
HAL Id: inria-00423381
https://inria.hal.science/inria-00423381

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logic-Based XPath Optimization
Pierre Genevès, Jean-Yves Vion-Dury

To cite this version:
Pierre Genevès, Jean-Yves Vion-Dury. Logic-Based XPath Optimization. First International Work-
shop on High Performance XML Processing, May 2004, New York, United States. �inria-00423381�

https://inria.hal.science/inria-00423381
https://hal.archives-ouvertes.fr


Logic-Based XPath Optimization

Pierre Genev̀es1 andJean-Yves Vion-Dury1,2

Abstract

XPath [16] was introduced by the W3C as a standard language for specifying node selection, matching
conditions, and for computing values from an XML document. XPath is now used in many XML standards such
as XSLT [15] or the forthcoming XQuery [14] database access language. Since efficient XML content querying
is crucial for the performance of almost all XML processing architectures, a growing need for studying high
performance XPath-based querying has emerged. Our approach aims at optimizing XPath performance through
static analysis and syntactic transformation of XPath expressions.

1 Introduction

In this paper, we first describe a formal architecture for static analysis that could be implemented independently
from any particular XPath engine. Second, as an application, we show how the containment relation over XPath
expressions can be used for general optimization purposes. The important advantage of our approach is that logic-
based optimizations can be applied at syntactic level and thus remain compatible with any XPath engine. Hence,
one does not have to modify an XPath engine to optimize XPath queries.

Related Work Abundant literature on query rewriting for optimization can be found in database systems. As
XML is becoming the de facto standard for representing structured content, the mapping between heritage of
database theory and structured documents querying is being worked out. Optimization results on tree patterns
[2, 6] or regular paths [1] often rely on a notion of queryequivalenceor querycontainmentwith respect to the
considered model. Our approach also relies on a similar relation but aims at studying and taking XPath semantics
peculiarities into account, in order to be extensible to a large XPath fragment. The containment over XPath
expressions is defined using XPath semantics, usually described by a formal semantics functionS (as found in
[11]). Thus, the containment relation between two XPath expressionsp1 andp2 holds when, for any XML tree
t and any context nodex of t, the set-theoretic inclusion relation holds between the sets of nodes respectively
returned by the evaluation ofp1 andp2:

p1 ≤ p2 iff ∀t,∀x ∈ t,SJp1Kx ⊆ SJp2Kx

Containment for XPath expressions is being actively studied [7, 4, 8, 12, 10], but none of these approaches explains
how the containment can be practically used for XPath optimization. A rewriting approach [9] proposed to rewrite
XPath backward axes into forward ones, in order to optimize XPath queries for stream-based processing. However,
this rewriting technique mostly relies on XPath symmetry and does not involve containment-based optimization.
We believe the present work is a first step toward the use of the containment for XPath optimization.

Outline In section2 we present the abstract syntax and semantics of XPath expressions we consider. The next
sections detail our syntactic transformations: our global architecture is described in section3 and we explain
how the containment can be used for XPath optimization in section4. We then describe and analyze preliminary
experiments in section5 before we conclude in section6.

2 XPath Syntax and Semantics

In this paper, we consider a subset of the XPath specification [16], mainly composed of forward axes and qualifiers.
Our intent is to extend this subset to more features, such as “count()” and “position()” in qualifiers. Our XPath
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fragment includes several variants: the void path⊥ and the explicit root node∧ (respectively proposed and defined
in [9] and [10]) to ease formal analysis and to make the XPath syntax fully compositional. In addition, we chose
to include two XPath 2.0 [13] extensions: qualified paths (e.g.(p)[q]) instead of qualified steps (e.g.a::N [q]) and
path intersection (p1 ∩ p2). Our fragment also includes an important extension with respect to qualifiers: the node
set inclusion constraintp1 v p2, defined in [10], which brings extra - yet tractable - expressive power. Note that
the usual formp1[p2] is a syntactic sugar forp1[not (p2 v ⊥)]. In the XPath abstract syntax shown below, a node
testn denotes any element name:

Path p ::= ∧ | ⊥ | p1 p p2 | p1 ∩ p2 | p1/p2 | (p) | p[q] | a::N
Qualifier q ::= true | false | (q) | not q | q1 or q2 | q1 and q2 | p1 v p2

Axis a ::= child | descendant| self | descendant-or-self| attribute| namespace
NodeTest N ::= n | ∗ | node() | text() | element() | processing-instruction() | comment()

The denotational semantics of a pathp provided a context nodex, notedSJpKx, is given in appendixA. An orig-
inality comes from the addition of the inclusion constraint between two paths inside qualifiers:QJp1 v p2Kx =
SJp1Kx ⊆ SJp2Kx . Note that this definition allows us to define terms such asp[p1 v p2 and p2 v p1], which can
be used to give a clear semantics to constructs of the formp[p1 == p2] usually found in the literature.

3 Formal Architecture for Static Analysis

Formal methods for static analysis of XPath expressions have to face the combinatorial complexity of any sig-
nificant fragment of XPath syntax. A way to ease analysis is to simplify the form of XPath expressions. To this
end, our work currently focuses on rewriting an XPath expression into an equivalent but simplified form, using
semantic-preserving rules. This normalization aims at easing whatever subsequent analysis operations. As a par-
ticular application, we show in section4 how to use the containment relation to perform generic optimizations.
Figure2 gives an applicative view of our architecture.

Normalization Phase More formally, a pathp is rewritten into its normal formp using two sets of rulesN
andC. This transformation is notedp

N∗

−→ C∗−→ p and first uses the set of rulesN (see [10]) mainly composed of
distributivity rules such as(p1 p p2)/p → p1/p p p2/p and other structural rules needed to reach the disjunctive
normal form structure. The second step of the normalization phase involvesC (shown on figure1) that performs
void path elimination: rule ra24 detects a possible contradiction; void paths are propagated to the top level of the
path structure (using r4f, r4e, r4a, and r4b) and then eliminated using r4c and r4cp. At the end of the normalization

p[false] → ⊥ (r4f)

⊥[q] → ⊥ (r4e)

⊥/p → ⊥ (r4a)

p/⊥ → ⊥ (r4b)

⊥ p p → p (r4c)

p p ⊥ → p (r4cp)

n1 6= n2, a::n1[q1]/self::n2[q2] → ⊥ (ra24)

Figure 1: Detection, Propagation, and Elimination of Void Paths (C).

phase, a normal pathp is either the void path⊥ or a very constrained disjunction, as captured by the right graph
on figure3. Intuitively, the set of normal paths is isomorphic to the transitive closure of the graph. A normal
path also verifies additionnal properties not captured by structural constraints. For example, union subterms are
syntactically different, and the root node∧ only occurs either in the first or in the second step of the expression. To
prove the existence of such a normal form, we adopted a logical approach which model the rewriting system in the
calculus of inductive constructions, beyond the scope of this paper. We are currently working on the normalization
issues (in particular the termination and confluence proofs; see [3] for general issues) with the Coq proof assistant
[17].

Optimization Phase The normal pathp is transformed into a pathp′ using a set of optimization rulesO. This

transformation is notedp
O∗

−→ C∗−→ p′. Note that the set of rulesC is applied again in order to eliminate void paths
potentially introduced byO. The following section details how a path can be optimized using the containment
relation over XPath expressions.
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4 Using Containment for XPath Optimization

Deciding Containment The XPath fragment we consider in this paper is quite close to the one found in [8],
for which the containment has been shown to be decidable. In order to assert containment facts, we rely on an
inference and rewriting based approach described in [10]. The latter uses logical rules̀a la Hilbert (see [5] for a
comprehensive introduction to logical formalisms):

A1...An

B
r

whereAi andB are judgments over paths and qualifiers, andr is the rule name. Such a logical rule means that
if all judgmentsAi are true, thenB is true. For example, the containment rule c1 states that the void path is
contained in any other path, c2 constructs the reflexivity directly, d1 addresses the comparison of steps and d2
captures the general behavior of containment relation w.r.t. the slash operator:

⊥ ≤ p
c1

p ≤ p
c2

a1 ≤ a2 N1 ≤ N2

a1::N1 ≤ a2::N2
d1

p1[p2] ≤ p3[p4] p2 ≤ p4

p1/p2 ≤ p3/p4
d2

p1 ≤ p2 q1 ⇒ q2

p1[q1] ≤ p1[q1]
d3

The comparison of steps (rule d1) relies on a partial ordering of XPath axes and nodetests:

self≤ descendant-or-self child≤ descendant≤ descendant-or-self n ≤ ∗ ≤ node()

The containment relation≤ is also defined using a dual relation⇒, the logical implication between qualifiers.
Hence, the comparison of qualified paths through rule d3 involves the qualifier implication, and rulesei handles
connectives:

p3 ≤ p1 p2 ≤ p4

p1 v p2 ⇒ p3 v p4
e1

q2 ⇒ q1

not q1 ⇒ not q2
e2

q1 ⇒ q

q1 and q2 ⇒ q
e4

q ⇒ q1 q ⇒ q2

q ⇒ q1 and q2
e5

Two techniques allow us to reduce the size of the axiomatic system: the first one is an equivalence relation≡
that typically captures commutativity and associativity, and which is fully (left and right) congruent w. r. t. the
containment and implication1 , and the fundamental rule h which involves the normalization processN in order
to transform the operands:

p1
N∗

−→ p′1 p2
N∗

−→ p′2 p′1 ≤ p′2
p1 ≤ p2

h

For more details on the approach, with a larger XPath fragment, the reader can refer to [10]. We are currently work-
ing on a full characterization of this axiomatic system2, using the Coq proof assistant [17] and semi-automated
strategies in order to tackle the combinatorial complexity. An algorithm for deciding the containment is considered
as a proof tree computation.

Containment-Based Optimization Rules Our system is basically the setO of conditional term rewriting rules.
Numerators are logical conditions that must be satisfied by terms or subterms in order to apply the rules. Most
of the rules make use of the containment relation, and thus, each reduction step must be justified by using the
inference system for containment. We distinguishes two sets of rules:

1. redundancy elimination.Rules ru1, ru2 (and their symmetric variants not detailed in figure4), ru3, ru4 and
ru5 handle union operator; rules rs1 and rs2 (figure5) eliminate qualifier conditions induced by path com-
position (through the/ operator), such asa[∗]/b. This latter case is formally optimized through application
of rs1 as follow

b ≤ ∗ ⊥ ≤ ⊥
∗ v ⊥ ⇒ b v ⊥

e1

not b v ⊥ ⇒ not ∗ v ⊥
e2

not b v ⊥ ⇒ ∗
≡

a[∗]/b → a/b
rs1

The rules rs3, rs4 manage cases where the qualifier is naturally induced by the path, as ina[self::∗] and the
last subset of figure7 is dedicated to qualifier simplification.

1left congruence: for allp1, p2, p if p1 ≤ p andp1 ≡ p2, thenp2 ≤ p
2We are currently investigating properties such as soundness and completeness.
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p1 ≤ p2

p1|p2 → p2
ru1

p1 ≤ p2

p1/p3|p2/p4 → p2/(p3|p4)
ru2

p3 ≤ p4 p4 ≤ p3

p1/p3|p2/p4 → (p1|p2)/p4
ru3

q1 ⇒ q2 q2 ⇒ q1

p1[q1] p p2[q2] → (p1|p2)[q1]
ru4

a ∈ {desc, child}
p1/desc::∗/a::N p p2/a::N → (p1 p p2)/desc::N

ru5

Figure 4: Containment-Based Optimization Rules (O): union operator .

2. void paths elimination.Some implicit contradictions (that result in void paths) are not captured inN and
C rewriting systems, because it requires some significant inference power. Rules of figure6 aims to detect
these cases using the path containment or qualifier implication proof system.

not (p2 v ⊥) ⇒ q

p1[q]/p2 → p1/p2
rs1

not (p2 v ⊥) ⇒ q1

p1[q1 and q2]/p2 → p1[q2]/p2
rs2

not (p v ⊥) ⇒ q

p[q] → p
rs3

not (p v ⊥) ⇒ q1

p[q1 and q2] → p[q2]
rs4

Figure 5: Containment-Based Optimization Rules (O): paths vs qualifiers.

q ⇒ (p2 v ⊥)
p1[not q]/p2 → ⊥

rv1
q ⇒ (p v ⊥)
p[not q] → ⊥

rv2
q1 ⇒ (p2 v ⊥)

p1[(not q1) and q2]/p2 → ⊥
rv1p

q1 ⇒ (p v ⊥)
p[(not q1) and q2] → ⊥

rv2p

Figure 6: Containment-Based Optimization Rules (O): contradictions.

In any axiomatic system construction, the selection of axioms is based on “intuition” and therefore conveys some
arbitrary decisions; then, the effort to reach consistency and completeness brings light on the underlying choices
behind the axioms, and often provide rationale in order to reorganize, simplify or extend the theory. After devel-
oping a short illustration, we will propose some hints in this direction. Let us consider the following example (the
“descendant” axis is abbreviated into “desc”)

Example 1 A = ∧//a[∗/b/c and desc::b]

The first normalization step expands the syntactic sugar (here∧//a). Then the desc-or-self axis is transformed

into a disjunctive term and finally, qualifiers are introduced at each path step. In the notation below,
N−→ denotes

a one-step derivation from the rewriting systemN and
N+

−→ denotes the transitive closure of this relation.

A
N−→ ∧/desc-or-self::∗/a[∗/b/c and desc::b]
N+

−→ ∧/desc::∗/a[∗/b/c and desc::b] p ∧/self::∗/a[∗/b/c and desc::b]
N+

−→ ∧[true]/desc::∗[true]/child::a[Q] p ∧[true]/child::a[Q] = A

with Q = child::∗[true]/child::b[true]/child::c[true] and desc::b[true]

At this stage, several optimizing rewriting steps can be applied using rules fromO, described on figures4,5,7:

A
rs3,rs3,rs3−→ ∧/desc::∗/child::a[Q] p ∧/child::a)[Q]

ru4−→ (∧/desc::∗/child::a p ∧/child::a)[Q]
ru5−→ (∧ p ∧)/desc::a[Q]
ru1−→ ∧/desc::a[Q]
rq1−→ ∧/desc::a[child::∗[true]/child::b[true]/child::c[true]]
rs3∗−→ ∧/desc::a[child::∗/child::b/child::c] = ∧/desc::a[∗/b/c]

So what do we gain? First the descendant-or-self axis is gone, replaced by a descendant axis; second, the desc::b
qualifier is gone, and this is certainly the most interesting -and difficult- point, we have to detail here after. To
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q1 ⇒ q2

q1 and q2 → q1
rq1

q1 ⇒ q2

q1 and (not q2) → false
rq2

p1 ≤ p2

p1 v p2 → true
rq3

p1 ∩ p2 ≤ ⊥
p1 v p2 → false

rq4

Figure 7: Containment-Based Optimization Rules (O): qualifier simplification.

achieve this step, we must use the inference system, as the rulerq1 requires to prove that if∗/b/c is not empty,
then so is desc::b :

. ≤ .
child≤ desc ∗ ≤ ∗
child::∗ ≤ desc::∗

d1

./child::∗ ≤ ./desc::∗
d2

child≤ desc b ≤ b

child::b ≤ desc::b
d1

∗/b ≤ desc::b
g1

c ⇒ true
e3a

∗/b[c] ≤ desc::b
d3

⊥ ≤ ⊥
c1

desc::b v ⊥ ⇒ ∗/b[c] v ⊥
e1

desc::b v ⊥ ⇒ ∗/b/c v ⊥
f2

not ∗ /b/c v ⊥ ⇒ not desc::b v ⊥
e2

∗/b/c ⇒ desc::b
≡

p[∗/b/c and desc::b] → p[∗/b/c]
rq1

Discussion Through example1, we outlined the interest of inferring containment facts. A first requirement
would be to mathematically characterize the approach:

1. completeness. Do we have enough rules inO? Up to now, we only followed a mathematical intuition. In
order to state any completeness property, we need an objective complexity measure. A kind of relation, e.g.
p2 � p1 saying thatp1 is more optimized thanp2. Then, we would be able to reason on the existence of an
optimal form for any pathp, and also thatO is complete.

∀x, p1, p2 SJp1Kx = SJp2Kx ∧ p1 � p2 ⇒ p1
O+

−→ p2

2. soundness. Each rewriting rules inO must preserve the semantics of paths. This can be most probably
proved through a case-by-case analysis of each rule.

∀x, p1, p2 p1
O−→ p2 ⇒ SJp1Kx = SJp2Kx ∧ p1 � p2

3. termination. As a rewriting system, termination is an essential property. However, the current system
seems easy to handle, for instance through a trivial syntactic complexity measure, shown to be monotonic
decreasing (see [3]). It could become more difficult, depending on forthcoming rules we could add into the
current system. Note that this issue is tightly related to the first point, since the existence of a optimal form
requires the finiteness of the computation.

∀p1, p3 ∃p2 p1
O∗

−→ p2 ⇒ ¬(p2
O−→ p3)

4. confluence. Such a joinability property is quite useful in order to reason on uniqueness of optimal forms. At
least, uniqueness up to an equivalence relation≈ is required, otherwise our system would be fragile, as the
result would arbitrarily depend on the choice and the application order of rules.

∀p1, p2, p3 p1
O∗

−→ p2 ∧ p1
O∗

−→ p3 ⇒ p2 ≈ p3

Beyond characterization, the reader may object that any realistic optimization is tightly bound to evaluation algo-
rithms and data structures, and thus can not be stated on the basis of an abstract description. Our goal is to focus
on generaloptimization rules forany implementation. However, this notion is controversial, as the boundaries
might be hard to shape. Let us consider the following optimization step

child::a | child::∗/desc::a → descendant::a

6



Do we actually always perform an optimization? On one hand, we probably gain the evaluation cost related to the
union operator, and also the memory cost of storing intermediate results; On the other hand, the operator might
be not directly implemented (e.g. could be a pipe between two concurrent processes), and the memory gain could
be even much fuzzy, as we cannot state any algorithmic hypothesis about storage. More interestingly, what is
undoubtedly gained in such a rewriting step is redundancy: child::a and child::∗ both require scanning all children
of the context node, and this has an execution and/or a memory cost, whatever used algorithm and architecture.
This notion is roughly captured in [6] through the notion of minimal pattern. The authors define pattern minimality
as the non-existence of recovering sub-patterns. We propose to adapt this notion to our approach through the
inductive definition of an embedding relation:

Definition 1 Embedding relation� for all pathsp, p1, p2 and qualifiersq, q1, q2

p � p1 p p2 if p � p1 ∨ p � p2

p � p1/p2 if p � p1 ∨ p � p2

p[q] � p1[q1] if p � p1 ∧ q � q1

p � p1 if p ≤ p1

q � q1 and q2 if q � q1 ∨ q � q2

q � q1 or q2 if q � q1 ∨ q � q2

not q � not q1 if q � q1

q � q1 if q ⇒ q1

Now, this abstract notion of embedding allows us to quantify the internal redundancy of a pathp as the number of
overlapping embedded pairs:

Definition 2 Redundancy Measure.

|p| = card {〈p1, p2〉 | p1 6= p2 ∧ p1 � p ∧ p2 � p ∧ p1 ≤ p2}

Now we are able to define the ordering relation required for the characterization of our rewriting systemO

Definition 3 Minimality Order. ∀p1, p2 p1 � p2 iff |p1| > |p2|

5 Preliminary Empirical Analysis

In this section, we describe a preliminary set of experiments. Our goal is to check if a particular containment-
based optimization remains useful when evaluated by a real world XPath engine, that probably applies internally
various optimization techniques, e.g. caching or case based simplification. The experiments compute the XPath
expression of example1:

∧//a[∗/b/c and descendant::b]

and its optimized variant on the same set of documents. This one is randomly generated (but complying to precise
construction rules) in order to cover a significant variety of trees. The reader may find further details on our
experimental protocol in the appendixB.

We defined three different factors: maximum branching width, maximal depth of the tree, and maximal car-
dinal of the node label set. Each of the three experiments measures the time response depending on the variation
of one particular factor. We ran both queries five times on each document sample and the results were averaged
(standard deviation was observed as a criterion of the experiment’s apparatus quality). The final result is built
from the average of five runs on five random trees. Figures8 and9 summarize the test results for two different
XPath engines: “Xalan C++” [18] and “Libxml” [ 19]. In the first experiment, we varied the depth factor and fixed
the maximum possible width factor to be 112 and the number of element names to be 202. The results are captured
on the leftmost graph of each figure. The middle graphs capture the results of the second experiment, when we
varied the maximum width factor and fixed the depth factor to be 12 and the number of element names to be 20.
Finally, the rightmost graphs show results of the third experiment, when we varied the number of element names
and fixed the maximum depth and width factor to be 7 and 6, respectively.

The results show that the optimization is working best for deeper and wider trees. In the first and second
experiments, although query performance degrades exponentially (as the size of the tree increases exponentially),
the non-optimized query time increases much faster than the optimized query time. For very deep trees, when the
depth reaches 8, the optimization provides a three-fold increase in query performance using Xalan C++, as well
as for very wide trees, when the width reaches 12. The third experiment confirms that the optimization improves
performance when the query retrieves either small or large result sets.

2See AppendixB for the definitions of factor units.
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Figure 8: Varying Factors Independently (Xalan C++)
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Figure 9: Varying Factors Independently (Libxml)

Experiments show that containment-based optimization can improve query performance for large, deep, and
bushy trees, wether the query has a high match probability or not. The experiments confirm the interest of the
static optimization we propose - at least for the particular case we considered - in the sense that XPath engines do
not achieve at runtime any equivalent optimization.

6 Conclusion and Perspectives

In this paper, we have described a static analysis framework for XPath optimization, in which we have proposed
to use conditional rewriting rules based on the containment relation for XPath expressions. The optimization
aims at eliminating implicit redundancies and contradictions found in user-defined or generated XPath queries.
Preliminary experiments show that this framework could provide an interesting basis for a static optimization
layer, that could be either implemented on top of an XPath engine, or built inside a compiler.

Further on-going work on the issues explored in this paper is worth mentioning. First, we are working on
the completeness issue for the containment inference system. Proving this important property would allow us to
state that we can determine whether the containment relation holds or not between any two XPath expressions.
Note that even an incomplete containment could be of practical interest as well, especially if the causes are well
understood. Second, our optimization technique deserves further investigation for characterizing an optimality
notion for XPath expressions (as briefly mentioned in section4), and ensuring that all kinds of redundancies and
contradictions can be detected. In addition, the continuity of this work would require looking at decision issues
and algorithmic complexity.

Finally, the real world application of this work relies on our ability to extend the XPath fragment we consider.
The next step - our underlying goal - is to address potential scalability issues. The introduction of thecount(p),
position() and last() primitives in qualifiers are of very first importance, both for the expressive power and for
showing the potential of the logic-based framework we are working on. Handling quantitative assertions seems
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quite tractable using a Presburger-like arithmetic (known to be decidable) together with rules such as:

p1 ≤ p2

count (p1) ≤ count (p2) 0 ≤ count (p)

Another promising direction would be to consider structural constraints on documents (so-calledschemas) in order
to handle more precise containment assertions in the same conceptual framework.
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W3C Working Draft, August, 2003, http://www.w3.org/TR/2003/WD-xpath20-20030822.

[14] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys, J. Siméon, P. Wadler,XQuery 1.0 and XPath 2.0
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A XPath Semantics

Two functionsS andQ respectively define the semantics of paths and qualifiers, provided a context nodex in the
tree:

S : Path−→ Node−→ Set(Node)
S[[∧]]x = {x1 | x1 _+ x ∧ root(x1)}
S[[⊥]]x = ∅
S[[p1 p p2]]x = S[[p1]]x ∪ S[[p2]]x
S[[p1 ∩ p2]]x = {x1 | x1 ∈ S[[p1]]x ∧ x1 ∈ S[[p2]]x}
S[[p1/p2]]x = {x2 | x1 ∈ S[[p1]]x ∧ x2 ∈ S[[p2]]x1

}
S[[(p)]]x = S[[p]]x
S[[p[q]]]x = {x1 | x1 ∈ S[[p]]x ∧Q[[q]]x1}
S[[a::N ]]x = {x1 | x1 ∈ fa(x) ∧ Ta(x1, N)}

Q : Qualifier−→ Node−→ Boolean
Q[[true]]x = true
Q[[false]]x = false
Q[[q1 and q2]]x = Q[[q1]]x ∧Q[[q2]]x
Q[[q1 or q2]]x = Q[[q1]]x ∨Q[[q2]]x
Q[[(q)]]x = Q[[q]]x
Q[[not q]]x = ¬Q[[q]]x
Q[[p1 v p2]]x = S[[p1]]x ⊆ S[[p2]]x

The navigational semantics of axes relies on the relation_ that maps a node to its children in the XML tree,
and on the transitive closure_+ of this relation; the functionT performs a node test (see the tables below)

a fa(x)

self {x}
child {x1 | x _ x1}

descendant {x1 | x _+ x1}
descendant-or-self {x} ∪ {x1 | x _+ x1}

attribute {x1 | x _ x1 ∧ attribute(x1)}
namespace {x1 | x _ x1 ∧ namespace(x1)}

N a Ta(N, x)

n name(x)=n
∗ attribute attribute(x)
∗ namespace namespace(x)
∗ other element(x)

text() text(x)
comment() comment(x)

processing-instruction() pi(x)
element() element(x)

node() true

B Experimental Environment

We conducted experiments on a laptop PC (IBM Thinkpad T22). It has an Intel(R) Pentium(R) 3 CPU 900Mhz,
256MB RAM and a 56GB (7200 RPM) hard drive. The PC runs Windows XP Professional version 2002 SP1. We
installed the binaries versions of Xalan C++ 1.7.0 and Libxml 2.6.4 for win32.

Test Programs Our test program uses static linking to call the original Libxml2 and Xalan DLLs, found in
the distributions. The test programs basically initialize the XPath engine, and then determines the time spent to
evaluate an XPath expression by recording the system time before and after a call:

• to the method “xmlXPathEvalExpression()”, in charge of the evaluation when using Libxml;

• to the method “evaluate ()” of the class “XPathEvaluator” when using Xalan.

The test programs were compiled with Microsoft Visual C++ 6.0 in release mode (debug mode switched off). We
isolated the machine for testing. Only the test program and normal operating system background processes are
running during the testing period.

Random Experiment We generated random XML documents for testing with the following configurable pa-
rameters:

• Thedepth factorrepresents the level of nesting of elements in the XML document, in order to model the
recursive structure of a document model. The depth factor controls the depth of subtrees and can be fixed
or randomly chosen from a range.

• The width factor describes the number of children of a non-leaf node in the tree, in order to model the
bushiness of an XML instance. The width factor can be fixed or randomly chosen from a range.
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• The number of element namesdescribes the number of possible element names, in order to model the
cardinality of a namespace allowed by a document model. This factor is fixed.

The tree is made random in two ways:

1. In order to capture a broad range of different topologies, the depth and width of any subtree is made random
to test with short, bushy trees, or deep, skinny trees or some combination thereof. Because of limited
memory, we considered depth and width factors up to 12. The sizes of the smallest and largest XML
documents used for testing were respectively 1KB and 15MB.

2. Each node in the tree can become any element from the allowed range with the same probability, e.g. if
the number of element names is 26, a node in the tree will either be named “a” or “b”... or “z” in an
equiprobable way. This allows us to vary the query match probability from low to high, in order to test
when XPath expressions have a higher chance to match and retrieve large result sets, or when queries have
a lower chance to match and retrieve small result sets, or some combination thereof.
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