
parameters. We believe this facilitates predicates usage and, most
notably, how they can be composed together. Figure 9 gives the
syntax of built-in predicates as they are implemented in the system,
where f is a file path to a DTD (.dtd), XML Schema (.xsd), or Relax
NG (.rng). In addition of aforementioned predicates, the predicate

predicate ::=
select("query")
select("query", ϕ)
exists("query")
exists("query", ϕ)

type("f", l)
type("f", l, ϕ, ϕ′)
forward incompatible(ϕ,ϕ′)
backward incompatible(ϕ,ϕ′)

element(ϕ)
attribute(ϕ)
descendant(ϕ)
exclude(ϕ)
added element(ϕ,ϕ′)
added attribute(ϕ,ϕ′)

non empty("query", ϕ)
new element name("query", "f", "f ′", l)
new region("query", "f", "f ′", l)
new content("query", "f", "f ′", l)
predicate-name(〈ϕ〉�)

Figure 9. Syntax of Predicates for XML Reasoning.

descendant(ϕ) forces the existence of a node satisfying ϕ in the
subtree, and predicate-name(〈ϕ〉�) is a call to a custom predicate,
as explained in the next section.

4.1 Custom Predicates

Following the spirit of predicates presented in the previous sec-
tion, users may also define their own custom predicates. The full
syntax of XML logical specifications to be used with the system
is defined on Figure 10, where the meta-syntax 〈X〉� means one
or more occurrence of X separated by commas. A global problem
specification can be any formula (as defined on Figure 6), or a list
of custom predicate definitions separated by semicolons and fol-
lowed by a formula. A custom predicate may have parameters that
are instanciated with actual formulas when the custom predicate is
called (as shown on Figure 9). A formula bound to a custom pred-
icate may include calls to other predicates, but not to the currently
defined predicate (recursive definitions must be made through the
let binder shown on Figure 6).

spec ::=
ϕ formula (see Fig. 6)
def ;ϕ

def ::=
predicate-name(〈l〉�) = ϕ′ custom definition
def ; def list of definitions

Figure 10. Global Syntax for Specifying Problems.

Schema Variables Elements Attributes
XHTML 1.0 basic DTD 71 52 57
XHTML 1.1 basic DTD 89 67 83
MathML 1.01 DTD 137 127 72
MathML 2.0 DTD 194 181 97

Table 2. Sizes of (Some) Considered Schemas.

5. Framework in Action

We have implemented the whole software architecture described
in Section 2 and illustrated on Figure 1. The tool [Genevès and
Layaı̈da 2009] is available online from:

http://wam.inrialpes.fr/xml

We have carried out extensive experiments of the system with real
world schemas such as XHTML, MathML, SVG, SMIL (Table 2
gives details related to their respective sizes) and queries found
in transformations such MathML content to presentation [Pietriga
2005]. We present two of them that show how the tool can be used
to analyze different situations where schemas and queries evolve.

Evolution of XHTML Basic

The first test consists in analyzing the relationship (forward and
backward compatibility) between XHTML basic 1.0 and XHTML
basic 1.1 schemas. In particular, backward compatibility can be
checked by the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

The test immediately yields a counter example as the new schema
contains new element names. The counter example (shown below)
contains a style element occurring as a child of head, which is
not permitted in XHTML basic 1.0:

<html>
<head>

<title/>
<style type="_otherV"/>

</head>
<body/>

</html>

The next step consists in focusing on the relationship between both
schemas excluding these new elements. This can be formulated by
the following command:

backward_incompatible("xhtml-basic10.dtd",
"xhtml-basic11.dtd", "html")

& exclude(added_element(
type("xhtml-basic10.dtd","html"),
type("xhtml-basic11.dtd", "html")))

The result of the test shows a counter example document that
proves that XHTML basic 1.1 is not backward compatible with
XHTML basic 1.0 even if new elements are not considered. In

particular, the content model of the label element cannot have an
a element in XHTML basic 1.0 while it can in XHTML basic 1.1.
The counter example produced by the solver is shown below:

<html>
<head>

<object>
<label>

<a>

</label>
<param/>

</object>
<meta/>
<title/>
<base/>

</head>
<body/>

</html>

XTML basic 1.0 validity error: element "a" is not
declared in "label" list of possible children

Notice that we observed similar forward and backward compat-
ibility issues with several other W3C normative schemas (in partic-
ular for the different versions of SMIL and SVG). Such backward
incompatibilities suggests that applications cannot simply ignore
new elements from newer schemas, as the combination of older el-
ements may evolve significantly from one version to another.

MathML Content to Presentation Conversion

MathML is an XML format for describing mathematical notations
and capturing both its structure and graphical structure, also known
as Content MathML and Presentation MathML respectively. The
structure of a given equation is kept separate from the presentation
and the rendering part can be generated from the structure descrip-
tion. This operation is usually carried out using an XSLT transfor-
mation that achieves the conversion. In this test series, we focus on
the analysis of the queries contained in such a transformation sheet
and evaluate the impact of the schema change from MathML 1.0 to
MathML 2.0 on these queries.

Most of the queries contained in the transformation represent
only a few patterns very similar up to element names. The following
three patterns are the most frequently used:

Q1: //apply[*[1][self::eq]]
Q2: //apply[*[1][self::apply]/inverse]
Q3: //sin[preceding-sibling::*[position()=last()

and (self::compose or self::inverse)]]

The first test is formulated by the following command:

new_region("Q1","mathml.dtd","mathml2.dtd","math")

The result of the test shows a counter example document that
proves that the query may select nodes in new contexts in MathML
2.0 compared to MathML 1.0. In particular, the query Q1 selects
apply elements whose ancestors can be declare elements, as
indicated on the document produced by the solver:

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<declare>
<apply solver:target="true">

<eq/>
</apply>
<condition/>

</declare>
</math>

Notice that the solver automatically annotates a pair of nodes
related by the query: when the query is evaluated from a node
marked with the attribute solver:context, the node marked with
solver:target is selected. To evaluate the effect of this change,
the counter example is filled with content and passed as an input
parameter to the transformation. This shows immediately a bug
in the transformation as the resulting document is not a MathML
2.0 presentation document. Based on this analysis, we know that
the XSLT template associated with the match pattern Q1 must
be updated to cope with MathML evolution from version 1.0 to
version 2.0.

The next test consists in evaluating the impact of the MathML
type evolution for the query Q2 while excluding all new elements
added in MathML 2.0 from the test. This identifies whether old ele-
ments of MathML 1.0 can be composed in MathML 2.0 in a differ-
ent manner. This can be performed with the following command:

new_content("Q2","mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd", "math")))

The test result shows an example document that effectively
combines MathML 1.0 elements in a way that was not allowed in
MathML 1.0 but permitted in MathML 2.0.

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<apply solver:target="true">
<apply>

<inverse/>
</apply>
<annotation-xml>

<math/>
</annotation-xml>
<condition/>

</apply>
</math>

Similarly, the last test consists in evaluating the impact of the
MathML type evolution for the query Q3, excluding all new ele-
ments added in MathML 2.0 and counter example documents con-
taining declare elements (to avoid trivial counter examples):

new_regions("Q3","mathml.dtd","mathml2.dtd","math")
& exclude(added_element(type("mathml.dtd","math"),

type("mathml2.dtd","math")))
& exclude(declare)

The counter example document shown below illustrates a case
where the sin element occurs in a new context.

<math xmlns:solver="http://wam.inrialpes.fr/xml"
solver:context="true">

<apply>
<annotation-xml>

<math>
<apply>

<inverse/>
<sin solver:target="true"/>

</apply>
</math>

</annotation-xml>
</apply>

</math>

Applying the transformation on previous examples yields doc-
uments which are neither MathML 1.0 nor MathML 2.0 valid. As

a result, the stylesheet cannot be used safely over documents of the
new type without modifications. In addition, the required changes
to the stylesheet are not limited to the addition of new templates for
MathML 2.0 elements. The templates that deal with the composi-
tion of MathML 1.0 elements should be revised as well.

All the previous tests were processed in less than 30 seconds
on an ordinary laptop computer running Mac OS X. The 30s cor-
respond to the most complex use cases. Most complex means an-
alyzing recursive forward/backward and qualified queries such as
Q3, under evolution of large and heavily recursive schemas such as
XHTML and MathML (large number of type variables, elements
and attributes: see Table 2). These are the hardest cases measured
in practice with the implementation. Most of other schemas and
queries usually found in applications are much simpler than the
ones presented in this paper and will obviously be solved much
faster. Given the variety of schemas occurring in practice, we fo-
cused on the most complex W3C standard schemas. The accom-
panying full online implementation [Genevès and Layaı̈da 2009]
allows to run all the tests described in the paper as well as user-
supplied ones. It shows intermediate compilation stages, generated
formulae (in particular the translation of schemas into the logic),
and reports on the performance of each step of the analysis.

6. Related Work

Schema evolution is an important topic and has been extensively
explored in the context of relational, object-oriented, and XML
databases. Most of the previous work for XML query reformulation
is approached through reductions to relational problems [Beyer
et al. 2005]. This is because schema evolution was considered
as a storage problem where the priority consists in ensuring data
consistency across multiple relational schema versions. In such
settings, two distinct schemas and an explicit description of the
mapping between them are assumed as input. The problem then
consists in reformulating a query expressed in terms of one schema
into a semantically equivalent query in terms of the other schema:
see [Yu and Popa 2005] and more recently [Moon et al. 2008] with
references thereof.

In addition to the fundamental differences between XML and
the relational data model, in the more general case of XML pro-
cessing, schemas constantly evolve in a distributed, independent,
and unpredictable environment. The relations between different
schemas are not only unknown but hard to track. In this context,
one priority is to help maintaining query consistency during these
evolutions, which is still considered as a challenging problem [Sed-
lar 2005, Rose 2004]. The absence of evolution analysis tools for
XML/XPath contrasts with the abundance of tools and methods
routinely used in relational databases.

The work found in [Moro et al. 2007] discusses the impact
of evolving XML schemas on query reformulation. Based on a
taxonomy of XML schema changes during their evolution, the
authors provide informal – not exact nor systematic – guidelines
for writing queries which are less sensitive to schema evolution.
In fact, studying query reformulation requires at least the ability to
analyze the relationship between queries. For this reason, a closely
related work is the problem of determining query containment and
satisfiability under type constraints [Benedikt et al. 2005, Colazzo
et al. 2006, Genevès et al. 2007].

The work found in [Benedikt et al. 2005] studies the complex-
ity of XPath emptiness and containment for various fragments (see
[Benedikt and Koch 2006] and references thereof for a survey). In
[Colazzo et al. 2004, 2006], a technique is presented for statically
ensuring correctness of paths. The approach deals with emptiness
of XPath expressions without reverse axes. The work presented in
[Genevès et al. 2007] solves the more general problem of contain-
ment, including reverse axes.

The main distinctive idea pursued in this paper is to develop
a logical approach for guiding schema and query evolution. In
contrast to the previous use of logics for proving properties such as
query emptiness or equivalence, the goal here is different in that we
seek to provide the necessary tools to produce relevant knowledge
when such relations do not hold. From a complexity point-of-view,
it is worth noticing that the addition of predicates does not increase
complexity for the underlying logic shown in [Genevès et al. 2007].

We would also like to emphasize that, to the best of our knowl-
edge, this work is the first to provide precise analyses of XML
evolution, that was tested on real life use cases (such as XHTML
and MathML types) and complex queries (involving recursive and
backward navigation). As a consequence, in this context, analysis
tools such as type-checkers [Hosoya and Pierce 2003, Benzaken
et al. 2003, Møller and Schwartzbach 2005, Gapeyev et al. 2006,
Castagna and Nguyen 2008] do no match the expressiveness, typ-
ing precision, and analysis capabilities of the work presented here.

7. Conclusion

In this article, we present an application of a logical framework
for verifying forward/backward compatibility issues caused by
schemas and queries evolution. We provide evidence that such a
framework can be successfully used to overcome the obstacles
of the analysis of XML type and query evolution. This kind of
analyses is widely considered as a challenging problem in XML
programming. As mentioned earlier, the difficulty is twofold: first
it requires dealing with large and complex language constructions
such as XML types and queries, and second, it requires modeling
and reasoning about evolution of such constructions.

The presented tool allows XML designers to identify queries
that need reformulation in order to produce the expected results
across successive schema versions. With this tool designers can ex-
amine precisely the impact of schema changes over queries, there-
fore facilitating their reformulation. We gave illustrations of how to
use the tool for both schema and query evolution on realistic exam-
ples. In particular, we considered typical situations in applications
involving W3C schemas evolution such as XHTML and MathML.
The tool can be very useful for standard schema writers and main-
tainers in order to assist them enforce some level of quality assur-
ance on compatibility between versions.

There are a number of interesting extensions to the proposed
system. In particular, the set of predicates can be easily enriched
to detect more precisely the impact on queries. For example, one
can extend the tagging to identify separately every navigation step
and qualifier in a query expression. This will help greatly in the
identification and reformulation of the navigation steps or qualifiers
affected by schemas evolution.

References

Michael Benedikt and Christoph Koch. XPath leashed. submitted, 2006.

Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the
presence of DTDs. In PODS ’05, pages 25–36. ACM Press, 2005. ISBN
1-59593-062-0. doi: http://doi.acm.org/10.1145/1065167.1065172.

Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. CDuce: An
XML-centric general-purpose language. In ICFP ’03: Proceedings

of the Eighth ACM SIGPLAN International Conference on Functional

Programming, pages 51–63, New York, NY, USA, 2003. ACM Press.
ISBN 1-58113-756-7.

Kevin Beyer, Fatma Özcan, Sundar Saiprasad, and Bert Van der Linden.
DB2/XML: designing for evolution. In SIGMOD ’05, pages 948–952.
ACM, 2005. ISBN 1-59593-060-4. doi: http://doi.acm.org/10.1145/
1066157.1066299.

Giuseppe Castagna and Kim Nguyen. Typed iterators for XML. In ICFP,
pages 15–26, 2008.

James Clark and Steve DeRose. XML path language (XPath) version
1.0, W3C recommendation, November 1999. http://www.w3.org/TR/
1999/REC-xpath-19991116.

Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani. Types for
path correctness of XML queries. In ICFP ’04: Proceedings of the ninth

ACM SIGPLAN international conference on Functional programming,
pages 126–137, New York, NY, USA, 2004. ACM Press. ISBN 1-58113-
905-5.

Dario Colazzo, Giorgio Ghelli, Paolo Manghi, and Carlo Sartiani. Static
analysis for path correctness of XML queries. J. Funct. Program., 16
(4-5):621–661, 2006. ISSN 0956-7968.

Vladimir Gapeyev, François Garillot, and Benjamin C. Pierce. Statically
typed document transformation: An Xtatic experience. In PLAN-X 2006:

Proceedings of the International Workshop on Programming Language

Technologies for XML, volume NS-05-6 of BRICS Notes Series, pages
2–13, Aarhus, Denmark, January 2006. BRICS.

Pierre Genevès. Logics for XML. PhD thesis, Insti-
tut National Polytechnique de Grenoble, December 2006.
http://www.pierresoft.com/pierre.geneves/phd.htm.

Pierre Genevès and Nabil Layaı̈da. The XML reasoning solver project,
February 2009. http://wam.inrialpes.fr/xml.

Pierre Genevès, Nabil Layaı̈da, and Alan Schmitt. Efficient static anal-
ysis of XML paths and types. In PLDI ’07, pages 342–351. ACM
Press, 2007. ISBN 978-1-59593-633-2. doi: http://doi.acm.org/10.1145/
1250734.1250773.

Pierre Genevès, Nabil Layaı̈da, and Alan Schmitt. Efficient static analysis
of XML paths and types. Long version of [Genevès et al. 2007],
Research Report 6590, INRIA, July 2008. URL http://hal.inria.
fr/inria-00305302/en/.

Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically typed XML
processing language. ACM Trans. Inter. Tech., 3(2):117–148, 2003.
ISSN 1533-5399.

Haruo Hosoya, Jérôme Vouillon, and Benjamin C. Pierce. Regular expres-
sion types for XML. ACM TOPLAS, 27(1):46–90, 2005. ISSN 0164-
0925. doi: http://doi.acm.org/10.1145/1053468.1053470.

Anders Møller and Michael I. Schwartzbach. The design space of type
checkers for XML transformation languages. In Proc. Tenth Inter-

national Conference on Database Theory, ICDT ’05, volume 3363 of
LNCS, pages 17–36, London, UK, January 2005. Springer-Verlag.

Hyun J. Moon, Carlo A. Curino, Alin Deutsch, and Chien-Yi Hou. Manag-
ing and querying transaction-time databases under schema evolution. In
VLDB ’08, pages 882–895. VLDB Endowment, 2008.

Mirella M. Moro, Susan Malaika, and Lipyeow Lim. Preserving xml
queries during schema evolution. In WWW ’07, pages 1341–1342.
ACM, 2007. ISBN 978-1-59593-654-7. doi: http://doi.acm.org/10.1145/
1242572.1242841.

Makoto Murata, Dongwon Lee, Murali Mani, and Kohsuke Kawaguchi.
Taxonomy of XML schema languages using formal language theory.
ACM TOIT, 5(4):660–704, 2005. ISSN 1533-5399. doi: http://doi.acm.
org/10.1145/1111627.1111631.

Emmanuel Pietriga. MathML content2presentation transformation, May
2005. http://www.lri.fr/˜pietriga/mathmlc2p/mathmlc2p.html.

Kristoffer H. Rose. The XML world view. In DocEng ’04: Proceedings of

the 2004 ACM symposium on Document engineering, pages 34–34, New
York, NY, USA, 2004. ACM. ISBN 1-58113-938-1. doi: http://doi.acm.
org/10.1145/1030397.1030403. URL http://www.research.ibm.
com/XML/Rose-DocEng2004.pdf.

Eric Sedlar. Managing structure in bits & pieces: the killer use case for
XML. In SIGMOD ’05, pages 818–821. ACM, 2005. ISBN 1-59593-
060-4. doi: http://doi.acm.org/10.1145/1066157.1066256.

Philip Wadler. Two semantics for XPath. Internal
Technical Note of the W3C XSL Working Group,
http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/xpath-
semantics.pdf, January 2000.

Cong Yu and Lucian Popa. Semantic adaptation of schema mappings when
schemas evolve. In VLDB ’05, pages 1006–1017. VLDB Endowment,
2005. ISBN 1-59593-154-6.

http://hal.inria.fr/inria-00305302/en/
http://hal.inria.fr/inria-00305302/en/
http://www.research.ibm.com/XML/Rose-DocEng2004.pdf
http://www.research.ibm.com/XML/Rose-DocEng2004.pdf

	Introduction
	Analysis Framework
	Logical Setting
	Logical Formulas
	Queries
	Tree Types
	Type Tagging

	Analysis Predicates
	Custom Predicates

	Framework in Action
	Related Work
	Conclusion

