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Abstract. Parallelism constraints are logical desciptions of trees. They are as ex-

pressive as context unification, i.e. second-order linear unification. We present a

semi-decision procedure enumerating all “most general unifiers” of a parallelism

constraint and prove it sound and complete. In contrast to all known procedures

for context unification, the presented procedure terminates for the important frag-

ment of dominance constraints and performs reasonably well in a recent applica-

tion to underspecified natural language semantics.

1 Introduction

Parallelism constraints [7, 17] are logical descriptions of trees. They are equal in ex-

pressive power to context unification [4], a variant of linear second-order unification

[14, 19]. The decidability of context unification is a prominent open problem [21] even

though several fragments are known decidable [23, 22, 4].
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Fig. 1. Parallelism

Parallelism constraints state relations be-

tween the nodes of a tree: mother-of, sibling-

of and labeling, dominance (ancestor-of), dis-

jointness, inequality, and parallelism. Parallelism

, as illustrated in Figure 1, holds

in a tree if the structure of the tree between the

nodes and — i.e., the tree below mi-

nus the tree below — is isomorphic to that

between and .

Parallelism constraints differ from context

unification in their perspective on trees. They view trees from inside, talking about

the nodes of a single tree, rather than from the outside, talking about relations between

several trees. This difference has important consequences. First, it is not only a differ-

ence of nodes versus trees but also one of occurrences versus structure. Second, dif-

ferent decidable fragments can be distinguished for parallelism constraints and context

unification. Third, different algorithms can be devised. For instance, the language of

dominance constraints [16, 25, 1, 9] is a decidable fragment of parallelism constraints
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for which powerful solver exist [6, 5, 17]. But when encoded into context unification,

dominance constraints are not subsumed by any of the decidable fragments mentioned

above, not even by subtree constraints [24], although they look similar. The difference

is again that dominance constraints speak about occurences of subtrees whereas subtree

constraints speak about their structure.

Parallelism constraints form the backbone of a recent underspecified analysis of

natural language semantics [7, 12]. This analysis uses the fragment of dominance con-

straints to describe scope ambiguities in a similar fashion as [20, 2], while the full ex-

pressivity of parallelism is needed for modeling ellipsis. An earlier treatment of seman-

tic underspecification [18] was based directly on context unification. The implementa-

tion used an incomplete procedure [10] which guesses trees top-down by imitation and

projection, leaving out flex-flex. This procedure performs well on the parallelism phe-

nomena encountered in ellipsis resolution, but when dealing with scope ambiguities, it

consistently runs into combinatoric explosion. To put it differently, this procedure does

not perform well enough on the context unification equivalent of dominance constraints.

In this paper, we propose a new semi-decision procedure for parallelism constraints

built on top of a powerful, terminating solver for dominance constraints. We prove

our procedure sound and complete: We define the notion of a minimal solved form for

parallelism constraints, which plays the same role asmost general unifiers in unification

theory. We then show that our procedure enumerates all minimal solved forms of a given

parallelism constraint.

Plan of the paper. In the following section, we describe the syntax and semantics of

dominance and parallelism constraints. Section 3 presents an algorithm for dominance

constraints which in section 4 is extended to a semi-decision procedure for parallelism

constraints. In sections 5 and 6 we sketch a proof of soundness and completeness. Sec-

tion 7 concludes. Many proofs are omitted for lack of space but can be found in an

extended version [8].

2 Syntax and semantics

Semantics. We assume a signature of function symbols ranged over by , each

of which is equipped with an arity . Constants are function symbols of arity

denoted by . We further assume that contains at least one constant and a symbol

of arity at least 2.
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Fig. 2.

A (finite) tree is a ground term over , for instance

. A node of a tree can be identified with its path from

the root down, expressed by a word over , the set of natural

numbers excluding 0. We write for the empty path and for

the concatenation of and . A path is a prefix of a path if

there exists some (possibly empty) such that .

A tree can be characterized uniquely by a tree domain (the set

of its paths) and a labeling function. A tree domain is a finite nonempty prefix-closed

set of paths. A path is the -th child of the node/path . A labeling

function is a function fulfilling the condition that for every and



, iff . We write for the domain of a tree and for

its labeling function. For instance, the tree displayed in Fig. 2 satisfies

, , , and .

Definition 1. The tree structure of a tree is a first-order structure with domain

. It provides a labeling relation for each :

We write for ; this relation states that

node of is labeled by and has as its -th child (for ). Every tree

structure can be extended conservatively by relations for dominance, disjointness,

and parallelism.Dominance is the prefix relation between paths ; restricted to ,

it is the ancestor relation of ; we write if and . Disjointness

holds if neither nor . Concerning parallelism, let be the set

of nodes in the substructure of between and : If holds in , we define

but not

The node plays a special role: it is part of the substructure of between and ,

but its label is not. This is expressed in Def. 2, which is illustrated in Fig. 1.

Definition 2. Parallelism holds iff and are valid

in and there exists a correspondence function ,

a bijective function which satisfies and and preserves the tree

structure of , i.e. for all , , and :

iff

Lemma 3. If is a correspondence function, then

for all .

Syntax. We assume an infinite set of (node) variables ranged over by

. A (parallelism) constraint is a conjunction of atomic constraints or

literals for parallelism, dominance, labeling, disjointness, and inequality. A dominance

constraint is a constraint without parallelism literals. The abstract syntax of parallelism

constraints is defined as follows:

Abbreviations: for and for

For simplicity, we view parallelism, inequality, and disjointness literals as symmet-

ric. We also write , where . A richer set of relations could

be used, as proposed in [6], but this would complicate matters slightly. For a compari-

sion to context unification, we refer to [17]. An example for the simpler case of string

unification is given below (see Figure 4).



First order formulas built from constraints and the usual logical connectives are

interpreted over the class of tree structures in the usual Tarskian way. We write

for the set of variables occurring in . If a pair of a tree structure and a

variable assignment , for some set , satisfies , we write this as

and say that is a solution of . We say that is satisfiable iff it

possesses a solution. Entailment means that all solutions of are also solutions

of .
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Fig. 3. An unsatisfiable

constraint

We often draw constraints as graphs with the nodes rep-

resenting variables; a labeled variable is connected to its

children by solid lines, while a dotted line represents domi-

nance. For example, the graph for

is displayed in Fig. 3. As trees do not branch up-

wards, this constraint is unsatisfiable.
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Fig. 4. String unification

Parallelism literals are shown graphically as well as

textually: the square brackets in Fig. 4 illustrate the paral-

lelism literal written beside the graph. This graph encodes

the string unification [15] problem ; the two

brackets represent the two occurences of . Disjointness

and inequality literals are not represented graphically.

3 Solving dominance constraints

Our semi-decision procedure for parallelism constraints consists of two parts: a termi-

nating dominance constraint solver, and a part dealing with parallelism proper. Having

our procedure terminate for general dominance constraints and perform well for domi-

nance constraints in linguistic applications was an important design requirement for us.
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Fig. 5. Overlap

In this section, we present the first part of our procedure, the

solver for dominance constraints. This solver, which is similar

to the algorithms in [13, 6] and could in principle be replaced

by them, terminates in non-deterministic polynomial time. Ac-

tually, satisfiability of dominance constraints is NP-complete

[13]. Boolean satisfiability is encoded by forcing graph fragments to “overlap” and

making the algorithm choose between different possible overlappings. For instance, the

constraint to the right entails . The solver is intended to perform well in

cases without overlap, where distinct variables denote distinct values. This can typically

be assumed in linguistic applications.

We organize all procedures in this paper as saturation algorithms. A saturation al-

gorithm consists of a set of saturation rules, each of which has the form

for some . A rule is a propagation rule if , and a distribution rule oth-

erwise. The only critical rules with respect to termination are those which introduce

fresh variables on their right hand side. A rule is correct if where

.

By a slight abuse of notation, we identify a constraint with the set of its literals. This

way, subset inclusion defines a partial ordering on constraints; we also write for



Propagation rules:

(D.Clash.Ineq)

(D.Clash.Disj)

(D.Dom.Refl) where

(D.Dom.Trans)

(D.Eq.Decom)

(D.Lab.Ineq) where

(D.Lab.Disj) for

(D.Prop.Disj)

(D.Lab.Dom)

Distribution rules:

(D.Distr.NotDisj)

(D.Distr.Child)

Fig. 6. Solving dominance constraints: rule set D

the corresponding equality , and for the strict variant . This way, we

can define saturation for a set S of saturation rules as follows: We assume that each rule

S comes with an application condition deciding whether can be applied to

or not. A saturation step S consists of one application of a rule in S:

S

S

if where is

For this section, we let be true iff for all . We call a

constraint S-saturated if it is irreducible with respect to S and clash-free if it does not

contain . We also say that a constraint is in S-solved form if it is S-saturated and

clash-free.

Figure 6 contains schemata for saturation rules that together solve dominance con-

straints. Let D be the (infinite) set of instances of these schemata. Both clash schemata

are obvious. Next, there are standard schemata for reflexivity, transitivity, decomposi-

tion, and inequality. Schema (D.Lab.Dom) declares that a parent dominates its children.

We illustrate the remaining schemata of propagation rules by an example: We re-

consider the unsatisfiable constraint of Fig. 3. By

(D.Lab.Disj), we infer , from which (D.Prop.Disj) yields , which then

clashes by (D.Clash.Disj).

X

Z

Y

Fig. 7. Nondisjoint-

ness

There are only two situations where distribution is necessary.

The situation shown in Fig. 7 is handled by (D.Distr.NotDisj):

the tree nodes denoted by and cannot be at disjoint po-

sitions because they both dominate . The distribution rule

(D.Distr.Children) is applicable to the constraint in Fig. 5: As

the constraint contains , we must have ei-

ther or or . Propagation proves that the third choice results in a

clash, while the others lead to satisfiable constraints.



Proposition 4 (Soundness). Any dominance constraint in D-solved form is satisfiable.

Along the lines of [13]. On the other hand, the saturation algorithm forD is complete

in the sense that it computes every minimal solved form of a dominance constraint.

Definition 5. Let , be constraints, S a set of saturation rules and an partial order

on constraints. Then is a -minimal S-solved form for iff is an S-solved form

that is -minimal satisfying .

Y Z

X

Fig. 8. A solved

form

For dominance constraints, we can simply use set inclusion. As

an example, a -minimal D-solved form for the constraint in Fig.

8 is . (Note that does

not need to be labeled.)

Lemma 6 (Completeness). Let be a dominance constraint and

a -minimal D-solved form for . Then D .

Proof. By well-founded induction on the strict partial order on the set .

If is D-solved then by minimality and we are done. Otherwise, there is a

rule in D which applies to . Since and is in D-solved form,

there exists an such that . By the inductive hypothesis, D and thus

D .

4 Processing parallelism constraints

We extend the dominance constraint solver of the previous section to a semi-decision

procedure for parallelism constraints. The main idea is to compute the correspondence

functions for all parallelism literals in the input constraint (compare Def. 2). We use a

new kind of literals, path equalities, to accomplish this with as much propagation and

as little case distinction as possible.

We define the set of variables between and as the syntactic

counterpart of the set of nodes : If , then

and or

Given a parallelism literal , we need to establish a syntactic corre-

spondence function . In doing this, we may have

to add new local variables to . In the following, we always consider a constraint

together with a set of global variables; all other variables are local. For an input

constraint , we assume .

We record syntactic correspondences by use of a new, auxiliary kind of constraints:

a path equality p states, informally speaking, that below corresponds to

below . More precisely, a path equality relation p is true iff there

exists a path such that and , and for each ,

.

Figure 9 shows the schemata of the sets P and N of saturation rules for computing

correspondences, and Fig. 14 shows the schemata of the set T, which deal with inter-

acting parallelism literals (and thus interacting correspondences). The rule set D P

N T forms a sound and complete semi-decision procedure for parallelism constraints,

which we abbreviate by DPNT (and accordingly for other rule set combinations).



Propagation Rules:

(P.Root) p p

(P.Copy.Dom) p

where and .

(P.Copy.Lab) p

where or

(P.Path.Sym) p p

(P.Path.Dom) p

(P.Path.Eq.1) p p

(P.Path.Eq.2) p

Distribution Rules:

(P.Distr.Crown)

(P.Distr.Project) where

Introduction of local variables:

(N.New) p where ;

new and local

Fig. 9. Schemata of rule sets P and N for computing correspondence
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Fig. 10. Correspondence

The main rules. We start out with discussing the most

important rules for computing correspondence functions,

namely (P.Root), (N.New), (P.Copy.Dom), (P.Copy.Lab).

Schema (P.Root) states, with respect to a parallelism lit-

eral , that corresponds to and

corresponds to . To see how to go on from there, con-

sider the constraint in Fig. 10. Variable is between

and , and is between and . But they are just

dominated by and , respectively, their position is not

fixed. So it would be precipitous to assume that and

correspond — there is nothing in the constraint which would force us to do that. Schema

(N.New) acts on this idea as follows: Given a literal and a variable

, correspondence p is stated between and a variable

. If the structure of the constraint enforces correspondence between

and some other variable , then this will be inferred by satura-

tion. (N.New) need only be applied if does not yet possess a correspondent within

. We adapt the application condition for (N.New) rules accordingly:

p is true iff and p for all variables

Recall that is the set of global variables with respect to which we saturate our con-

straint. Given , (P.Copy.Dom) and (P.Copy.Lab) copy dominance,
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Fig. 11. Resolving an atomic parallelism constraint

disjointness, inequality, and labeling literals from to

and vice versa. The condition on the position of in (P.Copy.Lab) makes sure that the

labels of and are not copied.

X  / X  ~ Y  / Y
2121

X Y

Y2

X X2

1 1

Fig. 12. “inside” or

“outside”?

P contains two additional distribution rule schemata.

(P.Distr.Crown) deals with situations like that in Fig. 12:

We have to decide whether is in or not.

Only then do we know whether we need to apply (N.New)

to . (P.Distr.Project), on the other hand, guesses whether

two variables should be identified or not. It is a very pow-

erful schema, so we do not want to use it too often in prac-

tice.

Examples. Before we turn to the rules in T, let us discuss two more examples that can

be handled by the rules we have seen up to now. How does syntactic correspondence

as established by DPNT relate to semantic correspondence functions as defined in Def.

2? (P.Root) implements the first property of correspondence functions, the ”preserva-

tion of tree structure” property remains to be examined. Consider Fig. 11. Constraint 1

constitutes the input to the procedure, while constraint 2 shows, as grey arcs, the corre-

spondences that must hold by Def. 2. These correspondences are computed by DPNT:

We infer p p by (P.Root). (N.New) is applicable to and yields

p for a new local variable . We have by (D.Lab.Dom), so we may

apply (P.Copy.Lab) to and get . But since the constraint also

contains , (D.Eq.Decom) gives us , from which (P.Path.Eq.1) infers

p . We see that the structure of the constraint has enforced correspondence be-

tween and , and saturation has made the correct inferences.

2
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2121

Fig. 13. Self-

overlap

While DPNT computes only finitely many solved forms for

the constraint in Fig. 11, the constraint in Fig. 13 possesses in-

finitely many different solved forms. One solved form contains

. Another contains . For the case

of , there is one solved form with one local vari-

able, two with two, one with three, two with four, and so on ad infini-

tum.

Interacting correspondences. We now turn to the set of saturation

rules T, the schemata of which are shown in Fig. 14. T handles the interaction of cor-

respondence functions for “overlapping” parallelism contexts. Schema (T.Trans.H) de-



(T.Trans.H) p p p

(T.Trans.V) p p p

(T.Diff.1) p p p

(T.Diff.2) p p p

Fig. 14. Rule set T: interaction of correspondences
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Fig. 15. Using T

scribes horizontal transitivity of path equality constraints, while (T.Trans.V), (T.Diff.1)

and (T.Diff.2) all deal with vertical transitivity. The correctness of these rules is obvious.

We discuss an example where T is needed to ensure correct interaction of cor-

respondences. Consider the constraint in Fig. 15. We have and for

, so (P.Distr.Crown) is applicable. Suppose that in each case, we choose

and . Suppose further that using (P.Distr.Project), we choose .

(N.New) can be applied to , yielding new local variables

and with p p . Suppose that by (P.Distr.Project), we choose

and , hence we get p and p by (P.Path.Eq.1). We

can use (N.New) on , getting p and p

for new local variables . Suppose that again, we choose and

by (P.Distr.Project). This yields p and p by (P.Path.Eq.1). Now we

turn to the third parallelism literal, . Again by (N.New), we can add

p and p for new local variables .
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X2

U2

f f

V2

Y2

V1

Y1

X  / X  ~ Y  / Y
1 2 21

U  / U  ~ V  / V
1 2 21

Fig. 16. Vertical transi-

tivity

But now, we choose and by

(P.Distr.Project), which gives us p and p .

This constraint is unsatisfiable: In a tree structure satisfying

this constraint, the path from to would have to be the

same one as the path from to , but the constraint con-

tains . However, (T.Trans.H) can detect this: From

p and p , we get p , and com-

bined with p this gives p , to which we

can add by (P.Path.Eq.2). As (P.Copy.Dom) copies

to , this results in a clash by (D.Clash.Ineq).

Each path equality inferred byDPN saturation describes

a correspondence for some parallelism literal. With T, this

is different. Consider, for example, Fig. 16 where DPN saturation can infer the corre-



spondence p . (P.Root) yields p . Now (T.Trans.V) can add p ,

a path equality that does not describe any syntactic correspondence for any of the two

parallelism literals present. In this case, the additional path equality is not vital. But in

other cases, e.g. if we extend the example in Fig. 15 by a fourth context and a fourth par-

allelism literal, the ability to infer path equalities beyond correspondence is necessary

to ensure proper interaction of parallelism literals. Actually, the reason why we record

correspondence by path equalities, as quadruples of variables, is that they support this.

Implementation. A first prototype implementation of DPNT is available as an applet

on the Internet [3]. Saturation rules are applied in an order refining the order mentioned

above: A distribution rule is only applied to a constraint saturated under the propagation

rules fromDPT. A rule fromN is only applied to a constraint saturated underDPT. This

implementation handles ellipses in natural language equally well as the previously men-

tioned implementation based on context unification [18]. But the two implementations

differ with respect to scope ambiguities, i.e. dominance constraint solving: While the

context unification based program could handle scope ambiguities with at most 3 quan-

tifiers, the parallelism constraint procedure resolves scope ambiguities of 5 quantifiers

in only 6 seconds and can even deal with more quantifiers.

5 Soundness

Clearly, all rules inDPNT are correct. For the soundness ofDPNT-saturation is remains

to show that generatedDPNT-solved forms are satisfiable. First, we show that a special

class of DPNT-solved forms, called ”simple”, are satisfiable. Then we lift the result to

arbitrary DPNT-solved forms.

However, we only regard generated constraints, where each path equality either

establishes a correspondence for some parallelism literal, or is the result of combining

several such correspondence statements by a T rule.

Definition 7. Let be a constraint.

A path equality p is correspondence-generated in iff there exists

some atomic parallelism constraint such that is

in , and or .

Let be the set of correspondence-generated path equalities in , and let

be without all its path equalities, then a path equality is generated in iff it is in the

T-saturation of .

is called generated iff each of its parallelism literals is.

Concerning correspondence-generated path equalities, if , then it

must correspond to and inference will determine that must be between and

, and vice versa. Every DPNT-solved form of a parallelism constraint is generated,

so we can safely restrict our attention to generated constraints:

Lemma 8. Let be a constraint without path equalities, and let DPNT with

in DPNT-solved form. Then is generated.



Definition 9. Let be a constraint. A variable is called labeled in

iff such that and are in for some term

. We call simple if all its variables are labeled and there exists some

root variable such that is in for all .

Proposition 10. A simple generated constraint in DPNT-solved form is satisfiable.

Proof. The constraint graph of a simple generated constraint in DPNT-solved form

can be seen as a tree (plus redundant dominance edges, parallelism and path equality

literals). So we can transform into a tree by a standard construction. For every

parallelism literal in , the corresponding parallelism holds in : As suggested by

the examples in the previous section, DPNT enforces that the computed path equalities

encode valid correspondence functions in .

X

Y Z=U

Y = X = Z

Fig. 17. Extension

Now suppose we have a generated non-simple con-

straint inDPNT-solved form. Take for instance the con-

straint in Fig. 17. We want to show that there is an exten-

sion of it that is simple, generated, and in DPNT-

solved form. We proceed by successively labeling unla-

beled variables. Suppose we want to label first. The

main idea is to make all variables minimally dominated by into ’s children, i.e. all

variables with such that there is no intervening with .

X Y

X X’

X Y

X  / X  ~ Y  / Y

1 1

2 2

2121

Fig. 18. Extension

and parallelism

So in the constraint in Fig. 17, are minimally dominated.

However, we choose only one of as we have . Hence,

we would like to label by some function symbol of arity 2,

extending the constraint, for instance, by . (If there is

no symbol of suitable arity in , we can always simulate it by a

constant symbol and a symbol of arity .) However, we have

to make sure that we preserve solvedness during extension. For

example, when adding to the constraint in Fig. 17,

we also add so as not to make (D.Lab.Disj) applicable.

Specifically, we have to be careful when labeling a variable like

in Fig. 18 (where grey arcs stand for path equality literals): is in ,

and when we add for some unary , we also have to add , otherwise

(P.Copy.Lab) would be applicable.

So, by adding a finite number of atomic constraints and without adding any new

local variables, we can label at least one further unlabeled variable in the constraint,

while keeping it in DPNT-solved form. Thus, if we repeat this process a finite number

of times, we can extend our generated constraint in DPNT-solved form to a simple

generated constraint in DPNT-solved form, from which we can then read off a solution

right away.

Theorem 11 (Soundness). A generated constraint in DPNT-solved form is satisfiable.

6 Completeness

DPNT-saturation is complete in the sense that it computes every minimal solved form

of a parallelism constraint. For parallelism constraints, the set inclusion order we have



(1) Eliminating/introducing a local variable

if , ,

(2) Renaming a local variable

if ,

(3) Exchanging representatives of an equivalence class in a constraint

(4) Set equivalence (associativity, commutativity, idempotency)

if

Fig. 20. The equivalence relation on constraints handling local variables

used previously is not sufficient; we adapt it such that it takes local variables into ac-

count.
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Fig. 19. Local

variables?

Consider Fig. 19. If (N.New) is applied to first, this yields

p for a new local variable , plus and

by (P.Copy.Lab) and (D.Eq.Decom). Accordingly, if (N.New) is ap-

plied to first, we get p for a new lo-

cal variable . The nondeterministic choice in applying (N.New)

leads to two DPNT-solved forms incomparable by which, how-

ever, we do not want to distinguish.

To solve this problem, we use an equivalence relation handling

local variables: Let , then is the smallest equivalence

relation on constraints satisfying the axioms in Fig. 20. From this equivalence and sub-

set inclusion, we define the new partial order .

Definition 12. For let be the reflexive and transitive closure .

We also write for . We return to our above example concerning Fig. 19.

Let . Then

by axioms (3) and (4). This, in turn, is equivalent

to by axiom (1). Again by axiom (1), this is equivalent to

, which equals

by axioms (4) and (3).

Lemma 13. The partial order can be factored out into the relational composition

of its components, i.e., is .

Lemma 14. If and is a DPNT-solved form, then there exists a DPNT-solved

form such that .

Lemma 15. Let be a constraint, , and a DPNT-solved form with .

If a rule DPNT is applicable to , then there exists a constraint satisfying

and .

Proof. By Lemma 14 there exists a DPNT-solved form with . First,

suppose is a rule inDPT. Then there exists an such that , hence



. Now suppose that N: Let be p with .

Then p for some variable . But then by axiom (2) of Fig. 20, we have

for some , which by axiom (1) is

equivalent to , which in turn equals p

by axiom (3). Call this last constraint , then p .

X

Y

X

Y

2

2

1

1

X  / X  ~ Y  / Y
2121

Fig. 21. Ter-

mination?

It remains to show that there exists a DPNT-branch of finite length

from to each of its minimal solved forms. If saturation rules can be ap-

plied in any order, N can speculatively generate an arbitrary number of

local variables. For example, for the constraint in Fig. 21, it could suc-

cessively postulate p , p , . . . . We solve this problem

by choosing a special rule application order in our completeness proof:

After each N step, we first form a DPT-saturation before considering

another rule from N. We use a distance measure between a smaller and

a larger constraint to prove completeness for DPNT saturation obeying

this application order. The two elements of the measure are: the num-

ber of distinct variables in the larger constraint not present in the smaller one; and the

minimum number of correspondences still to be computed for a constraint.

Definition 16. We define the number of lacking correspondents in for a set

by

and

where we fix the values of the auxiliary terms be setting for all :

if and p is not in for any

otherwise

Definition 17. For constraints , let be the size of the set

for all .

We call a set of variables an inequality set for iff for any

distinct .

For constraints that are saturated with respect to (P.Distr.Project), is

the number of variables in such that for all .

Definition 18. Let , be constraints and with . Then the -measure

for and is the sequence , where:

– and is DPNT-solved

– is a maximal inequality set for .

We order -measures by the lexicographic ordering on sequences of natural numbers,

which is well-founded. The main idea of the following proof is that after each N step

and subsequentDPT-saturation, the -measure between a constraint and its solved form

has strictly decreased.



Theorem 19 (Completeness). Let be a constraint, , and a -minimal

DPNT-solved form for . Then there exists a DPNT-solved form which can

be reached from , i.e. DPNT .

Proof. W.l.o.g. let be DPT-closed. If no rule from N is applicable to then

by the minimality of . If a rule N is applicable to , then by Lemma 15 there exist

such that DPT , and is DPT-saturated. By induction,

it is sufficient to show that . Note that because is DPT-closed,

a maximal inequality set within contains exactly one variable from each syntactic

variable equivalence class represented in ; and whenever

because of saturation under (P.Path.Eq.1). The value of is mini-

mal, i.e. equal to , if for any with for all

the following holds: is local1 and there is no variable distinct from

with .

Let be p . In , (P.Distr.Project) has been applied to and all

variables in . Let with and minimal . The constraint

contains p for some . W.l.o.g. we pick a that does not contain .

– If for some , then and

: whenever , and either or some

other member of its equivalence class must be in each maximal inequality set. At

the same time, a maximal inequality set within can contain only one of and

, so contributes nothing additional to .

Let be . Then isDPNT-solved, and . We have

because for any , contains .

Furthermore, is minimal because the only variable in not in is

.

– If for all , then : Let be .

Thus, by axiom (2) and because must be local, and is not in

for any distinct because of the minimality of , as pointed out above.

Obviously is a DPNT-solved form with . Furthermore,

because we must have had for all .

7 Conclusion

We have presented a semi-decision procedure for parallelism constraints which termi-

nates for the important fragment of dominance constraints. It uses path equality con-

straints to record correspondence, allowing for strong propagation. We have proved the

procedure sound and complete. In the process, we have introduced the concept of a

minimal solved form for parallelism constraints.

Many things remain to be done. One important problem is to describe the linguisti-

cally relevant fragment of parallelism constraints and see whether it is decidable. Then,

the prototype implementation we have is not optimized in any way. We would like to

1 The variable is local because , otherwise would not

be a minimal solved form for .



replace it by one using constraint technology and to see how that scales up to large

examples from linguistics. Also, we would like to apply parallelism constraints to a

broader range of linguistic phenomena.
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A Correspondence Functions

In the following appendix sections, we give the proofs omitted earlier for brevity. The

first proof we still owe is that of lemma 3: We prove that whenever we have a corre-

spondence function, then corresponding nodes are reached via the same paths from the

parallelism roots down.

Lemma 3. If is a correspondence function, then

for all .

Proof. By induction on . The case of is obvious. So let

with and let . As , we have . Sup-

pose , then as is a cor-

respondence function. By the inductive hypothesis, . Hence

for . As , we have , so

.

B Soundness of rule set D for dominance constraints

We proceed in two steps, as sketched for the soundness proof of DPNT in section 5.

First, we identify simple D-solved forms and show that they are satisfiable (Proposi-

tion 21). Then we show how to extend every D-solved form into a simple D-solved

form by adding further constraints (Lemma 26).

Definition 20. A variable is labeled in iff and

for some variable and term . A variable is a root variable for if

for all . We call a constraint simple iff all its variables are

labeled, and if there is a root variable for .

The constraint graph of a simple constraint inD-solved form (Def. 9) is tree-shaped.

Lemma 21. A simple D-solved form is satisfiable.

Proof. By induction on the number of literals in a simple D-solved form . Let be a

root variable in . Since all variables in are labeled, there is a variable and a term

such that and are in . Let

and

for all . To see that , let such that

for all . As is a root variable, , and by saturation

with (D.Distr.Child), must contain .

For a set we define as the conjunction of all literals with

. We show that

holds where

because is in D-solved form: Each literal in is entailed by .



– Suppose for some variable and term .

If for some , then since

is saturated under (D.Lab.Dom) and (D.Dom.Trans). Otherwise, ,

and thus . In this case, and by saturation with

(D.Lab.Ineq) and (D.Clash.Ineq) coupled with the clash-freeness of . As is

saturated under (D.Eq.Decom), it must contain for , hence

. So, contains , which

entails as required.

– Now suppose for some variables and . There are

four possible cases:

If , with , then cannot be by (D.Dom.Refl),

(D.Prop.Disj) and (D.Clash.Disj) combined with the clash-freeness of .

entails and thus as well as .

The cases where and both belong to or to the same are obvious.

If and for some , then by (D.Lab.Dom)

and (D.Dom.Trans). cannot be by saturation under (D.Dom.Refl),

(D.Prop.Disj) and (D.Clash.Disj) and the clash-freeness of . entails

and thus and .

The case of and is symmetric to the previous one.

Next note that all are simple D-solved forms. By the inductive hypothesis there

exist solutions for all . Thus, is a

solution of if and is the root node of for all

.

Now suppose we have a constraint in D-solved form. We want to show that there

is an extension of such that is in D-solved form as well as simple. We

proceed by successively labeling unlabeled variables , taking as ’s children

the variables minimally dominated by it, as sketched in Fig. 17. We formalize this as

follows: Given a constraint we define an ordering on its variables such that

holds iff but not .

Definition 22. Let be a dominance constraint and unlabeled. Then we

define the set con of variables connected to in as follows:

con minimal with

For the constraint in Fig. 17, con . However, when picking variables

to serve as children of , we do not use all of con : In the example above, we

choose only one of as we have .

Definition 23. We call a -disjointness set if for any two distinct variables

, .

The idea is that all variables in a -disjointness set can safely be placed at disjoint

positions in at least one of the trees solving .



Lemma 24. Let be D-saturated and . If is a maximal -disjointness

set within con , then for all con there exists some such that

.

Proof. If for all , then is a disjointness set; thus by

the maximality of .

Lemma 25 (Extension by Labeling). Every D-solved form with an unlabeled vari-

able can be extended to a D-solved form in which is labeled.

Proof. Let be a maximal -disjointness set in con . Let us assume

for the moment that contains a function symbol of arity . We define the following

extension of :

Note that is labeled in since by (D.Dom.Refl). We consider

each rule of D in turn and show that it is not applicable to .

(D.Clash.Ineq): No new dominance constraints have been introduced.

Suppose a new inequality has made (D.Clash.Ineq) applicable. Then

, but con .

Suppose a new inequality has made (D.Clash.Ineq) applicable. Then

and are in , but is unlabeled in .

(D.Clash.Disj): Suppose a new literal has made (D.Clash.Disj) applicable,

where with . Then . As is saturated un-

der (D.Distr.NotDisj), we must have either or in . But

is a disjointness set.

(D.Dom.Refl): No new variables have been added.

(D.Dom.Trans): No new dominance constraints have been added.

(D.Eq.Decom): For (D.Eq.Decom) to be applicable to and some

literal , must be in already. But is unlabeled in .

(D.Lab.Ineq): The only new labeling constraint is . is in

for all labeled anything but .

(D.Lab.Disj): The only new labeling constraint is . By saturation

under (D.Dom.Refl), for , so is in for all

by definition.

(D.Prop.Disj): The only disjointness constraints new in have the form ,

where for . If and are in , then by

saturation under (D.Dom.Trans) , so is in .

(D.Lab.Dom): is the only labeling constraint in . We

have for all because con .

is in by definition for all .



(D.Distr.Child): Suppose , but neither nor is in for any

. Then . If con , we have the following situation:

The disjointness set is maximal within con , so for

some by lemma 24, a contradiction. So suppose is not minimal,

i.e. there exists some con such that . But then again,

for some , so .

(D.Distr.NotDisj): No new dominance constraints have been added.

We now turn to the case that the signature does not contain a function symbol for

the arity we need. We can get around this problem by encoding the symbols with a

nullary symbol and one symbol of arity , whose existence we have assumed. This

encoding may introduce new variables, but only finitely many. For a detailed description

of this construction, see [11], lemma 4.11. If a function symbol of the appropriate arity

is present in , then the labeling of does not introduce new variables.

Lemma 26. Every D-solved form can be extended to a simple D-solved form.

Proof. Let be D-saturated and without . Without loss of generality, we can as-

sume that has a root variable (otherwise, we choose a fresh variable and consider

instead of ). By Lemma 25, we can successively label all

variables in .

Together, lemmas 21 and 26 show the soundness of D:

Proposition 4 (Soundness). Any dominance constraint in D-solved form is satisfiable.

C Soundness of rule set DPNT for parallelism constraints

Generatedness is about where path equality literals may occur. (See Def. 7.) In proving

soundness ofDPNT, we may restrict ourselves to generated constraints, since all solved

forms that are computed are generated:

Lemma 8. Let be a constraint without path equalities and let DPNT with

in DPNT-solved form. Then is generated.

Proof. Let be a sequence of constraints such that , ,

and DPNT for . We show by induction on that (1) each

p is generated in , (2) alongside with p and every p

with .

contains no path qualities. So let , where is an instance of

(P.Root), (P.Path.Sym), (P.Path.Eq.1) or (N.New), or T.

If is an instance of (P.Root), then has the form p p

for some . Then , and we have

by closure under (D.Dom.Refl) and (P.Path.Dom). So p ,



p are correspondence-generated in . Condition (2) from above holds for

p and p by closure of under (P.Path.Sym), (P.Path.Eq.1) and

(D.Dom.Trans).

If is an instance of (N.New), then has the form p , and

for some such that . So p

is correspondence-generated in . Condition (2) holds for p by closure under

(P.Path.Sym), (P.Path.Eq.1), (D.Dom.Trans) and (D.Prop.Disj).

If T and has the form p , then p is generated by def-

inition. Concerning condition (2), we just consider the case of (T.Trans.H), the oth-

ers are analogous. Suppose has the form p p p . Then

p p are in by closure under (T.Trans.H) and generated by the in-

ductive hypothesis. So p is generated in as well. The case of a literal

p where is analogous.

If is an instance of (P.Path.Sym) or (P.Path.Eq.1) and has the form

p , then p is generated in because of inductive hypothesis (2).

As for the case of dominance constraints, we first prove that simple generated con-

straints in DPNT-solved form are satisfiable.

Proposition 10. A simple generated constraint in DPNT-solved form is satisfiable.

Proof. Let be a simple generated constraint in DPNT-solved form, and let be

the maximal subset of that is a dominance constraint. is in D-solved form, so

it is satisfiable (Lemma 21). It remains to show that all path equality literals and all

parallelism literals of are satisfied in a solution of as constructed in

lemma 21. Note that by this construction, if , then there exists some

with .

Path equality literals. Let p be a path equality literal in . As is simple, either

, or there exist for some such that

and for all , for some

and of arity , and for some . and

the , , are unique as is clash-free and closed under (D.Distr.NotDisj),

(D.Distr.Child) and (D.Lab.Ineq). We show, by induction on the length of a proof of

generatedness for p , that if then , and that otherwise for

all , p for some in such a way that for ,

for some , and .

Suppose p is correspondence-generated. Then there exists some paral-

lelism literal with . W.l.o.g. suppose

, then by (P.Copy.Dom). If ,

then also by closure under (P.Copy.Dom). Suppose . We proceed

by induction on .

Suppose . We have p by closure under (P.Root) and

(P.Path.Eq.1). If , then by



closure under (D.Lab.Dom), (D.Dom.Trans), (P.Distr.Crown) and the fact that

. must contain either or as ,

and if then also by (P.Distr.Project) since and

by (P.Lab.Dom); so by closure of under (N.New) and (P.Copy.Lab), we must

have for some . Likewise, if , then

by (P.Copy.Lab), (P.Path.Eq.1).

Now suppose . As p is correspondence-generated, there exists

some with and ,

. As , there exists such that and

for some , and for some .

As and by (D.Lab.Dom), (D.Dom.Trans),

must have been chosen by (P.Distr.Crown), so by (N.New)

there exists with p . By the inductive hypothesis, p

for all . As and for

by (D.Lab.Dom), we must have by (P.Distr.Crown). So

by (N.New) there are such that p for . As above,

we can argue that either or must be in , so by (P.Copy.Lab),

. Furthermore, must contain by (P.Path.Eq.1).

Suppose p is generated but not correspondence-generated, i.e. there exists a

rule T with rhs p such that all path equality literals in the lhs of are gener-

ated. Suppose is an instance of (T.Trans.H) and the lhs of is p p .

If then and thus also by the inductive hypothe-

sis. So suppose , and suppose we have sequences and

. By the inductive hypothesis, we must have .

Now suppose is an instance of (T.Diff.2) and the lhs of is p p

. If , then by (D.Dom.Trans), and by the induc-

tive hypothesis and thus are in by (D.Dom.Trans). If , then

by the inductive hypothesis, and p even without applica-

tion of . Suppose otherwise, and let and .

By closure under (D.Lab.Dom), (D.Dom.Trans) and (D.Distr.NotDisj), there exists a

minimal with . is simple, so by (D.Distr.Child), we

must have , i.e. we can choose the sequence such that it

equals . But then the inductive hypotheses already hold for

p and the sequence . The cases of being an in-

stance of (T.Trans.V) or (T.Diff.1) are analogous.

Now let

p

Then : since . since all path equalities in of the form

p are entailed anyway, and the remaining path equalities in are entailed

by T and the instances of (P.Path.Eq.1).

Let be a solution of constructed as in lemma 21. It remains to

show that each path equality in is satisfied by . So let p , and



let . Then, as shown, there are such that

. Then by the construction from lemma 21, the subtree

of with root is labeled , as is the subtree of with root , and the path

from to in is , as is the path from to in

.

Parallelism literals. Let , and let

. Then hold in as

it is a model of . We define a function by

iff and p

It remains to show that is the correspondence function for .

is well-defined because if p p , then by closure under

(T.Trans.H), (P.Path.Sym), (P.Path.Eq.1) also .

The domain of is : we first show that the domain of is a subset

of . Let . As is a model of ,

and either or must hold in . So . We

now show that is a subset of the domain of . Let ,

then, as noted above, there exists an with . We need to show that

. possesses a root variable, call it , and we have

in . Let be a -maximal variable such that . If

, then by closure under (D.Dom.Trans), and must contain by

(P.Distr.Project) because . If , then we cannot

have for , since then by closure

under (D.Dom.Trans), (D.Prop.Distr). We cannot have for some

since we have chosen to be maximal. The only remaining possibility

is and for some . In any case, .

By (P.Distr.Crown), we must have chosen either or . By an analogous

argument, one can see that the range of is .

is one-to-one (injective) because if p p for

, then by closure under (P.Copy.Dom). It is onto (surjec-

tive) by closure under (N.New).

, and by closure under (P.Root).

is structure-preserving: suppose , and

. Then there exists a with and, as

shown above, . As is simple, must be labeled: must

contain for some . By (P.Distr.Project) we

must have since . So by (P.Distr.Crown), either or

. Thus . By closure under (N.New), con-

tains p , , for some , and by closure under (P.Path.Eq.1)

and (P.Copy.Lab), it contains . By the construction of , we have

for , and as , we must

have . The opposite

direction, starting from , is proved by an analogous

argument.



Now we show how to extend a non-simple generated constraint in DPNT-solved

form to a simple one. As mentioned in Sec. 5, if we label an unlabeled variable

occurring within some parallelism context, we have to label simultaneously the corre-

spondent of , as well as all its correspondents. We formalize this in the notion of the

copy set of a labeling literal .

Definition 27. Let be a constraint with and

let be a function symbol of arity . Then we define by

iff there exists some such that

and but p and p for .

Furthermore,

where as usual is the reflexive and transitive closure of .

Lemma 28. Let be a constraint in DPNT-solved form, and let

.

– If is unlabeled in , then so is .

– If con , then con .

– If is a maximal -disjointness set in con , then

is a maximal -disjointness set in con .

Proof. By well-founded induction on the strict partial order on the set

.

The case of is trivial. Otherwise, has the form

and there exists with

(because , so if there were no such

, then ). Let

with and but p and

p for . Then by closure un-

der (P.Copy.Dom), and , again by closure under (P.Copy.Dom).

– Suppose is unlabeled. Then must be unlabeled too, as any labeling literal

would have been copied by (P.Copy.Lab).

– Suppose con . Then by closure under (P.Copy.Dom),

but for . Assume that is not minimal

with , i.e. there exists some with . Then

by closure under (D.Dom.Trans), (D.Prop.Disj), (P.Distr.Crown).

So by (N.New), there exists some with p . But then

by (P.Copy.Dom), but neither nor is in , so

is not minimal either, a contradiction.



– Suppose is a maximal -disjointness set in con . Assume that

is not a disjointness set for some . So . But then

by (P.Copy.Dom), , a contradiction.

Assume is not maximal, i.e. there exists some

such that con is a disjointness set. We must have

by (D.Dom.Trans) and either or or by (P.Distr.Crown). But

if , then con because . So . By

closure under (N.New) and (P.Copy.Dom), there exists a such

that p . By closure under (P.Copy.Dom), we have con .

cannot be in : If for some , then

p p by (P.Path.Eq.1), so by (P.Path.Eq.2).

Hence, is a -disjointness set in con that is bigger than

, a contradiction.

Proposition 29. Every DPNT-solved form with an unlabeled variable can be ex-

tended to a DPNT-solved form in which is labeled.

Proof. Let be a maximal -disjointness set in con . Let be

a function symbol in of arity . (If there exists no suitable , this problem is

solved the same way as in Lemma 25). Then we define the extension of

as

This definition extends the one in Lemma 25 from a single labeling literal

to a set of labeling literals.

(D.Clash.Ineq): contains no new dominance literals. If a new inequality literal

were to make (D.Clash.Ineq) applicable, then must contain , but

, so con by lemma 28.

If a new inequality were to make the clash rule applicable, then and

must be in , but by lemma 28, is unlabeled because is.

(D.Clash.Disj): The only new disjointness literals in have the form for

in with . Assume is in . Then by (D.Distr.NotDisj),

either or must be in . But is a disjointness set, and so,

by lemma 28, is .

(D.Dom.Refl): No new variables have been added.

(D.Dom.Trans), (D.Distr.NotDisj): No new dominance literals have been added.

(D.Eq.Decom): Suppose and is

in . Then and must be unlabeled by lemma 28, so for (D.Eq.Decom) to be

applicable, both and must be in ,

which means that , too.



If is a singleton, then we must have for

. So suppose otherwise. Let .

We use induction on the length of a sequence starting in and

ending in to show that p for . We start

with a sequence of length 0. As is not a singleton, there

exists some with . By

closure under (N.New), there exist such that p as

well as p for . By (P.Path.Sym), p p

, so by (T.Trans.H), p p for . As ,

closure under (T.Diff.1) yields p for .

Suppose with p

for , and . Then

contains some with and

p p for . Then by closure under (T.Diff.1),

p for , and so, by (T.Trans.H), are p .

Hence p p for . By closure under (P.Path.Sym)

and (T.Trans.H), contains p , and as , p by

(P.Path.Eq.1), whence by (P.Path.Eq.2), already (all for ).

(D.Lab.Ineq): Suppose . Then is in by

definition for all labeled anything but .

(D.Lab.Disj): Suppose . Since for

by closure under (D.Dom.Refl), is in by definition.

(D.Prop.Disj): Suppose and

for some , , . If and are in , then

we also have by closure under (D.Dom.Trans), so is

in .

(D.Lab.Dom): Suppose . We have by

lemma 28. by definition.

(D.Distr.Child): Suppose and .

If , then (D.Distr.Child) is not applicable in . Otherwise

. If is minimal with , then con , and as

is a maximal -disjointness set in con , we have for some

. If is not minimal, there exists some con such that

is in . But then again, for some , so .

(P.Root), (P.Path.Sym), (P.Path.Dom), (P.Path.Eq.1), (P.Path.Eq.1), (P.Distr.Crown):

No new dominance, parallelism, or path equality literals have been added.

(P.Copy.Dom): Any dominance literal in is in already, so the case of

does not apply.

– We next consider the case . Let be in , where for some

and some ,

. (Thus, .) Suppose contains a par-

allelism literal with . By closure

under (N.New), there exist such that p p . So



, and by closure under (D.Dom.Trans),

. Hence by (D.Distr.NotDisj), contains either or .

If contains but not , then . is a maxi-

mal -disjointness set in con by lemma 28. So if con , then

by lemma 24, is in for some . If is not minimal

with , then there exists some con such that .

Again by lemma 24, contains for some and hence,

by closure under (D.Dom.Trans), . But then we cannot have both

and in since at least one of and is in , and

is clash-free. So (D.Distr.NotDisj) must have made the choice .

is closed under (P.Distr.Crown), but the choice made cannot be ,

since by closure under (D.Dom.Trans), (D.Lab.Dom),

(P.Distr.Project) and on the other hand . So either

by (P.Distr.Crown) and (P.Distr.Project), or

by (P.Distr.Crown). In the first case, (P.Distr.Crown) must have chosen ei-

ther or for each because all the are

minimal with . In the second case, we have for

by closure under (D.Prop.Disj). In both cases,

. By closure under (N.New), there are such

that p and p for . Since

, . By closure un-

der (P.Copy.Dom), , so by definition.

– Lastly, we consider the case of . Let

.

Suppose for some . (Again,

.) Suppose further that with

. By closure under (N.New), there exist such

that p p .

We must have by closure under (P.Distr.Crown), (P.Distr.Project)

and the fact that . So

by closure under (P.Distr.Crown). cannot have been chosen for any

because and each is minimal with .

So there are such that p for . ,

so . Hence, is in

by definition.

Now suppose , where is in for some with either

or . Suppose further that with

. By closure under (P.Distr.Project), we have either

or . is impossible since is unlabeled by

lemma 28. So must be in already.

(P.Copy.Lab): Let with

. Suppose with

. Then there exist such that

p and p for .



By closure under (P.Distr.Project), either or . If

is in , then , so the labeling literal

has been added to . If , then (P.Copy.Lab) is not

applicable since it does not copy the label of the exception.

(P.Distr.Project): No new variables have been added.

(N.New): Suppose and and .

But then by closure under (P.Distr.Crown), one of , , must

already be in .

(T.Trans.H), (T.Trans.V), (T.Diff.1), (T.Diff.2): Now new path equality literals have

been added.

Lemma 30. Every generated DPNT-solved form can be extended to a simple generated

DPNT-solved form.

Proof. By lemma 29, analogous to lemma 26; generatedness is preserved as no addi-

tional path equality literals are added.

Theorem 11 (Soundness). A generated constraint in DPNT-solved form is satisfiable.

Proof. By lemmas 10 and 30.

D Completeness: handling the order

Lemma 13. The partial order can be factored out into the relational composition

of its components, i.e., is .

Proof. Let be constraints with . There exists a sequence

of constraints such that with for

, and if is , then is for . We use induction on the

number of relationships that occur to the right of a relationship in the sequence.

W.l.o.g. we assume that the sequence starts with , and that if

, then there exists a single axiom from Fig. 20 by which this holds.

Let be such that holds. (If there is no such , then

and we are done.) We show by induction on that

holds for some constraint . We construct a constraint such that

. (The basic idea is to move to the left of and to use

to make the necessary adjustments.)

– Suppose by axiom (1) of Fig. 20, and has the form

where and .

If occurs in , it has been introduced by adding constraints. We set

where does not occur in :



– Suppose by axiom (1) of Fig. 20, and has the form

where and . But then we already have

.
– Suppose by axiom (2) of Fig. 20. Then has the form

for and .
If , let , where does not occur in

. Otherwise, .
If , then it has to be replaced by while is moved to the

left of . In this case, let . Otherwise, .

We have

– Suppose by axiom (3) of Fig. 20, and suppose has the form

, has the form , and has the form

. We set .Then

– Suppose by axiom (3) of Fig. 20, and suppose has the form

, while has the form and is .

We set , then

– The case of axiom (4) is trivial.

Hence, there exists a constraint such that holds. This

new sequence is longer than by a finite number of

relationships. But we have not introduced any additional relationships. So we

can still eliminate each relationship that is to the right of some relationship in

finitely many steps.

Lemma 14. If and is a DPNT-solved form, then there exists a DPNT-solved

form such that .

Proof. For a constraint and , let be the reflexive and transitive

closure of in , i.e. , and if and , then

. Furthermore, let

for

We next show that . forms an equivalence relation on the

variables occurring in . Let there be different sets , and

for . Then



for : The may be introduced by axiom (1). Axiom (3)

lets us replace by for , . From there, by duplicating

a suitable number of times, using ax-

iom (4), and replacing by each according to axiom (1), we arrive at .

Now suppose , where is in DPNT-solved form. By lemma 13, there exists

a constraint with . need not be in DPNT-solved form, but

is.

Let where by a single axiom

from Fig. 20 for all . We use induction on to show that is

DPNT-solved for all . For , this is trivial.

Suppose by axiom (1) of Fig. 20, and has the form ,

where and . Then is a superfluous local variable

in , and . So the constraint

must be in solved form, too.

Suppose by axiom (1), and has the form for variables

and . Then .

is in solved form because for all saturation rules that would become applicable because

of the added dominance literals , the consequent has already been added by Subs.

Suppose by axiom (2) of Fig. 20, and has the form

where and . So all occurrences of a local variables have

been replaced by a new local variable , and if is in solved form, then so is

.

In both cases where by axiom (3), we have .

The main completeness theorem has already been shown in the main part of the

text:

Theorem 19 (Completeness). Let be a constraint, , and a -minimal

DPNT-solved form for . Then there exists a DPNT-solved form which can

be reached from , i.e. DPNT .

Lemma 31. Let be a constraint satisfied by . Then there exists a -minimal

DPNT-solved form for which is also satisfied by .

Proof. Let be a constraint satisfied by and let be extended by all literals

entailed by . is satisfiable – it is satisfied by . It is also in solved

form since each saturation rule only adds entailed constraints. It remains to show that

there exists a -minimal DPNT-solved form for with . There are two

possibilities: either no is in DPNT-solved form; then itself is a -minimal

DPNT-solved form for . Otherwise, there exists some such that is inDPNT-

solved form but no is.


