
HAL Id: inria-00423328
https://inria.hal.science/inria-00423328

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Active Web Clients
Vincent Quint, Irène Vatton

To cite this version:
Vincent Quint, Irène Vatton. Towards Active Web Clients. Proceedings of the 2005 ACM Symposium
on Document Engineering, DocEng 2005, Nov 2005, Bristol, United Kingdom. pp.168-176. �inria-
00423328�

https://inria.hal.science/inria-00423328
https://hal.archives-ouvertes.fr

Towards Active Web Clients

Vincent Quint
INRIA Rhône-Alpes

655 avenue de l’Europe
38334 Saint Ismier Cedex, France

vincent.quint@inria.fr

Irène Vatton
INRIA Rhône-Alpes

655 avenue de l’Europe
38334 Saint Ismier Cedex, France

irene.vatton@inria.fr

ABSTRACT
Recent developments of document technologies have strongly
impacted the evolution of Web clients over the last fifteen
years, but all Web clients have not taken the same advantage
of this advance. In particular, mainstream tools have put
the emphasis on accessing existing documents to the detri-
ment of a more cooperative usage of the Web. However, in
the early days, Web users were able to go beyond browsing
and to get more actively involved. This paper presents the
main features needed to make Web clients more active and
creative tools, by taking advantage of the latest advances
of document technology. These features are implemented in
Amaya, a user agent that supports several languages from
the XML family and integrates seamlessly such complemen-
tary functionalities as browsing, editing, publishing, and an-
notating.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces, Interaction styles ; I.7
[Document and Text Processing]: Document Prepa-
ration—Languages and systems, Markup languages, Stan-
dards, XML

General Terms
Design, Experimentation

Keywords
Web user agent, authoring, XML documents, compound
documents, style languages

1. INTRODUCTION
The Web was originally conceived as a shared, writable,

information space [5], i.e. a universe where users can not
only consume existing information, but also produce some
new information, without any fence between consumers and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’05,November 2–4, 2005, Bristol, United Kingdom.
Copyright 2005 ACM 1-59593-240-2/05/0011 ...$5.00.

producers. This was very clear with the first Web client
developed in 1990 by Tim Berners-Lee [4]. It had the ability
to simultaneously read and write the Web: it was both a
browser and an editor. As an editor it was designed to
facilitate the task of creating and updating Web pages. It
provided a WYSIWYG style of interface that allowed users
to author documents.

Then came Mosaic, which played a key role in popular-
izing the Web. But, while it made the Web usable by a
very large community, it put a strong restriction to the way
people could use the Web. It offered only half of the func-
tionality of the original Web client, the browsing feature. It
did not provide any help to create, update or publish Web
pages. Authoring and browsing became separate tasks, per-
formed with separate tools. The term Web client became a
synonym of browser [3].

A number of authoring tools emerged on the Web, rang-
ing from simple text editors for direct manipulation of the
HTML syntax, to sophisticated environments with a graph-
ical user interface. Among these tools, structured editors
such as HoTMetaL and Grif [18] deserve a special mention.
For many Web editors, HTML pages were just plain text
that could be freely interspersed with tags to achieve some
visual effect. Structured editors considered HTML from a
different perspective, much closer to its real nature, i.e. as
an SGML application that allows text to be structured ac-
cording to well defined rules. Doing so, they paved the way
to XML.

The cooperative dimension of the Web was developed at
the same time, but independently. One approach was to
create specific applications that enable cooperation through
the Web. The BSCW shared workspace system [2] is a typ-
ical example of these applications. Another approach was
to tackle the problem at the lowest layer of the architecture.
The HTTP protocol was extended with WebDAV to offer
an infrastructure that makes resource sharing easier. With
these various approaches the emphasis was put on sharing
information, but no help was specifically provided to pro-
duce and update that information. Wikis address this issue
to some extent. They support a very simple mean to edit
shared Web pages by allowing users to enter text through
Web forms, and using some simple typing convention to
structure text.

Another way to cooperate on the Web consists in sharing
annotations. Web annotations first appeared in Mosaic un-
der the form of private comments that users associate with
the pages they visit. The next step was to store these an-
notations on servers, thus allowing groups and communities

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9
Author manuscript, published in "Proceedings of the 2005 ACM Symposium on Document Engineering, DocEng 2005 (2005)

168-176"

http://hal.inria.fr/inria-00423328/fr/
http://hal.archives-ouvertes.fr

to share comments. Many Web annotation aware tools or
servers have seen the light since then, such as CritLink and
ThirdVoice for instance.

Information on the Web is not provided only by humans
entering it through some software tool. A large amount
is dynamically generated from a variety of sources or ex-
tracted from databases. Converters translate various for-
mats to HTML, or something close to it. But while all these
methods are available and widely used, there is still a strong
need for authoring Web documents.

In this paper we try to reconcile the multiple evolutions
reviewed above. We believe that the original idea of an inte-
grated, user-friendly tool that gives access simultaneously to
the many facets of the Web is worth being explored further,
especially in the light of the latest advances in document
technology. This is what we do in the rest of this paper.
We review the main features that a Web client could sup-
port and we consider the benefits that can be drawn from
their integration. We illustrate this with the recent evolu-
tion of Amaya [21], a Web client that implements the latest
Web technologies and standards. Amaya started in 1997 [19]
as a testbed and demonstrator for new technologies devel-
oped by W3C. Since that time, its original combination of
technologies has attracted enough users to motivate a new
orientation towards a production tool. Previous papers have
already presented some aspects of Amaya (see [21]).

The paper is organized as follows. After this brief intro-
duction, the next section addresses the issue of authoring
documents for the Web; it focuses specifically on XML for-
mats and their combination in compound documents. It is
followed by a discussion of the issue of style: for informa-
tion that is intended for human consumption, style is the
necessary complement to the content and structure repre-
sented by XML. After this part on authoring, the following
section addresses the cooperation issue and considers the
advantages that can be drawn from a tight integration of
authoring with others functionalities. Finally, a conclusion
summarizes the contribution of the paper.

2. AUTHORING CONTENT AND STRUC-
TURE

The most important step toward an advanced Web client
that allows a user to play an active role in the Web is cer-
tainly the ability to create and update Web pages and other
information resources.

2.1 Structured Web pages
With the advent of XML, Web pages can now be consid-

ered with the structured approach. The era of “HTML tag
soup” is over. To populate the Web with meaningful and
useful information, we should now produce rigorously struc-
tured documents. The first step in this direction is to move
from crappy HTML to clean XHTML [1]. This is a smooth
transition, as XHTML provides the same functionality as
HTML, but it brings all the advantages of XML, while re-
maining compatible with legacy browsers. A modern Web
client must clearly allow users to produce XHTML pages.

XHTML pages are structured documents. Even if some
pages involve only a simple sequence of paragraphs, head-
ings and images, many other pages include deeper structures
such as nested lists or tables. For this reason XHTML pages
must be handled as structured objects. Fortunately, previ-

ous research brought techniques for editing structured docu-
ments [17] and some Web clients have adopted this approach
for editing XHTML. Mozilla [16], for instance, includes an
editing tool, Composer, that works that way. Nvu follows
the same way. This is also the approach we have taken in
designing Amaya.

An important issue with structured editing is the user in-
terface. Manipulating a possibly complex structure is not
often something that can be done in an intuitive way. In
particular, following too closely the intrinsics of XML struc-
tures does not lead to a user friendly interface. An XHTML
page, for instance, is not simply a tree assembling named
elements which may have attributes. Authors have a more
“semantic” representation of their documents. They do not
consider nested lists and tables the same way, for instance,
although both types of objects are represented by very sim-
ilar XML structures. Therefore a specific user interface has
to be provided for XHTML, that allows users to interact
with the editor according to their own representation of the
document. Specific commands should be available for edit-
ing rows, cells and columns in tables, that are different from
commands for editing lists and their items. Amaya follows
this approach. While some generic commands allow authors
to manipulate all types of elements the same way, additional
commands are dedicated to the most complex structures.
Details on the user interface for structure manipulation can
be found in [20].

Structure complexity is not the only reason for providing
specific editing commands. The main motivation is rather
the gap between the cognitive model of an object for the
author and its realization in an XML structure. Hypertext
links constitute a typical example. For the user a link is
an association between some location in a document (the
source) and some other location in the same or another doc-
ument (the destination). In XML terms, this association is
represented by elements and attributes. The source is an el-
ement called a (anchor), the destination is another a element
or any other type of element with an id attribute; the asso-
ciation is represented by the value of the href attribute of
the source anchor which contains an URI composed of the
address of the destination document and the value of the
id attribute of the destination element, plus some cryptic
characters. Instead of asking users to create these elements
with their attributes and to type the URI, it is certainly
better to provide a higher level command that allows them
to simply select the source and the destination with a point-
ing device; the tool makes then the association: it computes
the URI, creates the appropriate elements and attaches the
relevant attributes with the right value. Given the key role
of hypertext links in XHTML and in the Web in general,
such a command is a must for a user friendly Web client.
It is worth noting that most Web authoring tools ask users
to type URIs, making the process cumbersome and error-
prone.

Another example of a high-level editing command is the
automatic generation of a table of contents. This command
finds all headings (h1, h2, etc.) in a XHTML document,
copy their content in document order, and inserts it as a
nested list at a location chosen by the author. It also turns
existing headings into destinations and establishes links be-
tween the generated copies and the original headings. The
result is a clickable table of contents that can be inserted
very simply anywhere the author feels it appropriate.

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

Figure 1: Synchronized views of an XHTML docu-
ment

While it is important to provide the author with con-
venient commands for creating or modifying the document
structure, this is not enough. The user should also be able to
comprehend the existing structure and to check the changes
s/he is making to it. For that purpose, the concept of views,
following the model-view-controller (MVC) paradigm [14],
may be very useful. The idea is that several graphical rep-
resentations of the document, with different points of view,
help the user to perceive the various aspects of a complex
structure. An author may then choose the view that s/he
feels the most appropriate for performing each editing task.

This concept is implemented in Amaya which supports
different views (see Figure 1). The formatted view (top of
Figure1) displays the document the way most Web browsers
would display it. It is actually the view that Amaya opens
by default when opening a document. The structure view
(bottom of Figure1) shows the DOM tree and thus gives
access to the actual structure of the document. It may be
used to manipulate the document according to its hierar-
chical structure. The source view (not shown on the figure)
displays the document representation in the XML syntax. If
the user is knowledgeable in XML, s/he can edit the source
code as plain text there. As there are different ways to ren-
der an XHTML page, the formatted view is complemented
with the alternate view, which displays the document with
a very simple layout, similar to the way a text browser such
as Lynx [15] would render it. This is helpful to anticipate
the problems a user may have if s/he is visually impaired or
when reading the document with a less powerful device. To
present a page through its hypertext aspect, the links view
collects all source anchors of the document with the full URI
of their destination. The last view available is the table of
contents, which shows an outline of the page by displaying
only headings (h1, h2, etc.). With this outline an author
can grasp the organization of a long document in the blink
of an eye.

Following the MVC model [14], all open views are “syn-
chronized”: the result of any editing action performed in one
view is also visible in the other open views. This includes
selecting. Clicking in any view lets the user see the same
part of the document in the other views. This is useful,
for instance, to move around in a long document through
the table of contents view, or to check the source code cor-

responding to an element selected in the formatted view,
or to locate the source of a link to a given URI noticed in
the links view. Experience has shown that multiple synchro-
nized views are a great benefit to authors when manipulating
complex structured documents.

Amaya not only supports several views, but it can also edit
several documents simultaneously, and several views for each
document. This is important when splitting a document or
when merging several documents. This is also useful for
copying or moving contents across documents. Obviously,
the edited documents are independent from each other: they
may come from different Web servers and can be saved on
different servers.

Another important advantage of the structured approach
is that it allows the editing tool to closely follow the def-
inition of the document type. The editor manipulates an
internal representation of documents, a DOM tree, that is
built rigorously according the document type. The exter-
nal representation, the XML file, can be generated directly
from that representation. As a result, documents are al-
ways well-formed (in the XML sense) and valid. They are
compact and do not contain extra code, as it is often the
case with documents produced by tools based on a different
model.

Regarding structured editing, Amaya is significantly dif-
ferent from other (X)HTML editors. Many of them (Com-
poser, Nvu, FrontPage, Dreamweaver, etc.) allow an author
to manipulate the document structure, but very few of them
go as far as Amaya in that direction. The generation of
the table of contents or the complex structure transforma-
tions described in [20] are typical examples. Views are also
available in other tools (in general, formatted view, source
code and DOM tree), but the user can often see only one
view at a time; when two can be displayed, only one is ed-
itable, and lacking an efficient synchronization mechanism,
multiple views are not as useful as they could be. Finally,
as opposed to FrontPage or Dreamweaver for instance, the
code generated by Amaya is always valid and well-formed.
This is the best way to make sure that documents will be
readable with any browser.

2.2 XML applications
An important reason for moving from legacy HTML to

XHTML is to take full advantage of the XML technology.
In particular, when XML is supported other document types
may be used. In addition to XHTML, many XML applica-
tions have been developed for the Web, which involve more
complex structures. Let us consider two of them which are
of particular interest for Web pages in the scientific commu-
nity, MathML [9] and SVG [10]. MathML was designed to
represent mathematical expressions on the Web while SVG
is dedicated to structured, animated graphics. To allow au-
thors to create and edit such objects, it is important to
provide convenient tools. Obviously the converter approach
can be used here, which makes many existing tools usable
for producing objects in these formats. But many important
Web aspects of these languages are not supported by tools
that have not been designed specifically for them. MathML
and SVG use hypertext links and CSS style sheets for in-
stance, as many other Web formats do. To benefit from
the advances of the latest features introduced in recent Web
formats, tools that support these formats natively are nec-
essary.

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

As languages such as MathML and SVG are built on the
same basis as XHTML, it would make sense to handle math-
ematical expressions and structured graphics with the same
kind of tools and techniques as XHTML Web pages. As for
XHTML, a pure XML approach would not work. In graph-
ics and mathematics, structures may be very complex and
the author’s representation is often very different from the
DOM tree and its XML encoding. In SVG for instance, a
geometric shape (a rectangle, an ellipse, a curve, etc.) is
represented by a single XML element with attributes which
contain the coordinates of the control points. This is not
something a user would like to type in. An interface similar
to the one offered by usual drawing programs is much more
acceptable: the user draws the shape with a pointing device
and the system creates the element that represents it and
computes the attribute values from the positions clicked by
the user.

The same applies to mathematics. The MathML structure
is indeed fairly detailed and even a very simple mathematical
expression may involve a number of elements and attributes
that authors are reluctant to provide explicitly. For instance,
an expression such as y = 2x+n is made of seven elements:
three identifiers (y, x, and n), a number (2), two operators
(= and +), and an invisible operator (times) between 2 and
x. An authoring tool for MathML should be able to generate
this structure automatically.

An efficient method to achieve this is implemented in
Amaya. It consists in parsing the character strings en-
tered by the user. To enter the above expression, an author
just hits six keys (y=2x+n). The character string entered
that way is then parsed, characters are classified (identifiers,
numbers, operators, etc.) and the appropriate MathML el-
ements are generated according to this classification. It is
only when the linear sequence is interrupted that constructs
such as superscripts, fractions, integrals, roots or matrices
need to be explicitly entered by the author. This is done
through short control sequences, in order to allow the user
to keep his/her hands on the keyboard. In addition, in reg-
ular structures like matrices, new repeatable elements (cells,
columns and rows) can be added by a single key stroke [20].

A few additional features help users to manipulate com-
plex mathematical structures. Structure navigation through
the usual arrow keys is such a feature. Structure transfor-
mation is another one. Authors can select any part of an
existing expression and turn it into an element of a different
type. For instance, in the expression above, when the se-
quence of elements 2x+n is selected, typing Ctrl+F makes it
a fraction: a mfrac element (fraction in MathML) is created
with two sub-elements. The first one represents the numera-
tor and contains the selected elements, while the second, the
denominator, is left empty. Such structure transformations
are very useful [6]. They allow authors to enter mathemati-
cal expressions quickly and to go back and change any part
that was not entered correctly in the first place. This is also
what makes automatic structuring usable, as in some cases
the structure produced automatically could not be exactly
what the author expected. In these cases, restructuring com-
mands can be used to fix the structure.

With this kind of user interface, it is no more complicated
to edit highly structured objects than using a text processor.
But without it, structure editing is very cumbersome, and
average Web users would be reluctant to use the latest Web
formats.

However, there is an exception to this principle in Amaya,
to allow authors to edit XML structures that are not known
to the editor. These structures are called generic XML. The
interface presented above is indeed made possible because
the editor “knows” the document type. It includes specific
code and user commands that handle XML languages ac-
cording to their semantics. With generic XML, this is not
possible, but it is worth accepting other XML languages
than those known to the editor, even if it is a bit more com-
plicated to manipulate them. At least a few minor modifi-
cations could be done if needed, in particular when generic
XML is part of compound documents that also use languages
natively supported by the editor.

2.3 Compound documents
Compound documents are XML documents that mix sev-

eral XML languages. Thanks to the XML namespace mech-
anism [8], a single XML document may contain parts that
are structured according to different XML applications. A
XHTML document that includes SVG graphics and MathML
expressions is a typical example of a compound document.
This XML feature is something important for Web users.
It opens up new possibilities for complex documents. It is
no longer mandatory to divide a document into a number
of different resources that are integrated by transclusion.
With namespaces, a single resource can contain everything
in a consistent structure. There is no need, for instance, to
make a separate file for each drawing or formula in a docu-
ment. These objects can be part of the document itself.

To create and edit such composite documents, several ap-
proaches could be taken. One is to develop a separate tool
for each type of object. While this could be considered for
instance for graphics, it does not work well for mathematics.
In a document that contains several mathematical expres-
sion in each line of text, it is not acceptable to switch tool
so often. Plugins provide an alternative. When using plug-
ins, several tools are still involved, but an author sees them
as integrated because they share the same display space.
However, plugins pose problems. The user interface lacks
consistency when switching from one tool to the other. In-
tegrating the graphical representation of different objects
handled by different tools is problematic too: the program-
ming interface between tools is usually not sufficient to prop-
erly handle inheritance of style properties and to propagate
formatting constraints from one tool to the other. With
existing plugin interfaces it is impossible to correctly align
mathematical expressions processed by a specific tool with
the surrounding text handled by another tool.

For these reasons we prefer a different approach, where
priority is given to integration and consistency. It follows
the principle of XML namespaces. A compound document
is represented by a single DOM tree and editing functions
operate on all parts of the tree, whatever the type of object
they represent. Formatting is performed the same way: text
is formatted and displayed by the same functions, be it the
content of a paragraph, a mathematical variable or a label
within a drawing.

This approach is implemented in Amaya. As we have seen
above, the editor is specialized for several XML applications
and provides higher level operations for manipulating dif-
ferent kinds of objects. That is the reason why Amaya’s
architecture is made of a kernel that performs basic func-
tions, plus extensions that implement the specifics of differ-

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

ent kinds of objects. The kernel and extensions work on the
same data structures: the DOM tree and the formatted rep-
resentation of each view. Obviously, specialized functions
are performed only on the parts of the DOM tree that rep-
resent the objects they are supposed to manipulate. But
these specialized functions may also access and update any
information they need about the context of the data they
manipulate. This solves the problems mentioned above re-
garding plugins.

A consequence of this approach is that the same system is
used to manipulate all parts of a compound document. This
allows users to evolve freely in a continuous space, to manip-
ulate simultaneously a structured object and the surround-
ing structure, to access the various facets of a compound
document in a consistent way. Hypertext links, for instance,
are edited in exactly the same way when their source and
destination are located in graphics, mathematics or text.
That is the same for style: changing the color, size or font of
characters is done through the same commands in all parts
of a compound document and inheritance of style properties
across the DOM tree works as expected.

Another advantage of this approach is that it does not
put any limitation to the nesting of various XML languages.
A MathML expression or a piece of XHTML text can be
inserted and edited within an SVG figure, even when this
figure is itself included in an XHTML page. That way, au-
thors can fully benefit from the advantages of compound
XML documents.

As compared with the most popular Web authoring tools,
this feature of Amaya is unique. Usual tools can only edit
XHTML. They allow “foreign” objects such as SVG draw-
ings or MathML expressions to be included into Web pages,
but these objects have to be edited separately, with different
tools.

3. EDITING STYLE SHEETS
XML introduces a clear separation between content and

structure on one side and style and presentation on the
other. HTML has benefitted from this separation by mov-
ing to XHTML. The strict profile of the XHTML specifi-
cation contains only elements and attributes that represent
the document structure. Presentation-oriented elements and
attributes have been removed from the language and are re-
placed by style information associated with the document
through style sheets.

In a client intended to handle documents on the Web,
it is then important to provide a style editing feature, in
addition to the structure editing feature. Even if style is
separated from structure in the document format, authors
often manipulate both aspects of documents simultaneously.
Two style languages have been designed for XML: XSL and
CSS. In this article we only consider CSS [7].

CSS style has many aspects. First, there are style prop-
erties (color, font-size, margin, etc.) whose values deter-
mine different aspects of the presentation of elements in a
document. Then, there are mechanisms for associating prop-
erties and their values with the elements of a document. In
CSS this is done through selectors which indicate in what
structural context a property and its value are applied to an
element. At this point inheritance enters into play: most
properties that are associated with an element are inherited
by its descendants in the XML structure. With inheritance,
if a section is red, the paragraphs it contains are red too, as

well as the character strings contained in these paragraphs,
unless different rules are associated with these sub-elements
to set different colors.

A selector, a property and a value make a rule. Rules
are collected in style sheets, which give a consistent look
to a whole document. These style sheets are independent,
sharable Web resources associated to documents by various
ways (user preferences, links from the document, Processing
Instructions). The same style sheet can be used by several
documents and several style sheets may be associated with
a single document. The combination of multiple style sheets
for a single document is called cascading. When several
conflicting style rules from the same or different style sheets
are candidates for the same element, well defined priority
rules select only one of the conflicting rules in the cascade.

Cascading is a way of combining style sheets. Inclusion is
another, different way. A piece of CSS style can be stored
in a Web resource to be shared between several style sheets.
These style sheets include the shared resource which is then
considered as if it was part of the including sheet.

All these aspects of CSS offer many possibilities to a style
designer, but they also make his/her task complex. Com-
plexity does not lie in the CSS syntax, which is very simple,
but in the combinatorial aspect of style (multiple sources of
style, inheritance, cascading, inclusion). This is where an
authoring tool for the Web should provide assistance. In
Amaya, this assistance is provided at three different levels:
style rule editing, style sheet manipulation, and debugging.

3.1 Editing style rules
Style may be entered with Amaya either through a graph-

ical interface or by typing the CSS syntax directly. The
graphical interface is similar to the one of a word processor.
The user selects an element in a documeny and assigns it
some style through a dialog box. This attaches style prop-
erties with values to the selected element. When the ele-
ment has the desired look, the user can create a full rule by
entering the selector that is then combined with the style
properties of the element. The rule is then applied to all
elements of the document that match the selector. The user
can thus easily check whether the rule works as expected.
In a XHTML document, the rule is finally put in the style

element of the document (the internal style sheet), where it
can still be edited further.

3.2 Manipulating style sheets
Style sheets are external resources which affect the presen-

tation of a document. When focusing on document presen-
tation, it is important to be able to access, consult, modify,
create, and link style sheets. For this purpose, Amaya dis-
plays CSS style sheets as separate documents (except the
internal style sheet) that can be edited as plain text. It also
provides commands that perform several manipulations on
style sheets.

The user can see the list of all style sheets involved in the
presentation of a document and s/he can freely open any
of them. The list of style sheets referred by a document
can also be used to deactivate or reactivate selected style
sheets. Deactivating a style sheet consists in showing how
the document would look if the style sheet would not be
associated with that document. When several style sheets
apply to a document, this is helpful to understand how each
one affects the final presentation.

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

To act on the document style, it is also important to be
able to open style sheets that are not linked to a document.
This allows authors to inspect other style sheets and decide
which ones could be associated with the document. When
linking a style sheet to a document the user immediately
sees how the document looks with this style sheet, and s/he
can safely decide whether to keep the link or not. If the
desired style sheet is not available on the Web, the author
may choose to create a new one and to enter its content.
Another way to get a new style sheet is to export the content
of the style element of an XHTML document and to make
it a separate style sheet.

When a style sheet is open, its content can be edited as
plain text. Given the simplicity of the CSS syntax, this is
enough for many of the usual changes one makes to style
sheets and it is often easier than using a convoluted graph-
ical interface. When the changes are made, the style sheet
can be saved or simply “synchronized”. In both cases it is
applied to all open documents that use it and the user can
see whether the latest changes produce the expected result.
Syntactic errors, if any, are also reported.

3.3 Debugging style sheets
Looking at the document is a way to check whether the

result is correct or not. But if it is not, the issue is the same
as in programming: it may be difficult to find the faulty
rule (statement), especially when a number of included and
cascaded style sheets are used by the document. Some kind
of debugging aid is required.

One method consists in deactivating style sheets one after
the other to locate the questionable style sheet. But this
may be tedious when there are many style sheets and it is
not precise enough: the exact rule has still to be found in
the sheet.

To locate a rule more precisely, another method is avail-
able. It is based on a single command (Show applied rules)
that opens a small window (see Figure 2) showing all the
rules that are actually applied to the selected element itself,
i.e. it does not include properties that are inherited from
ancestor elements. When the current selection changes, this
window is updated accordingly. Each line in this window
displays a rule applied to the selected element: the name
of the property, its value, and the URI of the style sheet it
belongs to. Each line is actually a link to the rule in its style
sheet. Clicking it opens the style sheet if it is not already
on the screen and highlights the rule that was applied to the
element.

When an unexpected look is visually detected on an ele-
ment, the user asks for the applied rules. If the property that
has the wrong value is not listed, this is because that prop-
erty is inherited from some ancestor element. The user then
selects the parent element (a single key stroke is enough to
move to the parent) several times until the desired property
appears. Then, clicking it shows the faulty rule in its style
sheet. With that information, the bug can be fixed very
easily by editing the rule and the result can be instantly
checked by synchronizing the style sheet.

This debugging technique has been extensively used for
developing style sheets with Amaya. It lets the system han-
dle the complexity of inheritance and multiple, cascading
style sheets with inclusions. It was considered to be impor-
tant enough to change priority in the development schedule.
Indeed, it quickly appeared more important to develop this

Figure 2: Debugging a CSS style sheet

feature than creating a graphical user interface for every
CSS property.

Several Web authoring tools provide a CSS editing func-
tion. Amaya contrasts with these tools through two main
features: integrated browsing and synchronization. The
browsing function of Amaya allows remote style sheets to
be freely searched, tested, edited and linked to a document
under editing. Synchronization makes debugging possible.
Composer and Dreamweaver, for instance, provide a DOM
(or CSS) inspector, which only allows an author to see what
style property is associated with an element, but does not re-
late the property with the style sheet it comes from. Amaya
goes further by maintaining this relationship, even if it in-
volves a remote sheet.

4. INTEGRATION AND COOPERATION
Editing documents, their structure and their style is only

one of the services expected from a Web client. To efficiently
support the multiple tasks a user performs on the Web and
to take into account the multiple facets of the Web, more
features are needed. In this section, we review such im-
portant features as browsing, publishing, annotating, and
bookmarking. We will see that their combination and their
integration provides more benefits than all of them consid-
ered separately.

4.1 Browsing and editing
When browsing is added to an editor, it helps setting the

context of the document being edited. Browsing becomes
part of the authoring environment and extends it. It allows
an author to locate the resources to be included in the doc-
ument: images, objects, pieces of structured text, etc. It is
also used to get the resources that will be linked to the doc-
ument: other, remote Web pages, style sheets, transcluded
objects, etc. By downloading these resources first, the au-
thor can check them before linking. This method is much
more secure than typing a blind URI, what most Web au-
thoring tool require. It is also easier: to set the link a simple
click on the resource displayed on the screen is enough (see
section 2.1)

Downloading remote resources in the editor environment
is also helpful for borrowing material from existing docu-
ments. With a browsing function integrated in the editor,
any Web page can be downloaded and then any part of it
can be copied and pasted. With structured document this
is especially interesting, as the editor can paste a piece of

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

DOM tree and then all the details of the structure. When
the pasted structure contains Web links, the corresponding
URIs, if they are relative, can be modified by the editor to
refer to the same resource from a different place.

The relationship between editing and browsing can also
be considered in the opposite direction. Authoring is then
considered as a service that complements a browser. When
reading a Web page a user may notice a typo, some obsolete
information, a dangling link, something that is missing or
would need to be changed. It is then very useful to be able to
make the change immediately, just by editing the page that
the browser is displaying, without starting another tool.

This is done in Amaya. We have seen that the format-
ted view of a document is the same as a browser view. In
addition, Amaya provides the usual browsing commands:
clicking a link downloads the destination document in the
current tab, in a new tab, or in a new window; commands
Back and Forward allow the user to navigate the browsing
history, etc. Amaya can be used to surf the Web and access
local documents in the same way as any browser. Multiple
documents, images, style sheets, etc. can be open simul-
taneously, and all these resources are under the control of
an editor. Then any editing operation can be performed
on them and every combination of browsing and editing is
made possible. This is a key feature that is missing in all
Web authoring tools we know.

4.2 Publishing
When remote resources are downloaded and modified, it is

necessary to be able to save them back to a remote server.
Therefore publishing is a required feature in an advanced
Web client. The minimum functionality is saving an edited
resource to the location it comes from. If it is a local file, it
should be possible to save it in the same file. If it is a remote
resource, it should be possible to save it to its Web server.
But it should also be possible to create a new document or
style sheet locally and to store it on a remote server, or to
download a resource from a server and to save it on another
server. Local files could be saved remotely, and conversely.
In fact, the publishing feature is quite complex if all possible
moves are considered, but this is required to allow users to
take advantage of the distributed nature of the Web: many
users have to create and update resources on several servers,
especially when working collaboratively.

Additional complexity comes from the fact that some Web
resources depend on other resources, and when moving one
of these resources, some others may have to be moved ac-
cordingly. A usual case is an XHTML page that includes
images. When such a page is copied or moved from one lo-
cation (local or remote) to another location, it may make
sense to copy the associated images too, or at least some of
them.

Publishing is more than saving a file and some associated
resources. It may also require the URIs used in the saved
document to be updated. This is like the Paste command
mentioned above: relative URIs have to be changed if the
document is saved to a different location. Obviously this is
not something that an author wants to do “by hand”. The
application has to do it.

There are other changes that should be made to the docu-
ment at publication time. Adding or updating a timestamp
at a position chosen by the author is something that may
be useful for an evolving document.

The publishing feature of Amaya implements these re-
quirements. It is based on the HTTP protocol. While all
Web editors use FTP to save files remotely, HTTP was pre-
ferred for Amaya because it provides greater control over
the information that is transmitted to the server, thanks to
the HTTP header. Thus, Amaya includes full support for
HTTP 1.1. Browsing uses the Get method, and publishing is
based on the Put method. This symmetry makes sure that,
when a document has been changed by the editor, it can be
moved from one server to another while preserving all the
meta-information associated to it: MIME type, character
encoding, etc.

With this publishing feature, an author really gets the
feeling that s/he is editing the Web. Working on remote
documents is exactly the same as working with local files.
A single click on the Save icon immediately updates the
document on its server. Creating a new document on a
remote server just requires the author to enter the address
of its location. Obviously, to write a file remotely, the user
must be allowed to do so, and an authentication process
is involved the first time a file is saved on a remote server
during a session. The Web server has to support the HTTP
Put method (but a conformant server is supposed to provide
full support of the HTTP protocol) and to be configured for
allowing authorized users to write in some of its areas. Also,
to make sure the changes saved by one user are not lost when
another user saves his/her own changes made to an earlier
version of the document, the lost update feature of HTTP
[11] is mandatory.

This publishing feature makes Amaya very different from
usual Web authoring tools. For editing remote documents,
there is no need to make a local copy of the remote site first,
nor to save this copy back when all the changes are made.
The user can change and save any document independently
of any other, and the tool takes care of keeping things consis-
tent. This also makes Amaya usable for cooperative editing
of remote documents, just by using its publishing feature.

4.3 Cooperation and annotations
The combined use of browsing, editing and publishing in

a single, consistent software tool provides a strong basis for
cooperative work on the Web. Documents can be shared
and accessed remotely in read/write mode by several users.
HTTP 1.1 with the lost update feature handles writing con-
flicts but it only allows an user to be warned that his/her
changes will overwrite another user’s update. A more ad-
vanced way to handle conflicts is to prevent them from oc-
curring using WebDAV: an author can temporarily lock a
resource under modification to avoid other users to access it
in write mode.

While these basic functionalities ease cooperation, they
are not sufficient for effectively supporting the cooperative
efforts of a distributed group of users. For such a group,
it is important not only to share documents, but also to
discuss these documents. People need to make comments,
to propose changes, to submit alternative content, etc. Ob-
viously this could be done by email, but with severe lim-
itations. When the discussion is about specific parts of a
shared document, unambiguous references have to be made
to the document. When pieces of content are submitted,
they should follow the document structure. All these depen-
dencies to the document require a more suitable mechanism,
which annotations can provide.

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

Figure 3: Creating an annotation

In its simplest form, an annotation is a chunk of informa-
tion that is attached to a specific part of a document. For
supporting cooperative work, annotations should be shared
within the group interested in a document. Different types
of annotations can be made by different users. Each user
may want to see only a selected subset of these annotations,
depending on the task being performed. A filtering mecha-
nism is then needed that could select annotations according
to different criteria: date, author, type, etc. Users should
be free to annotate any part of any document and to put
any kind of information in annotations.

Adding this functionality to a Web client that can edit
and publish complex documents enhances its collaborative
features. It has been done in Amaya by introducing sup-
port for Annotea [12], a shared annotation system based on
a general-purpose open RDF infrastructure. Actually, An-
notea was first developed in Amaya, taking advantage of its
rich set of features, before being implemented in other Web
tools. In Annotea, annotations are external to the docu-
ments and can be stored in one or more annotation servers
to be shared by several users. Thanks to XPointer, anno-
tations can be attached to any part of any XML document
without making any change to the annotated document. In
its Amaya implementation, the merging of annotations with
documents takes place within the client. An icon is tem-
porarily inserted in the document at each position where
an annotation is attached (see the pencil icon in Figure 3).
This occurs after filtering: only the annotations that are
currently of interest to the user are shown. The user is then
free to click any of these icons to display the corresponding
annotation.

Annotations are first class Web resources. Each anno-
tation is associated with a URI and may contain anything
a Web resource may contain. They also have RDF meta-
data that are used to search and filter them. In the Amaya
implementation the full editing feature is used to edit the
content of an annotation. Annotations could then contain a
(usually short) compound document with drawings, math-
ematical expressions, hypertext links, style, etc. This gives
users a great flexibility in annotating Web resources.

Bookmarks are a well-known service provided by most
Web clients. With the availability of Annotea in Amaya,
this usual service was significantly extended. By consider-
ing bookmarks as a special case of annotations, shared book-

marks [13] have been introduced. It is a tool that permits
users to informally classify Web resources and share these
classifications in the same way annotations are shared.

5. CONCLUSION
In this paper we advocate an extended functionality of

Web clients. A dynamic and rich information space such as
the Web deserves powerful user agents that enable a more
creative activity, allowing users not only to consume exist-
ing information but also to produce new information and to
interact with other users.

For this purpose, a Web client should provide more ser-
vices than the usual browsing functionality. In particular,
editing is required. It allows users to create and update
documents and to feed the Web with new information. But
editing needs to be combined with browsing and publishing,
to make users able to work directly on the Web, without any
intermediary, local copies, complex transfers, etc. To take
advantage of the latest developments of document technol-
ogy, the editing feature must be able to manipulate com-
pound XML documents and their associated style sheets.
As a complement to editing, an annotation system is needed
to efficiently support cooperative work through the Web.

In our experience with Amaya, tight integration of all
these features is crucial. From the user perspective, work-
ing with the Web is a single task, which involves simulta-
neously editing, styling, browsing, publishing, annotating,
bookmarking, etc. Web clients are tools that are supposed
to support this task. Therefore, they should provide a uni-
form, homogeneous environment where all actions can be
performed smoothly and consistently, without any fence.
However, it should be acknowledged that the development
effort required for such an integrated environment is sig-
nificant. Implementing many different features is obviously
costly, but integration allows features to share a large part
of the software and thus avoid duplicated efforts. Actually,
the main costs result from the implementation of multiple
languages and standards that are evolving. Most of the lan-
guages available in Amaya are quite rich, and a full imple-
mentation of each of them requires a lot of effort.

In its current version Amaya implements all the features
presented above, but some features of SVG, MathML and
CSS are not yet available due to the effort needed. Future
work will allow to increase the coverage of the technologies
supported. In particular, advanced editing commands for
SVG are planned, as well as support for entering mathemat-
ical symbols in MathML expressions more easily. Regarding
style, the user interface will be extended to avoid users hav-
ing to type the syntax of some CSS rules. Further work is
also planned for enhancing the publication feature by taking
into account more resources related to a document.

6. ACKNOWLEDGEMENTS
We are grateful to W3C for their support and contribu-

tion to the development and distribution of Amaya. We
also acknowledge the valuable participation of a number of
people in the work presented in this paper. In particular,
we thank Laurent Carcone, Paul Cheyrou-Lagrèze, Pierre
Genevès, Ramzi Guétari, Stéphane Gully, Jose Kahan, and
Daniel Veillard. The whole Amaya community is acknowl-
edged for their valuable contribution to the evolution of the
software.

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

7. REFERENCES
[1] M. Altheim and S. McCarron. Xhtml 1.1 -

module-based xhtml. Technical report, W3C
Recommendation, http://www.w3.org/TR/xhtml11/,
31 May 2001.

[2] R. Bentley, W. Appelt, U. Busbach, E. Hinrichs,
D. Kerr, K. Sikkel, J. Trevor, and G. Woetzel. Basic
support for cooperative work on the world wide web.
International Journal of Human Computer Studies,
(46):827–846, 1997.

[3] H. Berghel. The client’s side of the world-wide web.
Commun. ACM, 39(1):30–40, 1996.

[4] T. Berners-Lee. The worldwideweb browser. Technical
report, W3C, http://www.w3.org/People/Berners-
Lee/WorldWideWeb.html.

[5] T. Berners-Lee and M. Fischetti. Weaving the Web.
Harper, San Francisco, 1999.

[6] S. Bonhomme and C. Roisin. Interactively
restructuring html documents. Computer Networks
and ISDN Systems, 28(7-11):1075–1084, 1996.

[7] B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading
style sheets, level 2. Technical report, W3C
Recommendation, http://www.w3.org/TR/CSS2/, 12
May 1998.

[8] T. Bray, D. Hollander, A. Layman, and R. Tobin.
Namespaces in xml 1.1. Technical report, W3C
Recommendation,
http://www.w3.org/TR/xml-names11/, 4 February
2004.

[9] D. Carlisle, P. Ion, R. Miner, and N. Poppelier.
Mathematical markup language (mathml) version 2.0
(second edition). Technical report, W3C
Recommendation, http://www.w3.org/TR/MathML/,
21 October 2003.

[10] J. Ferraiolo, J. Fujisawa, and D. Jackson. Scalable
vector graphics (svg) 1.1 specification. Technical
report, W3C Recommendation,
http://www.w3.org/TR/SVG/, 14 January 2003.

[11] H. Frystyk Nielsen and D. LaLiberte. Editing the web:
Detecting the lost update problem using unreserved
checkout. Technical report, W3C Note,
http://www.w3.org/1999/04/Editing/, May 1999.

[12] J. Kahan, M.-R. Koivunen, E. Prud’Hommeaux, and
R. Swick. Annotea: An open rdf infrastructure for
shared web annotations. In Proceedings of WWW10,
Hong Kong,
http://www.w3.org/2001/Annotea/Papers/www10/
annotea-www10.html, May 2001.

[13] M.-R. Koivunen, R. Swick, and E. Prud’hommeaux.
Annotea shared bookmarks. In U. Sanibel, Florida,
editor, Proc. of the KCAP 2003 workshop on
knowledge markup and semantic annotation,
http://www.w3.org/2001/Annotea/Papers/KCAP03/
annoteabm.html, 25-26 October 2003.

[14] G. Krasner and S. Pope. A description of the
model-view-controller user interface paradigm in the
smalltalk-80 system. Journal of Object Oriented
Programming, 1(3):2649, 1988.

[15] Lynx. http://lynx.browser.org/.

[16] Mozilla. http://www.mozilla.org/.

[17] V. Quint. Systems for the manipulation of structured
documents. In J. André, R. Furuta, and V. Quint,
editors, Structured Documents, pages 39–74.
Cambridge University Press, 1989.

[18] V. Quint, C. Roisin, and I. Vatton. A structured
authoring environment for the world-wide web.
Computer Networks and ISDN Systems,
27(6):831–840, April 1995.

[19] V. Quint and I. Vatton. An introduction to amaya.
World Wide Web Journal, 2(2):39–46, 1997.

[20] V. Quint and I. Vatton. Techniques for authoring
complex xml documents. In Proceedings of the 2004
ACM Symposium on Document Engineering, pages
115–123, 28-30 October 2004.

[21] I. Vatton. Welcome to Amaya.
http://www.w3.org/Amaya/.

in
ria

-0
04

23
32

8,
 v

er
si

on
 1

 -
9

O
ct

 2
00

9

