
HAL Id: inria-00467796
https://inria.hal.science/inria-00467796

Submitted on 30 Mar 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parameter Tuning by Simple Regret Algorithms and
Multiple Simultaneous Hypothesis Testing

Amine Bourki, Matthieu Coulm, Philippe Rolet, Olivier Teytaud, Paul
Vayssière

To cite this version:
Amine Bourki, Matthieu Coulm, Philippe Rolet, Olivier Teytaud, Paul Vayssière. Parameter Tuning
by Simple Regret Algorithms and Multiple Simultaneous Hypothesis Testing. ICINCO2010, 2010,
funchal madeira, Portugal. pp.10. �inria-00467796�

https://inria.hal.science/inria-00467796
https://hal.archives-ouvertes.fr

PARAMETER TUNING BY SIMPLE REGRET ALGORITHMS AND
MULTIPLE SIMULTANEOUS HYPOTHESIS TESTING

Amine Bourki**, Matthieu Coulm**, Philippe Rolet*,
*TAO, Inria, Umr CNRS 8623, Univ. Paris-Sud, 91405 Orsay, France
amine.bourki@gmail.com, mcoulm@gmail.com, philippe.rolet@lri.fr

Olivier Teytaud*, Paul Vayssière**
**EPITA, 16 rue Voltaire, 94270 Le Kremlin-Bicêtre, France

olivier.teytaud@inria.fr, paul.vayssiere@gmail.com

Keywords: Simple Regret; Automatic Parameter Tuning; Monte-Carlo Tree Search.

Abstract: “Simple regret” algorithms are designed for noisy optimization in unstructured domains. In particular,
this literature has shown that the uniform algorithm is indeed optimal asymptotically and suboptimal non-
asymptotically. We investigate theoretically and experimentally the application ofthese algorithms, for auto-
matic parameter tuning, in particular from the point of view of the number ofsamples required for “uniform”
to be relevant and from the point of view of statistical guarantees. We seethat for moderate numbers of arms,
the possible improvement in terms of computational power required for statistical validation can’t be more
than linear as a function of the number of arms and provide a simple rule to check if the simple uniform al-
gorithm (trivially parallel) is relevant. Our experiments are performed onthe tuning of a Monte-Carlo Tree
Search algorithm, a great recent tool for high-dimensional planning with particularly impressive results for
difficult games and in particular the game of Go.

1 INTRODUCTION

We consider the automatic tuning of new modules.
It is quite usual, in artificial intelligence, to design
a module, for which there are several free parame-
ters. This is natural in supervised learning, optimiza-
tion (Nannen and Eiben, 2007b; Nannen and Eiben,
2007a), control (Lee et al., 2009; Chaslot et al., 2009).
We will here consider the particular case of Monte-
Carlo Tree Search (Chaslot et al., 2006; Coulom,
2006a; Kocsis and Szepesvari, 2006; Lee et al., 2009).

Consider a program, in which a new module with
parameterθ ∈ {1, . . . ,K} has been added. In the ban-
dit literature,{1, . . . ,K} is referred to as the set of
arms. Then, we’re looking for the best parameter
θ ∈ {1, . . . ,K} for some performance criterion; the
performance criterionL(θ) is stochastic. We have a fi-
nite time budgetT (also termed horizon), we can have
access toT realizations ofL(θ1),L(θ2), . . . ,L(θT) and

we then choose somêθ. The game is as follows:

• The algorithm choosesθ1 ∈ {1, . . . ,K}.

• The algorithm gets a realizationr1 distributed as
L(θ1).

• The algorithm choosesθ2 ∈ {1, . . . ,K}.

• The algorithm gets a realizationr2 distributed as
L(θ2).

• . . .

• The algorithm choosesθT ∈ {1, . . . ,K}.

• The algorithm gets a realizationrT distributed as
L(θT).

• The algorithm chooseŝθ.

• The loss isrT = maxθ EL(θ)−EL(θ̂).

The performance measure is the simple regret(Bubeck
et al., 2009), i.e.rT = maxθ EL(θ)−EL(θ̂), and we
want to minimize it. Then main difference with noisy
nonlinear optimization is that we don’t use any struc-
ture on the domain.

We point out the link with No Free Lunch the-
orems (NFL (Wolpert and Macready, 1997)), which
claim that all algorithms are equivalent when no prior
knowledge can be explored. Yet, there are some dif-
ferences in the framework: NFL considers determin-
istic optimization, in which testing several times the
same point is meaningless. We here consider noisy

optimization, with a small search space: all the dif-
ficulty is in the statistical validation, for choosing
which points in the search space should be tested
more intensively.

Useful notations:

• #E is the cardinal of the setE;

• Nt(i) is the number of times the parameteri has
been tested at iterationt, i.e.

Nt(i) = #{ j ≤ t;θ j = i}.

• L̂t(i) is the average reward for parameteri at iter-
ationt, i.e.

L̂t(i)
1

Nt(i)
∑

j≤t;θ j=i

r j .

(well defined ifNt(i) > 0)

Section 2 recalls the terminology of simple regret
and discusses the relevance for Automatic Parame-
ter Tuning (APT). Section 3 mathematically consid-
ers the statistical validation, which was not yet, to the
best of our knowledge, considered for simple regret
algorithms; we will in particular show that the depen-
dency of the computational cost as a function of the
number of tested parameter values is at best linear,
and therefore it is not possible to do better than this
linear improvement in terms of statistical validation
- we will then switch to experimental analysis, and
we’ll show that the improvement is indeed improved
by far less than a linear factor in our real world setting
(section 4).

2 SIMPLE REGRET: STATE OF
THE ART AND RELEVANCE
FOR AUTOMATIC
PARAMETER TUNING

We consider the case in whichL(θ) is, for all
θ, a Bernoulli distribution. (Bubeck et al., 2009)
states that (i) the naive algorithm distributingθi uni-
formly among the possible parameters, i.e.θi =
mod(i,K)+1 with mod the modulo operator, with
θ̂ = argmaxi L̂(i), has simple regret

ErT = O(exp(−c·T)) (1)

for some constantc depending on the Bernoulli pa-
rameters (more precisely, on the difference between
the parameters of the best arm and of the other arms).
This is for θ̂ maximizing the empirical reward,i.e.

θ̂ ∈ argmin
θ

L̂T(θ)

and this is proved optimal.
If we consider distribution-free bounds (i.e. for

a fixed T, we consider the supremum ofErT for
all Bernoulli parameters), then (Bubeck et al., 2009)
shows that, with the same algorithm,

sup
distribution

ErT = O(
√

K logK/T), (2)

where the constant in theO(.) is a universal constant;
Eq. 2 is tight within logarithmic factors ofK; there’s
a lower bound for all algorithms of the form.

sup
distribution

ErT = Ω(
√

K/T).

Importantly, the best known upper bounds for
variants of UCB(Auer et al., 2002) are significantly
worse than Eq. 1 (the simple regret is then only poly-
nomially decreasing) and significantly worse than Eq.
2 (by a logarithmic factor ofT) - see (Bubeck et al.,
2009) for more on this.

However, it is clearly shown also in (Bubeck et al.,
2009) that for small values ofT, using a variant of
UCB for choosing theθi and θ̂ is indeed much bet-
ter than uniform sampling. The variant of UCB is as
follows, for some parameterα > 1:

Θ̂t = argmax
i

Nt(i).

Θi = mod(i,K)+1 if i ≤ K

Θi = argmax
i

L̂t(i)+
√

α log(t −1)/Nt−1(i) otherwise.

Simple regret is a natural criterion when working
on automatic parameter tuning. However, the theo-
retical investigations on simple regret did not answer
the following question: how can we validate an arm
selected by a simple regret algorithm when a baseline
is present ? In usual cases, for the application to pa-
rameter tuning, we know the score before a modifica-
tion, and then we tune the parameters of the optimiza-
tion: we don’t only tune, we validate the tuned mod-
ification; this question is nonetheless central in many
applications in particular when modifications are in-
cluded automatically by the tuning algorithm (Nan-
nen and Eiben, 2007b; Nannen and Eiben, 2007a;
Hoock and Teytaud, 2010). We’ll see in next sections
that the naive solution, consisting in testing separately
each arm, is not so far from being optimal.

3 MULTIPLE SIMULTANEOUS
HYPOTHESIS TESTING IN
AUTOMATIC PARAMETER
TUNING

As pointed out above, a goal different from mini-
mizing the simple regret consists in finding a good

arm could be (i) finding a good arm if any (ii)
avoiding selecting a bad arm if there’s no good arm
(no arm which outperforms the baseline). We’ll
briefly show how to apply Multiple Simultaneous Hy-
pothesis Testing (MSHT), and in particular its sim-
plest and most well known variant termed the Bon-
ferroni correction, to Automatic Parameter Tuning.
MSHT(Holm, 1979; Hsu, 1996) is very classical in
neuro-imagery(Pantazis et al., 2005), bioinformatics,
tuning of optimizers(Nannen and Eiben, 2007b; Nan-
nen and Eiben, 2007a).

MSHT consists in statistically testing several hy-
pothesis in same time: for example, when 100 sets of
parameters are tested simultaneously, then, whenever
each set is tested with confidence 95%, and whenever
all sets of parameters have no impact on the result,
then with probability 1− (1− 0.05100) ≃ 99.4% at
least one set of parameters will be validated. MSHT
is aimed at correcting this effect, so that taking into
account the multiplicity of tests we can have modified
tests so that the overall risk remains lower than 5%.

Assume that we expect arms with standard
deviation σ (we’ll see that for our applications,σ
is usually nearly known in advance; it can also be
estimated dynamically during the process). Then,
the standard Gaussian approximation says that with
probability 90%1, the difference between̂Lt(θ) and
Lt(θ) for armθ is lower than 1.645σ/

√

Nt(i):
with probability 90%,

|L̂t(θ)−Lt(θ)| ≤ 1.645σ/
√

Nt(i). (3)

The constant 1.645 directly corresponds to the
Gaussian probability distribution (the precise value is
Φ−1((1+0.9)/2) = 1.645); a Gaussian standard dis-
tribution is≤ 1.645 in absolute value with probability
90%. If we consider several tests simultaneously, i.e.
we considerK arms, then Eq. 3 becomes Eq. 4:
with probability 90%,

∀θ ∈ {1,2, . . .K}|L̂t(θ)−Lt(θ)| ≤ tKσ/
√

Nt(i) (4)

where, with the so-called Bonferroni correction,tK =
−Φ−1(0.05/K) where Φ is the normal cumulative
distribution function2. This is usually estimated with

exp(−t2
K)

tK
√

2π
= 0.05/K (5)

and therefore if we expect improvements of sizeδ, we
can only validate a modification with confidence 90%

1The constant 90% is arbitrary; it means that we decide
that results are guaranteed within risk 10%.

2Note that a tighter formula istK = −Φ−1(1− (1−
0.05)K); this holds thanks to independence of the different
arms.

with n experiments per arm iftK solving Eq. 5 verifies
tKσ/

√
n≤ δ; a succinct equation for this is

s= δ
√

n/σ (6)

exp(−s2)

s
√

2π
≤ 0.05/K (7)

This shows that for other quantities fixed,n has a log-
arithmic dependency as a function ofK.

A numerical application forδ = 0.02,K = 49 and
σ = 1

2 is
s= 0.04

√
n,

exp(−s2)

s
√

2π
= 0.05/49.

which impliesn≥ 3219; this implies that for our con-
fidence interval, we require 3219 runs per arm (i.e.
infθ NT(θ)≥ 3219). We’ll see that this number is con-
sistent with our numerical experiments later. Interest-
ingly, with only one arm,i.e. K= 1, we getn≥ 1117;
this is not so much better, and suggests that whatever
we do, it will be difficult to get significant results with
subtle techniques for pruning the set of arms: if there
is only one arm, we can only divide the computational
cost for this arm byO(log(K)). In case of perfect
pruning,n is also naturally multiplied byK (as all the
computational power is spent on only one arm instead
of K arms); this provides an additional linear factor,
leading to a roughly linear improvement in terms of
computational power as a function of the number of
arms, in case of perfect pruning.

Bernstein races

This paper is devoted to the use of simple regret algo-
rithms to APT, compared to the most simple APT al-
gorithm, namely uniform sampling (which is known
asymptotically optimal for simple regret); Bernstein
races are therefore beyond the scope of this paper.
Nonetheless, as our results emphasize the success of
uniform sampling (at least in some cases), we briefly
discuss Bernstein races. In (Mnih et al., 2008; Hoock
and Teytaud, 2010), Bernstein races were considered
as tools for discarding statistically bad arms: this is
equivalent toUni f orm, except that tests as above are
applied periodically, and statistically bad arms are
discarded. This discards arms earlier than the uni-
form algorithm above which just checks the result
at the end, but increases the quantityK involved in
tests (as in Eqs. 6 and 7),even if no arm can be
rejected. The fact that testing arms for discarding
on the fly has a cost, whenever no arm is discarded,
might be surprising at first view - it is a known ef-
fect that when multiple tests are performed, then the
number of samples required for a same confidence

rate on the result is much higher. This approach can
therefore at most divide the computational power by
K log(K) before an arm is validated, and the compu-
tational power is indeed increases when no early dis-
carding is possible. Nonetheless, this sound approach
is probably the best candidate when the visualization
is not crucial -Uni f orm can provide nice graphs as
Fig. 1 or 2, whereas Bernstein races can almost ignore
some arms, but the statistical validation is nonetheless
made.

4 EXPERIMENTAL VALIDATION:
THE TUNING OF MOGO

Monte-Carlo Tree Search (MCTS (Chaslot et al.,
2006; Coulom, 2006a; Kocsis and Szepesvari, 2006))
is now an important area of artificial intelligence.
Interestingly, it is efficient both for games and for
planning problems, and it has particularly good per-
formance when the size of the state space is huge
and supervised learning on the domain is difficult.
MoGo(Lee et al., 2009) is one of the main MCTS pro-
grams3, dedicated to the most classical testbed: the
game of Go. MoGo relies on a large number of mod-
ules, with complicated tuning (Chaslot et al., 2009).
A puzzling feature of MoGo, and of Monte-Carlo
Tree Search algorithms, is that its tuning is highly de-
pendent of the conditions: the best parameters are not
the same for different experimental conditions. With-
out loss of generality, we will here consider the tuning
of a neural network for biasing the patterns (see (Lee
et al., 2009) for more on this), in two experimental
conditions:

• tuning of MoGo for blitz games;

• tuning of MoGo for standard time settings.

Both settings are important. In particular, in sudden
death games, the final part of the games is some-
times played very quickly by one or two of the play-
ers. The neural network was handcrafted (see section
4.1), with only two parameters left, and these two
parameters were then discretized. The modification
is described in the next section, and we then present
the tuning of this modification in two different frame-
works (namely blitz and non-blitz).

3The authors of MoGo make its CVS available upon re-
quest.

4.1 Automatic Parameter Tuning for
Monte-Carlo Tree Search

Biases have been introduced in Monte-Carlo Tree
Search since (Coulom, 2006b; Chaslot et al., 2006).
It has been shown in (Lee et al., 2009) that it provides
a very big improvement in MoGo. The bias intro-
duced by a pattern in MoGo is linear as a function of
a weightw, which is computed usually as follows:

wpattern= γ× ppattern

whereγ is a constant andppattern is the probability
that a move is played, according to a database of pro-
fessional games, when it matchespattern. Other in-
formations around a pattern include

• kpattern, representing the size of the pattern (in
terms of the number of locations that should
match for this pattern)

• vpattern, termed the significance of the pattern,
equal toppattern×√

npattern, wherenpattern is the
support of the pattern, i.e. the number of times the
pattern appears in the database.

Several modifications for the formula specifying the
bias as a function ofwpattern (the bias depends on
several quantities) have been shown efficient in (Lee
et al., 2009); several other works around MCTS have
shown that the detailed optimization of the formula
could provide significant improvements (Rolet et al.,
2009; De Mesmay et al., 2009; Auger and Teytaud,
pted). We here consider the following modification as
a typical example of automatic parameter tuning:

wpattern= γppattern×(1+ tanh(α1kpattern+α2vpattern)) .
(8)

This can be considered as the inclusion of a single
neuron into the bandit formula. It has been shown
in (Lee et al., 2009) that a good parameter tuning for
one experimental condition is not necessarily a good
parameter tuning for another experimental condition.
Therefore, we look for an automatic parameter tuning
which has the following properties:

• It should be reliable and automatic, so that the
program can be automatically adapted to other ex-
perimental conditions.

• As testing this kind of modifications is usually
very expensive, the algorithm should be parallel.

Under these conditions, such an automatic parameter
tuning can be included in the non-regression testing
sequence of a program, and be applied automatically
for new experimental conditions.

4.2 Tuning of MoGo for Blitz Games

This section considers the tuning of MoGo for 2000
simulations per move in 19x19; this is half a second
per move on one core. We tested, each parameter
(α1,α2) in {−0.3,−0.2,−0.1,0,0.1,0.2,0.3}2.

 42

 44

 46

 48

 50

 52

 54

 56

 58

 60

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
A2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

A
1

Figure 1: Success rate of MoGo as black against the base-
line. The baseline reaches 54% (for this time setting, the
game is easier for black than for white). We see a clear
gradient, and visually the user has the feeling that the op-
timal parameter is nearly found. This is performed by the
uniform sampling method advocated in section 3 for large
number of time steps; we are in the case of a large number
of time steps (aroundT = 300000), because MoGo is used
in blitz and is therefore quite fast (we exceed the number of
evaluations required forUni f orm according to Eq. 7). The
experiments were performed on Grid5000.

The success rate, as a function of the two-
dimensional parameter, is presented in Fig. 1. Each
parameter was tested between 3500 and 11000 times
(most of them nearly 6000 times); this discrepancy is
due to the submission of jobs in preemptable mode
on the grid. We satisfy Eq. 7, and consistently with
the theory of MSHT we have significant results (see
section 3; the numerical application is consistent with
the experiments in this figure).

4.3 Tuning of MoGo for standard time
settings

This section considers the tuning of
MoGo for 10 seconds per move in 19x19.
We tested each parameter (α1,α2) in
{−0.09,−0.06,−0.03,0,0.03,0.06,0.09}2, nearly
1800 times each. This is a computational cost already
much bigger than in the experiment above. The un-
clear results are presented in Fig. 2: the empirically
best arm (0.09,0.03).

 47

 48

 49

 50

 51

 52

 53

 54

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
A2

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

A
1

Figure 2: Success rate of MoGo as black against the base-
line with 10s/move, as a function of the two-dimensional
parameter. HereT ≃ 88200 (i.e. after division byK = 49
we see that we are below the budget required forUni f orm
to work according to Eq. 7 in section 3), the sampling is
nearly uniform, and the computational cost for this is al-
ready around 6 times bigger than in Fig. 1 which was in the
much easier case of blitz game.

We now reproduce the same experiment, but with
UCB(2) (see Alg. 1) instead of uniformly sampling
all the values of the parameters.̂θ is then the arm
which is most explored by UCB(2). With the same
horizon, the most played arm was (0.00,0.09).

We then compared the two approaches, from the
point of view ofEL(θ̂), as shown in Table 1.

The results are significant in the sense that all al-
gorithms provided an arm which significantly outper-
formed the baseline (except “uniform” for which the
significance is questionable), but it’s difficult to com-
pare these results which are equal within 2 standard
deviations and which correspond each to one run of
the algorithm. We therefore switch to carefully de-
signed artificial experiments.

4.4 The tuning of MoGo - extended
experiments

The purpose of this experimental section is to empir-
ically support multiple claims regarding multi-armed
bandit problems optimizing simple regret instead of
cumulative regret.

Let us bear in mind that the goal is to get the
minimal expected simple regret for a given number
of pulls. (Bubeck et al., 2009) has shown that uni-
formly pulling arms is asymptotically optimal in this
case. Nevertheless, it has been suggested in the same
paper that in practical applications, using strategies
designed for cumulative regret on simple regret prob-

Algorithm Horizon Selected arm Generalization performance
Baseline 51.37 %± 0.3%

UCB(2)+most played arm 88 000 (0.00,0.09) 52.65%± 0.3%
UCB(2)+most played arm 150 000 (0.03,0.09) 52.42%± 0.3%

Uniform+empirically best arm 88 000 (0.09,0.03) 52.00%± 0.3%

Table 1: Comparison between the different algorithms in the non-blitz settings. In order to have more significant experiments,
we will “randomize” and rerun this dataset in section 4.4.

lems often yields much better results, although those
strategies are suboptimal asymptotically.

Two arm selection strategies are investigated in
this section:

Uni f orm The arm selected for thenth arm pull is
n%K, where K is the number of arms. Thus, all
the arms are pulled the same number of times if K
is a divisor of N;

UCB(p) Thenth arm is selected according to the Up-
per Confidence Bound formula(Auer et al., 2002),
with pbeing a parameter weighing the exploration
term (see algorithm 1).

Algorithm 1 The UCB(p) algorithm. It plays at
each round the arm with the highest upper confidence
bound.Xi,s is the random reward of armi afterspulls.
Ti(t) is the number of timesi has been pulled after a
total numbert of pulls. For more details see(Bubeck
et al., 2009; Auer, 2003).

Algorithm UCB(p)
Input: K arms
Parameter:p accounting for the weight of explo-
ration in the strategy
t=0 // current total number of arms pulled
while truedo

t++
for i ∈ {1, . . . ,K} do

if Ti(t −1) == 0 then
Bi,t = +∞

else
Bi,t = ˆµi,t−1 +

√

α ln t
Ti(t−1)

whereµi,t−1 = 1
Ti(t−1) ∑Ti(t−1)

s=1 Xi,s

end if
end for
Pull any armi ∈ argmaxi Bi,t

end while

Note that after having exhausted the allowed num-
ber of pulls to choose an arm, there are various rules
to decide which arm to keep (these rules are termed
recommendation rules):

Empirical best arm (EBA): the arm kept is the one
with the best empirical mean;

Most played arm (MPA): the arm is the one which
has been played most;

Empirical distribution of plays (EDP): the arm is
selected by random draw among the K arms,
where each arm has a probability of being chosen
proportionnal to the number of times it has been
played.

Here are a few remarks regarding these decision
rules:

• For theUni f orm selection strategy, MPA makes
no sense, since the firstN%K arms have been
played exactly once more than the remaining
ones. Furthermore, EDP degenerates to randomly
choosing an arm.

• ForUCB-based selection strategies, or other con-
fidence bound strategies, EBA is the most aggres-
sive choice, since an arm that has been played
less, but that has a better average, will be pre-
ferred. On the other hand, MPA will select arms
in which the uncertainty on the mean is low—both
are sound, however, and converge to the same re-
sult for confidence-bound based selection strate-
gies.

The following experiments investigate these arm
selection procedures on three “almost real-world” ap-
plications, designed as follows:

• We applied theUni f orm strategy during a very
long time.

• We recorded the results.

• Then, we could simulate various strategies “of-
fline”; for each simulation, we permuted the ran-
dom draws, so that there’s no systematic bias.

Each problem consists in a few hundreds of arms
whose rewards are bernouilli distributions with pa-
rameterp close to 1/2. Experiments are performed by
confronting strategiesUni f orm, UCB(0.1), UCB(1)
andUCB(10) for each recommendation rule (EBA,
MPA and EDP). For each of the 3 experiments, each
selection strategy and each decision rule, experiments
were performed for various horizons (number of al-
lowed pulls), going from 100 to 819200. Results are
presented on Fig. 4.4 and show that (i)UCBperforms

better thanUni f orm (ii) the improvement is moder-
ate, in particular when the horizon exceeds the thresh-
old proposed in Eq. 7. A strength ofUni f orm is that
the performance is naturally evaluated on the fly for
all arms; therefore both the statistical validation and
the visualization are straightforward and for free.

5 DISCUSSION

We have surveyed simple regret algorithms. They are
noisy optimization algorithms, and they don’t assume
any structure on the domain. We comparedUni f orm
(known as optimal for sufficiently large horizon, i.e.
sufficiently large time budget) andUCB for automatic
parameter tuning. Our results are as follows:

• MSHT (even the simple Bonferroni correction)
is relevant for Automatic Parameter Tuning.
It predicts how many computational power is re-
quired forUni f orm; when the numberK of tested
sets of parameters depends on a discretization,
MSHT can be applied for choosing the grain of
the discretization. TheUni f orm approach com-
bined with MSHT by Bonferroni correction might
be the best approach when the computational
power is large in front ofK, thanks to its statis-
tical guarantees, the easy visualization, the opti-
mality in terms of simple regret. However, non-
asymptotically, it is not optimal and the rule be-
low is here for deciding the relevance ofUni f orm
whenK andT are known.

• Choosing between the naive solution (Uni f orm
sampling) and sophisticated algorithms. The
naiveUni f orm algorithm is provably optimal for
large values of the horizon. We propose the fol-
lowing simple rule for choosing if it is worth using
something else than the simple uniform sampling:

– Compute
s= δ

√
n/σ.

where
∗ δ is the amplitude of the expected change in

reward;
∗ σ is the expected standard deviation;
∗ n is the number of experiments you can per-

form for each arm with your computational
power.

– Test if

exp(−s2)

s
√

2π
≤0.05/K whereK is the number of arms.

– If yes, then uniform sampling is ok. Other-
wise, you can try UCB-like algorithms (but,

in that case, there’s no statistical guarantee),
or Bernstein races. At first view, our choice
would be Bernstein races for an implementa-
tion aimed at automatically tuning and vali-
dating several modifications (as in (Hoock and
Teytaud, 2010)) as soon as conditions above are
not met by the computational power available;
if the computational power available is strong
enough,Uni f orm has nice visualization prop-
erties.

– What if uniform algorithms can’t do it ? If
K is not large, nothing can be much better than
uniform; at most the required horizon can be
divided byK log(K). What if K is large ?UCB
is probably much better whenK is large. A
drawback is that it does not include any sta-
tistical validation, and is not trivially paral-
lel; therefore, classical algorithms derived far
from the field of simple regret, like Bernstein
races(Bernstein, 1924), might be more relevant.
Bernstein races are close to theUni f orm algo-
rithm, except that they discard arms as early as
possible (Mnih et al., 2008; Hoock and Tey-
taud, 2010) by performing statistical tests on
the fly. A drawback is that Bernstein races do
not provide a complete picture of the search
space and of the fitness landscape asUni f orm;
also, if no arm can be discarded early, the hori-
zon required for statistical validation is bigger
than forUni f ormas tests are performed during
the run. Yet, Bernstein races might be the most
elegant tool for doing better thanUni f orm as
they adapt to various frameworks(Hoock and
Teytaud, 2010): when many arms can be dis-
carded easily, they will save up a lot of compu-
tational power.

• Results on our application to MCTS. For the
specific application, the results were significant
but moderate; however, it can be pointed out that
many handcrafted modifications around Monte-
Carlo Tree Search provide such small improve-
ments of a few percents each. Moreover, as
shown in (Hoock and Teytaud, 2010), improve-
ments performed automatically by bandits can be
applied incrementally, leading to huge improve-
ments once they are cumulated.

• Comparing recommendation techniques: most
played arm is better. The empirically best arm
and the most played arm in UCB are usually the
same (this is not the case for various other ban-
dit algorithms), and are much better than the “em-
pirical distribution of play” technique. The most
played arm and the empirical distribution of play
obviously do not make sense forUni f orm. Please

Empirically Best Arm (EBA)

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

eba

unif
ucb0.1

ucb1
ucb10

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 2 4 6 8 10 12 14

eba

unif
ucb0.1

ucb1
ucb10

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

eba

unif
ucb0.1

ucb1
ucb10

Most Played Arm (MPA)

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

mpa

unif
ucb0.1

ucb1
ucb10

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 2 4 6 8 10 12 14

mpa

unif
ucb0.1

ucb1
ucb10

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

mpa

unif
ucb0.1

ucb1
ucb10

Empirical Distribution of Play (EDP)

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

edp

unif
ucb0.1

ucb1
ucb10

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

0 2 4 6 8 10 12 14

edp

unif
ucb0.1

ucb1
ucb10

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0 2 4 6 8 10 12 14

edp

unif
ucb0.1

ucb1
ucb10

Figure 3: Simple regret strategies compared on the blitz case as black (left), blitz case as white (middle) and standard case
(right) for various horizons. The Y-axis is the true mean of the arm chosen by a simple regret strategy being allowedH
pulls on arms on the whole. On the X-axis lies log(H/100). Each point of each curve is the result of an average over more
than 1000 experiments; this explains the almost unoticeable 95% error bars. Consequently, even small gaps between curves
are statistically significant. The order of the curves is as follows: in all cases, with≥ for ”performed better”,UCB(0.1) ≥
UCB(1) ≥UCB(10) ≥Uni f orm, with almost equality for large horizon. We can see thatEBA≃ MPA≥ EDP.

note that it is known in other settings (see (Wang
and Gelly, 2007)) that the most played arm is bet-
ter(Wang and Gelly, 2007). MPA is seemingly a
reliable tool in many settings.

A next experimental step is the automatic use of the
algorithm for more parameters, or e.g. by extending
automatically the neural network used in the Monte-
Carlo Tree Search so that it takes into account more
inputs: instead of performing one big modification,
apply several modifications the one after the other,
and tune them sequentially so that all the modifica-
tions can be visualized and checked independently.
The fact that the small constant 0.1 was better in UCB
is consistant with the known fact that tuned version of
UCB (with p related to the variance) provides better
results; using tuned-UCB might provide further im-
provements(Audibert et al., 2006).

ACKNOWLEDGEMENTS

This work has been supported by French National Re-
search Agency (ANR) through COSINUS program
(project EXPLO-RA No ANR-08-COSI-004), and
grant No. ANR-08-COSI-007-12 (OMD project). It
benefited from the help of Grid5000 for parallel ex-
periments.

REFERENCES

Audibert, J.-Y., Munos, R., and Szepesvari, C. (2006). Use
of variance estimation in the multi-armed bandit prob-
lem. In NIPS 2006 Workshop on On-line Trading of
Exploration and Exploitation.

Auer, P. (2003). Using confidence bounds for exploitation-
exploration trade-offs.The Journal of Machine Learn-
ing Research, 3:397–422.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite
time analysis of the multiarmed bandit problem.Ma-
chine Learning, 47(2/3):235–256.

Auger, A. and Teytaud, O. (Accepted). Continuous lunches
are free plus the design of optimal optimization algo-
rithms. Algorithmica.

Bernstein, S. (1924). On a modification of chebyshev’s in-
equality and of the error formula of laplace.Original
publication: Ann. Sci. Inst. Sav. Ukraine, Sect. Math.
1, 3(1):38–49.

Bubeck, S., Munos, R., and Stoltz, G. (2009). Pure explo-
ration in multi-armed bandits problems. InALT, pages
23–37.

Chaslot, G., Hoock, J.-B., Teytaud, F., and Teytaud, O.
(2009). On the huge benefit of quasi-random mu-
tations for multimodal optimization with application
to grid-based tuning of neurocontrollers. InESANN,
Bruges Belgium.

Chaslot, G., Saito, J.-T., Bouzy, B., Uiterwijk, J. W. H. M.,
and van den Herik, H. J. (2006). Monte-Carlo Strate-
gies for Computer Go. In Schobbens, P.-Y., Vanhoof,
W., and Schwanen, G., editors,Proceedings of the
18th BeNeLux Conference on Artificial Intelligence,
Namur, Belgium, pages 83–91.

Coulom, R. (2006a). Efficient selectivity and backup oper-
ators in monte-carlo tree search.In P. Ciancarini and
H. J. van den Herik, editors, Proceedings of the 5th
International Conference on Computers and Games,
Turin, Italy.

Coulom, R. (2006b). Efficient selectivity and backup oper-
ators in monte-carlo tree search.In P. Ciancarini and
H. J. van den Herik, editors, Proceedings of the 5th
International Conference on Computers and Games,
Turin, Italy.

De Mesmay, F., Rimmel, A., Voronenko, Y., and Püschel,
M. (2009). Bandit-Based Optimization on Graphs
with Application to Library Performance Tuning. In
ICML, Montréal Canada.

Holm, S. (1979). A simple sequentially rejective multiple
test procedure. scand. j. statistic., 6:65-70.

Hoock, J.-B. and Teytaud, O. (2010). Bandit-based genetic
programming. InAccepted in EuroGP 2010, LLNCS.
Springer.

Hsu, J. (1996). Multiple comparisons, theory and methods,
chapman & hall/crc.

Kocsis, L. and Szepesvari, C. (2006). Bandit based monte-
carlo planning. In15th European Conference on Ma-
chine Learning (ECML), pages 282–293.

Lee, C.-S., Wang, M.-H., Chaslot, G., Hoock, J.-B., Rim-
mel, A., Teytaud, O., Tsai, S.-R., Hsu, S.-C., and
Hong, T.-P. (2009). The Computational Intelligence
of MoGo Revealed in Taiwan’s Computer Go Tourna-
ments. IEEE Transactions on Computational Intelli-
gence and AI in games.

Mnih, V., Szepesv́ari, C., and Audibert, J.-Y. (2008). Empir-
ical Bernstein stopping. InICML ’08: Proceedings of
the 25th international conference on Machine learn-
ing, pages 672–679, New York, NY, USA. ACM.

Nannen, V. and Eiben, A. E. (2007a). Relevance estima-
tion and value calibration of evolutionary algorithm
par ameters. InInternational Joint Conference on Ar-
tificial Intelligence (IJCAI’07), pages 975–980.

Nannen, V. and Eiben, A. E. (2007b). Variance reduction
in meta-eda. InGECCO ’07: Proceedings of the 9th
annual conference on Genetic and evolutionary com-
putation, pages 627–627, New York, NY, USA. ACM.

Pantazis, D., Nichols, T. E., Baillet, S., and Leahy, R.
(2005). A comparison of random field theory and per-
mutation methods for the statistical analysis of MEG
data.Neuroimage, 25:355–368.

Rolet, P., Sebag, M., and Teytaud, O. (2009). Optimal active
learning through billiards and upper confidence trees
in continous domains. InProceedings of the ECML
conference.

Wang, Y. and Gelly, S. (2007). Modifications of UCT and
sequence-like simulations for Monte-Carlo Go. In

IEEE Symposium on Computational Intelligence and
Games, Honolulu, Hawaii, pages 175–182.

Wolpert, D. and Macready, W. (1997). No Free Lunch The-
orems for Optimization.IEEE Transactions on Evo-
lutionary Computation, 1(1):67–82.

