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Finding Good Partners inAvailability-aware P2P NetworksStevens Le Blond1, Fabri
e Le Fessant2, Erwan Le Merrer3⋆

1 INRIA Sophia Antipolis,stevens.le_blond�inria.fr,
2 INRIA Sa
lay,fabri
e.le_fessant�inria.fr,
3 INRIA Rennes,elemerre�irisa.frWe study the problem of �nding peers mat
hing a given availabilitypattern in a peer-to-peer (P2P) system. Motivated by pra
ti
al exam-ples, we spe
ify two formal problems of availability mat
hing that arise inreal appli
ations: dis
onne
tion mat
hing, where peers look for partnersexpe
ted to dis
onne
t at the same time, and presen
e mat
hing, wherepeers look for partners expe
ted to be online simultaneously in the fu-ture. As a s
alable and inexpensive solution, we propose to use epidemi
proto
ols for topology management; we provide 
orresponding metri
s forboth mat
hing problems. We evaluated this solution by simulating twoP2P appli
ations, task s
heduling and �le storage, over a new tra
e of theeDonkey network, the largest available with availability information. We�rst proved the existen
e of regularity patterns in the sessions of 14Mpeers over 27 days. We also showed that, using only 7 days of history, asimple predi
tor 
ould sele
t predi
table peers and su

essfully predi
tedtheir online periods for the next week. Finally, simulations showed thatour simple solution provided good partners fast enough to mat
h the needsof both appli
ations, and that 
onsequently, these appli
ations performedas e�
iently at a mu
h lower 
ost. We believe that this work will beuseful for many P2P appli
ations for whi
h it has been shown that 
hoos-ing good partners, based on their availability, drasti
ally improves theirperforman
e and stability.1 Introdu
tionChurn is one of the most 
riti
al 
hara
teristi
s of peer-to-peer (P2P) net-works, as the permanent �ow of peer 
onne
tions and dis
onne
tions 
anseriously hamper the e�
ien
y of appli
ations [9℄. Fortunately, it has been
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shown that, for many peers, these events globally obey some availabilitypatterns ([21, 22, 2℄), and so, 
an be predi
ted from the uptime history ofthose peers [18℄.To take advantage of these predi
tions, appli
ations need to be able todynami
ally �nd good partners for peers, a

ording to these availabilitypatterns, even in large-s
ale unstru
tured networks. The intrinsi
 
on-stitution of those networks makes pure random mat
hing te
hniques tobe time-ine�
ient fa
ing 
hurn. Basi
 usage of predi
tion based on nodeavailability exists in the literature, as e.g. for �le repli
ation [16℄.In this paper, we study a generi
 te
hnique to dis
over su
h partners,and apply it for two parti
ular mat
hing problems: dis
onne
tion mat
h-ing, where peers look for partners expe
ted to dis
onne
t at the sametime, and presen
e mat
hing, where peers look for partners expe
ted tobe online simultaneously in the future. These problems are spe
i�ed inSe
tion 2.We then propose to use standard epidemi
 proto
ols for topology man-agement to solve these problems (see e.g. [12, 24℄); su
h proto
ols haveproven to be e�
ient for a large panel of appli
ations, from overlay sli
-ing [13℄ to IP-TV overlay maintenan
e [14℄ for example. However, in orderto 
onverge to the desired state or topology (here mat
hed peers), thoseproto
ols require good metri
s to 
ompute the distan
e between peers.Su
h metri
s and a well known epidemi
 proto
ol, T-Man [12℄, are de-s
ribed in Se
tion 3.To evaluate the e�
ien
y of our proposal, we simulated an appli
a-tion for ea
h mat
hing problem: an appli
ation of task s
heduling, wheretasks of multiple remote jobs are started by all the peers in the network(dis
onne
tion mat
hing), and an appli
ation of P2P �le-system, wherepeers repli
ate �les on other peers to have them highly available (pres-en
e mat
hing). These appli
ations are spe
i�ed in Se
tion 5.To run our simulations on a realisti
 workload, we 
olle
ted a newtra
e of peer availability on the eDonkey �le-sharing network. With the
onne
tions and dis
onne
tion of 14M peers over 27 days, this tra
e isthe largest available workload, 
on
erning peers' availability. In Se
tion 4,we show that peers in this tra
e exhibit availability patterns, and, usinga simple 7-day predi
tor, that it is possible to sele
t predi
table peersand su

essfully predi
t their behavior over the following week. The neweDonkey tra
e and this simple predi
tor are studied in Se
tion 4.Our simulation results showed that our T-Man based solution is ableto provide good partners to all peers, for both appli
ations. Using avail-ability patterns, both appli
ations are able to keep the same performan
e,2



while 
onsuming 30% less resour
es, 
ompared to a random sele
tion ofpartners. Moreover, T-Man is s
alable and inexpensive, making the solu-tion usable for any appli
ation and network size. These results are detailedin Se
tion 6.We believe that many P2P systems and appli
ations 
an bene�t fromthis work, as a lot of availability-aware appli
ations have been proposedin the literature [3, 8, 20, 5, 25℄. Close to our work, Godfrey et al. [9℄ showthat strategies based on the longest 
urrent uptime are more e�
ientthan uptime-agnosti
 strategies for repli
a pla
ement; Mi
kens et al. [18℄introdu
e sophisti
ated availability predi
tors and shows that they 
an bevery su

essful. However, to the best of our knowledge, this paper is the�rst to deal with the problem of �nding the best partners a

ording toavailability patterns in a large-s
ale network. Moreover, previous resultsare often 
omputed on syntheti
 tra
es or small tra
es of P2P networks.2 Problem Spe
i�
ationThis se
tion presents two availability mat
hing problems, dis
onne
tionmat
hing and presen
e mat
hing. Ea
h problem is abstra
ted from theneeds of a pra
ti
al P2P appli
ation that we des
ribe afterward. But �rst,we start by introdu
ing our system model.2.1 System and Network ModelWe assume a fully-
onne
ted asyn
hronous P2P network of N nodes, with
N usually ranging from thousands to millions of nodes. We assume thatthere is a 
onstant bound nc on the number of simultaneous 
onne
tionsthat a peer 
an engage in, typi
ally mu
h smaller than N . When peersleave the system, they dis
onne
t silently. However, we assume that dis-
onne
tions are dete
ted after a time ∆disc, for example 30 se
onds withTCP keep-alive.For ea
h peer x, we assume the existen
e of an availability predi
tion
Prx(t), starting at the 
urrent time t and for a period T in the future, su
hthat Prx(t) is a set of non-overlapping intervals during whi
h x is expe
tedto be online. Sin
e these predi
tions are based on previous measures ofavailability for peer x, we assume that su
h measures are reliable, even inthe presen
e of mali
ious peers [19, 17℄.We note ⋃

Prx(t) the set de�ned by the union of the intervals of
Prx(t), and ||S|| the size of a set S. 3



Fig. 1. Dis
onne
tion Mat
hing: peer y is a better mat
h than peer z for peer x.2.2 The Problem of Dis
onne
tion Mat
hingIntuitively, the problem of Dis
onne
tion Mat
hing is, for a peer onlineat a given time, to �nd a set of other online peers who are expe
ted todis
onne
t at the same time.Formally, for a peer x online at time t, an online peer y is a better mat
hfor Dis
onne
tion Mat
hing than an online peer z if |tx − ty| < |tx − tz|,where [t, tx[∈ Prx(t), [t, ty[∈ Pry(t) and [t, tz[∈ Prz(t). The problem ofDis
onne
tion Mat
hing DM(n) is to dis
over the n best mat
hes of onlinepeers at anytime.The problem of dis
onne
tion mat
hing typi
ally arises in appli
ationswhere a peer tries to �nd partners with whom it wants to 
ollaborate untilthe end of its session, in parti
ular when starting su
h a 
ollaborationmight be expensive in terms of resour
es.An example of su
h an appli
ation is task s
heduling in P2P networks.In Zorilla [7℄ for example, a peer 
an submit a 
omputation task of n jobsto the system. In su
h a 
ase, the peer tries to lo
ate n online peers (withexpanding ring sear
h) to be
ome partners for the task, and exe
utesthe n jobs on these partners. When the 
omputation is over, the peer
olle
ts the n results from the n partners. With dis
onne
tion mat
hing,su
h a system be
omes mu
h more e�
ient: by 
hoosing partners who arelikely to dis
onne
t at the same time as the peer, the system in
reases theprobability that:� If the peer does not dis
onne
t too early, its partners will have timeto �nish exe
uting their jobs before dis
onne
ting and he will be ableto 
olle
t the results;� If the peer dis
onne
ts before the end of the 
omputation, partners willnot waste unne
essary resour
es as they are also likely to dis
onne
tat the same time.4



Fig. 2. Presen
e Mat
hing: peer y is a better mat
h than peer z for peer x.2.3 The Problem of Presen
e Mat
hingIntuitively, the problem of Presen
e Mat
hing is, for a peer online at agiven time, to �nd a set of other online peers who are expe
ted to be
onne
ted at the same time in the future.Formally, for a peer x online at time t, an online peer y is a bettermat
h for Unfair Presen
e Mat
hing than an online peer z if:
||

⋃
Prz(t) ∩

⋃
Prx(t)|| < ||

⋃
Pry(t) ∩

⋃
Prx(t)||This problem is 
alled unfair, sin
e peers who are always online appearto be best mat
hes for all other peers in the system, whereas only otheralways-on peers are best mat
hes for them. Sin
e some fairness is wanted inmost P2P systems, o�ine periods should also be 
onsidered. Consequently,

y is a better mat
h than z for Presen
e Mat
hing if:
||

⋃
Prz(t) ∩

⋃
Prx(t)||

||
⋃

Prz(t) ∪
⋃

Prx(t)|
<

||
⋃

Pry(t) ∩
⋃

Prx(t)||

||
⋃

Pry(t) ∪
⋃

Prx(t)||The problem of Presen
e Mat
hing PM(n) is to dis
over the n bestmat
hes of online peers at anytime.The problem of presen
e mat
hing arises in appli
ations where a peerwants to �nd partners that will be available at the same time in othersessions. This is typi
ally the 
ase when huge amount of data have to betransferred, and that partners will have to 
ommuni
ate a lot to use thatdata.An example of su
h an appli
ation is storage of �les in P2P networks[4℄. For example, in Pasti
he [6℄, ea
h peer in the system has to �nd otherpeers to store its �les. Sin
e �les 
an only be used when the peer is online,the best partners for a peer (at equivalent stability) are the peers who areexpe
ted to be online when the peer itself is online.Moreover, in a P2P ba
kup system[8℄, peers usually repla
e the repli
athat 
annot be 
onne
ted for a given period, to maintain a given level ofdata redundan
y. Using presen
e mat
hing, su
h appli
ations 
an in
reasethe probability of being able to 
onne
t to all their partners, thus redu
ingtheir maintenan
e 
ost. 5



3 Uptime Mat
hing with Epidemi
 Proto
olsWe think that epidemi
 proto
ols [12, 23, 15, 24℄ are good approximatesolutions for these mat
hing problems. Here, we present one of these pro-to
ols, T-Man[12℄ and, sin
e su
h proto
ols rely heavily on appropriatemetri
s, we propose a metri
 for ea
h mat
hing problem.3.1 Distributed Mat
hing with T-ManT-Man is a well-known epidemi
 proto
ol, usually used to asso
iate ea
hpeer in the network with a set of good partners, given a metri
 (distan
efun
tion) between peers. Even in large-s
ale networks, T-Man 
onvergesfast, and provides a good approximation of the optimal solution in a fewrounds, where ea
h round 
osts only four messages in average per peer.In T-Man, ea
h peer maintains two small sets, its random view andits metri
 view, whi
h are, respe
tively, some random neighbors, and the
urrent best 
andidates for partnership, a

ording to the metri
 in use.During ea
h round, every peer updates its views: with one random peerin its random view, it merges the two random views, and keeps the mostre
ently seen peers in its random view; with the best peer in its metri
view, it merges all the views, and keeps only the best peers, a

ording tothe metri
, in its metri
 view.This double s
heme guarantees a permanent shu�e of the randomviews, while ensuring fast 
onvergen
e of the metri
 views towards theoptimal solution. Consequently, the 
hoi
e of a good metri
 is very impor-tant. We propose su
h metri
s for the two availability mat
hing problemsin the next part.3.2 Metri
s for Availability Mat
hingTo 
ompute e�
iently the distan
e between peers, the predi
tion Prx(t)is approximated by a bitmap of size m, predx, where entry predx[i] is 1 if
[i×T/m, (i+1)×T/m[ is in
luded in an interval of Prx(t) for 0 ≤ i < m.Note that these metri
s 
an be used with any epidemi
 proto
ol, not onlywith T-Man.Dis
onne
tion Mat
hing The metri
 
omputes the time between thedis
onne
tions of two peers. In 
ase of equality, the PM-distan
e of 3.2 isused to prefer peers with the same availability periods:DM-distan
e(x, y) = |Ix − Iy|+ PM-distan
e(x, y) where6



 0

 100000

 200000

 300000

 400000

 500000

 600000

 0  5  10  15  20  25  30

N
um

be
r 

of
 P

ee
rs

Days

Global System Availability

Online PeersFig. 3. Diurnal patterns are 
learly visible when we plot the number of online peersat any time in our 27-day eDonkey tra
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onne
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Ix = min{0 ≤ i < m|predx[i] = 1 ∧ predx[i + 1] = 0}Presen
e Mat
hing The metri
 �rst 
omputes the ratio of 
o-availability(time where both peers were simultaneously online) on total availability(time where at least one peer was online). Sin
e the distan
e should be
lose to 0 when peers are 
lose, we then reverse the value on [0,1℄:PM-distan
e(x, y) = 1 −

P

0≤i<m min(predx[i],predy[i])
P

0≤i<m max(predx[i],predy [i])Note that, while the PM-distan
e value is in [0,1℄, the DM-distan
evalue is in [0,m℄.4 Simulation SettingsWe evaluated our a solution based on T-Man on two appli
ations, onefor ea
h mat
hing problem. In this se
tion, we des
ribe our simulationsettings. In parti
ular, we des
ribe the 
hara
teristi
s of the tra
e we 
ol-le
ted for the needs of this study, with more than 300,000 online peerson 27 days. With a few thousand peers online at the same time, mostother tra
es 
olle
ted on P2P systems [21, 10, 2℄ la
k massive 
onne
tionand dis
onne
tion trends, for the study of availability patterns on a larges
ale. 7
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Fig. 4. Peers a
hieve their best auto-
orrelation (ressemblan
e between sessions after agiven period) between sessions for a one-day period or a one-week period. Consequently,peers are highly likely to 
onne
t at almost the same time the next day or the nextweek.4.1 A new eDonkey Tra
eIn 2007, we 
olle
ted the 
onne
tion and dis
onne
tion events from thelogs of one of the main eDonkey servers in Europe. Edonkey is 
urrentlythe most used P2P �le-sharing network in the world. Our tra
e, availableon our website [1℄, 
ontains more than 200 millions of 
onne
tions bymore than 14 millions of peers, over a period of 27 days. To analyse thistra
e, we �rst �ltered useless 
onne
tions (shorter than 10 minutes) andsuspi
ious ones (too repetitive, simultaneous or with 
hanging identi�ers),leading to a �ltered tra
e of 12 million peers.The number of peers online at the same time in the �ltered tra
e isusually more than 300,000, as shown by Fig. 3. Global diurnal patternsof around 100,000 users are also 
learly visible: as shown by previousstudies [11℄, most eDonkey users are lo
ated in Europe, and so, theirdaily o�ine periods are only partially 
ompensated by 
onne
tions fromother 
ontinents.For every peer in the �ltered tra
e, the auto-
orrelation on its avail-ability periods was 
omputed on 14 days, with a step of one minute. Fora given peer, the period for whi
h the auto-
orrelation is maximum givesits best pattern size. The number of peers with a given best pattern size isplotted on Fig. 4, and shows, as 
ould be expe
ted, that the best patternsize is a day, and mu
h further, a week.8



4.2 Filtering and Predi
tionOur goal in these simulations was to evaluate the e�
ien
y of our mat
h-ing proto
ol, and not the e�
ien
y of availability predi
tors, as alreadydone in [18℄. As a 
onsequen
e, we implemented a very straightforwardpredi
tor, that uses a 7-day window of availability history to 
ompute thedaily pattern of a peer: for ea
h interval of 10 minutes in a day, its value isthe number of days in the week where the peer was available during thatfull interval:
patternp[i] = Σd∈[0:6]historyp[d ∗ 24 ∗ 60/10 + i]This predi
tor has two purposes:� It should help the appli
ation to de
ide whi
h peers are predi
table,and thus, whi
h peers 
an bene�t from an improved quality of servi
e.This gives an in
entive for peers to parti
ipate regularly to the system;� it should help the appli
ation to predi
t future 
onne
tions and dis-
onne
tions of the sele
ted peers.To sele
t predi
table peers, the predi
tor 
omputes, for ea
h peer, themaximum and the mean 
ovarian
e of the peer daily pattern. For thesesimulations, we 
omputed a set, 
alled predi
table set, 
ontaining peersmat
hing with the following properties:� The maximum value in pattern is at least 5: ea
h peer was availableat least �ve days during the last week exa
tly at the same time;� The average 
ovarian
e in pattern is greater than 28: ea
h peer has asharply-shaped behavior;� Peer availability is greater than 0.1: peers have to 
ontribute enoughto the system;� Peer availability is smaller than 0.9: peers whi
h are always onlinewould bias positively our simulations.In our eDonkey tra
e, this predi
table set 
ontains 19,600 su
h peers.Note that this relatively small amount of peers, w.r.t. the total number ofpeers in our tra
e, does not mean that eDonkey peers are not predi
table:our tra
e 
on
erns only a part of eDonkey users at measure time (around

10%, those 
onne
ted to eDonkey Server N.2). Users that leave may joinanother server (e.g. Server N.1, a larger one), whi
h makes them invisiblein our tra
e, even though they are still using eDonkey. For every peerin the set, the predi
tor predi
ts that the peer will be online in a giveninterval if the peer's daily pattern value for that interval is at least 5, and9
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AvailabilityFig. 5. Whereas availability determines the predi
tion with random bitmaps, dailypatterns improve the predi
tion with real bitmaps (e.g. for 60% of peers (x=0.4), 50%of predi
tions (y=0.5) are su

essful, but only 25% with random bitmaps).otherwise predi
ts nothing (we never predi
t that a peer will be o�ine).The ratio of su

essful predi
tions after a week for the full following weekis plotted on Fig. 5. It shows that predi
tions 
annot be only explainedby a

idental availability, and prove the presen
e of availability patternsin the tra
e.We purposely 
hose a very simple predi
tor, as we are interested inshowing that patterns of presen
e are visible and 
an bene�t appli
ations,even with a worst-
ase approa
h. Therefore, we expe
t that better resultswould be a
hieved using more sophisti
ated predi
tors, su
h as des
ribedin [18℄, and for an optimal pattern size of one day instead of a week.4.3 General Simulation SetupA simulator was developed from s
rat
h to run the simulations on a Linux3.2 GHz Xeon 
omputer, for the 19,600 peers of the predi
table set fromSe
tion 4.2. Their behaviors on 14-days were extra
ted from the eDon-key tra
e: the �rst 7 days were used to 
ompute a predi
tion, and thatpredi
tion, without updates, was used to exe
ute the proto
ol on the fol-lowing seven days. During one round of the simulator, all online peers inrandom order evaluate one T-Man round, 
orresponding to one minute ofthe tra
e. As explained later, both appli
ations were delayed by a periodof 10 minutes after a peer would 
ome online to allow T-Man to provide10



a useful metri
 view. The 
omputation of a 
omplete run did not ex
eedtwo hours and 6 GB of memory footprint.5 Simulated Appli
ationsIn this se
tion, we des
ribe the two appli
ations that we used to illustratethe need for an e�
ient proto
ol for distributed availability mat
hing. Ourgoal is not to improve the performan
e of these appli
ations, as this 
anbe done by an aggressive greedy algorithm, but to save resour
es usingavailability information.5.1 Dis
onne
tion Mat
hing: Task S
hedulingTo evaluate the e�
ien
y of T-Man and the DM-distan
e metri
, we sim-ulated a distributed task s
heduling appli
ation. In this appli
ation, everypeer starts a task after 10 minutes online: a task is 
omposed of 3 jobs of4 hours on remote partners, and is 
ompleted if the peer and its partnersare still online after 4 hours to 
olle
t the results.The 2 �rst hours of ea
h job are devoted to the download of the dataneeded for the 
omputation from a 
entral server. As a 
onsequen
e, apeer 
an de
ide not to start a task to save the bandwidth of the 
entralserver. In our simulation, su
h a de
ision is taken when the predi
tionof the peer availability shows that the peer is going to go o�ine before
ompletion of the task.5.2 Presen
e Mat
hing: P2P File-StorageTo evaluate the e�
ien
y of T-Man and the PM-distan
e metri
, we sim-ulated a P2P �le storage appli
ation. In this appli
ation, every peer repli-
ates its data to its partners, ten minutes after 
oming online for the �rsttime, in the hope that he will be able to use this remote data the nexttime it will be online.The size of the data of ea
h peer is supposed to be large, hundred ofmegabytes of example. As a 
onsequen
e, it is important for the system touse as little redundan
y as possible to a
hieve high 
o-availability of data(i.e. availability of the peer and at least one of its data repli
a). Findinggood partners in the network is expe
ted to provide repli
a whi
h aremore likely to be available at the same time as the peer, thus de
reasingthe need for more repli
as. 11
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Week MeanDay +7Day + 1Fig. 6. A task is a set of three remote jobs of 4 hours started by every peer, ten minutesafter 
oming online. A task is su

essful when the peer and its partners are still onlineafter 4 hours to 
olle
t the results. Using availability predi
tions, a peer 
an de
ide notto start a task expe
ted to abort, leading to fewer aborted tasks. Using dis
onne
tionmat
hing, it 
an �nd good partners and it 
an still 
omplete almost as many tasks asthe mu
h more expensive random strategy.6 Simulation ResultsIn this se
tion, we present the results of our simulations of the two appli
a-tions. We are not interested in the raw performan
e of these appli
ations,but in the savings that 
ould be a
hieved by using availability informationand partner mat
hing.6.1 Results for Dis
onne
tion Mat
hingWe 
ompared Dis
onne
tion Mat
hing with a Random 
hoi
e of partners(a
tually, using partners within T-Man random view) for the distributedtask s
heduling appli
ation. The number of 
ompleted tasks and the num-ber of aborted tasks are plotted on Fig. 6, for the �rst day, the 7th dayand the whole week.Predi
tion of availability de
reased by 68% the number of abortedtasks on average over a week, 
orresponding to 50% of bandwidth savingson the data server, while de
reasing the number of 
ompleted tasks byonly 17%.These results were largely improved using one-day predi
tion, sin
eone-week predi
tion is expe
ted to be less a

urate (see auto-
orrelation12
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oming online for the �rst time, ea
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reates a givennumber of repli
a for its data. Co-availability is de�ned by the simultaneous presen
eof the peer and at least one repli
a. Using presen
e mat
hing, fewer repli
as are neededto a
hieve better results than using a random 
hoi
e of partners. Even the 7th day,using a 6-day old predi
tion, the system still performs mu
h more e�
iently, almost
ompensating the general loss in availability.in Se
tion 4.1). Indeed, bandwidth savings were about 43% for Dis
onne
-tion Mat
hing, while 
ompleting 20% more tasks. Thus, it is mu
h moreinteresting from a performan
e point of view to use one-day predi
tion ev-ery day instead of one-week predi
tion, although savings are still possiblewith one-week predi
tions.6.2 Results for Presen
e Mat
hingWe 
ompared Presen
e Mat
hing with a Random 
hoi
e of repli
a lo
a-tions for the P2P �le-system appli
ation. The 
o-availability of the peerand at least one repli
a is plotted on Fig. 7, for di�erent number of repli-
as.Using presen
e mat
hing, fewer repli
as were needed to a
hieve betterresults than using a random 
hoi
e of partners. For example, 1 repli
awith Presen
e Mat
hing gives a better 
o-availability than 2 repli
as withRandom Choi
e; 5 repli
as with Presen
e Mat
hing give a 
o-availabilityof 95% whi
h is only a
hieved using 9 repli
as with Random Choi
e. Asfor the other appli
ation, week-old predi
tions performed still better thanrandom 
hoi
e in the same orders. 13



7 Dis
ussion and Con
lusionIn this paper, we showed that epidemi
 proto
ols for topology manage-ment 
an be e�
ient to �nd good partners in availability-aware networks.Simulations proved that, using one of these proto
ols and appropriatemetri
s, su
h appli
ations 
an be less expensive and still perform with anequivalent or better quality of servi
e. We used a worst-
ase s
enario: asimple predi
tor, and a tra
e 
olle
ted from a highly volatile �le-sharingnetwork, where only a small subset of peers provide predi
table behav-iors. Consequently, we expe
t that a real appli
ation would take even morebene�t from availability mat
hing proto
ols.In parti
ular, until this work, availability-aware appli
ations were lim-ited to using predi
tions or availability information to better 
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