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Abstract

We analyze different available methods in the study of the exactly solvable stochas-

tic models and their application to construction and modeling the road traffic with

acceleration/deceleration dynamics.

1 Introduction

In the study of models for traffic [1] the property of the fundamental diagram
plays an important role. The fundamental diagram of traffic flow gives a relation
between the traffic flux (cars per unit of time) and the traffic density (cars
per unit length ) and as well the dependence between the speed and the flux,
and the speed and the density, all three graphs are related by the relation:
flux = density×speed. There is actually controversy wether about the existance
a genuine dynamical phase, called the synchronized phase[2] between the free
flow and congested phase[3].

Considering the large amount of successful applications of exactly solvable
models to problems of non-equilibrium statistical physics we focus on the fol-
lowing questions:

• is there a stochastic model (exclusion process, zero range process) able to
account for some or all reasonable features like the asymmetry between
breaking and accelerating[4], of the fundamental diagram observed exper-
imentally, and suitable for exact computations.

• Having such a model, can we provide a method to compute the funda-
mental diagram and study emergence of non-trivial collective behaviors
at macroscopic level, caused for example by some spontaneous symmetry
breaking among identical vehicles as in the Japanese experiment of traffic
jams on a ring [5].
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2 A Multi-speed exclusion processes

The model we propose is defined by the following set of reactions, involving
pairs of neighbour sites:

AO
λa−→ OA; BO

λb−→ OB; BO
γbo−−→ AO; AO

δao−−→ BO

AB
λab−−→ BA; AA

δaa−−→ BA; AB
δab−−→ BB; BA

δba−−→ BB

AB
γab−−→ AA; BB

γ1
bb−−→ BA; BA

γba−−→ AA; BB
γ2

bb−−→ AB

The λ’s, γ’s and δ’s denote the transition rates, each transition corresponding
to a Poisson event and we consider the ring geometry with periodic boudary
conditions. The question that we mainly address in this paper is how to identify
particular settings of the transition rates, with some of them possibly vanishing,
such that the model becomes solvable in a broad sense, i.e. for which either the
whole dynamics can be mathematically solved when the model is integrable, or
at least that the stationary state can be described explicitly with the invariant
measure.

The model itself can be seen as a two particle exclusion diffusion model
with coagulation/decoagulation dynamics including overtaking. It generalizes
several sub-models which are known to be integrable with particular rates. The
diffusion part of the model is just the totally asymmetric exclusion process [6, 7]
(TASEP) when λa = λb, which is known to be integrable, its generalization
to include multiparticle dynamics with overtaking is the so-called Karimipour
model [8, 9] when λab = λa − λb, which turns out to be integrable as well.
In some cases, the model can be exactly reformulated in terms of generalized
queueing processes (or zero range process in the statistical physics parlance),
where service rates of each queue follows as well a stochastic dynamics [10]. The
mapping work mainly on the ring geometry, by identifying queues either with
empty sites, clients are then the vehicles or with cars, clients are then the empty
sites.

Based on numerical simulations on the ring geometry, we make some ob-
servations concerning the phenomenology of a simplified form of the model,
depending on the parameters. This is illustrated on Figure 1. Non-zero rates
are λa and λb, γbo = γ, δaa = δab = δ, while all others are set to zero, in
particular overtaking is excluded (λab = 0). The asymmetry between breaking
and accelerating is crucial to observe condensation mechanism, which occurs if
the apparition of slow vehicle is a sufficiently rare event, resulting e.g. from a
cascade of braking events. Let us also remark that Figure 1.a is very reminiscent
of coagulation-decoagulation process, as expected from the previous discussion.

3 Conditions for solvability

A important case of solvability is intergrability. This means that we can con-
struct the spectrum and the eigenstates of the corresponding Markov operator
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Fig. 1: Spatio-temporal plots for multi-speed exclusion process with 2 speed
levels (a) (b) and (c) and with 3 speed levels (d). Time is going downward
and particles to the right. red, green and blue represent different speeds
in increasing order. The size of the system is 3000 except for (b) where
it is 100000. Setting are λa = 100, λb = 10, γa = 100, δb = 2 for (a) and
(b) and δb = 10 for (c), all with density ρ = 0.2. In (d) the rates are
λc = 10, λb = 100 and λa = 200, δc = 3, δb = 5, γb = 0.1 and γa = 1
with ρ = 0.3.

governing the evolution of the probability distribution P (C, t) with time:

d

dt
P (C, t) =

∑

C′

P (C′, t)M(C′, C) −
∑

C′

P (C, t)M(C, C′).

where the element M(C′, C) of the Markov Matrix is the transitions rate between
configuration C and C′. To get the model which can be analyzed, and possibly
not far from being solvable, we impose cancellations conditions for some of the
nonlinear terms. Such restrictions between the rates improve solvability of the
model, the model becomes close to integrable at specific choice of the rates. In
particular it becomes very simple when:

λa = γab + γba; λb = δab + γba = δ2
aa + γ2

bb; λab = λa − δ1
aa − γ1

bb.

and the interaction term has the form: −λa

∑
i na

i − λb

∑
i nb

i = hN. The op-

erator h plays a role of an average hopping rate operator and n
a,b
i are local

operators counting particles of each sort. Let us consider first only the coagu-
lation/decoagulation part of the model. This model can be dealt with help of
the empty interval method [11]. Let us imagine a densely packed road with
cars of two types with open boundary conditions. Then we can write a system
of equations for the queues of cars

P
a,b
t (x, x + 1, · · · , x + m − 1) = E

t(na,b
x n

a,b
x+1 · · ·n

a,b
x+m−1).

Taking it into account the Markov evolution equations of the corresponding
process can be written as a system of linear equations when γab = γba = γ2

bb = 0
and λab = γ1

bb:

d

dt
P a

t (x, y) = δbaP a
t (x − 1, y) − (2λab + (y − x)(δ1

aa + δ2
aa) + δab + δba)P a

t (x, y)+

+(λab − δ1
aa + δab)P

a
t (x, y + 1) + λabP

a
t (x + 1, y)
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Such equations are solved in terms of Bessel functions. More general structure
of the cluster functions is possible as well.

4 Product form of jams at steady-state

Taking advantage in some cases, of the mapping of the process on a generalized
tandem queue process, we propose in this section, to study the conditions for
which the stationary state has a product form. The queuing process which
is obtained is then a particular case of general model consisting in a network
G = (N ,L) of queues with dynamical (stochastic) service rates. By dynamical
service rates, we actually mean that each single queue i ∈ N is represented by
a vector zi(t) = (ni(t), µi(t)) ∈ Ei ⊂ N

+ × R
+. ni(t) is the number of clients

and µi(t) is a service rate, which represents the global transition rate from zi

to z′i = (ni − 1, µ′
i) ∈ V −

i (zi) (V −
i (z) is the set of points in Ei having one

client less than z). Two sets of transition probability matrices p±i (z, z′) and one
set of transition rates q0

i (z, z′) are introduced to complete the definition of the
process. When a client get served in queue i, the state of the departure queue zi

is modified according to the set p−i (z, z′) (with z′ ∈ V −(z)) and the state zi+1

of the destination queue is modified according the set p+
i+1(z, z′), z′ ∈ V +(z).

We have the normalizations,

∑

z′∈z

p±i (z, z′) = 1, ∀z′ ∈ V ±(z). (1)

Additional internal transitions are allowed, where the service rate µi of queue
i changes independently of any arrival or departure. The intensities of these
transitions are given by the set q0

i (z, z′), z′ ∈ V 0
i (z) of transition rates (V 0

i (z) is
the set of points in Ei having the same number of clients as z). The combined
set of transition rates,

qi(z, z′)
def

= λp+
i (z, z′)11{z′∈V +

i
(z)}+µ(z)p−i (z, z′)11{z′∈V −

i
(z)}+q0

i (z, z′)11{z′∈V 0
i

(z)},

defines for each i ∈ N a continuous time Markov process representing the dy-
namics of each queue taken in isolation. For this model we can prove the fol-
lowing.

Theorem 4.1. Let πλ
i denote the steady state probability corresponding to queue

i taken in isolation. If the following partial balance equations are satisfied,

∑

z∈V +(zi)

µ(z)p−i (z, zi)π
λ
i (z) = λπλ

i (zi), (2)

µ(zi)π
λ
i (zi) +

∑

z∈V 0
i

(zi)

q0
i (zi, z)πλ

i (zi) =

∑

z∈V −(zi)

λp+(z, zi)π
λ
i (z) +

∑

z∈V 0
i

(zi)

q0
i (z, zi)π

λ
i (z), (3)
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the joint probability measure of the network has the following product form at

steady state:

P (S = {zi, i ∈ N}) =

∏
i∈N πλ

i (zi)

P (
∑

i ni = N)
(4)

Note that reversible processes are special cases of processes obeying (2,3),
and with this respect, our results is an adaptation to our context of the gen-
eral results of Kelly concerning the dawning of product form in queuing net-
works [12]. Some non-reversible example have this partial balance property can
effectively be found ??
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