
HAL Id: inria-00540199
https://inria.hal.science/inria-00540199

Submitted on 23 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Equivalence of Distributed Systems with Queries
and Communication

Serge Abiteboul, Balder ten Cate, Yannis Katsis

To cite this version:
Serge Abiteboul, Balder ten Cate, Yannis Katsis. On the Equivalence of Distributed Systems with
Queries and Communication. International Conference on Database Theory, Mar 2011, Uppsala,
Sweden. �inria-00540199�

https://inria.hal.science/inria-00540199
https://hal.archives-ouvertes.fr

On the Equivalence of Distributed Systems
with Queries and Communication

∗

Serge Abiteboul
INRIA Saclay, ENS Cachan

firstname.lastname@inria.fr

Balder ten Cate
†

UC Santa Cruz
btencate@ucsc.edu

Yannis Katsis
INRIA Saclay, ENS Cachan

firstname.lastname@inria.fr

ABSTRACT

Distributed data management systems consist of peers that
store, exchange and process data in order to collaboratively
achieve a common goal, such as evaluate some query. We
study the equivalence of such systems. We model a dis-
tributed system by a collection of Active XML documents,
i.e., trees augmented with function calls for performing tasks
such as sending, receiving and querying data. As our model
is quite general, the equivalence problem turns out to be
undecidable. However, we exhibit several restrictions of the
model, for which equivalence can be effectively decided. We
also study the computational complexity of the equivalence
problem, and present an axiomatization of equivalence, in
the form of a set of equivalence-preserving rewrite rules al-
lowing us to optimize a system by rewriting it into an equiv-
alent, but possibly more efficient system.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed databases

General Terms

Algorithms, Languages, Theory

Keywords

Active XML, Equivalence, Optimization

1. INTRODUCTION
Distributed data management has been an important do-

main of research almost since the early days of databases
[12]. With the development of the Web and the emergence
of universal standards for data exchange, this problem ar-
guably became a most essential challenge to the database
community. We consider systems that store, exchange and
apply queries over data, typically to collaborate towards a

∗This work has been partially funded by the FP7 European
Research Council grant agreements Webdam number 226513
and FOX number FP7-ICT-233599.
†The author has been partially funded by the NSF grant
IIS-0905276

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICDT 2011, March 21–23, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0529-7/11/0003 ...$10.00

common goal such as answering a query. In this work, we
study the equivalence of such systems.
To model these systems we consider an abstraction of

the Active XML algebra of [3] that we call AXML system.
An AXML system (a system for short) is a labeled, un-
ordered, unranked tree, which, apart from extensional data
(i.e., regular tree-structured data) also captures communi-
cation and query evaluation. Communication is modelled
through send and receive nodes attached to communication
channels. Send nodes send data to a channel and all receive
nodes attached to that channel receive them. This captures
m-to-n point communications and in particular the exchange
of data involved in making external function calls. Finally,
a system may also include query nodes that capture query
evaluation over the data.
The systems we consider are by design very general to

capture many use cases. They are distributed, recursive
(since the send and receive nodes break the hierarchical
structure of the data trees), essentially asynchronous (since
send/query operations may happen in arbitrary order while
the trees evolve during the computation1) and operate on
data streams (since queries are activated in a continuous
manner producing streams of results). Finally, they may
also have external input channels intuitively corresponding
to user inputs, data received from other systems, sensors,
etc.
Equivalence Results. Unsurprisingly (due to the gen-

erality of our model), we can show that equivalence is unde-
cidable in general, even if the queries used inside the system
are from quite basic query languages. However, we are able
to establish positive decidability results for several restric-
tions of the model. First, we prove that equivalence is in
ptime in the absence of queries. The limit of a system (i.e.,
intuitively, the result of exhaustively activating all send and
query nodes) is in general infinite, even in the absence of
query nodes, but we show that in this context, one can find
a finite graph-based representation of a limit and decide sys-
tem equivalence by comparing these representations.
When queries are introduced, the problem clearly depends

on the query language considered. We provide a ptime deci-
sion procedure for testing equivalence of input-free systems
containing tree pattern queries (without value-based joins).
Joins and inputs further complicate the problem: Joins allow
expressing a much richer class of queries. With inputs, on
the other hand, the difficulty lies in that for two systems to

1In this paper, we consider only monotone queries. There-
fore, the activations of send, receive and query nodes can
only enrich the state.

Peer C Peer B

t

a

0

b

c

5

c

6

t

a

1

b

c

3

c

0

R

send1

q

send2

q'

S

u

rcv1

v

rcv2

d

0

A

d

6

d

7

rcv1

t

b

R

c

$x

Peer A

A

$x d

$x

root

w

rcv3

Figure 1: Example of an AXML system

be equivalent in presence of inputs, they must have similar
limits for all possible inputs. Nevertheless, we provide deci-
sion procedures for testing equivalence of input-free systems
containing tree pattern queries with joins, and of systems
with input and with tree pattern queries but without joins.
The problem remains open when both extensions are consid-
ered simultaneously. However, we show decidability for the
case of tree pattern queries with XPath-joins (i.e, the tree
pattern queries with joins that are expressible in downward
XPath with path equalities, cf. the definition of FOXPath in
[6]). Finally, the equivalence problem becomes undecidable
in the case of tree pattern queries with constructors (even
in the absence of joins and input).

Axiomatization. One important application for equiv-
alence checking (and one of the main motivations for this
work) is the optimization of distributed systems. Since opti-
mizations have to preserve equivalence, a common approach
is to use equivalence-preserving rewrite rules (a.k.a. axioms).
[4] presented such axioms for AXML systems. In this work,
we go a step further, by presenting a very general set of ax-
ioms that furthermore can be shown to be complete for prov-
ing equivalence of query-free systems. In other words, given
two equivalent query-free systems, it is guaranteed that one
can be transformed to the other through a finite number of
applications of our axioms.

The paper is organized as follows: In Section 2 we start
by defining AXML systems. In Section 3 we present an
overview of our results, followed by the actual equivalence
results in Sections 4 and 5 (for systems without and with
queries, respectively) and our axiomatization in Section 6.
Finally in Section 7 we discuss related work and conclude
the paper.

2. FRAMEWORK
In this section, we introduce the model studied in the

paper, which is an abstraction of the AXML algebra of [3].

2.1 AXML Systems
Active XML systems are finite node-labeled trees, that,

apart from regular nodes, may also include (i) query nodes
to model query evaluation and (ii) send and receive nodes

to capture communication. To distinguish between regular
nodes (which describe data extensionally) and send, receive,
and query nodes (which describe data intensionally), we re-
fer to the former as passive and to the latter as active nodes.
More formally, consider the following disjoint alphabets:
L an infinite set of (passive) labels and C = Cint∪Cinp an infi-
nite set of channel names, partitioned into internal channels
and input channels. Also consider a monotone query lan-
guage Q over XML trees. In this work, we consider queries
that, given an XML tree as input, return a set of XML trees.
We call a query q monotone if whenever an XML tree I ho-
momorphically embeds into an XML tree J , then every XML
tree in q(I) homomorphically embeds into a XML tree in
q(J) (see below for a formal definition of homomorphisms).
We will see precise examples of such languages later on. Fi-
nally, let A be the set {rcvc | c ∈ C}∪{sendc | c ∈ Cint}∪Q
of all allowed active node labels (note that send nodes can-
not be indexed by input channels).

Definition 1 (AXML System). An AXML system (a
system for short) I is a pair (T, λ), where T = (N,E) is a
finite, unordered, unranked tree with nodes N and edges E
and λ : N → L ∪ A is a labeling function over the nodes of
the tree, such that (a) only leaf nodes are assigned labels of
the form rcvc and (b) the label of the root is in L.

In practice, a system may consist of more than one trees.
Moreover, these may be distributed over multiple peers.
However, for the purposes of this work, it suffices to model
the entire system by a single tree (whose root can be seen
as a virtual element pointing to the roots of the individual
trees). All results can be trivially generalized to systems
consisting of multiple trees.

Example 1. Figure 1 shows an example system. It con-
tains passive nodes, query nodes annotated with tree pat-
tern queries and send/receive nodes grouped into channels
(for instance, the two nodes labeled rcv1 are listening to the
channel to which node send1 is submitting). The system has
two internal channels (i.e. 1 and 2) and one input channel
(channel 3). Although our example includes 3 peers, each
with a separate tree, we model the entire system as a single
tree with a new virtual root.

A system without any active nodes is called simply an
XML document or XML tree.

Remark. In reality, nodes in XML documents and AXML
systems have not only a label but also associated atomic data
in the form of text and attribute values. To simplify exposi-
tion, we do not take the atomic data into account explicitly.
Instead, we identify them with node labels. In particular, we
work with an infinite set of node labels L and consider query
languages that perform joins on these labels. This choice is
not essential, and we could have equivalently worked with
other representations, such as data trees (as in [8]).

Given a system, we are sometimes interested only in its ex-
tensional data (i.e. in its static part). The subset of a system
containing only the extensional data is called its snapshot
and it can be derived from the original system by remov-
ing all active nodes and their descendants (which intuitively
form the arguments of the active nodes). Formally:

Definition 2 (System Snapshot). The snapshot of
an AXML system I, denoted I↓, is the XML document ob-
tained by removing from I all subtrees rooted at active nodes.

Given two systems we can define homomorphisms between
them in the standard way.

Definition 3 (Homomorphism & Isomorphism). An
AXML system I maps homomorphically into a system I ′,

denoted by I
hom
−−−→ I ′, if there exists a homomorphism from

I to I ′, that is, a map from nodes of I to nodes of I ′ send-
ing the root of I to the root of I ′ and preserving child-edges
and node-labels. Two AXML systems I, I ′ are homomor-

phically equivalent, denoted by I
hom
←−→ I ′, if I

hom
−−−→ I ′ and

I ′
hom
−−−→ I. Finally, I, I ′ are isomorphic, denoted I ∼= I ′, if

there is a homomorphism from I to I ′ that is a bijection.

In this paper, the monotone queries that we will consider,
will essentially see homomorphically equivalent trees as iden-
tical, i.e., undistinguishable. So, we can restrict our atten-
tion to reduced systems. We borrow the following notion of
reduced systems from [1]:

Definition 4 (Reduced System). A system I is said
to be reduced if there does not exist a homomorphism h from
I into itself, such that the range of h is a strict subset of I.

In graph theory and finite model theory, reduced trees,
and more generally, reduced finite structures, are known as
cores [11]. It is known that for every system I there is a
unique (up to isomorphism) reduced system I ′ to which it is
homomorphically equivalent, and that I ′ is in fact the small-
est system that is homomorphically equivalent to I. More-
over, I ′ can be computed from I in ptime (by successively
removing nodes and checking homomorphism, since the ho-
momorphism problem for trees is known to be in ptime [9]).
In the rest of this document, whenever we speak of sys-

tems, we will assume that they are reduced, unless we ex-
plicitly say so otherwise.

2.2 Semantics of AXML Systems
Since a system may contain active nodes, it may evolve

over time as these nodes are invoked. In this section, we

describe this evolution and use it to define the notion of
equivalence between two systems.
The evolution of a system may happen in three ways.

First, one can invoke a send on an internal channel. A
snapshot of the children of this send node is taken and this
data is sent over the channel to all the corresponding receive
nodes. Secondly, one can invoke a query node. The query
is evaluated over the snapshot of the children of this query
node. The resulting XML trees are appended as siblings of
the query node. Finally, one can invoke the receive nodes of
an input channel. This results in some finite forest of finite
XML trees (i.e., an input) being received over this channel.
Observe that only XML documents (i.e., passive trees) are

sent over channels. In general in AXML, active trees may
also be exchanged (which is useful as it enables call by name
evaluations strategies, as opposed to call by value). For ease
of exposition, however, we limit our attention here to the
exchange of passive trees only. However, it can be shown
that all our results would continue to hold if we were to also
allow exchange of active trees.
In this intuitive definition, the snapshots of the children

of a node (query or send) play an important role. This
motivates the following formal definition: For each system
I, the content of a node n in I, denoted content(n, I) or
content(n) when I is understood, is defined by:

• if n is passive, content(n) is the snapshot of the system
rooted in n. (In particular, the snapshot of a system
is the content of its root.)

• if n is active, content(n) = {content(m) | m is a passive
child of n}.

The following definition formalizes one step of the evolu-
tion of a system:

Definition 5. Let I = (T, λ) be a system. We say that I
can be transformed to a system I ′ in a single step, denoted
I → I ′ iff for some active node n of I, the following happens:

• (Send) λ(n) = sendc and I ′ is the (reduced) system de-
rived from I by appending the XML trees in content(n)
as siblings of all nodes n′ s.t. λ(n′) = rcvc.

• (Query) λ(n) = q ∈ Q and I ′ is the (reduced) sys-
tem derived from I by appending the XML trees in
q(content(n)) as siblings of n.

• (External receive) λ(n) = rcvc for some input chan-
nel c and I ′ is the (reduced) system derived from I by
appending the XML trees in some finite forest K as
siblings of all nodes n′ s.t. λ(n′) = rcvc. The pair
(c,K) of the channel and the input received on it is
called the type of the external receive action.

Observe also that in all three cases, the snapshot evolves
in a monotone manner, i.e., the system keeps increasing (or
staying the same) as a result of the firing of active nodes.

Example 2. Figure 2 illustrates three consecutive trans-
formations of a system I0 → I10 → I20 → I30 , showcasing
the three possible ways of transforming a system. In each
intermediate system, the node in bold indicates the active
node whose invocation led to the particular system. More-
over, circles indicate the nodes that have been appended to
the system due to this action. In particular, in the first step,

root

send2

q

rcv1

b

rcv2

root

send2

q

rcv1

b

rcv2

a

b

root

send2

q

rcv1

b

rcv2

a

b

b

root

send2

q

rcv1

b

rcv2

a

b

b b

I0 I0 I0 I0
1 2 3

$x

a

$x

a

$x

a

$x

a

Figure 2: Consecutive transformations of an AXML system I0

I10 is generated from system I0 by an external receive from
channel 1. In the next step, the received data are queried,
leading to system I20 . Finally, the result of this query is sent
via an internal channel, yielding I30 .

A sequence of invocations transforms a system into a dif-
ferent system. We call such a sequence a run of the system.

Definition 6 (System Run). Let I be a system and
I = (ci1 , F1)...(cim , Fm) be a sequence of finite XML forests
Fj to be received as inputs on the corresponding input chan-
nels cj occurring in I. Then, I is transformed for input

I to a system I ′ in multiple steps, denoted as I
∗
−→I I ′, iff

there exists a sequence of systems I1, ..., In (n ≥ 1) such that
I = I1 → ... → In = I ′ and I is the sequence of the types
of the external receive actions occcurring in this sequence of
transformations. Such a sequence is referred to as a run of
the system I.

When the input sequence is understood, we simply write

I
∗
−→ I ′. Clearly, there may be several runs starting from

the same instance I even for the same inputs. Furthermore,
even without inputs and without queries, an instance may
evolve in different manners and it may have arbitrarily long
runs. However, because of the monotonicity of the queries,
all fair infinite runs converge to the same infinite tree. The
fairness condition involved here is that any action that can
be fired, eventually is. This is illustrated next in an example.

Example 3. Consider the system I1 of Figure 3a. It is
easy to see that this system allows for infinite runs, since the
node send1 supplies the content of send2 with data, which
in turn it receives back in an augmented form, due to the
presence of rcv2 in the subtree of send1. This allows creating
progressively deeper trees by iteratively activating send1 and
send2. One can see that all such fair infinite runs converge
to the tree depicted in Figure 3b:

J1 : {root{b{c, a{b{c, a{b{...}}}}}}}.
However, some unfair infinite runs may instead converge to

J2 : {root{b{a{b{a{b{...}}}}}}}.
by never activating send3.

It will become clear what we mean exactly by convergence
in Section 4, where we will give the formal definition of a
limit of a system.

Having defined a run of a system, we can now define the
equivalence of two systems. Intuitively, two systems I and
J are equivalent if on any arbitrary input, whenever I can
be transformed to I ′, J can be transformed to a system J ′

that subsumes I ′ and vice versa. Formally:

root

send1

a

rcv2

send3 rcv2 send2

b

rcv1 rcv3

c

(a) System I1

b

a

root

…

b

a

J2

b

a

root

…

b

a

J1

c

c

(b)! Results of two

infinite runs of I1 !

Figure 3: Possible results of runs

Definition 7 (Equivalence). Let I, J be two AXML
systems. Then I, J are equivalent if for each finite input

sequence I, (i) for every run I
∗
−→I I ′ there is a run J

∗
−→I J ′

such that I ′↓
hom
−−−→ J ′

↓, and (ii) for every run J
∗
−→I J ′ there

is a run I
∗
−→I I ′ such that J ′

↓
hom
−−−→ I ′↓.

The following proposition provides evidence that this is in-
deed a natural notion of equivalence. We say that a Boolean
monotone query q is eventually true in a system I for some

input I if there is a run I
∗
−→I I ′ such that q(I ′↓) = true.

The following result shows that two equivalent systems are
essentially indistinguishable by monotone queries:

Proposition 1. Two AXML systems, I, J , are equiva-
lent if and only if for each finite input sequence I and for
each monotone query q, q is eventually true in I for input
I if and only if q is eventually true in J for input I.

Note that q above is universally quantified over all possible
monotone queries and not only those occurring in I or J .

3. OVERVIEW OF RESULTS
The main focus of the present paper is the study of the

Equivalence Problem for AXML systems, i.e., the problem
of testing whether two systems are equivalent. In Sections 4
and 5, we study this problem for different classes of AXML
systems. Each such class is identified by choices along two

No input Input

No queries ptime ptime

Tree Pattern Queries (TPQs) ptime 3exptime; pspace-hard

TPQs with XPath-joins ptime 3exptime; pspace-hard

TPQs with Arbitrary Joins pNP
|| -complete open

TPQs with Constructors undecidable undecidable

Figure 4: Complexity results for equivalence

orthogonal axes: Firstly, the query language Q that is con-
sidered, and secondly, the presence or absence of input chan-
nels. Figure 4 summarizes our results on the complexity
of the Equivalence Problem, with the vertical axis for the
choice of query language, and the horizontal one for the
consideration of input channels.

The results highlight that the introduction of input chan-
nels complicates the equivalence problem. This is not sur-
prising since to prove equivalence, we have to verify that the
two systems have similar limits for all possible inputs. It
also shows that (as usual) joins greatly increase the power
of the query language and, in our case, the complexity of
the equivalence problem. The presence of constructors also
complicates the problem. Intuitively, we can use such con-
structors to “create space” for computations.

Finally, in Section 6 we present a complete axiomatiza-
tion for query-free AXML systems, in the form of finitely
many equivalence-preserving rewrite rules that can be used
to transform a system into any other equivalent system.

4. QUERY-FREE SYSTEMS
In this section we consider the equivalence of query-free

systems. This is nontrivial, because equivalence is defined in
terms of runs (see Definition 7) and (i) a system may have
infinitely many runs even with no input and (ii) a single
run may be itself infinite. We therefore need to tackle this
infinite dimension. In the rest of this section we look first
at input-free systems and then to those with inputs.

Query-free & input-free systems. Given two query-free
and input-free systems to compare, we will show that it
suffices to consider their limits. The limit of a system, intu-
itively, is the possibly infinite XML document towards which
the successive snapshots on a run of the system converge, as-
suming that the run is fair. We will then see that these lim-
its, even when infinite, can be represented in a finite manner
and exhibit an algorithm working on these finite represen-
tations that decides equivalence.

In fact, our definition of limits will not explicitly speak of
fair runs, because this would require us to give a definition of
fair runs, which is slightly tedious (however, the reader may
verify that our definition of limits can indeed be equivalently
cast in terms of fair runs). We say that an infinite tree I∗

is the limit of a system I if the snapshot of each instance
reachable from I can be embedded in I∗ and conversely, each

root

send1 rcv1

a

rcv1

a

a

a

a

a

a

a

a

a

a

root

…

a

a

root

…

a

a

(a) System I2 (b) Two limits of I2

J1 J2

Figure 5: Limits of an AXML system

finite prefix of I∗ can be embedded in the snapshot of some
instance reachable from I. More formally,

Definition 8 (Limit of an AXML system). Let I be
an AXML input-free system. We say that an infinite tree I∗

is a limit of I, if (i) whenever I
∗
−→ I ′, then I ′↓

hom
−−−→ I∗ and

(ii) for every finite height prefix I∗k of I∗, there is an I ′ with

I
∗
−→ I ′, such that I∗k

hom
−−−→ I ′↓.

A system might in general have more than one limit.

Example 4. For instance, consider the system I2 shown
in Figure 5a. It is easy to see that the infinite trees J1, J2

in Figure 5b are two limits of this system. Observe that J2

is finitely branching, whereas J1 is not.

As illustrated by the example, infinitely branching limits
can be counterintuitive: if the limit of a system is to repre-
sent the document towards which an the snapshots of sys-
tems in an infinite fair run converge, we would not expect to
get an infinitely branching tree, since each transformation
of a system involves reducing it. In what follows, we will
only consider finitely branching limits. As we will see, this
happens without loss of generality, since every system has a
finitely branching limit.

root

send1

a

rcv2

send3 rcv2 send2

b

rcv1 rcv3

c

root

c

b

a

(a) Construction of GI (b) Graph GI 1! 1!

Figure 6: Graph GI1 for system I1 of Figure 3

It turns out that our definition of equivalence (which in-
volves a possibly infinite number of runs), can be equiva-
lently cast in terms of the limits of two systems, as shown
next. Observe the important subtlety, namely the “finite
branching” requirement.

Proposition 2. Let I, J be input-free AXML systems
having finitely branching limits I∗ and J∗. Then I and J

are equivalent if and only if I∗
hom
←−→ J∗.

Proof. Suppose that I and J are equivalent. It follows
from the definition of limits that, then, every finite height
prefix of I∗ must have a homomorphism into J∗ (and vice
versa). It is a general fact of finitely branching trees that
if this is the case, then there is also homomorphism from
the entire tree I∗ to J∗ (and vice versa). In other words,

I∗
hom
←−−→ J∗. Conversely, suppose that I∗

hom
←−−→ J∗. Let us

denote by I∗k and J∗
k the prefix of I and of J of height k.

Then, in particular, (since homomorphism must send roots

to roots and preserve the child relation) I∗k
hom
←−−→ J∗

k for all
k. Combining this with the fact that I∗ is a limit for I and

J∗ a limit for J , we obtain that, whenever I
∗
−→ I ′, there is

a J ′ with J
∗
−→ J ′ such that I ′↓

hom
−−−→ J ′

↓. Similarly, in the
other direction. In other words, I and J are equivalent.

This proposition highlights the interest of finitely branch-
ing limits of systems. However, we will not reason directly
on these possibly infinite limits. Instead, we exhibit here a
finite representation of such limits. For this, we use finite,
labelled, directed, rooted graphs. In the following, we simply
call them “graphs”. Formally, a graph is a tuple (N,E, r, λ),
where N a finite set of nodes, E ⊆ N ×N the set of edges,
λ a labeling function over N , and r ∈ N the root.

A graph G represents a possibly infinite tree, that we call
the unraveling of G and denote by unr(G), as follows: The
nodes of unr(G) are all non-empty finite sequences x1 . . . xn

where each xi is a node of G, x1 is the root, and for each
i < n, there is an edge from xi to xi+1 in G. Furthermore,
if x1 . . . xn is a node of unr(G), then it is a child of the node
x1 . . . xn−1 (that is also clearly a node of unr(G)) and the
label of x1 . . . xn in the tree is that of xn in G.

We next associate to each input-free, query-free system I,
the graph GI graph obtained by (i) adding an edge from the
parent of each receive node to each child of every send node
attached to the same channel and then (ii) dropping all send
and receive nodes together with all other nodes that are not
reachable from the root anymore.

Example 5. For instance, Figure 6b shows the graph GI1

obtained for system I1 of Figure 3. Figure 6a illustrates

its construction. The dotted edges are those that have been
dropped. The thicker arcs are those that have been added.

The following results states that this graph represents a
limit of the system.

Proposition 3. For every input-free, query-free AXML
system I, unr(GI) is a finitely branching limit of I.

Note, that the limit represented by unr(GI) is a finitely
branching one, allowing us to utilize Proposition 2.
To conclude the analysis of equivalence for such systems it

therefore suffices to show how to decide homomorphic equiv-
alence between the unravelling of two graphs. For this, we
use the auxiliary notion of graph simulation. A graph G
simulates a graph H if there is a binary relation Z between
nodes of G and nodes of H, called a simulation, satisfying
the following conditions: (i) (rootG, rootH) ∈ Z, (ii) when-
ever (x, y) ∈ Z, then x and y have the same label, and (iii)
whenever (x, y) ∈ Z and y has a successor y′ in H, then x
has a successor x′ in G such that (x′, y′) ∈ Z. We say that
two graphs are simulation-equivalent if they simulate each
other. Now we have:

Proposition 4. For all graphs G, H, unr(G)
hom
−−−→ unr(H)

if and only if H simulates G, which can be tested in ptime.

Thus to decide equivalence between two such systems, we
can first build their corresponding graphs in linear time and
then check homomorphic equivalence between their unravel-
ings using simulation on the graphs (which is also in ptime).
This leads to:

Theorem 1. Equivalence for AXML query-free, input-
free systems is in ptime.

For future reference, we mention one further fact about
graphs and simulations: We call a graph G minimized if
(i) every node is reachable from the root; (ii) there are no
two distinct children n,m of a node in the graph, such that
n simulates m (i.e., such that G with n taken as the root
simulates G with m taken as the root); and (iii) no two
distinct nodes are simulation-equivalent.

Proposition 5. Every graph is simulation-equivalent to
a minimized graph; two minimized graphs G,G′ are simulation-
equivalent if and only if they are isomorphic.

We will put this to use when we consider axiomatization.

Query-free systems with input. As already mentioned, the
introduction of input channels complicates the equivalence
problem in general. Query-free systems are the exception.
Because of the absence of queries, the system cannot “look
inside” the data provided by an input channel. Such data
ends up behaving as a single “black block of data” that may
end up replicated as-is in possibly many places. Therefore,
we can treat input channels simply as fresh symbols, reduc-
ing thus the equivalence problem in the presence of inputs
to that in their absence. More formally, we have:

Theorem 2. For any AXML query-free system I (with

input channels), let Î be the AXML system obtained from
I by uniformly replacing each receive node recvi from some
input channel i by a fresh (passive) label �i. Then two sys-

tems I, J are equivalent if and only if Î and Ĵ are equivalent.
Thus, equivalence of query-free AXML systems can be tested
in ptime.

a

b

b

e

c

e

d

b

e

c

f

a

$x

b

$y

c

$z

b

b

e

c

e

d

b

e

c

f

q1 q1(D)

a

$x

b

$y

c

$y

b

b

e

c

e

q2 q2(D) q3 q3(D)

(a) XML Doc (b) TPQ
TPQ with

XPath-joins
(d) TPQ with arbitrary joins

D

a

b

$x $y

d

$x $y

b

e

c

e

(c) !

Figure 7: Examples of TPQs with joins

Another way to put it is as follows: In testing equivalence
of query-free systems, active node labels rcvi (where i is
an input channel) may be ignored and simply treated as
(distinct) passive labels.

5. AXML SYSTEMS WITH QUERIES
The equivalence problem becomes harder when we allow

systems that contain query nodes. In this section we con-
sider such systems. Since the complexity of checking equiv-
alence depends on the query language employed, we study
different query languages. We start by defining these lan-
guages and then present the equivalence results; first for
input-free systems and then for systems with input.

5.1 Query languages
The query languages we consider are all variants of tree

pattern queries [5].

TPQs with Joins. We first provide the definition of tree
pattern queries with joins (TPQ-J).

Definition 9 (Tree Pattern Queries with Joins).
Let V be an infinite set of variables. A tree pattern query
with joins (TPQ-J) is a tree whose edges are labeled by child
or descendant, and whose nodes are labeled by elements of
L∪V, together with a distinguished “result node” correspond-
ing to the root of the subtree to be returned by the query.

The semantics is the following: Let q be a TPQ-J and I
an XML document. A matching of q in I is a map send-
ing nodes of q to nodes of I and variables from V to labels
from L, such that (i) the root of q is mapped to the root
of I, (ii) child/descendant relationships and labels from L
are preserved, (iii) for each node of q labeled by a variable
from V, the image of the label of the node is the label of
the image of the node. Evaluating q on I yields the set of
all subtrees J of I for which there is a matching from q to I
such that the result node of q is mapped to the root of J .

Clearly, whenever a TPQ-J q has more than one occur-
rence of the same variable, it is performing a join. We say
that q is a tree pattern query without joins or simply a tree
pattern query (TPQ) if it does not contain two occurrences
of the same variable. Note that, in this case, the only role
of a variable is to act as a wildcard.

A TPQ with XPath-joins (TPQ-XJ) is a TPQ-J satisfying
the following structural condition (†):

(†) Call a node x in a tree pattern an intermediary of a
pair of nodes y, z if y and z are joining nodes (i.e., are
labeled by the same variable), x lies on the shortest
path between y and z (which includes y and z them-
selves), and x is not the least common ancestor of y
and z. The following two conditions hold:

1. no node is an intermediary of two different pairs
of nodes,

2. no node on the path from the root to the result
node is an intermediary of any pair of nodes.

Although its definition is arguably somewhat involved, the
condition (†) is quite natural. Indeed, it can be seen that the
TPQs with XPath-joins (i.e., the TPQs with joins satisfying
the above condition) are precisely the TPQs with joins that
can be expressed in downward navigational XPath with path
equalities (as defined in [8]).2 TPQs with XPath-joins are
well-behaved in other respects as well. For instance, seen as
conjunctive queries, they have a bounded tree-width [6].

Example 6. Figure 7 shows examples of tree pattern que-
ries and their results on an example XML document. Labels
of the form $x (shown in italics) represent variables and
labels in bold face signify a pattern’s result node. Figure
7b shows a TPQ without joins and Figures 7c and 7d show
TPQs with joins. While the query in Figure 7c is a TPQ
with XPath-joins, the query in Figure 7d is not, as it fails
the first condition.

TPQs with Constructors. Apart from tree pattern queries
with joins, we also consider tree pattern queries with con-
structors. Instead of being allowed to simply copy a single
subtree appearing in its input to its output, a tree pattern
query with constructors can create and output a new tree
constructed from existing data.

Definition 10 (TPQs with Constructors). A tree
pattern query with constructors (TPQ-C) is a pair (q, t)

2This is an observation we made together with Diego
Figueira (personal communication).

a

$x

b

$y

c

$z

h

$x $y

q4 q4(D)

h

b

b

e

c

e

e

h

d

b

e

c

f

e () ,

Figure 8: Example of TPQ with constructors

where q is a TPQ and t a template, i.e., an XML document
in which the labels of some of the leaves have been replaced
by variables occurring in q.

Example 7. Figure 8 shows an example of such a query
and its result when applied on document D of Figure 7a.

The semantics is defined as follows: Let I be an XML
document and let q′ = (q, t) be a TPQ-C. Each matching
m of q in I, yields an answer tm obtained by replacing in t
each leaf labeled x ∈ V by the subtree of I rooted at m(s),
where s is the node of q labeled x. Finally, q′(I) is the set
of all tm, where m is a matching of q in I.

Note that the result node of q is irrelevant in this defi-
nition. Also, note that the present definition is only mean-
ingful for TPQs without joins because it uses the fact that
each variable occurs only once in the query. The definition
could be adapted to also incorporate joins also, but as it will
turn out that TPQ-Cs quickly lead to undecidability even
without joins, the above definition is sufficient.

5.2 Input-free Systems
For input-free systems with queries, a graph representing

a limit of the system cannot be obtained directly from the
system as before, because, intuitively, computing the limit
involves repeatedly evaluating the queries of the system.

However, it turns out that for systems with TPQs with
joins, we can construct a datalog program that computes
such a graph. Moreover, if the joins are limited to XPath-
joins, then the datalog program can be executed in polyno-
mial time. Therefore, we can test equivalence in polynomial
time by executing the datalog programs and testing whether
the graphs obtained simulate each other.

On the other hand, as we will show later in this section,
for input-free systems containing TPQs with constructors,
equivalence is undecidable.

TPQs with Joins. We look first at the case of TPQs with
joins. As a first step, we specify the datalog program com-
puting the graph that represents a limit of the system. In
what follows, let I be an input-free system containing TPQs
with joins. Let GI be the graph associated to I (treating
query nodes as ordinary nodes). We now define ΠI to be
the following datalog program, where m, n, and a stand for
constants, whereas x, y, z are variables.

child(m,n) :- (for EG(m,n) & λ(n) ∈ L)
label(m,a) :- (for λ(m) = a ∈ L)
child(m,y) :- child(n,x), q(x,y) (for EG(m,n) & λ(n) = q)
desc(x,y) :- child(x,y)
desc(x,y) :- child(x,z), desc(z,y)

Here, by q(x, y) we denote the query q seen as a conjunc-
tive query over EBDs “child”, “desc”, and “label”, where x is
identified with the root, and y with the result node.

We denote by ĜI the graph obtained by running the dat-
alog program ΠI until it reaches a fixed point. In this way,
we get an analogue of Proposition 3 for AXML systems with
TPQs with joins:

Proposition 6. For every input-free AXML system with

TPQs with joins, unr(ĜI) is a finitely branching limit of I.

The proof of Proposition 6 crucially uses the fact that the
queries we consider are bisimulation invariant, and hence
evaluating the queries on the unraveling of a graph yields
the same result as evaluating the queries on the graph itself
and unraveling the result.
Given the result of the previous section, this immediately

yields an algorithm for testing equivalence of two systems.
Since the algorithm involves constructing and running a dat-
alog program, it requires in general more than polynomial
time. However, it can be shown that it runs in time pnp

|| ,
i.e., deterministic polynomial time with parallel access to an
np-oracle. This follows from the fact that the arity of the
IDBs in the constructed datalog program is bounded by a
constant (in fact, the constant in question is 2), and it is not
difficult to show that the combined complexity of evaluating
a datalog program whose IDBs have bounded arity is in pnp

|| .
In fact, we have the following:

Theorem 3. The equivalence problem for input-free AXML
systems with TPQs with joins is pnp

|| -complete.

In particular, this shows that testing equivalence of AXML
systems with TPQs with joins is np-hard. Indeed, pnp

|| con-
tains the entire Boolean hierarchy, of which np is only the
first level.
This holds for arbitrary joins. If we restrict our atten-

tion to TPQs with XPath-joins, then we can prove much
better complexity bounds. These are based on the result
shown in [6] that TPQs with XPath-joins, seen as conjunc-
tive queries, have bounded tree-width. It follows that, in this
case, the constructed datalog program ΠI has bounded tree-
width, in the sense that the body of each rule has bounded
tree-width. Without going into the definition of tree-width,
what matters here is that the complexity of testing for a
homomorphism between two structures is known to be in
ptime if the first structure has bounded tree-width [9] (cf. [7]
for more details). It follows, that evaluating a datalog pro-
gram of bounded tree-width whose IDBs have bounded ar-
ity, is ptime. Consequently, the above algorithm for testing
equivalence of two systems runs in ptime if the systems only
contain TPQs with XPath-joins.

Theorem 4. The equivalence problem for input-free sys-
tems with TPQ with XPath-joins is decidable in ptime.

TPQs with Constructors. Finally, we move to systems
containing TPQs with constructors. In this case, equivalence
turns out to be undecidable, as these systems are expressive
enough to simulate the computation of a Turing Machine.
In particular, we show the undecidability by reduction from
the acceptance problem of a Turing Machine (TM): Given
a TM and an input, we create an AXML system that simu-
lates the TM on the input and returns a designated symbol

if and only if the TM accepts this input. Hence we obtain
the following undecidability result:

Theorem 5. Equivalence of input-free AXML systems with
TPQs with constructors is undecidable.

In fact, the undecidability proof uses no input channels,
no joins, and no repeated variables in the template.

Remark. We could also consider an alternative seman-
tics of the language with constructors, where we would re-
place the leaves of the template by the matching node instead
of the entire subtree. One can still show undecidability of
equivalence for this query language (by reduction from the
containment of datalog) if inputs and joins are allowed.

5.3 Simplifying Systems with Input
We consider next systems with input. In this case, our

strategy of creating a graph representing a limit of the sys-
tem is no longer directly applicable. The reason is that
queries can now operate on inputs, which are unknown be-
forehand. Therefore we can only hope to create a finite rep-
resentation of a limit if we allow it to contain also queries
over the input. Indeed, we will employ graphs that con-
tain queries and our decision procedure for equivalence will
reason on them.

To simplify the equivalence check, we will first bring the
systems into a special form. For our purposes, a simple
system will be one in which all queries have been pushed
down to the inputs. The procedure that we use to transform
a system into an equivalent simple system is interesting in
its own right, and we first describe it in its own dedicated
section. Then in the following subsection, we will present the
decision procedure for equivalence for two simple systems.

Regular Tree Pattern Queries. As we will see, to be able
to push queries down to the inputs we need to employ a
query language that is more powerful than TPQs. To this
end we generalize the query languages we use, by allowing a
limited form of recursion.

Definition 11. A regular tree pattern query (RTPQ) is
a regular expression over the infinite alphabet consisting of
all tree pattern queries. RTPQs with Joins and RTPQs with
XPath-joins are defined in the same way.

Intuitively, we need this additional expressive power to
capture the recursion that would otherwise be modelled by
the send and receive nodes, if the queries were allowed to
appear at arbitrary places in the tree (and not only directly
over the inputs).

Example 8. Consider the send1 subtree in Figure 9a. It
is easy to see that it sends to channel 1 all subtrees of the
input channel ext that are reachable by an (a/b)∗-path. Let
I be the system consisting of a root whose children are this
same send1 subtree, and a rcv1 node. The system I is not
simple, as the query q1 is applied over an internal chan-
nel. However, it is equivalent to the system {root{q{rcvc}}},
where q is the RTPQ /(a/b)∗. This illustrates the fact that,
in order to turn a system with TPQs into an equivalent sim-
ple system, it may be necessary to introduce RTPQs.

Simple systems. A system is simple if it only applies queries
directly on the input, and not on pieces of XML that have
been produced by the system itself. It turns out that a
system can apply queries on the input in two ways: It can
either copy part of the input to the output or simply check
whether the input contains a pattern to output something
else (i.e. perform a boolean check on the input). These two
ways are demonstrated by the following example:

Example 9. Consider the two query nodes of system I3
in Figure 9a. As we discussed above, q1 simply copies part
of the input channel ext to the output. On the other hand,
q2 uses the input differently. It simply checks whether ext
contains the symbol γ and if it does, it returns c followed by
the contents of the internal channel 1.

In order to give a formal definition of simple systems, we
introduce two new types of active nodes, that represent these
two types of queries: input-queryc,q and input-testc,q, where
c is an input channel and q is a query. The first, which is only
allowed to occur as a leaf, is shorthand for q{rcvc}. In other
words, it corresponds to copying part of the input to the
output. The second is allowed to occur anywhere and input-
testc,q{data} is shorthand for q′{s{in{rcvc}, out{data}}},
where q′ is the query /s[in/q]/out, which tests whether q
has a non-empty result in the subtree below the in-node,
and then returns the data below the out-node. In other
words, input-testc,q{data} returns a copy of data if query
q yields a non-empty result on the data received on input
channel c, and nothing otherwise.
We call an AXML system simple if it only uses queries in

these two ways, i.e., if it can be seen as an AXML system
using the active node labels sendi, rcvi as usual, and, in-
stead of arbitrary query nodes, the active node labels input-
queryc,q and input-testc,q.

Example 10. Figures 9b and 9c show a simple system
equivalent to I3, using the original notation and the newly
introduced active nodes, respectively.

Making systems simple. To simplify the statement of the
next result, we will restrict our attention to systems with a
single input channel. This is harmless, because if a system
has input channels c1, . . . , cn, one can replace each rcvci
by qi(rcvc), where c is a single input channel and q is the
query /i. Although this changes the semantics of the system,
two systems are equivalent before this modification if and
only if they are equivalent after. Therefore, in studying the
complexity of the equivalence problem we may assume a
single input channel.
The following theorem shows that every system is equiva-

lent to a simple system, provided that the queries are allowed
to use recursion and the system has a single input channel.

Theorem 6. Given a system with TPQs that has a single
input channel, one can compute an equivalent simple system
with RTPQs. Similarly for systems with TPQs with XPath-
joins. In both cases the translation can be carried out in
2EXPTIME.

The proof involves a detour through monadic datalog [10].
More specifically, we identify a class of monadic datalog

(a) System I3 (b) Simplification of I3
Simplification of I3

 using new notation

send1

q1

rcv1

rcvext

root

s

in

rcvext

out

q2

c

rcv1

s

in

!

out

$x
b

a

root

s

in

rcvext

out

q2

c

q1

b

a

rcvext

s

in out

$x

* ()

!

root

c

input-queryext, q

input-testext, q’
!

b

a * ()

(c) !

2!

1!

Figure 9: Example of system simplification

queries that can express precisely the RTPQs (with XPath-
joins). We then prove the Theorem using these monadic
datalog queries.

RTPQs are clearly more powerful than TPQs as a query
language. Indeed, RTPQs enhance the expressive power of
simple systems, as compared to TPQs. Interestingly, this is
not the case for arbitrary (non-simple) systems with inputs,
as shown by the following result:

Theorem 7. Every AXML system with RTPQs can be
translated in polynomial time to an equivalent AXML system
with TPQs. Similarly for RTPQs with joins, and for RTPQs
with XPath-joins.

Rather than giving a formal proof we illustrate Theorem 7
by means of an example. Consider the regular tree pattern
(qaqb)

∗, where qa is the tree pattern that selects a-children
of the root, and qb is the tree pattern that selects b-children
of the root. In other words, (qaqb)

∗ selects all nodes reach-
able by an (ab)∗-path from the root. In order to construct
an AXML system computing this query, we first translate
the regular expression to a non-deterministic finite state au-
tomaton (NFA). In this case, the NFA A has two states,
1 and 2, and a transition from 1 to 2 labeled by the tree
pattern qa, and a transition from 2 to 1 labeled by the tree
pattern qb. State 1 is both the initial state and the final
state. Now, from the NFA A we construct an AXML sys-
tem IA. It has one channel for each state of the automaton,
plus the external input channel. In this case, the system is
{send1{qa{rcv2}, rcvc}, send2{qb{rcv1}}, rcv1}.

Theorem 7 shows that the recursion natively supported
by all systems through the interaction of send and receive
nodes, is a very powerful construct. It allows, among others,
systems with TPQs to express regular path languages by
simulating finite state automata.

5.4 Simple Systems with Input
It follows from results in [8] that the containment problem

for unions of RTPQs with XPath-joins is decidable. In fact,
a slightly more general result holds:

Proposition 7 ([8]). The following is decidable in EX-
PTIME: Given two unions of RTPQs with XPath-joins q, q′,
and a Boolean combination φ of Boolean RTPQs with XPath-
joins, does q ⊆ q′ hold on XML documents satisfying φ?

Here, a Boolean RTPQ with XPath-joins is a RTPQ with
XPath joins viewed as a Boolean (non-emptiness) query.
Note that unions of RTPQs with XPath-joins, as well as
Boolean combinations of such Boolean queries, can be di-
rectly expressed in RegXPath(↓,=); the main logic studied
in [8]. We use Proposition 7 to show that the equivalence
problem for simple systems with input and RTPQs with
XPath-joins is decidable (and therefore also the equivalence
for non-simple such systems).

Theorem 8. The equivalence problem for simple AXML
systems with input and RTPQs with XPath-joins is decidable
in EXPTIME.

Proof sketch. The basic outline of the proof is as fol-
lows. Let I, J be the systems that we need to test for equiv-
alence. We collect all Boolean queries occurring in I and
J in the form of input-tests. We consider, one by one, all
combinations of these Boolean queries, and, for each case,
test if I and J are equivalent on all inputs satisfying ex-
actly those Boolean queries (if so, then, indeed, I and J
must be equivalent on all possible inputs). This allows us
to eliminate input-tests from I and J , so that we only have
to test (many) equivalences between simple systems that do
not contain any input-test nodes. Finally, in order to test
whether two simple systems with input-queries are equiv-
alent (on a restricted class of inputs) we construct graphs
representing the limits of the two systems, where the nodes
of the graphs may be annotated by queries over the input,
and we test simulation-equivalence of the graphs (but taking
into account containment relations that may hold between
queries). Below, we spell out this approach in more detail.
Suppose I, J are simple systems with input and TPQs

with XPath-joins. Let Qtest be the set of queries occurring
in I and J as input-tests, and let Qquery be the set of queries
occurring in I and J as input-queries.

For each subset X ⊆ Qtest, let IX and JX be obtained
by removing all input-test nodes, and adding edges from the
parent of an input-test node to all its children if the input-
test query is in X. Note that IX and JX are simple systems
without input-test joins that behave in exactly the same way
as I and J do, on inputs for which it holds that X is exactly
the set of queries from Qtest that are satisfied. Hence, in
order to test whether I and J are equivalent on all inputs, it
is enough to test that each IX is equivalent to JX on inputs

satisfying exactly those queries from Qtest that belong to X.
This leaves us with the task of showing that the following

problem is decidable in EXPTIME (note that performing
exponentially many EXPTIME-tasks is still in EXPTIME).

Given simple systems I, J without input-tests,
and given a Boolean combination φ of Boolean
RTPQs with XPath-joins, decide if I and J are
equivalent on inputs satisfying φ.

We say that a subset Y ⊆ Qquery is closed w.r.t. φ if
the following holds: For all q ∈ Qquery, if q ⊆

⋃
q′∈Y q′ on

XML documents satisfying φ, then q ∈ Y . Suppose we are
interested in the behavior of a system I on input satisfying
φ. Then, we may assume that for every node of I, the set
of all input-query children of that node form a closed set
of queries that is a closed subset of Qquery with respect to
φ (if not, then the relevant additional input-query children
can be added without affecting the semantics of I on inputs
satisfying φ). In this case, we say that I is closed w.r.t. φ.
Proposition 7 allows us to compute the closure of I w.r.t. φ
in EXPTIME (in the size of I and φ) by repeatedly testing
containment and until no further input-query children need
to be added to the document.

Finally, let I, J be simple documents without input-tests,
φ be a Boolean combination of Boolean RTPQs with XPath-
joins, and I, J be closed with respect to φ. Then it can be
seen that I and J are equivalent with respect to φ if and only
if the graphs of I and J are simulation-equivalent, where the
input-query nodes are now treated as passive nodes (each
query is treated as a different symbol). Indeed, if the graphs
of I and J are not simulation equivalent, then I and J have
different (non-homomorphically equivalent) limits on any in-
put XML data satisfying φ that is distinguishing in the sense
that it contains data satisfying any closed combination of
queries from Qquery.
Since the existence of simulations can be tested in PTIME,

we get an overall upper bound of EXPTIME.

Combining this with Theorem 6, yields the following result
for deciding equivalence of (non-simple) systems with input
and TPQs with XPath-joins:

Corollary 1. The equivalence problem for (non-simple)
AXML systems with input and TPQs with XPath-joins is
decidable in 3EXPTIME.

We do not know whether the 3EXPTIME-bound is tight.
However, we know that the equivalence problem for systems
with TPQs and inputs is PSPACE-hard.

Theorem 9. The equivalence problem for simple systems
with RTPQs and input, and hence also the equivalence prob-
lem for systems with TPQs and input, is PSPACE-hard.

This follows directly from the PSPACE-hardness of the
equivalence problem for regular expressions.

Remark. In the case where the joins are not restricted to
XPath-joins, decidability of equivalence still remains open.
However, for such systems equivalence is decidable if we re-
strict our attention to inputs over a fixed set of labels. The
result is based on the fact that then a join can be replaced
by a disjunction of finitely many patterns in which the join
variable is replaced by a concrete value (and therefore the
problem is reduced to the join-free case).

6. AXIOMATIZATION FOR QUERY-FREE

AXML SYSTEMS (WITH INPUTS)
As a first step in studying optimization of AXML systems,

we present here a finite set of axioms (or, more precisely, a
finite set of axiom schemes) that can be used to rewrite sys-
tems into other, equivalent systems. More importantly, we
show that these axioms are complete for query-free AXML
systems, in the sense that for every two such systems I, J ,
if I and J are equivalent, then I can be rewritten into J by
a finite sequence of applications of the axioms as undirected
rewrite rules. The axioms are the following:

ax1 sendc{data1, data2} = sendc{data1}, sendc{data2}
ax2 sendc{data1}, a{data2} = a{sendc{data1}, data2}
ax3 sendc{data}, rcvc = sendc{data}, data

if there is no other sendc
ax4 sendc{data} = ǫ if there is no rcvc
ax5 sendc{rcvc′ , data} = sendc{data}

if every rcvc node in the document has a rcvc′ sibling
ax6 sendc{data} = ǫ if c is an inaccessible channel
ax7 rcvcrcvd = rcvc if channel c simulates channel d
ax8 rcvc = rcvd if channels c and d simulate each other

The axioms ax6-ax8 require some explanation, as they
refer to “inaccessible channels” and to simulations between
channels. However, before we get to that, we state a result
concerning the axioms ax1-ax5.
In what follows, whenever we speak of systems, we always

assume that they are query-free. We call a system normal-
ized if it is a tree where all subtrees immediately below the
root are of the form sendc{a{rcvc1, . . . , rcvcn}} where a is
a single node, and such that there do not exist two send
nodes for the same channel. A normalized system can natu-
rally be seen as an encoding of a graph, where the channels
are the nodes of the graph and each subtree of the form
sendc{a{rcvc1, . . . , rcvcn}} specifies the incoming edges of
the node corresponding to channel c. Indeed, the graph rep-
resented by a normalized AXML system I, in this way, is
precisely the graph of I as we defined it in Section 4.
As a first step, we have:

Lemma 1. Using the axioms ax1-ax5 as undirected rewrite
rules, every system can be rewritten to a normalized system.

Proof hint. The axiom ax1 is used to make sure there
is a single send node per channel and the axiom ax2 is used
for moving around send nodes and bringing them directly
below the root of the system. The axioms ax3 and ax4
are used for splitting up data into pieces consisting of a
single label, and introducing intermediate channels. Finally,
ax5 (in combination with ax2 and ax3) is used to ensure
guardedness, i.e. that every rcv-node is below a passive
node and not below a send-node.

We say that a channel c is accessible in a system, if there
is a sequence of channels c1, . . . , cn such that cn = c, c1
occurs in the system in a place that is not in the scope
of any send-node, and each ci+1 occurs in the scope of
some sendi-node. Intuitively, a channel is accessible if data
sent on this channel will eventually affect the shapshot of
the system. A simulation in a normalized system is a bi-
nary relation Z between channels such that whenever Z(c, d)
and the system contains sendd{a{rcvd1 , . . . , rcvdn}} then
there are channels c1, . . . , cn such that the system contains
sendc{a{c1, . . . , cn}} and Zcidi holds for all i ≤ n. If there
is a simulation Z such that Zcd, then we say that c simulates
d. This explains the notation in axiom ax6-ax8.

We say that a normalized document is minimized if (i)
every channel is accessible, (ii) no two different channels
simulate each other, and (iii) it does not contain siblings
rcvc and rcvd where c simulates d. It is clear that we have
the following lemma:

Lemma 2. Every normalized AXML system can be rewrit-
ten to a minimized normalized AXML system using the ax-
ioms ax6-ax8 as undirected rewrite rules.

Now, it follows from Proposition 5 that two minimized
normalized AXML systems are equivalent if and only if they
are isomorphic. Hence, we have

Theorem 10. Two query-free AXML systems are equiv-
alent if and only if one can be rewritten to the other using
the axioms ax1-ax8 as undirected rewrite rules.

Proof. The right-to-left direction corresponds to the fact
that the axioms are sound (which can be easily seen). For
the left-to-right direction, suppose that I, J are equivalent
AXML systems. Let I ′, J ′ be minimized normalized AXML
systems such that I, I ′ are provably equivalent and J, J ′ are
provably equivalent. Then I ′ and J ′ coincide (recall that we
identify AXML systems up to isomorphism).

In the case of acyclic systems (systems where the depen-
dencies between the channels do not induce a cycle), fewer
axioms are needed. In this case, the axioms ax2-ax4 allow
us to effectively eliminate all send-nodes and rcv-nodes for
internal channels. This means we have to consider docu-
ments with external receive nodes only. It follows by Theo-
rem 2 that any two such systems are equivalent if and only
if they are homomorphicaly equivalent, i.e., they are iso-
morphic when reduced. Since we identify systems up to
homomorphic equivalence, this gives us

Theorem 11. Two acyclic AXML systems are equivalent
if and only if one can be rewritten to the other using the
axioms ax2-ax4 as undirected rewrite rules.

7. DISCUSSION
We conclude by summarizing our main results, putting

them into perspective, and discussing related work.
The main motivation of this work was providing formal

foundations for the optimization of distributed systems with
queries and communication (which we model as AXML sys-
tems). To this end, we identified a well-behaved notion of
equivalence and investigated the complexity of testing equiv-
alence for different classes of AXML systems. Our com-
plexity results, ranging from PTIME to undecidability, show
that we cover a large spectrum of AXML systems in terms
of expressive power.

Our framework is based on the work on Positive AXML
[1], which identified monotone AXML systems as a well-
behaved class of AXML systems. Our results rely implicitly
on properties shown in [1], such as confluence (which implies
that all infinite fair runs yield the same system).

In addition to providing decision procedures for equiva-
lence, we also studied the axiomatization of AXML systems.
In particular, we presented a complete set of axioms for the
equivalence of query-free systems. Although there is more
work to be done in this direction (generalizing the result
to systems with queries is an interesting problem for future

work), this is an important first step in addressing formally
the optimization problem for AXML systems, and it is a
natural continuation of the work on OptimAX [4], which
presented a (sound but not complete) set of rewrite rules for
AXML systems.
At this point, we would like to mention that some of the

results we obtained along the way are of independent inter-
est, either because they may serve as a stepping stone in
further analysis of AXML systems, or because they provide
further insight into the capabilities and limitations of AXML
systems. In particular, our results in Section 5.3 show that
it is possible to push queries appearing in an AXML system
down to the input. We believe that this is an important step
towards understanding issues such as relevance (i.e. which
parts of the input are relevant to the result of an AXML
document) [2]. The same results in Section 5.3 also charac-
terize in some sense the expressive power of AXML systems.
They show, for example that the queries that are computable
by AXML systems containing tree pattern queries, are pre-
cisely the regular tree-pattern queries. Regular tree-patterns
extend tree-patterns with a limited form of recursion, and
allow us to express queries such as “return all nodes reach-
able by an (ab)∗-path from the root”.

Acknowlegements. We are grateful to Pierre Bourhis
and Diego Figueira for useful discussions.

8. REFERENCES
[1] S. Abiteboul, O. Benjelloun, and T. Milo. Positive

Active XML. In PODS, pages 35–45, 2004.

[2] S. Abiteboul, P. Bourhis, and B. Marinoiu.
Satisfiability and relevance for queries over active
documents. In PODS, pages 87–96, 2009.

[3] S. Abiteboul, I. Manolescu, and E. Taropa. A
Framework for Distributed XML Data Management.
In EDBT, pages 1049–1058, 2006.

[4] S. Abiteboul, I. Manolescu, and S. Zoupanos.
OptimAX: Optimizing Distributed ActiveXML
Applications. In ICWE, pages 299–310, 2008.

[5] S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and
D. Srivastava. Minimization of Tree Pattern Queries.
In SIGMOD, pages 497–508, 2001.

[6] M. Benedikt and C. Koch. XPath leashed. ACM
Comput. Surv., 41(1):1–54, 2008.

[7] V. Dalmau, P. G. Kolaitis, and M. Y. Vardi.
Constraint Satisfaction, Bounded Treewidth, and
Finite-Variable Logics. In CP, pages 310–326, 2002.

[8] D. Figueira. Satisfiability of downward XPath with
data equality tests. In PODS, 2009.

[9] E. C. Freuder. Complexity of K-Tree Structured
Constraint Satisfaction Problems. In AAAI, pages
4–9, 1990.

[10] G. Gottlob and C. Koch. Monadic datalog and the
expressive power of languages for Web information
extraction. J. ACM, 51(1):74–113, 2004.

[11] P. Hell and J. Nešetřil. The Core of a Graph. Discr.
Math., 109:117–126, 1992.

[12] M. T. Ozsu and P. Valduriez. Principles of Distributed
Database Systems (2nd Edition). Prentice Hall, 2nd
edition, January 1999.

