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RenPar'19 / SympA'13 / CFSE'7Toulouse, Fran
e, du 9 au 11 septembre 2009
Choix de partenaires en P2P suivant des 
ritères de disponibilitéStevens Le Blond, Fabri
e Le Fessant, Erwan Le MerrerINRIA Sophia-Antipolis/INRIA Sa
lay/INRIA Rennes{Stevens.Le-Blond,Fabri
e.Le-Fessant,Erwan.Le-Merrer}�inria.frRésuméNous étudions la problématique de re
her
he distribuée de pairs 
orrespondant à un motif dedisponibilité donné, dans un système pair-à-pair (P2P). Motivés par des exemples 
on
rets, nousspé
i�ons deux problèmes formels de 
orrespondan
e de disponibilité qui apparaissent dans desappli
ations réelles: la 
orrespondan
e de dé
onnexion, où les pairs 
her
hent des partenaires dontla dé
onnexion 
oïn
ide ave
 la leur, et la 
orrespondan
e de présen
e, où les pairs 
her
hent despartenaires 
onne
tés en même temps qu'eux dans le futur. Nous proposons, 
omme solutionpeu 
oûteuse et passant à l'é
helle, l'utilisation de proto
oles épidémiques pour la gestion de latopologie du réseau logique (
omme le proto
ole T-Man); des métriques adéquates sont fourniespour les deux problèmes de 
orrespondan
e. Notre solution a été évaluée en simulant deuxappli
ations P2P, l'ordonnan
ement de tâ
hes et le sto
kage de �
hiers, sur une tra
e inédited'eDonkey, la plus grande fournissant les informations de disponibilité des pairs. Nous prouvonstout d'abord l'existen
e de motifs réguliers dans les sessions de 14M de pairs sur 27 jours. Nousmontrons également, en utilisant 7 jours d'historique, qu'un prédi
teur simple peut séle
tionnerdes pairs prédi
tibles, pour prédire ave
 su

ès leur période de présen
e en ligne pour la semainesuivante. En�n, les simulations ont montré que notre solution simple a fourni rapidement debons partenaires a�n de répondre au besoin des deux appli
ations, et ainsi de leur permettrede s'exé
uter aussi e�
a
ement à un 
oût bien inférieur. Nous pensons que 
e travail sera utilepour beau
oup d'appli
ations P2P, pour lesquelles il a été montré que 
hoisir ses partenaires, ense basant sur leur disponibilité, améliore de façon 
onséquente les performan
es du système.1. Introdu
tionChurn is one of the most 
riti
al 
hara
teristi
s of peer-to-peer (P2P) networks, as the permanent�ow of peer 
onne
tions and dis
onne
tions 
an seriously hamper the e�
ien
y of appli
ations [9℄.Fortunately, it has been shown that, for many peers, these events globally obey some availabilitypatterns ([19, 20, 2℄), and so, 
an be predi
ted from the uptime history of those peers [15℄.To take advantage of these predi
tions, appli
ations need to be able to dynami
ally �nd goodpartners for peers, a

ording to these availability patterns, even in large-s
ale unstru
tured net-works. The intrinsi
 
onstitution of those networks makes pure random mat
hing te
hniques tobe time-ine�
ient fa
ing 
hurn.In this paper, we study a generi
 te
hnique to use su
h partners, and apply it for two parti
ularmat
hing problems: dis
onne
tion mat
hing , where peers look for partners expe
ted to dis
on-ne
t at the same time, and presen
e mat
hing, where peers look for partners expe
ted to beonline simultaneously in the future. These problems are spe
i�ed in Se
tion 2.We then propose to use standard epidemi
 proto
ols for topology management to solve theseproblems. However, in order to 
onverge to the desired state or topology (here mat
hed peers),



Figure 1: Dis
onne
tionMat
hing: peer y is a bet-ter mat
h than peer z forpeer x.su
h proto
ols require good metri
s to 
ompute the distan
e between peers. These metri
s anda well known epidemi
 proto
ol, T-Man[12℄, are des
ribed in Se
tion 3.To evaluate the e�
ien
y of our proposal, we simulated an appli
ation for ea
h mat
hing problem:an appli
ation of task s
heduling, where tasks of multiple remote jobs are started by all thepeers in the network (dis
onne
tion mat
hing), and an appli
ation of P2P �le-system, wherepeers repli
ate �les on other peers to make them highly available (presen
e mat
hing). Theseappli
ations are spe
i�ed in Se
tion 5.To run our simulations on a realisti
 workload, we 
olle
ted a new tra
e of peer availability on theeDonkey �le-sharing network. With the 
onne
tions and dis
onne
tions of 14 million peers over27 days, this tra
e is the largest available workload, with detailed information on the availabilityof peers. In Se
tion 4, we show that peers in this tra
e exhibit availability patterns, and, usinga simple 7-day predi
tor, that it is possible to sele
t predi
table peers and su

essfully predi
ttheir behavior over the following week. The new eDonkey tra
e and this simple predi
tor arestudied in Se
tion 4.Our simulation results showed that our T-Man based solution is able to provide good partnersto all peers, for both appli
ations. Using availability patterns, both appli
ations are able to keepthe same performan
e, while 
onsuming 30% less resour
es, 
ompared to a random sele
tionof partners. Moreover, T-Man is s
alable and inexpensive, making the solution usable for anyappli
ation and network size. These results are detailed in Se
tion 6.Finally, we brie�y present some related work in Se
tion 7 before 
on
luding in Se
tion 8.2. Problem Spe
i�
ationThis se
tion presents two availability mat
hing problems, dis
onne
tion mat
hing and presen
emat
hing. Ea
h problem is abstra
ted from the needs of a pra
ti
al P2P appli
ation that wedes
ribe afterwards. But �rst, we start by introdu
ing our system and network models.2.1. System and Network ModelsWe assume a fully-
onne
ted asyn
hronous P2P network of N nodes, with N usually rangingfrom thousands to millions of nodes. We assume that there is a 
onstant bound nc on the numberof simultaneous 
onne
tions that a peer 
an engage in, typi
ally mu
h smaller than N . Whenpeers leave the system, they dis
onne
t silently. However, we assume that dis
onne
tions aredete
ted after a time ∆disc, for example 30 se
onds with TCP keep-alive.For ea
h peer x, we assume the existen
e of an availability predi
tion Prx(t), starting at the
urrent time t and for a period T in the future, su
h that Prx(t) is a set of non-overlappingintervals during whi
h x is expe
ted to be online. These predi
tions are 
omputed on the historyof availability provided by x. In the presen
e of mali
ious peers, se
ure proto
ols for availabilitymeasurement [16, 14℄ must be used to 
he
k that x is not lying on its history.We note ⋃
Prx(t) the set de�ned by the union of the intervals of Prx(t), and ||S|| the size(
ardinal) of a set S. 2



Figure 2: Presen
e Mat
hing:peer y is a better mat
h than peer
z for peer x.2.2. The Problem of Dis
onne
tion Mat
hingIntuitively, the problem of Dis
onne
tion Mat
hing is, for a peer online at a given time, to �nda set of other online peers who are expe
ted to dis
onne
t at the same time.Formally, for a peer x online at time t, an online peer y is a better mat
h for Dis
onne
tionMat
hing than an online peer z if |tx − ty| < |tx − tz|, where [t, tx[∈ Prx(t), [t, ty[∈ Pry(t) and

[t, tz[∈ Prz(t). The problem of Dis
onne
tion Mat
hing DM(n) is to dis
over the n best mat
hesof online peers at anytime.The problem of Dis
onne
tion Mat
hing typi
ally arises in appli
ations where a peer tries to�nd partners with whom it wants to 
ollaborate until the end of its session, in parti
ular whenstarting su
h a 
ollaboration might be expensive in terms of resour
es.An example of su
h an appli
ation is task s
heduling in P2P networks. In Zorilla [7℄ for example,a peer 
an submit a 
omputation task of n jobs to the system. In su
h a 
ase, the peer tries tolo
ate n online peers (with expanding ring sear
h) to be
ome partners for the task, and exe
utesthe n jobs on these partners. When the 
omputation is over, the peer 
olle
ts the n results fromthe n partners. With Dis
onne
tion Mat
hing, su
h a system be
omes mu
h more e�
ient: by
hoosing partners who are likely to dis
onne
t at the same time as the peer, the system in
reasesthe probability that:
• If the peer does not dis
onne
t too early, its partners will have time to �nish exe
utingtheir jobs before dis
onne
ting and it will be able to 
olle
t the results;
• If the peer dis
onne
ts before the end of the 
omputation, partners will not waste unne
-essary resour
es as they are also likely to dis
onne
t at the same time.2.3. The Problem of Presen
e Mat
hingIntuitively, the problem of Presen
e Mat
hing is, for a peer online at a given time, to �nd a setof other online peers who are expe
ted to be 
onne
ted at the same time in the future.Formally, for a peer x online at time t, an online peer y is a better mat
h for Unfair Presen
eMat
hing than an online peer z if:

||
⋃

Prz(t) ∩
⋃

Prx(t)|| < ||
⋃

Pry(t) ∩
⋃

Prx(t)||This problem is 
alled unfair, sin
e peers who are always online appear to be best mat
hes forall other peers in the system, whereas only other always-on peers are best mat
hes for them.Sin
e some fairness is wanted in most P2P systems, o�ine periods should also be 
onsidered.Consequently, y is a better mat
h than z for Presen
e Mat
hing if:
||

⋃
Prz(t) ∩

⋃
Prx(t)||

||
⋃

Prz(t) ∪
⋃

Prx(t)|
<

||
⋃

Pry(t) ∩
⋃

Prx(t)||

||
⋃

Pry(t) ∪
⋃

Prx(t)||The problem of Presen
e Mat
hing PM(n) is to dis
over the n best mat
hes of online peers atanytime.The problem of presen
e mat
hing arises in appli
ations where a peer wants to �nd partnersthat will be available at the same time in other sessions. This is typi
ally the 
ase when huge3



amount of data have to be transferred, and that partners will have to 
ommuni
ate a lot to usethat data.An example of su
h an appli
ation is storage of �les in P2P networks [4, 6, 17℄. For example,in Pasti
he [6℄, ea
h peer in the system has to �nd other peers to store its �les. Sin
e �les 
anonly be used when the peer is online, the best partners for a peer (at equivalent stability) arethe peers who are expe
ted to be online when the peer itself is online.Moreover, in a P2P ba
kup system[8℄, peers usually repla
e the repli
a that 
annot be 
onne
tedfor a given period, to maintain a given level of data redundan
y. Using presen
e mat
hing,su
h appli
ations 
an in
rease the probability of being able to 
onne
t to all their partners, thusredu
ing their maintenan
e 
ost.3. Uptime Mat
hing with Epidemi
 Proto
olsWe think that epidemi
 proto
ols [21, 22, 13℄ are good approximate solutions for these mat
hingproblems. Here, we present one of these proto
ols, T-Man[12℄ and, sin
e su
h proto
ols relyheavily on appropriate metri
s, we propose two di�erent metri
s, one for ea
h mat
hing problem.3.1. Distributed Mat
hing with T-ManT-Man is a well-known epidemi
 proto
ol, usually used to asso
iate ea
h peer in the networkwith a set of good partners, given a metri
 (distan
e fun
tion) between peers. Even in large-s
alenetworks, T-Man 
onverges fast, and provides a good approximation of the optimal solution ina few rounds, where ea
h round 
osts only four messages in average per peer.In T-Man, ea
h peer maintains two small sets, its random view and its metri
 view, whi
h are,respe
tively, some random neighbors, and the 
urrent best 
andidates for partnership, a

ordingto the metri
 in use. During ea
h round, every peer updates its views: with one random peer inits random view, it merges the two random views, and keeps the most re
ently seen peers in itsrandom view; with the best peer in its metri
 view, it merges all the views, and keeps only thebest peers, a

ording to the metri
, in its metri
 view.This double s
heme guarantees a permanent shu�e of the random views, while ensuring fast
onvergen
e of the metri
 views towards the optimal solution. Consequently, the 
hoi
e of a goodmetri
 is very important. We propose su
h metri
s for the two availability mat
hing problemsin the next part.3.2. Metri
s for Availability Mat
hingTo 
ompute e�
iently the distan
e between peers, the predi
tion Prx(t) is approximated bya bitmap of size m, predx, where entry predx[i] is 1 if [i × T/m, (i + 1) × T/m[ is in
luded inan interval of Prx(t) for 0 ≤ i < m. Note that these metri
s 
an be used with any epidemi
proto
ol, not only with T-Man.3.2.1. Dis
onne
tion Mat
hingThe metri
 
omputes the time between the dis
onne
tions of two peers. In 
ase of equality, thePM-distan
e of 3.2.2 is used to prefer peers with the same availability periods:DM-distan
e(x, y) = |Ix − Iy|+ PM-distan
e(x, y) where
Ix = min{0 ≤ i < m|predx[i] = 1 ∧ predx[i + 1] = 0}

4
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Figure 3: Diurnal patterns are 
learly vis-ible when we plot the number of onlinepeers at any time in our 27-day eDon-key tra
e. Depending on the time of theday, between 300,000 and 600,000 usersare 
onne
ted to a single eDonkey server.3.2.2. Presen
e Mat
hingThe metri
 �rst 
omputes the ratio of 
o-availability (time where both peers were simultaneouslyonline) on total availability (time where at least one peer was online). Sin
e the distan
e shouldbe 
lose to 0 when peers are 
lose, we then reverse the value on [0,1℄:PM-distan
e(x, y) = 1 −
P

0≤i<m min(predx[i],predy [i])
P

0≤i<m max(predx[i],predy[i])Note that, while the PM-distan
e value is in [0,1℄, the DM-distan
e value is in [0,m℄.4. Simulation SettingsWe evaluated our a solution based on T-Man on two appli
ations, one for ea
h mat
hing problem.In this se
tion, we des
ribe our simulation settings. In parti
ular, we des
ribe the 
hara
teristi
sof the tra
e we 
olle
ted for the needs of this study, with more than 300,000 online peers on 27days. With a few thousand peers online at the same time, most other tra
es 
olle
ted on P2Psystems [19, 10, 2℄ la
k massive 
onne
tion and dis
onne
tion trends, for the study of availabilitypatterns on a large s
ale.4.1. A new eDonkey Tra
eIn 2007, we 
olle
ted the 
onne
tion and dis
onne
tion events from the logs of one of the maineDonkey servers in Europe. Edonkey is 
urrently the most used P2P �le-sharing network in theworld. Our tra
e, available on our website [1℄, 
ontains more than 200 millions of 
onne
tions bymore than 14 millions of peers, over a period of 27 days. To analyse this tra
e, we �rst �ltereduseless 
onne
tions (shorter than 10 minutes) and suspi
ious ones (too repetitive, simultaneousor with 
hanging identi�ers), leading to a �ltered tra
e of 12 million peers.The number of peers online at the same time in the �ltered tra
e is usually more than 300,000,as shown by Fig. 3. Global diurnal patterns of around 100,000 users are also 
learly visible: asshown by previous studies [11℄, most eDonkey users are lo
ated in Europe, and so, their dailyo�ine periods are only partially 
ompensated by 
onne
tions from other 
ontinents.For every peer in the �ltered tra
e, the auto-
orrelation on its availability periods was 
omputedon 14 days, with a step of one minute. For a given peer, the period for whi
h the auto-
orrelationis maximum gives its best pattern size. The number of peers with a given best pattern size isplotted on Fig. 4, and shows, as 
ould be expe
ted, that the best pattern size is a day, and mu
hfurther, a week. 5
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h peer, we 
omputedthe auto
orrelation (ressemblan
e) of itsavailability bitmap for di�erent o�sets.We then 
omputed and plotted for ea
hpeer the o�set (best pattern size) lead-ing to the maximal auto-
orrelation (bestressemblan
e). Most peers a
hieve theirbest auto-
orrelation for an o�set 
lose toone day or one week: peers are highlylikely to 
onne
t at almost the same timethe next day or the next week.4.2. Filtering and Predi
tionOur goal in these simulations was to evaluate the e�
ien
y of our mat
hing proto
ol, and not thee�
ien
y of availability predi
tors, as already done in [15℄. As a 
onsequen
e, we implemented avery straightforward predi
tor, that uses a 7-day window of availability history to 
ompute thedaily pattern of a peer: for ea
h interval of 10 minutes in a day, its value is the number of daysin the week where the peer was available during that full interval:
patternp[i] = Σd∈[0:6]historyp[d ∗ 24 ∗ 60/10 + i]This predi
tor has two purposes:

• It should help the appli
ation to de
ide whi
h peers are predi
table, and thus, whi
h peers
an bene�t from an improved quality of servi
e. This gives an in
entive for peers toparti
ipate regularly to the system;
• it should help the appli
ation to predi
t future 
onne
tions and dis
onne
tions of thesele
ted peers.To sele
t predi
table peers, the predi
tor 
omputes, for ea
h peer, the maximum and the mean
ovarian
e of the peer daily pattern. For these simulations, we 
omputed a set, 
alled predi
tableset, 
ontaining peers mat
hing with the following properties:
• The maximum value in pattern is at least 5: ea
h peer was available at least �ve daysduring the last week exa
tly at the same time;
• The average 
ovarian
e in pattern is greater than 28: ea
h peer has a sharply-shapedbehavior;
• Peer availability is greater than 0.1: peers have to 
ontribute enough to the system;
• Peer availability is smaller than 0.9: peers whi
h are always online would bias positivelyour simulations.In our eDonkey tra
e, this predi
table set 
ontains 19,600 su
h peers. For every peer in the set,the predi
tor predi
ts that the peer will be online in a given interval if the peer's daily patternvalue for that interval is at least 5, and otherwise predi
ts nothing (we never predi
t that a peerwill be o�ine). 6
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Figure 5: For ea
h peer, we used theavailability bitmap of the �rst week topredi
t its availability during the se
ondweek. We 
omputed the su

ess rateon the bitmap of the se
ond week, ora randomized bitmap with similar avail-ability. While availability determinesthe predi
tion su

ess with randomizedbitmaps, daily patterns improve the pre-di
tion with real bitmaps (e.g. for 40%of peers (x ≥ 0.6), more than 60% of thepredi
tions (y ≥ 0.6) are su

essful, butonly 30% with randomized bitmaps).Figure 5 shows that predi
tions 
annot be only explained by a

idental availability, and proves thepresen
e of availability patterns in the tra
e. The �gure plots the ratio of su

essful predi
tionsafter a week for the full following week. For ea
h peer in the predi
table set, we used its bitmapof availability on the �rst week of the tra
e to 
ompute its predi
ted availability for the se
ondweek. We then 
ompared the predi
tion with the real bitmap observed on the se
ond week, toobtain the predi
tion su

ess rate. However, even in the absen
e of availability patterns, thereis a non-null probability of su

ess when predi
ting that a peer is online, mostly depending onits availability. To take this probability into a

ount, we 
omputed a randomized bitmap ofthe se
ond week for ea
h peer, i.e. a bitmap with the same availability where patterns havebeen deleted by randomization. As expe
ted, we were more su

essful at predi
ting the realbitmap than the randomized one, therefore proving the existen
e of availability patterns, andthe probability of su

ess is 
lose to the peer availability for randomized bitmaps, i.e. withoutavailability patterns.We purposely 
hose a very simple predi
tor, as we are interested in showing that patterns ofpresen
e are visible and 
an bene�t appli
ations, even with a worst-
ase approa
h. Therefore,we expe
t that better results would be a
hieved using more sophisti
ated predi
tors, su
h asdes
ribed in [15℄, and for an optimal pattern size of one day instead of a week.4.3. General Simulation SetupA simulator was developed from s
rat
h to run the simulations on a Linux 3.2 GHz Xeon 
om-puter, for the 19,600 peers of the predi
table set from Se
tion 4.2. Their behaviors on 14-dayswere extra
ted from the eDonkey tra
e: the �rst 7 days were used to 
ompute a predi
tion, andthat predi
tion, without updates, was used to exe
ute the proto
ol on the following seven days.During one round of the simulator, all online peers in random order evaluate one T-Man round,
orresponding to one minute of the tra
e. As explained later, both appli
ations were delayedby a period of 10 minutes after a peer would 
ome online to allow T-Man to provide a usefulmetri
 view. The 
omputation of a 
omplete run did not ex
eed two hours and 6 GB of memoryfootprint.5. Simulated Appli
ationsIn this se
tion, we des
ribe the two appli
ations that we used to illustrate the need for an e�
ientproto
ol for distributed availability mat
hing. Our goal is not to improve the performan
e of7
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Figure 6: A task is a set of three remotejobs of 4 hours started by every peer, tenminutes after 
oming online. A task issu

essful when the peer and its partnersare still online after 4 hours to 
olle
t theresults. Using availability predi
tions, apeer 
an de
ide not to start a task ex-pe
ted to abort, leading to fewer abortedtasks. Using dis
onne
tion mat
hing, it
an �nd good partners and it 
an still
omplete almost as many tasks as themu
h more expensive random strategy.these appli
ations, as this 
an be done by an aggressive greedy algorithm, but to save resour
esusing availability information.5.1. Dis
onne
tion Mat
hing: Task S
hedulingTo evaluate the e�
ien
y of T-Man and the DM-distan
e metri
, we simulated a distributed tasks
heduling appli
ation. In this appli
ation, every peer starts a task after 10 minutes online: atask is 
omposed of 3 jobs of 4 hours on remote partners, and is 
ompleted if the peer and itspartners are still online after 4 hours to 
olle
t the results.The 2 �rst hours of ea
h job are devoted to the download of the data needed for the 
omputationfrom a 
entral server. As a 
onsequen
e, a peer 
an de
ide not to start a task to save thebandwidth of the 
entral server. In our simulation, su
h a de
ision is taken when the predi
tionof the peer availability shows that the peer is going to go o�ine before 
ompletion of the task.5.2. Presen
e Mat
hing: P2P File-StorageTo evaluate the e�
ien
y of T-Man and the PM-distan
e metri
, we simulated a P2P �le storageappli
ation. In this appli
ation, every peer repli
ates its data to its partners, ten minutes after
oming online for the �rst time, in the hope that it will be able to use this remote data the nexttime it will be online.The size of the data of ea
h peer is supposed to be large, hundred of megabytes of example. Asa 
onsequen
e, it is important for the system to use as little redundan
y as possible to a
hievehigh 
o-availability of data (i.e. availability of the peer and at least one of its data repli
a).Finding good partners in the network is expe
ted to provide repli
a whi
h are more likely to beavailable at the same time as the peer, thus de
reasing the need for more repli
as.6. Simulation ResultsIn this se
tion, we present the results of our simulations of the two appli
ations. We are notinterested in the raw performan
e of these appli
ations, but in the savings that 
ould be a
hievedby using availability information and partner mat
hing.6.1. Results for Dis
onne
tion Mat
hingWe 
ompared Dis
onne
tion Mat
hing with a Random 
hoi
e of partners (a
tually, using partnerswithin T-Man random view) for the distributed task s
heduling appli
ation. The number of
ompleted tasks and the number of aborted tasks are plotted on Fig. 6, for the �rst day, the 7th8
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Figure 7: 10 minutes after 
oming on-line for the �rst time, ea
h peer 
reates agiven number of repli
a for its data. Co-availability is de�ned by the simultane-ous presen
e of the peer and at least onerepli
a. Using presen
e mat
hing, fewerrepli
as are needed to a
hieve better re-sults than using a random 
hoi
e of part-ners. Even the 7th day, using a 6-dayold predi
tion, the system still performsmu
h more e�
iently, almost 
ompensat-ing the general loss in availability.day and the whole week.Predi
tion of availability de
reased by 68% the number of aborted tasks on average over a week,
orresponding to 50% of bandwidth savings on the data server, while de
reasing the number of
ompleted tasks by only 17%.These results were largely improved using one-day predi
tion, sin
e one-week predi
tion is ex-pe
ted to be less a

urate (see auto-
orrelation in Se
tion 4.1). Indeed, bandwidth savings wereabout 43% for Dis
onne
tion Mat
hing, while 
ompleting 20% more tasks. Thus, it is mu
hmore interesting from a performan
e point of view to use one-day predi
tion every day insteadof one-week predi
tion, although savings are still possible with one-week predi
tions.6.2. Results for Presen
e Mat
hingWe 
ompared Presen
e Mat
hing with a Random 
hoi
e of repli
a lo
ations for the P2P �le-system appli
ation. The 
o-availability of the peer and at least one repli
a is plotted on Fig. 7,for di�erent number of repli
as.Using presen
e mat
hing, fewer repli
as were needed to a
hieve better results than using a random
hoi
e of partners. For example, 1 repli
a with Presen
e Mat
hing gives a better 
o-availabilitythan 2 repli
as with Random Choi
e; 5 repli
as with Presen
e Mat
hing give a 
o-availability of95% whi
h is only a
hieved using 9 repli
as with Random Choi
e. As for the other appli
ation,week-old predi
tions performed still better than random 
hoi
e in the same orders.7. Related WorkWe believe that many P2P systems and appli
ations 
an bene�t from this work, as a lot ofavailability-aware appli
ations have been proposed in the literature [3, 8, 18, 5, 23℄. Close to ourwork, [9℄ shows that strategies based on the longest 
urrent uptime are more e�
ient than uptime-agnosti
 strategies for repli
a pla
ement; [15℄ introdu
es sophisti
ated availability predi
tors andshows that they 
an be very su

essful. However, to the best of our knowledge, this paper is the�rst to deal with the problem of �nding the best partners a

ording to availability patterns in alarge-s
ale network. Moreover, previous results are often 
omputed on syntheti
 tra
es or smalltra
es of P2P networks.
9



8. Con
lusionIn this paper, we showed that epidemi
 proto
ols for topology management 
an be e�
ient to�nd good partners in availability-aware networks. Simulations proved that, using one of theseproto
ols and appropriate metri
s, su
h appli
ations 
an be less expensive and still perform withan equivalent or better quality of servi
e. We used a worst-
ase s
enario: a simple predi
tor, anda tra
e 
olle
ted from a highly volatile �le-sharing network, where only a small subset of peersprovide predi
table behaviors. Consequently, we expe
t that a real appli
ation would take evenmore bene�t from availability mat
hing proto
ols.In parti
ular, until this work, availability-aware appli
ations were limited to using predi
tions oravailability information to better 
hoose among a limited set of neighbors. This work opens thedoor to new availability-aware appli
ations, where best partners are 
hosen among all availablepeers in the network. It is a useful 
omplement to the work done on measuring availability[16, 14℄and using these measures to predi
t future availability[15℄.Bibliographie1. Tra
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