
HAL Id: inria-00468946
https://inria.hal.science/inria-00468946

Submitted on 1 Apr 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Object-Oriented Design of Real-Time Telecom Systems
Jean-Marc Jézéquel

To cite this version:
Jean-Marc Jézéquel. Object-Oriented Design of Real-Time Telecom Systems. ISORC’98, Apr 1998,
Kyoto, Japan. �inria-00468946�

https://inria.hal.science/inria-00468946
https://hal.archives-ouvertes.fr


Copyright 1998 IEEE. Published in the Proceedings of ISORC’98, 20-22 April 1998 in Kyoto, Japan. Personal use of this material is permitted. However,permission to reprint/republish this
this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works, must be obtained from the IEEE. Contact: Manager, Copyrights and Permissions, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331, USA.

Object-Oriented Design of Real-Time Telecom Systems

Jean-Marc J´ezéquel
Irisa/CNRS

Campus de Beaulieu
F-35042 RENNES CEDEX, FRANCE

E-mail: jezequel@irisa.fr
http://www.irisa.fr/pampa/PROF/jmj.html

Tel: +33 299847192 — Fax: +33 299847171

Abstract

Many engineers are still reluctant to adopt advanced
object-oriented technologies (such as high modularity, dy-
namic binding, automatic garbage collection, etc.) for
embedded systems with real-time constraints, because of
their supposed inefficiency. We set ourselves into the con-
text of building telecommunication systems with a stan-
dard object-oriented analysis and design approach. We
describe how we use relevant design patterns, followed
with an implementation in a pure object-oriented language
(Eiffel) to conciliate the needed efficiency with the bene-
fits of the object-oriented approach —flexibility, dynamic
configurability, maintenability, portability, etc. We dis-
cuss a case study based on the implementation of SMDS
(Switched Multi-megabits Data Service) servers featuring
high-throughput and low-delay transmissions and respect-
ing the real-time constraints of SMDS.

Keywords Real-time, Telecommunications, SMDS, OO
Analysis and Design, Design Patterns, Eiffel

1 Introduction

Object-oriented technologies have made their way into
numerous application domains ranging from the MIS
world [21] to high performance numerical computing [6].
However there are still very few publications exploring
the use of advanced object-oriented technologies for build-
ing embedded systems, and most particularly embedded
telecommunication systems. Thus telecommunication en-
gineers are still reluctant to go beyond the use of very basic
data abstraction mechanisms (e.g., C++ as a better C), be-
cause more advanced concepts (such as high modularity, de-
sign by contract, heavy use of multiple inheritance and dy-

namic binding, exception handling, automatic garbage col-
lection, etc.) are widely believed to be not efficient enough
to match the real-time constraints that usually go with em-
bedded telecommunication systems. However there is a
growing interest in ripping more benefits out of these ad-
vanced object-oriented technologies because the versatility
of the new value added telecommunication services induces
huge software development costs that need to be paid off
on a longer term (e.g., more than one hardware generation).
Telecommunication engineers find themselves paying more
and more attention to software engineering issues such as
flexibility, dynamic configurability, maintenability, porta-
bility, etc., which often conflict with the traditional way of
finely tuning the software to get the best performances out
of a given architecture.

The aim of this paper is to show how an object-oriented
analysis and design (OOAD) approach, augmented with a
set of relevant design patterns and followed with an imple-
mentation in Eiffel1 may be used to build a highly evolutive
and portable Switched Multi-megabits Data Server (SMDS)
server, still respecting the (soft) real-time constraints of
SMDS and featuring high-throughput and low-delay trans-
missions.

2 Building a Distributed SMDS Server

2.1 The Switched Multi-megabits Data Service

The Switched Multi-megabits Data Service (SMDS) [2]
is a connectionless, packet-switched data transport service
running on top of connected networks such as the Broad-

1Eiffel [17] is a pure object-oriented language featuring multiple in-
heritance, polymorphism, static typing and dynamic binding, genericity,
garbage collection, a disciplined exception mechanism, and systematic use
of assertions to improve software correctness in the context ofprogram-
ming by contract.



SS

SS SS

SS

CPE

CPE

ISSI

ISSI

ISSI ISSI

ISSICPE

CPE

CPE

SNI

SNI

SNI

ICI

ICI

IC Network

IC 

Network

SNI

SNI

Figure 1. Architecture of an SMDS network

band Integrated Service Digital Network (B-ISDN), which
is based on the asynchronous transfer mode (ATM).

SMDS was designed to provide high throughput and
low-delay transmissions, and to be able to maintain them
over a large geographical area. As a result, it can be used to
interconnect multiple-node local area network (LANs) and
wide area networks (WANs), and provide them with “any-
to-any” service (a capability sometimes referred to as the
dial-tone for data)2 SMDS relies on an overlay network
with non-ATM switching to transfer connectionless mes-
sages [13]. This network consists of a set of interconnected
connectionless servers. Clients who are willing to do con-
nectionless traffic have to access the nearest connectionless
server using any available protocol, such as an ATM con-
nection.

2.2 System Requirements

An SMDS network is based on a three-tiered architec-
ture: a switching infrastructure made of SMDS Servers
(SS), a delivery system made of SNIs (Subscriber Network
Interface), and an external network access system, ICI (In-
dependent Carrier Interface). So each SMDS server has
to switch packets coming from SNIs, ICIs, and ISSI (Inter
Switching-System Interface) links (see figure 1).

SMDS has been designed to be supported by various
lower-level layers, e.g. ATM (AAL 3/4 or even 5) or DQDB
(see figure 2).

2Now that it is possible to do IP over ATM in a standard way, the SMDS
has lost a lot of its commercial interest. Still it makes an interesting case
study from the technical point of view.

ISSIP Level 1

ISSIP Level 2

Independent
Technology

Interface

ISSIP Level 3
Service Interface

ISSIP Level 3

SMDS Protocol Service Users

IEEE 802.6-Based

DS3 Based

ATM-Based

SONET
STS-3c-Based

Figure 2. Architecture of an SMDS server

2.3 Real-time and Performance Constraints

2.3.1 Real-Time Constraints

Most telecommunication systems apparently have many
real-time constraints. Among them, we can distinguish be-
tween latency/delay requirements and total throughput re-
quirements. In the former case, we can find a requirement
that an SMDS server must say “hello” to each of its neigh-
bors at least every 10 ms, or else it can be considered as
“dead” (the communication link has then to be reset). But
this requirement, which is by the way the tightest real-time
requirement in SMDS, is not really as “hard” real-time as
it seems. Indeed failing it once in a while is not as big a
catastrophe, as this could be the case in e.g., an aerospace
project: here a re-synchronization protocol is just restarted
where it would not have been necessary.

The later case, total throughput requirements, boils down
to performance constraints. There are a number of studies
in the literature identifying bottlenecks in high-performance
communication systems, concerning most notably header
processing speed, data movement inside the system, exe-
cution environment, and interface between the processing
system and the physical layer.

2.3.2 Header Processing Speed

The packet header processing speed determines an absolute
limit on the global performances of the communication sys-
tem: the system may not have a throughput per I/O board
larger than the maximum packet size divided by the header
processing speed. This header processing speed has then to
be optimized as much as possible. The introduction of par-
allelism has been considered at this level, but it does gener-
ally not pay off [22] because of the limited intrinsic provi-
sion for concurrency in such kind of processing. This ten-
dency is even enforced with recent “light-weight” protocol
(XTP, SMDS, etc.) featuring simplified header processing,
actually leaving nearly no room for parallelization.



In our SMDS server, the significant figures are the speed
of header processing in different contexts: transmission
(packet received from an SNI and then injected in the
SMDS network), reception (packet coming from an ISSI
link and delivered to a SNI), and switching of traffic (from
an ISSI link to another one). To reach Gigabit flow rates,
all of these various processings must be handled within less
than0:5�s.

2.3.3 Execution Environment

These processing times are directly proportional to the pro-
cessing power of the processor: the execution environment
has thus a major influence on performances. The raw power
of each processor actually determines the throughput of the
system, and the bandwidth of the channels connecting the
different nodes limits the global data flow. If the software
is portable, it can directly benefit from the very fast speed
improvement of hardware components.

2.3.4 Data Movement inside the System

Another important source of performance loss is linked to
data movement inside the system [25]. To be efficient, an
implementation should avoid to copy packets from memory
to memory because of its time cost (DRAM bandwidth does
not follow the exponential increasing of processing power).
Also, for parallel implementations, data transfers between
two separate nodes should be minimized because excessive
internal communications can lead to link saturations and
even to a global system slowdown. A classical solution [4]
is the use of a shared memory where all the packets are
stored. The processing nodes would only access the head-
ers and trailers of these packets and would never deal with
the data they include.

2.3.5 Interface between the Processing System and the
Physical Layer

The last bottleneck may be the interface between the pro-
cessing system and the physical layer [4]: its throughput
should be sufficient not to limit the system. If the number
of access points to the physical links is insufficient, these
access points are considered as shared resources. They can
then be saturated if too many processing units try to use
them at once.

The logical solution to this problem consists in handling
various network access points in parallel. For that, we dis-
tribute the ISSI and SNI connections among the various
nodes of a distributed computer (see figure 3), each one hav-
ing its own OS and interface(s) with the SMDS network,
and collaborating with other nodes to provide the SMDS
service.

3 OO Analysis and Design

3.1 An Object-Oriented Approach

The implementation of a distributed SMDS server was
a telecom, research-oriented project carried out in our
lab [10]. We also used this case study in [8] to present
some software engineering issues related the full usage of
an object-oriented approach, from analysis and design down
to an implementation in Eiffel. In this Section, we just out-
line the various steps of the approach, while concentrating
on design issues related to the distributed real-time aspects
of our SMDS server.

Most object-oriented methods now make it possible to
tackle with the incremental, iterative, and evolutionary na-
ture of software development. The various phases of anal-
ysis, design, and implementation use the same conceptual
framework (based on objects) and have no rigid frontiers
between them, so the object-oriented software engineering
process can be calledseamless. Seamlessness is so impor-
tant for modern software systems because the main effort in
software development (perhaps 80% or more) is spent not
on new development but on maintenance of existing soft-
ware. Therefore, the very role of analysis and design in
software engineering is changing. Rather than addressing
only the earliest stages of the software lifecycle, it is in-
creasingly being viewed as the intellectual support needed
across the entire software construction process.

3.2 Analysis through OO Modeling

The first step towards an object-oriented analysis is con-
cerned with devising a precise, relevant, concise, under-
standable, and correct model of the real world. The pur-
pose of object-oriented analysis is to model the problem
domain so that it can be understood, and serve as a stable
basis preparing the design step. Note that the requirements
for many systems are rarely as formal as protocol specifi-
cations, often they evolve together with the design and im-
plementation of the system. An important point of OO de-
velopment is to make building such systems possible. It is
often said that we don’t need to understand the entire prob-
lem before starting to code —as long as we develop classes
for the parts that we do understand.

The Object Modeling Technique (OMT) [18] is one of
the most popular OO Analysis and Design method. The
OMT analysis model extends itself in three dimensions:

� the object model, showing the static structure of the
real world system through abstract or physical classes
and their relationships.

� the dynamic model, showing the temporal behavior
of the objects in the system. When the problem do-
main deals with telecommunication protocols, most



(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

(SPMD
Fragment)

SMDS 
Server

SNIs

SNIs

ISSI Links

Parallel

SMDS Server

CPU

ATM ATM Mem. ISSI

ISSI

SNIs SNIs SNIs

ISSI

ISSI

ISSI Links

Figure 3. Distributing the network connections to get a Parallel SMDS server

of the analysis work regarding the dynamic model is
already done, because it is explicitly included in the
requirements as the definition of the protocol. This
definition is usually made of chunks of communicat-
ing finite state automata, extended with some private
variables and watchdog clauses.

� the functional model, showing the constraints be-
tween the objects in the system (and notably between
inputs and outputs).

3.3 Design Patterns for High Performances

3.3.1 System Design

Thedesignphase starts with the output of the analysis phase
and gradually shifts its emphasis from application domain
to computation domain: the implementation strategy is de-
fined, and trade offs are made according to the priorities
defined in the previous section.

For most real-world applications, the first step in sys-
tem design is to divide the system into a number of com-
ponents. These components should be rather autonomous
and loosely coupled subsystems, featuring well-defined in-
terfaces. The main subsystems of our SMDS server are the
three levels of the ISSI, the ICI, the SNI, and the network
management interface (NMI) (see Figure 2). Due to perfor-
mance constraints, the ISSI levels 1 and 2 are implemented

with a set of dedicated boards, responsible for handling the
underlying protocol (ATM, DQDB, etc.). Whatever their
type, these boards present the same interface to the ISSI
level 3: this interface can be modeled with an abstract class,
which is given a specific concrete implementation for each
kind of board that can be plugged into the server (plus one
for simulation purposes on the development station). In the
following, we concentrate on the core of the SS, the part
dealing with the communications between SMDS servers
(that is the ISSI).

3.3.2 The Active Object Approach

In our SMDS server analysis model, as in most telecom
systems, many classes have associated finite state machines
(FSM) describing their dynamic behaviors: their instances
are often calledactive objects. This notion of active objects
was introduced in concurrent OO languages such as POOL-
T [1] or ABCL/1 [23] to merge both notions of objects and
processes. Active objects can be seen like concurrent ac-
tivities communicating by sending messages. A classical
approach is then to use a so called “real-time operating sys-
tem” and allocate a real process to each active object. These
processes must then be properly scheduled to meet real-time
constraints, which can be helped by many formalisms and
tools [3].

While conceptually simple and general purpose, this ap-
proach suffers from a number of drawbacks:



� inheritance anomaly: This simple parallelism model
does not melt well with inheritance, because syn-
chronization constraints are hard to inherit in a con-
text in which subtype substitutability is to be pre-
served. This problem is known as theinheritance
anomaly[14] and is not easy to circumvent [15].

� context switching overhead: when we have many pro-
cesses, the context switching time can become signif-
icant. Light Weight Processes (e.g.,threads) can help
here, but it is still very difficult to handle hundreds
or thousands of active objects with their own thread
of execution, if only because many operating systems
limit the number of threads per process.

� wasted system ressources: at a given point in time,
most processes are simply waiting for something to
happen. While they do nothing, they needlessly waste
system ressources (stack space, etc.).

� unnecessary message buffering: handling a typical
message (e.g., from ISSI to SNI) involves several
processes that must exchange information. In most
operating systems, it means that the information is
queued, even if the target process is resident in the
same processor.

3.3.3 The Reactive Approach

On the other hand, if the smallest granularity of time is
around a few milliseconds, as it is the case in our SMDS
server, many events can be fully handled at once, that is in
an atomic way. For example, an incoming message goes
up various levels of the protocol stack (implemented as ob-
jects) following a string of up-calls. At the relevant level,
it is processed (e.g., the header is modified for the next hop
into the network), and then sent down the stack still using
method calls. For the sake of efficiency, a clever compiler
may statically bind most method calls, and even inline them
in the context of the caller: we keep the modularity of the
protocol stack architecture at the design and implementa-
tion level, but the compiler is able to make cross-module
optimizations3.

Avoiding preemptive scheduling would allow the system
to finish current work before beginning new work and thus

3For example, GNU SmallEiffel is an Eiffel compiler which uses a fast
simple type inference mechanism to remove most late binding calls, re-
placing them by static bindings [24]. Since the whole system is analyzed
at compile time, multiple inheritance has no overhead at all. Efficient dead
code removal makes small executable files and increases performance of
the compiler itself. SmallEiffel features an original coding scheme to elim-
inate the need for virtual function tables, thus using modern hardware more
effectively. This new implementation of dynamic dispatch does not break
control flow. Furthermore, this allows the in-lining of more calls even
when dynamic dispatch is required. The advantage of this approach is that
it greatly speeds up execution time and considerable decreased the amount
of generated code.

remove many resource management and concurrency prob-
lems. The core of the SMDS server may then be an event
dispatcher. It monitors all possible sources of events, se-
rializes them, and dispatches them to the relevant handler
objects for an atomic processing. The event dispatcher is
implemented bypolling the various event sources:

1. Commands coming from the “system manager” or
from the operator.

2. Timersfiring.

3. Remote method invocation coming from other pro-
cessors in the same switch.

4. Message reception at one of the local network inter-
faces (SNI, ICI, ISSI).

This architecture is very close to theReactorpattern that
has been documented in [19], and whose intent is:

Support the demultiplexing and dispatching of
multiple event handlers, which are triggered
concurrently by multiple events. The Reactor
pattern simplifies event-driven applications by
integrating the demultiplexing of events and the
dispatching of the corresponding event han-
dlers.

3.3.4 General Behavior

The general behavior of an SMDS server is illustrated by
the Eiffel code snippet provided in Example 3.1. The ini-
tialization of our SS consists in creating the main entities
and provides them with the references they need to estab-
lish the cooperations identified in the object model. We use
an Abstract Factory4 to be able to dynamically configure
the variant parts of the SMDS server, e.g., how many ATM
and or DQDB interfaces does it have (See [9] for more de-
tails on our approach at configuring object-oriented soft-
ware). Once the initialization is completed, the SS enters
the polling loop, whose termination may be required by the
operator. Its effect is to finish the polling loop, clean up ev-
erything, and terminate the “main” program. Failures in the
SS should be reported by means of exceptions; dealing with
fatal failures consists of handling otherwise unexpected ex-
ceptions (non-fatal errors are reported as warnings to the
Operator). The main procedure is provided with arescue
clause to handle these exceptions by cleaning things up and
restart the server if the crash rate stays below a configurable
threshold (the crash rate is simply a variable that is periodi-
cally decremented,a la leaky bucket). Unless the crash rate

4Abstract Factory is one of the Creational Design Patterns documented
in [5]. Its intent is to provide an interface for creating families of related
or dependent objects without specifying their concrete classes.



is too large, and the server failure cannot be considered tran-
sient (in which case it is simply stopped), theretry instruc-
tion works like a kind of warm boot, because everything
restarts as if it were initialization time. The garbage collec-
tor then will recycle the resources associated with the over-
ridden entities. Like many telecom protocols, the SMDS
has been designed to deal with server crashes (fail stop) and
later recovery, so this simple mechanism also provides a
limited amount of both hardware and software fault toler-
ance. It also may be disabled during the testing phases to
get a standard exception history dumps.

Example 3.1
main is

�� initialize and run this SMDS server
do

from initialize
until is shutdown required
loop

process next event �� by polling event sources
end �� loop

clean up
rescue

clean up
crash rate := crash rate + 1
if crash rate <= crash rate threshold then

retry
end �� if

end �� main

Because the system spends much less time in managing
the processes and their conflicts, the reactive approach is
also much more efficient that the one based on the use of
active objects. However, if we adopt this approach, we have
still to deal with three kinds of problems: (1) remaining
asynchronous interrupts, (2) the case where the handling
of an event takes too much time to be processed atomi-
cally and, because we used an advanced OO language, (3)
garbage collection.

3.3.5 Asynchronous Interrupts

Asynchronous interrupts still arise due to e.g., timer ringing.
Indeed, at any given point in time, many watchdogs are ac-
tive in most telecom systems. Because of their number, we
implemented them in software, using a class TIMER featur-
ing an expiration date, and the object to ring when the date
is reached. The timers are stored in a priority queue (by
increasing date of awakening). On loading (or disabling),
a timer inserts (or removes) itself in (or from) the queue.
Polling this queue at each iteration of the main loop re-
vealed itself too costly, so we used a hardware timer set
to fire when the software timer at the head of the queue is
about to reach its expiration date. This hardware timer uses
an asynchronous interrupt to notify the server, but we do
not want to disrupt the current processing of an event in the

server. So we set up a simple interrupt handler to only set
a “timer is ringing” flag. This flag is checked in the main
polling loop, and thus the timer ringing event is processed
in the next iteration.

3.3.6 Events that Require a long Processing

Once in a while, the processing of an event can take longer
than the maximum time allowed for an atomic processing
(around 5 ms in our SMDS server). In this case, we require
that its handler periodically call theprocesseventschedul-
ing primitive to allow a handler with a finer granularity to
be run. Because 5 ms is a large amount of time for a multi-
MHz processor, this is usually a simple matter of placing
the scheduler call at the end of each relevant loop in the
handler code. Each event handler method has thus an as-
sociated postcondition stating that less than 5 ms must be
spent on its execution. If this postcondition is violated, it
denotes a bug in the handler code.

3.3.7 Subduing the Garbage Collector

With many languages, programmers must explicitly reclaim
heap memory at some point in the program, by using afree
or a disposestatement. Eiffel frees the programmer from
this burden, thanks to a garbage collector.

It was once widely believed that garbage collection was
quite expensive relative to explicit heap management, but
recent advances in garbage collection technology make au-
tomatic storage reclamation affordable for use in high-
performance systems. Generational techniques reduce the
basic costs and disruptiveness of collection by exploiting
the empirically-observed tendency of objects to die young
(objects from the same generation can be allocated and col-
lected in a row [20]). Incremental techniques may even
make garbage collection relatively attractive for real-time
systems [12]. Most Eiffel implementations come with such
an incremental garbage collector, which can be activated
and suspended nearly at will.

In the case of the implementation of our SMDS server,
we measured that the garbage collector’s work is shorter
when it is called often, and that it globally needs less than
1% of the computation time. So, with frequent iterative
collections, its work duration has a Gaussian kind of dis-
tribution with an average around 3 ms. As a result, our
SMDS server launches an iterative collection each time it
is otherwise idle (not to penalize packet processing), but if
a working period is too long, a collection is forced so the
optimal interval between two collections is respected, and
the collecting time never exceeds 15 ms and has a probabil-
ity of 99.9% to be under 10ms. While this approach practi-
cally meets the requirements expressed in Section 2.3.1, it is
clear that things would have been easier if a truly real-time



Kind of processing headers processed/smean processing time
SNI to ISSI 5025 199 us
ISSI to SNI 8093 124 us
Switching (ISSI to ISSI) 5347 187 us

Table 1. Header processing speed in an SMDS server

garbage collector would have been available in our devel-
opment environment.

Further that allowing us to limit the garbage collector
monopolization of the processor to short periods, the shift-
ing of memory management processing to idle periods al-
lows time savings during active periods. Our server then
has a higher ability to absorb traffic peaks.

4 Implementation and Validation Process

4.1 Qualitative Validation

The output of the design stage gave us a class hierarchy,
allowing us to build an actual prototype for each class (with
stub routines), and then implement the routine bodies class
by class. After a class is actually implemented, it is tested
separately to validate its internal consistency (unit testing).
It is then added to the systemin lieu of its stub class, and
the system is tested against this new set of functionalities
(see [8] for more details).

Testing takes place in the framework ofDesign by Con-
tract [16, 11], that prompts designers to specify precisely
every consistency condition that could go wrong, and to as-
sign explicitly the responsibility of its enforcement to either
the routine caller (the client) or the routine implementation
(the contractor). Assertions (taking the form of class in-
variants, preconditions, and postconditions) are the mecha-
nisms that enable the formalization of this contract between
a client and a contractor. By enabling the proper compile-
time switch, these assertions can be monitored at runtime,
which provides a powerful help in the testing process.

Basically, a party failing to meet the contract terms in-
dicates the presence of a fault. A postcondition violation
points out a bug in a routine implementation, which does
not fulfill its promises. On the other hand, a precondition
violation points out a contract broken by the client: this is
very useful while in (incremental) integration testing, be-
cause the already integrated code can be protected from
mishandling by the newly integrated one.

The problem is that evaluating assertions at run time
costs processing time, which can be disturbing in a real-
time setting. We solved this problem in an ad hoc fashion
by substituting a logical clock to the real one during func-

tional testing: real time issues were to be tested separately,
as described below.

4.2 Quantitative Validation

To get real performance figures from our parallel SMDS
server, we implemented it on the Intel Paragon XP/S su-
percomputer, a distributed-memory multicomputer with ar-
chitecture that can accommodate more than a thousand het-
erogeneous nodes connected in a two-dimensional rectan-
gular mesh —its computation nodes are based on Intel i860
processors, and communicate by passing messages over a
high-speed internal interconnect network.

Our implementation made use of our own Eiffel Paral-
lel Execution Environment (EPEE) [7], that can be seen
as a kind of a toolbox. It mainly consists of a set of
cross-compilation tools that allow the generation of exe-
cutable code for many different distributed computers (In-
tel Paragon XP/S, Fujitsu AP1000, SGI, network of Unix
workstations, etc.). It also includes a set of Eiffel classes
that provide facilities for sharing data across a distributed
computer and for handling data exchanges between its pro-
cessors in a portable way.

4.2.1 Header processing speed

We first determine the internal performance limits of our
SMDS server. The significant figures are the speed
of header processing in different contexts: transmission
(packet received from an SNI and then injected in the
SMDS network), reception (PDU coming from an ISSI link
and delivered to a SNI), and switching of traffic (from an
ISSI link to an other one).

For these specific measures, we use a specialized SMDS
server, where the lower layers are simulated: a transmission
only consists in incrementing a counter; and as for recep-
tions, the server is always told that a PDU is ready to be
read and the reception is simulated (a fixed set of prede-
fined PDU is used). The measures consist in performing
continual operations on the server and compute their mean
durations (which is more realistic than exploring the assem-
bly language listing to add up individual times of machine
language instructions on a given path of the header process-
ing).



0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20

B
a
n
d
w
i
d
t
h
 
(
M
b
/
s
)

Number of processors

Light traffic
Medium traffic
Heavy traffic

Figure 4. Maximal aggregate bandwidth in optimal conditions

Since these tests involve no network connection, the re-
sults are directly proportional to the processing power of
the processor. The performance figures exposed in Table 1
show that the internal speed of a sequential server is suf-
ficient to reach Gigabit flow rates on a standard processor:
the slower operation reaches 3.29 Gb/s with 64k PDU, thus
easily meeting the requirements of Section 2.3.2.

4.2.2 Measuring Aggregate Bandwidth

These performance tests consist in measuring the maximal
switching capacity of a parallel server, depending on the
number of processor it has. The test architecture includes:

� a parallel server implemented on 1, 2, 4, 8, 12, 16 and
20 nodes of a Paragon XP/S

� an environment (surrounding the parallel server)
made of a number of other SMDS servers (e.g., 24),
each one implemented on one node of the Paragon
XP/S and achieving traffic generation and absorption.

We are interested in seeing how faster does a parallel
server work, depending on the number of nodes it has. So
we measure data flow rates for various packet sizes, under
different conditions of (random) traffic load.

From all these measures (various packet sizes and traffic
profiles), we extract the best aggregates bandwidth results
for each size of SMDS servers (from 1 to 20 nodes, for 3
kinds of traffic densities). These results are displayed on
Figure 4.

A single processor server achieves user data switching
at a speed of 180Mb/s, whereas a 20 processors parallel
servers reach nearly 2.3Gb/s, widely above the Gigabit data
flow rate given as an unlikely reachable limit in [13]. We
obtain a quasi-linear speed-up, with an average efficiency
of 66%. Extrapolating this result, even greater flow rates
should be achievable by increasing the number of nodes of
the parallel SMDS server.

5 Conclusion

We have outlined the design and the implementation of
a scalable SMDS server using a fully object-oriented ap-
proach, from analysis to design to implementation. We have
shown that the use of advanced object-oriented technologies
(such as high modularity, dynamic binding, design by con-
tract, automatic garbage collection, etc.) are not incompati-
ble with soft real-time computing. Still, a good optimizing
compiler is mandatory to remove the bulk of the late binding
calls and bypass the overhead due to OO fine-grain modu-
larity to produce small and efficient object code. Another
sin equa noncondition is that the OO runtime environment
must make it possible to control the garbage collector be-
havior, e.g., by providing hooks to activate and suspend its
activity at will.

In our SMDS case study, we were able to build an
implementation featuring high-throughput and low-delay
transmissions and respecting all the real-time constraints of
SMDS.

Using a high level programming environment presents a
number of advantages. First, since the aggregate bandwidth
of the server is proportional to the number of supporting
nodes, it makes easily available arangeof performances ad-
justable to the user needs (because no new software has to
be written: since in Eiffel everything is dynamic, the soft-
ware can configure itself at boot-time, using e.g., anAb-
stract Factory). Then, since most of the software is fully
portable (only the code dealing with device drivers is sys-
tem dependent), it can easily be tested on the development
station where the actual device drivers are only simulated.
Easier portability also means we can benefit from the expo-
nential increasing of processing power to produce servers
that run twice as fast as the previous generation for free.



Acknowledgments

We would like to thank Xavier Desmaison, Frederic
Guerber and Isabelle Levern who made it possible to trans-
form the ideas presented in this paper into actual soft-
ware. We also would like to thank Michel Train and Remi
Houdaille (Lucent Technologies, Rennes) for their com-
ments on early versions of this paper.

References

[1] P. America. Pool-T: A parallel object-oriented program-
ming. In A. Yonezawa, editor,Object-Oriented Concurrent
Programming, pages 199–220. The MIT Press, 1987.

[2] Bellcore. Generic requirements for smds networking. Tech-
nical Report TA-TSV-001059, Bell Communication Re-
search, 1992.

[3] G. Berry and A. Benveniste. The synchronous approach
to reactive and real-time systems.Another Look at Real
Time Programming, Proceedings of the IEEE, 79:1270–
1282, 1991.

[4] T. Braun and M. Zitterbart. Parallel XTP implementation on
transputers. InThe 1991 Singapore International Confer-
ence on Networks, pages 91–96. G.S.Poo, Sep 1991.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[6] F. Guidec, J.-M. J´ezéquel, and J.-L. Pacherie. An object
oriented framework for supercomputing.Journal of Sys-
tems and Software, Special Issue onSoftware Engineering
for Distributed Computing, June 1996.

[7] J.-M. Jézéquel. EPEE: an Eiffel environment to program
distributed memory parallel computers.Journal of Object
Oriented Programming, 6(2):48–54, May 1993.

[8] J.-M. Jézéquel.Object Oriented Software Engineering with
Eiffel. Addison-Wesley, Mar. 1996. ISBN 1-201-63381-7.

[9] J.-M. Jézéquel. Reifying configuration management for
object-oriented software. InInternational Conference on
Software Engineering, ICSE’20, Kyoto, Japan, Apr. 1998.

[10] J.-M. Jézéquel, X. Desmaison, and F. Guerber. Performance
issues in implementing a portable SMDS server. In IFIP,
editor, 6th International IFIP Conference On High Perfor-
mance Networking, pages 267–278. Chapman & Hall, Lon-
don, Sept. 1995.

[11] J.-M. Jézéquel and B. Meyer. Design by contract: The
lessons of Ariane.Computer, 30(1):129–130, Jan. 1997.

[12] E. K. Kolodner and W. E. Weihl. Atomic incremental
garbage collection. InProc. Int. Workshop on Memory
Management, number 637 in Lecture Notes in Computer
Science, pages 365–387, Saint-Malo (France), September
1992. Springer-Verlag.

[13] J.-Y. Le Boudec, A. Meier, R. Oechsle, and H. L. Truong.
Connectionless data service in an atm-based customer
premises network.Computer Networks and ISDN Systems,
0(26):1409–1424, July 1994.

[14] S. Matsuoka and A. Yonezawa. Analysis of inheritance
anomaly in object-oriented concurrent programming lan-
guages. In G. Agha, P. Wegner, and A. Yonezawa, ed-
itors, Research Directions in Concurrent Object Oriented
Programming. MIT Press, 1993.

[15] J. Meseguer. Solving the inheritance anomaly in concurrent
object-oriented programming. In O. Nierstrasz, editor,Pro-
ceedings ECOOP’93, LNCS 707, pages 220–246, Kaiser-
slautern, Germany, July 1993. Springer-Verlag.

[16] B. Meyer. Applying ”design by contract”.IEEE Computer
(Special Issue on Inheritance & Classification), 25(10):40–
52, Oct. 1992.

[17] B. Meyer. Eiffel: The Language. Prentice-Hall, 1992.
[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and

W. Lorensen.Object-Oriented Modeling and Design. Pren-
tice Hall, New Jersey, 1991.

[19] D. C. Schmidt. Reactor: An object behavioral pattern for
concurrent event demultiplexing and event handler dispatch-
ing. In Pattern Languages of Program Design, volume 1.
Addison-Wesley, 1995.

[20] R. Sharma and M. L. Soffa. Parallel generational garbage
collection. InProceedings OOPSLA’91, pages 16–32, Nov.
1991. Published as ACM SIGPLAN Notices, volume 26,
number 11.

[21] P. Stephan. Building financial software with object technol-
ogy. Object Magazine, 5(4), July 1995.

[22] A. Tantawy. Réalisation de protocoles `a haute performance.
In Actes du colloque CFIP’93 sur l’ing´enièrie des proto-
coles, Montreal. Hermès, Sept. 1993.

[23] A. Yonezawa, J.-P. Briot, and E. Shibayama. Object-
oriented concurrent programming in ABCL/1. InOOP-
SLA’86 Proceedings, September 1986.

[24] O. Zendra, D. Colnet, and S. Collin. Efficient dynamic dis-
patch without virtual function tables: The SmallEiffel com-
piler. InProceedings OOPSLA ’97, ACM SIGPLAN Notices,
Oct. 1997.

[25] M. Zitterbart. High-speed transport components.IEEE Net-
work Magazine, pages 54–63, Jan. 1991.


