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Résumé

Nous étudions la problématique de recherche distribuée de pairs correspondant & un motif de
disponibilité donné, dans un systéme pair-a-pair (P2P). Motivés par des exemples concrets, nous
spécifions deux problémes formels de correspondance de disponibilité qui apparaissent dans des
applications réelles: la correspondance de déconnexion, ou les pairs cherchent des partenaires dont
la déconnexion coincide avec la leur, et la correspondance de présence, ol les pairs cherchent des
partenaires connectés en méme temps qu’eux dans le futur. Nous proposons, comme solution
peu cotiteuse et passant a 1’échelle, 1'utilisation de protocoles épidémiques pour la gestion de la
topologie du réseau logique (comme le protocole T-Man); des métriques adéquates sont fournies
pour les deux problémes de correspondance. Notre solution a été évaluée en simulant deux
applications P2P, 'ordonnancement de tdches et le stockage de fichiers, sur une trace inédite
d’eDonkey, la plus grande fournissant les informations de disponibilité des pairs. Nous prouvons
tout d’abord I'existence de motifs réguliers dans les sessions de 14M de pairs sur 27 jours. Nous
montrons également, en utilisant 7 jours d’historique, qu'un prédicteur simple peut sélectionner
des pairs prédictibles, pour prédire avec succes leur période de présence en ligne pour la semaine
suivante. Enfin, les simulations ont montré que notre solution simple a fourni rapidement de
bons partenaires afin de répondre au besoin des deux applications, et ainsi de leur permettre
de s’exécuter aussi efficacement & un coiit bien inférieur. Nous pensons que ce travail sera utile
pour beaucoup d’applications P2P, pour lesquelles il a été montré que choisir ses partenaires, en
se basant sur leur disponibilité, améliore de fagon conséquente les performances du systéme.

1. Introduction

Churn is one of the most critical characteristics of peer-to-peer (P2P) networks, as the permanent
flow of peer connections and disconnections can seriously hamper the efficiency of applications [9].
Fortunately, it has been shown that, for many peers, these events globally obey some availability
patterns ([19, 20, 2|), and so, can be predicted from the uptime history of those peers [15].

To take advantage of these predictions, applications need to be able to dynamically find good
partners for peers, according to these availability patterns, even in large-scale unstructured net-
works. The intrinsic constitution of those networks makes pure random matching techniques to
be time-inefficient facing churn.

In this paper, we study a generic technique to use such partners, and apply it for two particular
matching problems: disconnection matching , where peers look for partners expected to discon-
nect at the same time, and presence matching, where peers look for partners expected to be
online simultaneously in the future. These problems are specified in Section 2.

We then propose to use standard epidemic protocols for topology management to solve these
problems. However, in order to converge to the desired state or topology (here matched peers),
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such protocols require good metrics to compute the distance between peers. These metrics and
a well known epidemic protocol, T-Man[12], are described in Section 3.

To evaluate the efficiency of our proposal, we simulated an application for each matching problem:
an application of task scheduling, where tasks of multiple remote jobs are started by all the
peers in the network (disconnection matching), and an application of P2P file-system, where
peers replicate files on other peers to make them highly available (presence matching). These
applications are specified in Section 5.

To run our simulations on a realistic workload, we collected a new trace of peer availability on the
eDonkey file-sharing network. With the connections and disconnections of 14 million peers over
27 days, this trace is the largest available workload, with detailed information on the availability
of peers. In Section 4, we show that peers in this trace exhibit availability patterns, and, using
a simple 7-day predictor, that it is possible to select predictable peers and successfully predict
their behavior over the following week. The new eDonkey trace and this simple predictor are
studied in Section 4.

Our simulation results showed that our T-Man based solution is able to provide good partners
to all peers, for both applications. Using availability patterns, both applications are able to keep
the same performance, while consuming 30% less resources, compared to a random selection
of partners. Moreover, T-Man is scalable and inexpensive, making the solution usable for any
application and network size. These results are detailed in Section 6.

Finally, we briefly present some related work in Section 7 before concluding in Section 8.

2. Problem Specification

This section presents two availability matching problems, disconnection matching and presence
matching. Each problem is abstracted from the needs of a practical P2P application that we
describe afterwards. But first, we start by introducing our system and network models.

2.1. System and Network Models

We assume a fully-connected asynchronous P2P network of N nodes, with N usually ranging
from thousands to millions of nodes. We assume that there is a constant bound n. on the number
of simultaneous connections that a peer can engage in, typically much smaller than N. When
peers leave the system, they disconnect silently. However, we assume that disconnections are
detected after a time Ay, for example 30 seconds with TCP keep-alive.

For each peer x, we assume the existence of an availability prediction Pr®(t), starting at the
current time ¢t and for a period T in the future, such that Pr®(t) is a set of non-overlapping
intervals during which z is expected to be online. These predictions are computed on the history
of availability provided by x. In the presence of malicious peers, secure protocols for availability
measurement [16, 14] must be used to check that x is not lying on its history.

We note | Pr*(t) the set defined by the union of the intervals of Pr*(t), and ||S|| the size
(cardinal) of a set S.
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2.2. The Problem of Disconnection Matching

Intuitively, the problem of Disconnection Matching is, for a peer online at a given time, to find
a set of other online peers who are expected to disconnect at the same time.

Formally, for a peer x online at time ¢, an online peer y is a better match for Disconnection
Matching than an online peer z if [t* — Y| < |[t¥ — t*|, where [t,t"[€ Pr®(t), [t,tY]€ PrY(t) and
[t,t*[€ Pr*(t). The problem of Disconnection Matching DM (n) is to discover the n best matches
of online peers at anytime.

The problem of Disconnection Matching typically arises in applications where a peer tries to
find partners with whom it wants to collaborate until the end of its session, in particular when
starting such a collaboration might be expensive in terms of resources.

An example of such an application is task scheduling in P2P networks. In Zorilla |7] for example,
a peer can submit a computation task of n jobs to the system. In such a case, the peer tries to
locate n online peers (with expanding ring search) to become partners for the task, and executes
the n jobs on these partners. When the computation is over, the peer collects the n results from
the n partners. With Disconnection Matching, such a system becomes much more efficient: by
choosing partners who are likely to disconnect at the same time as the peer, the system increases
the probability that:

e If the peer does not disconnect too early, its partners will have time to finish executing
their jobs before disconnecting and it will be able to collect the results;

e If the peer disconnects before the end of the computation, partners will not waste unnec-
essary resources as they are also likely to disconnect at the same time.

2.3. The Problem of Presence Matching

Intuitively, the problem of Presence Matching is, for a peer online at a given time, to find a set
of other online peers who are expected to be connected at the same time in the future.
Formally, for a peer x online at time ¢, an online peer y is a better match for Unfair Presence
Matching than an online peer z if:

IJerenlJereol < 1JeronlJrreol

This problem is called unfair, since peers who are always online appear to be best matches for
all other peers in the system, whereas only other always-on peers are best matches for them.
Since some fairness is wanted in most P2P systems, offline periods should also be considered.
Consequently, y is a better match than z for Presence Matching if:

U Pret) nUPre@ll _ [1UPro(t) 0 U Pre()ll
Upr=@yulUrre@)] (U Prv() WU Pre(@)]

The problem of Presence Matching PM (n) is to discover the n best matches of online peers at

anytime.
The problem of presence matching arises in applications where a peer wants to find partners
that will be available at the same time in other sessions. This is typically the case when huge



amount of data have to be transferred, and that partners will have to communicate a lot to use
that data.

An example of such an application is storage of files in P2P networks [4, 6, 17]. For example,
in Pastiche [6], each peer in the system has to find other peers to store its files. Since files can
only be used when the peer is online, the best partners for a peer (at equivalent stability) are
the peers who are expected to be online when the peer itself is online.

Moreover, in a P2P backup system|[8], peers usually replace the replica that cannot be connected
for a given period, to maintain a given level of data redundancy. Using presence matching,
such applications can increase the probability of being able to connect to all their partners, thus
reducing their maintenance cost.

3. Uptime Matching with Epidemic Protocols

We think that epidemic protocols [21, 22, 13| are good approximate solutions for these matching
problems. Here, we present one of these protocols, T-Man[12| and, since such protocols rely
heavily on appropriate metrics, we propose two different metrics, one for each matching problem.

3.1. Distributed Matching with T-Man

T-Man is a well-known epidemic protocol, usually used to associate each peer in the network
with a set of good partners, given a metric (distance function) between peers. Even in large-scale
networks, T-Man converges fast, and provides a good approximation of the optimal solution in
a few rounds, where each round costs only four messages in average per peer.

In T-Man, each peer maintains two small sets, its random view and its metric view, which are,
respectively, some random neighbors, and the current best candidates for partnership, according
to the metric in use. During each round, every peer updates its views: with one random peer in
its random view, it merges the two random views, and keeps the most recently seen peers in its
random view; with the best peer in its metric view, it merges all the views, and keeps only the
best peers, according to the metric, in its metric view.

This double scheme guarantees a permanent shuffle of the random views, while ensuring fast
convergence of the metric views towards the optimal solution. Consequently, the choice of a good
metric is very important. We propose such metrics for the two availability matching problems
in the next part.

3.2. Metrics for Availability Matching

To compute efficiently the distance between peers, the prediction Pr*(t) is approximated by
a bitmap of size m, pred®, where entry pred”[i] is 1 if [i x T//m, (i + 1) x T'/m[ is included in
an interval of Pr®(t) for 0 < i < m. Note that these metrics can be used with any epidemic
protocol, not only with T-Man.

3.2.1. Disconnection Matching
The metric computes the time between the disconnections of two peers. In case of equality, the
PM-distance of 3.2.2 is used to prefer peers with the same availability periods:

DM-distance(z,y) = [I* — IY|+ PM-distance(z,y) where
I" = min{0 < i < m|pred®[i] = 1 A pred®[i + 1] = 0}
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3.2.2. Presence Matching

The metric first computes the ratio of co-availability (time where both peers were simultaneously
online) on total availability (time where at least one peer was online). Since the distance should
be close to 0 when peers are close, we then reverse the value on [0,1]:

> 0<i<m Min(pred®[i],pred¥ [i])
L= S o mas(pred T pred”[)

PM-distance(z,y) =

Note that, while the PM-distance value is in [0,1], the DM-distance value is in [0,m].

4. Simulation Settings

We evaluated our a solution based on T-Man on two applications, one for each matching problem.
In this section, we describe our simulation settings. In particular, we describe the characteristics
of the trace we collected for the needs of this study, with more than 300,000 online peers on 27
days. With a few thousand peers online at the same time, most other traces collected on P2P
systems [19, 10, 2| lack massive connection and disconnection trends, for the study of availability
patterns on a large scale.

4.1. A new eDonkey Trace

In 2007, we collected the connection and disconnection events from the logs of one of the main
eDonkey servers in Europe. Edonkey is currently the most used P2P file-sharing network in the
world. Our trace, available on our website [1], contains more than 200 millions of connections by
more than 14 millions of peers, over a period of 27 days. To analyse this trace, we first filtered
useless connections (shorter than 10 minutes) and suspicious ones (too repetitive, simultaneous
or with changing identifiers), leading to a filtered trace of 12 million peers.

The number of peers online at the same time in the filtered trace is usually more than 300,000,
as shown by Fig. 3. Global diurnal patterns of around 100,000 users are also clearly visible: as
shown by previous studies [11]|, most eDonkey users are located in Europe, and so, their daily
offline periods are only partially compensated by connections from other continents.

For every peer in the filtered trace, the auto-correlation on its availability periods was computed
on 14 days, with a step of one minute. For a given peer, the period for which the auto-correlation
is maximum gives its best pattern size. The number of peers with a given best pattern size is
plotted on Fig. 4, and shows, as could be expected, that the best pattern size is a day, and much
further, a week.
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4.2. Filtering and Prediction

Our goal in these simulations was to evaluate the efficiency of our matching protocol, and not the
efficiency of availability predictors, as already done in [15]. As a consequence, we implemented a
very straightforward predictor, that uses a 7-day window of availability history to compute the
daily pattern of a peer: for each interval of 10 minutes in a day, its value is the number of days
in the week where the peer was available during that full interval:

pattern?[i] = Yge(o.6)history?[d 24 x 60/10 + ]
This predictor has two purposes:

e It should help the application to decide which peers are predictable, and thus, which peers
can benefit from an improved quality of service. This gives an incentive for peers to
participate regularly to the system:;

e it should help the application to predict future connections and disconnections of the
selected peers.

To select predictable peers, the predictor computes, for each peer, the maximum and the mean
covariance of the peer daily pattern. For these simulations, we computed a set, called predictable
set, containing peers matching with the following properties:

e The maximum value in pattern is at least 5: each peer was available at least five days
during the last week exactly at the same time;

e The average covariance in pattern is greater than 28: each peer has a sharply-shaped
behavior;

e Peer availability is greater than 0.1: peers have to contribute enough to the system:;

e Peer availability is smaller than 0.9: peers which are always online would bias positively
our simulations.

In our eDonkey trace, this predictable set contains 19,600 such peers. For every peer in the set,
the predictor predicts that the peer will be online in a given interval if the peer’s daily pattern
value for that interval is at least 5, and otherwise predicts nothing (we never predict that a peer
will be offline).
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Figure 5 shows that predictions cannot be only explained by accidental availability, and proves the
presence of availability patterns in the trace. The figure plots the ratio of successful predictions
after a week for the full following week. For each peer in the predictable set, we used its bitmap
of availability on the first week of the trace to compute its predicted availability for the second
week. We then compared the prediction with the real bitmap observed on the second week, to
obtain the prediction success rate. However, even in the absence of availability patterns, there
is a non-null probability of success when predicting that a peer is online, mostly depending on
its availability. To take this probability into account, we computed a randomized bitmap of
the second week for each peer, i.e. a bitmap with the same availability where patterns have
been deleted by randomization. As expected, we were more successful at predicting the real
bitmap than the randomized one, therefore proving the existence of availability patterns, and
the probability of success is close to the peer availability for randomized bitmaps, i.e. without
availability patterns.

We purposely chose a very simple predictor, as we are interested in showing that patterns of
presence are visible and can benefit applications, even with a worst-case approach. Therefore,
we expect that better results would be achieved using more sophisticated predictors, such as
described in [15], and for an optimal pattern size of one day instead of a week.

4.3. General Simulation Setup

A simulator was developed from scratch to run the simulations on a Linux 3.2 GHz Xeon com-
puter, for the 19,600 peers of the predictable set from Section 4.2. Their behaviors on 14-days
were extracted from the eDonkey trace: the first 7 days were used to compute a prediction, and
that prediction, without updates, was used to execute the protocol on the following seven days.
During one round of the simulator, all online peers in random order evaluate one T-Man round,
corresponding to one minute of the trace. As explained later, both applications were delayed
by a period of 10 minutes after a peer would come online to allow T-Man to provide a useful
metric view. The computation of a complete run did not exceed two hours and 6 GB of memory
footprint.

5. Simulated Applications

In this section, we describe the two applications that we used to illustrate the need for an efficient
protocol for distributed availability matching. Our goal is not to improve the performance of
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these applications, as this can be done by an aggressive greedy algorithm, but to save resources
using availability information.

5.1. Disconnection Matching: Task Scheduling

To evaluate the efficiency of T-Man and the DM-distance metric, we simulated a distributed task
scheduling application. In this application, every peer starts a task after 10 minutes online: a
task is composed of 3 jobs of 4 hours on remote partners, and is completed if the peer and its
partners are still online after 4 hours to collect the results.

The 2 first hours of each job are devoted to the download of the data needed for the computation
from a central server. As a consequence, a peer can decide not to start a task to save the
bandwidth of the central server. In our simulation, such a decision is taken when the prediction
of the peer availability shows that the peer is going to go offline before completion of the task.

5.2. Presence Matching: P2P File-Storage

To evaluate the efficiency of T-Man and the PM-distance metric, we simulated a P2P file storage
application. In this application, every peer replicates its data to its partners, ten minutes after
coming online for the first time, in the hope that it will be able to use this remote data the next
time it will be online.

The size of the data of each peer is supposed to be large, hundred of megabytes of example. As
a consequence, it is important for the system to use as little redundancy as possible to achieve
high co-availability of data (i.e. availability of the peer and at least one of its data replica).
Finding good partners in the network is expected to provide replica which are more likely to be
available at the same time as the peer, thus decreasing the need for more replicas.

6. Simulation Results

In this section, we present the results of our simulations of the two applications. We are not
interested in the raw performance of these applications, but in the savings that could be achieved
by using availability information and partner matching.

6.1. Results for Disconnection Matching

We compared Disconnection Matching with a Random choice of partners (actually, using partners
within T-Man random view) for the distributed task scheduling application. The number of
completed tasks and the number of aborted tasks are plotted on Fig. 6, for the first day, the 7"
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Prediction of availability decreased by 68% the number of aborted tasks on average over a week,
corresponding to 50% of bandwidth savings on the data server, while decreasing the number of
completed tasks by only 17%.

These results were largely improved using one-day prediction, since one-week prediction is ex-
pected to be less accurate (see auto-correlation in Section 4.1). Indeed, bandwidth savings were
about 43% for Disconnection Matching, while completing 20% more tasks. Thus, it is much
more interesting from a performance point of view to use one-day prediction every day instead
of one-week prediction, although savings are still possible with one-week predictions.

6.2. Results for Presence Matching

We compared Presence Matching with a Random choice of replica locations for the P2P file-
system application. The co-availability of the peer and at least one replica is plotted on Fig. 7,
for different number of replicas.

Using presence matching, fewer replicas were needed to achieve better results than using a random
choice of partners. For example, 1 replica with Presence Matching gives a better co-availability
than 2 replicas with Random Choice; 5 replicas with Presence Matching give a co-availability of
95% which is only achieved using 9 replicas with Random Choice. As for the other application,
week-old predictions performed still better than random choice in the same orders.

7. Related Work

We believe that many P2P systems and applications can benefit from this work, as a lot of
availability-aware applications have been proposed in the literature [3, 8, 18, 5, 23]. Close to our
work, [9] shows that strategies based on the longest current uptime are more efficient than uptime-
agnostic strategies for replica placement; [15]| introduces sophisticated availability predictors and
shows that they can be very successful. However, to the best of our knowledge, this paper is the
first to deal with the problem of finding the best partners according to availability patterns in a
large-scale network. Moreover, previous results are often computed on synthetic traces or small
traces of P2P networks.



8. Conclusion

In this paper, we showed that epidemic protocols for topology management can be efficient to
find good partners in availability-aware networks. Simulations proved that, using one of these
protocols and appropriate metrics, such applications can be less expensive and still perform with
an equivalent or better quality of service. We used a worst-case scenario: a simple predictor, and
a trace collected from a highly volatile file-sharing network, where only a small subset of peers
provide predictable behaviors. Consequently, we expect that a real application would take even
more benefit from availability matching protocols.

In particular, until this work, availability-aware applications were limited to using predictions or
availability information to better choose among a limited set of neighbors. This work opens the
door to new availability-aware applications, where best partners are chosen among all available
peers in the network. It is a useful complement to the work done on measuring availability[16, 14|
and using these measures to predict future availability[15].
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