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We study the problem of finding peers matching a given availability
pattern in a peer-to-peer (P2P) system. Motivated by practical exam-
ples, we specify two formal problems of availability matching that arise in
real applications: disconnection matching, where peers look for partners
expected to disconnect at the same time, and presence matching, where
peers look for partners expected to be online simultaneously in the fu-
ture. As a scalable and inexpensive solution, we propose to use epidemic
protocols for topology management; we provide corresponding metrics for
both matching problems. We evaluated this solution by simulating two
P2P applications, task scheduling and file storage, over a new trace of the
eDonkey network, the largest available with availability information. We
first proved the existence of regularity patterns in the sessions of 14M
peers over 27 days. We also showed that, using only 7 days of history, a
simple predictor could select predictable peers and successfully predicted
their online periods for the next week. Finally, simulations showed that
our simple solution provided good partners fast enough to match the needs
of both applications, and that consequently, these applications performed
as efficiently at a much lower cost. We believe that this work will be
useful for many P2P applications for which it has been shown that choos-
ing good partners, based on their availability, drastically improves their
performance and stability.

1 Introduction

Churn is one of the most critical characteristics of peer-to-peer (P2P) net-
works, as the permanent flow of peer connections and disconnections can
seriously hamper the efficiency of applications [9]. Fortunately, it has been
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shown that, for many peers, these events globally obey some availability
patterns ([21,22,2]), and so, can be predicted from the uptime history of
those peers [18].

To take advantage of these predictions, applications need to be able to
dynamically find good partners for peers, according to these availability
patterns, even in large-scale unstructured networks. The intrinsic con-
stitution of those networks makes pure random matching techniques to
be time-inefficient facing churn. Basic usage of prediction based on node
availability exists in the literature, as e.g. for file replication [16].

In this paper, we study a generic technique to discover such partners,
and apply it for two particular matching problems: disconnection match-
ing, where peers look for partners expected to disconnect at the same
time, and presence matching, where peers look for partners expected to
be online simultaneously in the future. These problems are specified in
Section 2.

We then propose to use standard epidemic protocols for topology man-
agement to solve these problems (see e.g. [12,24]); such protocols have
proven to be efficient for a large panel of applications, from overlay slic-
ing [13] to IP-TV overlay maintenance [14] for example. However, in order
to converge to the desired state or topology (here matched peers), those
protocols require good metrics to compute the distance between peers.
Such metrics and a well known epidemic protocol, T-Man [12], are de-
scribed in Section 3.

To evaluate the efficiency of our proposal, we simulated an applica-
tion for each matching problem: an application of task scheduling, where
tasks of multiple remote jobs are started by all the peers in the network
(disconnection matching), and an application of P2P file-system, where
peers replicate files on other peers to have them highly available (pres-
ence matching). These applications are specified in Section 5.

To run our simulations on a realistic workload, we collected a new
trace of peer availability on the eDonkey file-sharing network. With the
connections and disconnection of 14M peers over 27 days, this trace is
the largest available workload, concerning peers’ availability. In Section 4,
we show that peers in this trace exhibit availability patterns, and, using
a simple 7-day predictor, that it is possible to select predictable peers
and successfully predict their behavior over the following week. The new
eDonkey trace and this simple predictor are studied in Section 4.

Our simulation results showed that our T-Man based solution is able
to provide good partners to all peers, for both applications. Using avail-
ability patterns, both applications are able to keep the same performance,



while consuming 30% less resources, compared to a random selection of
partners. Moreover, T-Man is scalable and inexpensive, making the solu-
tion usable for any application and network size. These results are detailed
in Section 6.

We believe that many P2P systems and applications can benefit from
this work, as a lot of availability-aware applications have been proposed
in the literature [3, 8,20, 5, 25]. Close to our work, Godfrey et al. [9] show
that strategies based on the longest current uptime are more efficient
than uptime-agnostic strategies for replica placement; Mickens et al. [18§]
introduce sophisticated availability predictors and shows that they can be
very successful. However, to the best of our knowledge, this paper is the
first to deal with the problem of finding the best partners according to
availability patterns in a large-scale network. Moreover, previous results
are often computed on synthetic traces or small traces of P2P networks.

2 Problem Specification

This section presents two availability matching problems, disconnection
matching and presence matching. Each problem is abstracted from the
needs of a practical P2P application that we describe afterward. But first,
we start by introducing our system model.

2.1 System and Network Model

We assume a fully-connected asynchronous P2P network of IV nodes, with
N usually ranging from thousands to millions of nodes. We assume that
there is a constant bound n. on the number of simultaneous connections
that a peer can engage in, typically much smaller than N. When peers
leave the system, they disconnect silently. However, we assume that dis-
connections are detected after a time Ay, for example 30 seconds with
TCP keep-alive.

For each peer x, we assume the existence of an availability prediction
Pr*(t), starting at the current time ¢ and for a period 7" in the future, such
that Pr®(t) is a set of non-overlapping intervals during which z is expected
to be online. Since these predictions are based on previous measures of
availability for peer x, we assume that such measures are reliable, even in
the presence of malicious peers [19,17].

We note |JPr®(t) the set defined by the union of the intervals of
Pr®(t), and ||S|| the size of a set S.
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Fig. 1. Disconnection Matching: peer y is a better match than peer z for peer z.

2.2 The Problem of Disconnection Matching

Intuitively, the problem of Disconnection Matching is, for a peer online
at a given time, to find a set of other online peers who are expected to
disconnect at the same time.

Formally, for a peer x online at time ¢, an online peer y is a better match
for Disconnection Matching than an online peer z if [t¥ — t¥| < [t¥ — 7|,
where [t,t%[€ Pr¥(t), [t,tY]e Pr¥(t) and [t,t*[€ Pr*(t). The problem of
Disconnection Matching DM (n) is to discover the n best matches of online
peers at anytime.

The problem of disconnection matching typically arises in applications
where a peer tries to find partners with whom it wants to collaborate until
the end of its session, in particular when starting such a collaboration
might be expensive in terms of resources.

An example of such an application is task scheduling in P2P networks.
In Zorilla [7] for example, a peer can submit a computation task of n jobs
to the system. In such a case, the peer tries to locate n online peers (with
expanding ring search) to become partners for the task, and executes
the n jobs on these partners. When the computation is over, the peer
collects the n results from the n partners. With disconnection matching,
such a system becomes much more efficient: by choosing partners who are
likely to disconnect at the same time as the peer, the system increases the
probability that:

— If the peer does not disconnect too early, its partners will have time
to finish executing their jobs before disconnecting and he will be able
to collect the results;

— If the peer disconnects before the end of the computation, partners will
not waste unnecessary resources as they are also likely to disconnect
at the same time.
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Fig. 2. Presence Matching: peer y is a better match than peer z for peer z.

2.3 The Problem of Presence Matching

Intuitively, the problem of Presence Matching is, for a peer online at a
given time, to find a set of other online peers who are expected to be
connected at the same time in the future.

Formally, for a peer x online at time ¢, an online peer y is a better
match for Unfair Presence Matching than an online peer z if:

1Jpr@nlJprrml<IJeronlerol
This problem is called unfair, since peers who are always online appear
to be best matches for all other peers in the system, whereas only other
always-on peers are best matches for them. Since some fairness is wanted in
most P2P systems, offline periods should also be considered. Consequently,
y is a better match than z for Presence Matching if:

U Pret) U Pre)l _ [IUPr() 0 U Pre()l
U Prz=@)ulUPre@) — |[[UPrv(t) U Pre(d)l]

The problem of Presence Matching PM (n) is to discover the n best
matches of online peers at anytime.

The problem of presence matching arises in applications where a peer
wants to find partners that will be available at the same time in other
sessions. This is typically the case when huge amount of data have to be
transferred, and that partners will have to communicate a lot to use that
data.

An example of such an application is storage of files in P2P networks
[4]. For example, in Pastiche [6], each peer in the system has to find other
peers to store its files. Since files can only be used when the peer is online,
the best partners for a peer (at equivalent stability) are the peers who are
expected to be online when the peer itself is online.

Moreover, in a P2P backup system[8], peers usually replace the replica
that cannot be connected for a given period, to maintain a given level of
data redundancy. Using presence matching, such applications can increase
the probability of being able to connect to all their partners, thus reducing
their maintenance cost.




3 Uptime Matching with Epidemic Protocols

We think that epidemic protocols [12,23,15,24] are good approximate
solutions for these matching problems. Here, we present one of these pro-
tocols, T-Man[12] and, since such protocols rely heavily on appropriate
metrics, we propose a metric for each matching problem.

3.1 Distributed Matching with T-Man

T-Man is a well-known epidemic protocol, usually used to associate each
peer in the network with a set of good partners, given a metric (distance
function) between peers. Even in large-scale networks, T-Man converges
fast, and provides a good approximation of the optimal solution in a few
rounds, where each round costs only four messages in average per peer.

In T-Man, each peer maintains two small sets, its random view and
its metric view, which are, respectively, some random neighbors, and the
current best candidates for partnership, according to the metric in use.
During each round, every peer updates its views: with one random peer
in its random view, it merges the two random views, and keeps the most
recently seen peers in its random view; with the best peer in its metric
view, it merges all the views, and keeps only the best peers, according to
the metric, in its metric view.

This double scheme guarantees a permanent shuffle of the random
views, while ensuring fast convergence of the metric views towards the
optimal solution. Consequently, the choice of a good metric is very impor-
tant. We propose such metrics for the two availability matching problems
in the next part.

3.2 Metrics for Availability Matching

To compute efficiently the distance between peers, the prediction Pr®(t)
is approximated by a bitmap of size m, pred”, where entry pred”[i] is 1 if
[ixT/m, (i+1) x T/m] is included in an interval of Pr®(t) for 0 <i < m.
Note that these metrics can be used with any epidemic protocol, not only
with T-Man.

Disconnection Matching The metric computes the time between the
disconnections of two peers. In case of equality, the PM-distance of 3.2 is
used to prefer peers with the same availability periods:

DM-distance(z,y) = |I* — IY|+ PM-distance(z, y) where
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Fig. 3. Diurnal patterns are clearly visible when we plot the number of online peers
at any time in our 27-day eDonkey trace. Depending on the time of the day, between
300,000 and 600,000 users are connected to a single eDonkey server.

I" = min{0 < i < m|pred”[i] = 1 A pred®[i + 1] = 0}

Presence Matching The metric first computes the ratio of co-availability
(time where both peers were simultaneously online) on total availability
(time where at least one peer was online). Since the distance should be
close to 0 when peers are close, we then reverse the value on [0,1]:

. > 0<i<m min(pred®[i],pred¥[i])
PM-distance(z,y) = 1 — Zc?;:m maz (pred™ [,pred” [

Note that, while the PM-distance value is in [0,1], the DM-distance
value is in [0,m].

4 Simulation Settings

We evaluated our a solution based on T-Man on two applications, one
for each matching problem. In this section, we describe our simulation
settings. In particular, we describe the characteristics of the trace we col-
lected for the needs of this study, with more than 300,000 online peers
on 27 days. With a few thousand peers online at the same time, most
other traces collected on P2P systems [21, 10, 2] lack massive connection
and disconnection trends, for the study of availability patterns on a large
scale.
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Fig. 4. Peers achieve their best auto-correlation (ressemblance between sessions after a
given period) between sessions for a one-day period or a one-week period. Consequently,
peers are highly likely to connect at almost the same time the next day or the next
week.

4.1 A new eDonkey Trace

In 2007, we collected the connection and disconnection events from the
logs of one of the main eDonkey servers in Europe. Edonkey is currently
the most used P2P file-sharing network in the world. Our trace, available
on our website [1], contains more than 200 millions of connections by
more than 14 millions of peers, over a period of 27 days. To analyse this
trace, we first filtered useless connections (shorter than 10 minutes) and
suspicious ones (too repetitive, simultaneous or with changing identifiers),
leading to a filtered trace of 12 million peers.

The number of peers online at the same time in the filtered trace is
usually more than 300,000, as shown by Fig. 3. Global diurnal patterns
of around 100,000 users are also clearly visible: as shown by previous
studies [11], most eDonkey users are located in Europe, and so, their
daily offline periods are only partially compensated by connections from
other continents.

For every peer in the filtered trace, the auto-correlation on its avail-
ability periods was computed on 14 days, with a step of one minute. For
a given peer, the period for which the auto-correlation is maximum gives
its best pattern size. The number of peers with a given best pattern size is
plotted on Fig. 4, and shows, as could be expected, that the best pattern
size is a day, and much further, a week.



4.2 Filtering and Prediction

Our goal in these simulations was to evaluate the efficiency of our match-
ing protocol, and not the efficiency of availability predictors, as already
done in [18]. As a consequence, we implemented a very straightforward
predictor, that uses a 7-day window of availability history to compute the
daily pattern of a peer: for each interval of 10 minutes in a day, its value is
the number of days in the week where the peer was available during that
full interval:

pattern?[i] = Xye(o.e)history?[d x 24 x 60/10 + 1]
This predictor has two purposes:

— It should help the application to decide which peers are predictable,
and thus, which peers can benefit from an improved quality of service.
This gives an incentive for peers to participate regularly to the system;

— it should help the application to predict future connections and dis-
connections of the selected peers.

To select predictable peers, the predictor computes, for each peer, the
maximum and the mean covariance of the peer daily pattern. For these
simulations, we computed a set, called predictable set, containing peers
matching with the following properties:

— The maximum value in pattern is at least 5: each peer was available
at least five days during the last week exactly at the same time;

— The average covariance in pattern is greater than 28: each peer has a
sharply-shaped behavior;

— Peer availability is greater than 0.1: peers have to contribute enough
to the system:;

— Peer availability is smaller than 0.9: peers which are always online
would bias positively our simulations.

In our eDonkey trace, this predictable set contains 19,600 such peers.
Note that this relatively small amount of peers, w.r.t. the total number of
peers in our trace, does not mean that eDonkey peers are not predictable:
our trace concerns only a part of eDonkey users at measure time (around
10%, those connected to eDonkey Server N.2). Users that leave may join
another server (e.g. Server N.1, a larger one), which makes them invisible
in our trace, even though they are still using eDonkey. For every peer
in the set, the predictor predicts that the peer will be online in a given
interval if the peer’s daily pattern value for that interval is at least 5, and
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Fig. 5. Whereas availability determines the prediction with random bitmaps, daily
patterns improve the prediction with real bitmaps (e.g. for 60% of peers (x=0.4), 50%
of predictions (y=0.5) are successful, but only 25% with random bitmaps).

otherwise predicts nothing (we never predict that a peer will be offline).
The ratio of successful predictions after a week for the full following week
is plotted on Fig. 5. It shows that predictions cannot be only explained
by accidental availability, and prove the presence of availability patterns
in the trace.

We purposely chose a very simple predictor, as we are interested in
showing that patterns of presence are visible and can benefit applications,
even with a worst-case approach. Therefore, we expect that better results
would be achieved using more sophisticated predictors, such as described
in [18], and for an optimal pattern size of one day instead of a week.

4.3 General Simulation Setup

A simulator was developed from scratch to run the simulations on a Linux
3.2 GHz Xeon computer, for the 19,600 peers of the predictable set from
Section 4.2. Their behaviors on 14-days were extracted from the eDon-
key trace: the first 7 days were used to compute a prediction, and that
prediction, without updates, was used to execute the protocol on the fol-
lowing seven days. During one round of the simulator, all online peers in
random order evaluate one T-Man round, corresponding to one minute of
the trace. As explained later, both applications were delayed by a period
of 10 minutes after a peer would come online to allow T-Man to provide
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a useful metric view. The computation of a complete run did not exceed
two hours and 6 GB of memory footprint.

5 Simulated Applications

In this section, we describe the two applications that we used to illustrate
the need for an efficient protocol for distributed availability matching. Our
goal is not to improve the performance of these applications, as this can
be done by an aggressive greedy algorithm, but to save resources using
availability information.

5.1 Disconnection Matching: Task Scheduling

To evaluate the efficiency of T-Man and the DM-distance metric, we sim-
ulated a distributed task scheduling application. In this application, every
peer starts a task after 10 minutes online: a task is composed of 3 jobs of
4 hours on remote partners, and is completed if the peer and its partners
are still online after 4 hours to collect the results.

The 2 first hours of each job are devoted to the download of the data
needed for the computation from a central server. As a consequence, a
peer can decide not to start a task to save the bandwidth of the central
server. In our simulation, such a decision is taken when the prediction
of the peer availability shows that the peer is going to go offline before
completion of the task.

5.2 Presence Matching: P2P File-Storage

To evaluate the efficiency of T-Man and the PM-distance metric, we sim-
ulated a P2P file storage application. In this application, every peer repli-
cates its data to its partners, ten minutes after coming online for the first
time, in the hope that he will be able to use this remote data the next
time it will be online.

The size of the data of each peer is supposed to be large, hundred of
megabytes of example. As a consequence, it is important for the system to
use as little redundancy as possible to achieve high co-availability of data
(i.e. availability of the peer and at least one of its data replica). Finding
good partners in the network is expected to provide replica which are
more likely to be available at the same time as the peer, thus decreasing
the need for more replicas.

11



Impact of Disconnection Matching for P2P scheduling
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Fig. 6. A task is a set of three remote jobs of 4 hours started by every peer, ten minutes
after coming online. A task is successful when the peer and its partners are still online
after 4 hours to collect the results. Using availability predictions, a peer can decide not
to start a task expected to abort, leading to fewer aborted tasks. Using disconnection
matching, it can find good partners and it can still complete almost as many tasks as
the much more expensive random strategy.

6 Simulation Results

In this section, we present the results of our simulations of the two applica-
tions. We are not interested in the raw performance of these applications,
but in the savings that could be achieved by using availability information
and partner matching.

6.1 Results for Disconnection Matching

We compared Disconnection Matching with a Random choice of partners
(actually, using partners within T-Man random view) for the distributed
task scheduling application. The number of completed tasks and the num-
ber of aborted tasks are plotted on Fig. 6, for the first day, the 7** day
and the whole week.

Prediction of availability decreased by 68% the number of aborted
tasks on average over a week, corresponding to 50% of bandwidth savings
on the data server, while decreasing the number of completed tasks by
only 17%.

These results were largely improved using one-day prediction, since
one-week prediction is expected to be less accurate (see auto-correlation

12



Impact of Presence Matching for P2P File Storage
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Fig. 7. 10 minutes after coming online for the first time, each peer creates a given
number of replica for its data. Co-availability is defined by the simultaneous presence
of the peer and at least one replica. Using presence matching, fewer replicas are needed
to achieve better results than using a random choice of partners. Even the 7th day,
using a 6-day old prediction, the system still performs much more efficiently, almost
compensating the general loss in availability.

in Section 4.1). Indeed, bandwidth savings were about 43% for Disconnec-
tion Matching, while completing 20% more tasks. Thus, it is much more
interesting from a performance point of view to use one-day prediction ev-
ery day instead of one-week prediction, although savings are still possible
with one-week predictions.

6.2 Results for Presence Matching

We compared Presence Matching with a Random choice of replica loca-
tions for the P2P file-system application. The co-availability of the peer
and at least one replica is plotted on Fig. 7, for different number of repli-
cas.

Using presence matching, fewer replicas were needed to achieve better
results than using a random choice of partners. For example, 1 replica
with Presence Matching gives a better co-availability than 2 replicas with
Random Choice; 5 replicas with Presence Matching give a co-availability
of 95% which is only achieved using 9 replicas with Random Choice. As
for the other application, week-old predictions performed still better than
random choice in the same orders.

13



7 Discussion and Conclusion

In this paper, we showed that epidemic protocols for topology manage-
ment can be efficient to find good partners in availability-aware networks.
Simulations proved that, using one of these protocols and appropriate
metrics, such applications can be less expensive and still perform with an
equivalent or better quality of service. We used a worst-case scenario: a
simple predictor, and a trace collected from a highly volatile file-sharing
network, where only a small subset of peers provide predictable behav-
iors. Consequently, we expect that a real application would take even more
benefit from availability matching protocols.

In particular, until this work, availability-aware applications were lim-
ited to using predictions or availability information to better choose among
a limited set of neighbors. This work opens the door to new availability-
aware applications, where best partners are chosen among all available
peers in the network. It is a useful complement to the work done on
measuring availability[19,17] and using these measures to predict future
availability|[18].
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