
HAL Id: inria-00423382
https://inria.hal.science/inria-00423382

Submitted on 9 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compiling XPath into a State-less Forward-only Subset
Pierre Genevès, Kristoffer Rose

To cite this version:
Pierre Genevès, Kristoffer Rose. Compiling XPath into a State-less Forward-only Subset. First In-
ternational Workshop on High Performance XML Processing, May 2004, New York, United States.
�inria-00423382�

https://inria.hal.science/inria-00423382
https://hal.archives-ouvertes.fr

Compiling XPath into a State-less Forward-only Subset

Pierre Genev̀es∗ Kristoffer Rose
IBM T. J. Watson Research Center

May 18, 2004

Abstract

We show how thecontext stateof XPath, accessed
through theposition() andlast() pseudo-functions,
can be eliminated in most cases by translating refer-
ences to the context state with an equivalent context-
free expression, and how this enables the use of context
state in combination with a subsequent “forward-only”
transformation, allowing for execution of (almost) full
XPath on any of the emerging “streaming” subsets.

Specifically we show how the “normalization” into a
“core” language as proposed in the current W3C “Last
Call” draft of the XPath/XQuery Formal Semantics can
be extended such that the context state and reverse axes
can be eliminated from the core XPath (and potentially
XQuery) language.

1 Introduction

XPath [6] is emerging as the dominant notation for de-
scribingselectionof nodes in XML data as well as for
performing (basic) computations over the values stored
in the nodes. The idea of XPath is to “navigate” XML
data in “steps” that each move the “focus” from one
node to another. The language for specifying steps is
very rich in what kind of node associations one can use
to navigate between them in order to make it as easy as
possible to reach any focus of interest from any other.

However, when XML is stored or transmitted then the
system architecture often imposes limitations on what
kinds of navigation are efficient for the XML data as

∗Currently INRIA Rĥone-Alpes; this work done while visiting
Watson in the summer of 2003.

well as what kinds of data can be selected. For example,

• When storing XML data in a single file follow-
ing the XML standard [5], then only so-called
“streaming” access, where the nodes are visited in
left-to-right tree order, is truly efficient, and it is
hard to represent a reference to a specific node in
the data.

• When storing XML data in an indexed table per
element name then it is possible to reference indi-
vidual nodes and efficient to extract all nodes with
the same element name but expensive to follow the
tree structure.

Since XPath allows any conceivable access policy then
current mainstream XPath implementations such as
Xalan [1] implement XPath by copying the entire XML
data contents into a linked memory structure such as
the Document Object Model that then easily supports
the full XPath language [16].

Indeed many cite this concern as a reason for not us-
ing XPath at all but instead inventing and using a subset
that can be efficiently implemented on top of the desired
data structure; especially the sequential or streaming
case has attracted attention as this is the natural access
policy for generic textual XML files [3, 7, 10, 12, 14].

However, work has also been undertaken to attempt
to adapt and optimize general XPath to specific data ac-
cess policies in the form of schema constraints [9] or to
streaming [2, 13]. However, these adaptations are rather
complicated because of the size of the XPath language.

In this work we propose a way to translate the full
XPath language into a minimal subset based on the
XPath/XQuery formal semantics [8]core expression

1

language. Specifically we propose the following staged
approach as our translation:

Normalization. Transform the XPath expression into
an equivalent expression in the minimal but fully
expressive “XPath core” language specified in the
XPath/XQuery formal semantics.

Eliminate context position. All references1 to the
context position (and size) are replaced by an ex-
pression computing the context position from the
context node.

Eliminate reverse axes.Steps involving a reverse axis
are converted to steps using the corresponding for-
ward axis to facilitate streaming.

Leveraging our translation on the XPath 2 normaliza-
tion translation makes our job much easier and more
transparent. The elimination of the context position is
important because it frees implementations from fol-
lowing the notion of “iteration over a sequence” oper-
ationally since index numbers are just values like any
other – in a sense the expressions that come out of the
context position elimination stage are as data access
policy independent as possible.

The last stage specializes the expression to facilitate
streaming and indeed the final translated term is suffi-
ciently simple that it should be implementable by any of
the streaming subsets mentioned above; we have based
our implementation on theχαoς algorithm [2].

The remainder of this paper first illustrates our idea
with an example in Section 2 that we shall also use
to introduce the parts of the formal semantics core
XPath/XQuery language that are not in XPath 1.0 [6].
The following two sections explain the transformations
in detail: “statelessness” in Section 3 and “forward-
only” in Section 4. Finally we conclude in Section 5.

2 Example

Consider the XPath expression

/descendant::employee/ancestor::manager[1]

which enumerates allemployee elements and then col-
lects for each the closestmanager ancestor element. In

1Actually only all local references to the context state can be elim-
inated; we explain this below.

this section we will explain the three translation stages
for this expression.

Normalization to core XPath. The first translation
stage, normalization, translates the expression into the
core expression shown in Figure 1, makes the semantics
much more explicit by expressing the individual path
steps.2 The full core language and the precise normal-

ddo(
let $seq := $root/descendant::employee
return
for $dot in $seq
return
let $seq := ddo($dot/ancestor::manager)
return
let $last := count($seq)
return
for $dot at $rpos in $seq
return
let $pos := $last - $rpos + 1
return
if $pos eq 1 then $dot else ()

)

Figure 1: Normalized sample expression.

ization rules are given in the XPath/XQuery formal se-
mantics [8]; here we will just explain the parts we have
used that are not part of XPath [6]:3

let $v:=Expr1 return Expr2. Computes the first ex-
pression,Expr1, and then computes the second ex-
pression,Expr2 with the variable$v bound to the
value computed for the first expression.

for $dot at $pos in $seq return Expr. Iterates
over the sequence$seq (which must be given
as a variable) and concatenates all the result of
computing the expression,Expr, with $dot bound
to each of the members of the sequence value,
in order, and$pos bound to the index number of
each member in the sequence (corresponding to
the value of theposition() pseudo-function in
XPath).

2Here and in the remainder of the paper we have allowed some
simplifications compared to the even more verbose expression pro-
duced by the formally specified normalization rules.

3The “last call” draft of XPath 2.0 [4] includes some of these.

2

self
ancestor

descendant

pr
ec

ed
ing

following

following-sibling

preceding-sibling

child

parent

Figure 2: Axis partitions for context node.

if Expr1 then Expr2 else Expr3. Computes Expr1
and, depending on the truth value, returns the
result of computing eitherExpr2 or Expr3.

<<. Binary test of whether two nodes are in left-to-right
document order.

intersect. Binary node operations that construct the
intersection of the operand node sequences. The
result is in document order without duplicates.

(). The empty sequence, similar to/.. in XPath 1.

ddo(Expr). ddo(Expr) is equivalent to
(Expr intersect Expr), i.e., it orders the
parameter node sequence in document order
without duplicates.

$root, $dot, $seq, pos, andlast. Variables that
are consistently bound to the document root,
context node, context sequence, context position,
and context size, respectively.

Like the original XPath expression, the normalized ex-
pression involves one use of a reverse axis,ancestor,
and one use of the context position, present as the incon-
spicuousat $rpos in the lastfor expression that binds
the name$rpos to the current position of the node be-
ing processed by thefor expression.

Notice that position() and last() do not ap-
pear explicitly in normalized expressions: instead the
generic variable names$pos and$last are used – in-
deed we can use the same variable names in each loop
corresponding to an XPath path step because XPath 1
only allows access to one context sequence and node.

ddo(
let $seq := $root/descendant::employee
return
for $dot in $seq
return
let $seq := $dot/ancestor::manager
return
let $last := count($seq)
return
for $dot in $seq
return
let $rpos :=
count($dot/ancestor-or-self::manager)

return
let $pos := $last - $rpos + 1
return
if $pos eq 1 then $dot else ()

)

Figure 3: Stateless version of sample.

3

Eliminating context position state. The second
rewriting step is meant to rewrite the core XPath expres-
sions to eliminate the implicitly updated context state.
Here we can exploit the symmetry of the XPath axes:
the position can be calculated from expressions rela-
tive to the current node and the node that generated the
context sequence. This is because these two nodes de-
fine a clean partitioning of the complete collection of
nodes. Figure 2 illustrates this (and we formalize it be-
low). Specifically we can observe that for the index of
a node in the sequence

ddo($dot/ancestor::NodeTest)

can be computed by

count(ancestor-or-self::NodeTest)

when the context node is one of the nodes in the se-
quence. Notice that we have expressed the equiva-
lencewith the ddo document ordering function gener-
ated by the normalization transformation, so for the re-
verse axes we are really computing the position from
the end of the sequence (from which the proper po-
sition is then indeed derived in the generated code by
the subsequent calculation of$pos). However,after the
translation this reordering serves no purpose as the in-
dex binding it was used for is now independent of the
actual order.

Applying this to our sample expression gives the core
expression in Figure 3, where we compute the reverse
position variable$rpos explicitly, avoidingat.

Reverse axis elimimination. The third and final
transformation is about making sure that only forward
axes are used. Again it is based on the axis symmetries,
in fact very closely based on equivalences like those of
the “looking forward” analysis [13] extended to handle
variable binding.

For our example the reverseancestor axis, now
occuring twice, is converted to the forward converse
descendant axis by observing that the nodes generated
by the context

$dot/ancestor::manager

ddo(
let $managers := $root/descendant-or-self::manager
return
let $seq := $root/descendant::employee
return
for $dot in $seq
return
let $seq :=
for $d in $managers
return
if $d/descendant::node() intersect $dot
then $d else ()

return
let $last := count($seq)
return
for $dot in $seq
return
let $rpos := count(
for $d in $managers
return
if $d/descendant-or-self::node() intersect $dot
then $d else ()

)
return
let $pos := $last - $rpos + 1
return
if $pos eq 1 then $dot else ()

)

Figure 4: Stateless & forward version of sample.

can be generated by a search

let $s:=/descendant-or-self::manager return

for $d in $s return

if $dotintersect$d/descendant::node()

then $d else ()

Applied to our example that becomes the expression
shown in Figure 4: instead of using the ancestor axis
we search allpotentialancestors and for each test that it
has the context node as a descendant.

Notice that both ancestor expressions are separately
expanded and that there cannot be sharing between
the two because they operate from different context
nodes (except for the top-level search expression that
is shared): the reversal transformation does somecode
duplicationthat we will discuss in the conclusion.

3 Eliminating context position.

To eliminate state we must modify the XPath expression
into another expression without any use of theat binder

4

in for constructions. This is achieved by

• Keeping track for every node sequencelet vari-
able what the defining step is.

• For every occurrence ofat replace it with an ex-
plicit let binding to a computation of the index.

As explained in the introduction, the basic idea is that
the index can be recomputed for every node by counting
the nodes in the context sequence that occur before the
context node except in a the (few but common) cases
where the XPath axis symmetries provide a more direct
way to compute the count.

Figure 5 formally specifies the translationSas a “de-
rivor”, written SJExprKρ, where

• The Expr parameter is the one that is rewritten
(and since it is source language syntax we surround
it with the special “syntax” bracesJK).

• The additional parameterρ maps all node se-
quence variables that are in scope to the axis and
node-test used. It supports two operations:

– ρ[Var 7→ Axis::NodeTest] returns a new en-
vironment which is like theρ environment
except it includes a description that theVar
variable is a node sequence constructed us-
ing theAxis::NodeTestpath step.

– ρ(Var) denotes the most recent pair
Axis::NodeTestadded to theρ environment
for $Var.

Note that the derivor is only specified formally for the
interesting cases – for all other expression forms it is
just distributed over the subexpressions,e.g.,

SJExpr1+Expr2K ρ = SJExpr1Kρ + SJExpr2Kρ

Finally, we observe the inherent limitation in this
approach:The global context state is not eliminated.
Thus instances ofposition() andlast() used at the
top level of XPath queries should not be translated but
merely return the global context’s position and size, re-
spectively.

4 Eliminating Reverse Axes

The elimination of reverse axes also proceeds based on
the symmetries illustrated in Figure 2: The nodes in the

sequence constructed by the reverse axis are instead ob-
tained bysearchingfor ways to reach the context node
from any node, using the symmetric forward axis. The
search succeeds for a candidate reverse axis node if the
intersection of the converse forward axis finds the con-
text node from the candidate node.

Again we have only specified the interesting case,
namely the translation of an actual reverse step.

5 Conclusion

We have shown how a XPath 1.0 node selection (path
expression) can be translated into a form with no ex-
plicit use of non-top-level context position (or size) and
using only forward axes. However, our approach has
certain limitations:

• The context position elimination transformation
relies on the property of XPath 1.0 that all se-
quences that are indexed (withposition()) must
be defined by a single XPath “step” expression
with an explicit axis and node test.

• We rely on the efficiency of a few primitive
operations that are not in XPath 1.0, namely
document order comparison (<<) and intersec-
tion (intersect). These are highly efficient in
streamning implementations but may be costly in
other contexts.

Thus while the approach is certainly viable for a stream-
ing XPath 1.0 implementation it is not clear how useful
the framework is for other combinations of primitives.
We would like to investigate in particular how much of
the full core XPath 2.0/XQuery [8] that can be imple-
mented in this way.

In future work we will relate the translation to the
formal semantics of XPath (and XQuery) [8] as well as
the classical semantics of Wadler [15]: In terms of a
formal semantics we would like to prove that

FJSJExprK /0K

evaluates to the same values asExpr in any context, that
is, in any dynamic environment where an XPath expres-
sion evaluates to a result value, the same result value can
be obtained from the transformed XPath.

We also plan to report runtimes of using the perfor-
mance results in connection with streaming by using the

5

various streaming subsets as backends for the transfor-
mation.

References

[1] Apache Foundation, Xalan XSLT implemen-
tations, http://xml.apache.org/xalan-j and
http://xml.apache.org/xalan-c.

[2] C. Barton, P. Charles, D. Goyal, M. Raghavachari,
V. Josifovski, and Marcus F. Fontoura,Stream-
ing XPath Processing with Forward and Backward
Axes, ICDE - International Conference on Data
Engineering, Bangalore, India, March, 2003.

[3] O. Becker, Extended SAX Filter Processing
with STX, Extreme Markup Languages, Au-
gust 4-8, 2003, http://www.idealliance.org/papers/
extreme03.

[4] A. Berglund, S. Boag, D. Chamberlin, M.
Ferńandez, M. Kay, J. Robie, and J. Siméon,
XML Path Language (XPath) 2.0, W3C Working
Draft, August 2003, http://www.w3.org/TR/2003/
WD-xpath20-20030822.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen,
E. Maler, F. Yergeau (editors),Extensible
Markup Language (XML) 1.0 (Third Edi-
tion), W3C Recommendation, February
2004, http://www.w3.org/TR/2004/REC-xml-
20040204.

[6] J. Clark, S. DeRose,XML Path Language
(XPath) Version 1.0, W3C Recommendation,
November 1999, http://www.w3.org/TR/1999/
REC-xpath-19991116

[7] A. Desai, Introduction to Sequential XPath,
Proc. of IDEAlliance XML Conference, 2001,
http://www.idealliance.org/papers/xml2001/
papers/html/05-01-01.html.

[8] D. Draper, P. Fankhauser, M. Fernández, A.
Malhotra, K. Rose, M. Rys, J. Siḿeon, P.
Wadler, XQuery 1.0 and XPath 2.0 Formal
Semantics, W3C Working Draft, August,
2003, http://www.w3.org/TR/2003/WD-xquery-
semantics-20030822/.

[9] M. Ferńandez, D. Suciu,Optimizing Regular Path
Expressions Using Graph Schemas, In Proc. of
the Fourteenth International Conference on Data
Engineering, pages 14-23, Orlando, Florida, Feb.
1998.

[10] A. K. Gupta, D. Suciu,Stream Processing of
XPath Queries with Predicates, In Proc. of
the ACM SIGMOD International Conference on
Management of Data, pages 419-430, San Diego,
California, 2003.

[11] IBM and BEA, Service Data Objects, Novem-
ber 2003, http://www.ibm.com/developerworks/
java/library/j-commonj-sdowmt; also JSR 235,
http://www.jcp.org/en/jsr/detail?id=235.

[12] L. V. S. Lakshmanan and P. Sailaja,On Effi-
cient Matching of Streaming XML Documents and
Queries, In Proc. of the Extending Database Tech-
nology International Conference, Prague, Czech
Republic, March 2002.

[13] D. Olteanu, H. Meuss, T. Furche, F. Bry,XPath:
Looking Forward, In Proc. of the EDBT Workshop
on XML Data Management (XMLDM), 2002.

[14] F. Peng, S. S. Chawathe,XPath Queries on
Streaming Data, In Proceedings of the ACM SIG-
MOD International Conference on Management
of Data. June 2003. San Diego, California.

[15] P. Wadler, Two semantics for XPath, Jan-
uary 2000, http://homepages.inf.ed.ac.uk/wadler/
papers/xpath-semantics/xpath-semantics.pdf.

[16] R. Whitmer (editor), Document Object
Model (DOM) Level 3 XPath Specification,
W3C Working Group Note, February 2004,
http://www.w3.org/TR/2004/NOTE-DOM-Level-
3-XPath-20040226.

6

SJ·K : Expr→ (Var → Expr)→ Expr

SJlet $Varseq :=ForwardAxis::NodeTestreturn ExprKρ
= let $Varseq :=ForwardAxis::NodeTestreturn SJExprK(ρ[Varseq 7→ ForwardAxis::NodeTest])

SJlet $Varseq :=ddo(ReverseAxis::NodeTest) return ExprKρ
= let $Varseq :=ReverseAxis::NodeTestreturn SJExprK(ρ[Varseq 7→ ReverseAxis::NodeTest])

SJlet $Varseq :=ddo(Expr1) return Expr2Kρ
= let $Varseq :=ddo(SJExpr1Kρ) return SJExpr2K(ρ[Varseq 7→ SJExpr1Kρ])

SJfor $Vardot at $Varpos in $Varseq return ExprKρ
= for $Vardot in $Varseq return let $Varpos :=Exprposreturn SJExprKρ

whereExprpos is given by the following table:

ρ(Varseq) Exprpos

self::NodeTest 1
child::NodeTest count(preceding-sibling::NodeTest)+1
parent::NodeTest 1
ancestor::NodeTest count(ancestor-or-self::NodeTest)
ancestor-or-self::NodeTest count(ancestor-or-self::NodeTest)
otherExpr let $Vard :=$Vardot return

count(for $Vardot in $Varseq return
if node-before($Vardot,$Vard) then $Vardot else ())+1

where$Vard is a fresh variable

Figure 5: Transformation to Stateless form.

FJ·K : Expr→ Expr

FJReverseAxis::NodeTestK
= let $Varseq := J/descendant-or-self::NodeTestKExpr return

let $Vard :=$Vardot return

for $Vardot in $Varseq return

if exists(intersect($Vard, ForwardAxis::node())) then $Vardot else ()

whereJKExpr denotes the normalization described in XQuery 1.0 an XPath 2.0 Formal Semantics;Vard should be
chosen fresh; and theForwardAxisis determined from theReverseAxisby this table:

ReverseAxis ForwardAxis
parent child
ancestor descendant

ancestor-or-self descendant-or-self
preceding-sibling following-sibling

preceding following

Figure 6: Converting reverse steps to forward steps.

7

