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A survey of Sparse Component Analysis
for Blind Source Separation:
principles, perspectives, and new challenges

Rémi Gribonval, Sylvain Lesage

IRISA
Campus de Beaulieu
35042 Rennes Cedex, France

Abstract. In this survey, we highlight the appealing features and chal-
lenges of Sparse Component Analysis (SCA) for blind source separation
(BSS). SCA is a simple yet powerful framework to separate several sources
from few sensors, even when the independence assumption is dropped. So
far, SCA has been most successfully applied when the sources can be rep-
resented sparsely in a given basis, but many other potential uses of SCA
remain unexplored. Among other challenging perspectives, we discuss how
SCA could be used to exploit both the spatial diversity corresponding to
the mixing process and the morphological diversity between sources to
unmix even underdetermined convolutive mixtures. This raises several
challenges, including the design of both provably good and numerically ef-
ficient algorithms for large-scale sparse approximation with overcomplete
signal dictionaries.

1 Introduction

Because of its many applications in diverse areas of science, the blind source
separation (BSS) problem has been extensively studied in the last twenty years.
The most common and widely considered blind source separation model is the
linear instantaneous one x(t) = As(t) + e(t) where x(¢) is the column vector of
observed signals z,(t), 1 < p < P at time ¢ (for images, ¢ would denote the pixel
location), s(t) the column vector of unknown source signals s, (t), 1 <n < N,
A is an unknown P x N matrix and e(t) is additive noise.

For years, Independent Component Analysis (ICA) has been the favourite
tool to tackle the BSS problem, since under weak assumptions of independence
and non-Gaussianity, the model is identifiable up to gain and permutation in-
determinacies. When the number of sources N does not exceed the number of
sensors P and the mixing matrix A is well conditioned, the sources are easily
recovered by simply (pseudo)inverting the mixing matrix, i.e., s(t) = A~!x(¢)
or 8(t) = ATx(t). However, recovering the sources for so-called degenerate or
underdetermined mixtures with less sensors than mixtures seems a much harder
problem in a truly blind setup relying only on the independence of the sources.
It is then necessary to rely on some other priors on the sources.

Among other possible priors®, sparsity of the sources in a transformed domain
has turned out in the last few years both a successful tool [1, 2, 3, 4, 5, 6, 7] and

le.g., discrete priors for artificial sources such as digital communications signals.
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mathematically grounded [8, 9, 10, 11, 12] approach to address the degenerate
BSS problem. In addition to making source separation possible even in the
degenerate case, the sparse model also allows the estimation of the mixing matrix
by clustering the scatter plot [2] of a sparse representation of the mixture. The
related techniques are known as Sparse Component Analysis (SCA).

Despite its many successes, SCA faces a number of challenges. The goal of
this paper is to discuss and propose a vision for its future. With this purpose
in mind, we review in Section 2 the basic principles of SCA, which relies on
the assumption that the sources can be represented sparsely in a given basis.
Section 3 is devoted to the more general setup of SCA with overcomplete signal
dictionaries. We discuss in Section 4 some new perspectives offered by extensions
of this framework, such as the solution of underdetermined convolutive BSS
problems. To conclude the paper, we discuss the theoretical and computational
challenges raised by such perspectives.

2 Sparse Component Analysis

The basic principle of SCA usually consists of four steps. First, a sparsifying
linear transform is applied to the mixture. Given a family of K signals ()
called atoms, the correlations (z,, ) are computed? and collected in a P x K
matrix

Cx = ((zp, Pk))pk = [ i } = [Cx(1), ..., Ox(K)].

Letting ® be the K x T dictionary matriz, whose rows are the atoms ¢y, the
representation is obtained as® Cyx = x®" where ." denotes complex transposition.
With obvious notations, it satisfies Cx = ACs + Ce. Often used sparsifying
transforms are orthogonal wavelet or wavelet packet transforms, and short time
Fourier transforms (STFT). The transform should be chosen to sparsify the
source representation, so that each source representation c,, has few significant
coefficients ¢, (k), which are located on a set k € I, C {1,...,K}. If the
sparsity is sufficient, then the sets I,, can be almost disjoint for different sources,
so that for most k € I, the relation Cx (k) = ACs(k) + Ce(k) =~ cs, (k)a, holds,
where a,, is the column of the mixing matrix which corresponds to the source

sy In such a case, the scatter plot {Cx(k)}E_, is made of points almost aligned

with the columns of the mixing matrix, and one can cluster it to estimate A.
The second step precisely consists in estimating A from the scatter plot of Cx.
Besides natural gradient ICA approaches [1], a common approach today is to
rely on clustering techniques, with variants of weighted K-means. For such tech-
niques to perform well, the key hypothesis is that at most one source contributes
significantly to each point of the scatter plot. In practice, this hypothesis is at
best valid for most points of the scatter plot, provided that the sources have

2The notation z, (resp. X, sn, s) denotes the row vector (zp(t))1<i< € CT or RT.

3Note that the transform <I>H operates on the right hand side, which is the time domain, as
opposed to the mixing matrix A which acts on the left hand side, the spatial domain.

324



ESANN'2006 proceedings - European Symposium on Artificial Neural Networks
Bruges (Belgium), 26-28 April 2006, d-side publi., ISBN 2-930307-06-4.

not only sparse but also almost disjoint representations [13]. Several authors
[14, 15, 16] have proposed techniques to estimate A based on the far weaker hy-
pothesis that for each source, there is some (possibly small) subset of the scatter
plot where it is the only significantly active one, even if the transformed sources
overlap in almost all the scatter plot. For the latter techniques to work, the
sources representations are assumed to have some structure: in the case of audio
sources, it is typically assumed that, in the time-frequency domain, the activity
of each source displays some local persistence within the small time-frequency
regions where they are “visible”. Such models even make it possible to even
estimate the number of sources in the mixture [16].

The third step is to estimate the source representations based on the spar-
sity assumption. In a noiseless context, Bofill and Zibulevsky [17] proposed to
estimate the source representation és

~

Cak):=arg  min_ [Cll,,  q=1. (1)
C|Cx(k)=AC

which can be interpreted as a maximum likelihood estimate assuming the sources
coefficients have a Laplacian distribution. More recently, some variants where
the ¢! norm is replaced with an £ norm for ¢ < 1 have been reported to improve
performance for audio BSS [18]. Another approach, which is more robust when
the estimation of the mixing matrix is prone to errors [19], is binary masking [7].
It sets the estimated source components to EnaZC'x where ¢,, := 1 for the source
whose direction maximizes the correlation |a£0x| with the mixture component,
and ¢, := 0 for the other sources.

The last step is the reconstruction of the sources by an inverse of the sparsi-
fying transform. For unitary sparsifying transforms such as the discrete wavelet
transform or the Fourier transform, this is simply obtained as s := Cs®.

3 SCA with overcomplete signal dictionaries

SCA based on linear transforms has led to successful BSS techniques such as
DUET [7], which works very well for the separation of anechoic sterophonic
audio mixtures. Since the beginning of the 1990s, the use of redundant signal
dictionaries for sparse signal representations has been advocated by many re-
searchers [20, 21] as a mean to enforce higher sparsity than could be obtained
with linear transforms by exploiting the variety of waveforms in the signal dictio-
nary to get a better adaptation to the signal features. Such approaches consist
in modeling the source signals as vectors in R? or CT" with a sparse expansion

K
Sn A ch(k) o =cp. P (2)
k=1

where @ is the redundant K x T dictionary matrix, used in synthesis mode,
and ¢, € RE or CK is a sparse row vector of synthesis coefficients. Since ® is
redundant, such an expansion is not unique: among the infinitely many possible
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expansions for a given signal, one can hope to get a highly sparse one. In the
BSS context, the sparse source model (2) leads to a sparse mixture model

N N K
X:ACS§+e:Zan'cn‘§+ezzzcn(k)'an@k (3)
n=1

n=1 k=1

where A is the unknown P x N mixing matrix with columns a,,, Cs an unknown
(but sparse) N x K coefficient matrix with rows ¢,, and ® is the dictionary in
which all sources are assumed to have a sparse decomposition.

Following the SCA setup, but with adaptive sparse expansions in overcom-
plete dictionaries instead of linear transforms, a first step is therefore to compute
an adaptive sparse representation x = Cx® + e of the mixture with Cx a P x K
matrix of coefficients which can be clustered to estimate A. This leads to solving
a simultaneous approximation problem of the type

K

~ 1

Cx := arg min §||X—Cx‘1>||%'+/\2||CX(k)Hg (4)
k=1

where A > 0 determines a compromise between the quality of approximation,
measured by the Frébenius norm* ||- ||, and the objective of selecting few active
atoms with ||Cx(k)|l2 > 0. Note the use of ||Cx(k)||> and not ||Cx(k)||y in (4),
which avoids giving a preference to any spatial orientation for the selected atoms.

The following steps consist in computing a sparse source representation Cs
compatible with (3), where A is replaced by the estimated matrix A, and to
reconstruct the sources as s := 6’5<§. This can be done with an £9 minimization
approach similar to (1): in a noisy setting it becomes

K

o~ 1 ~

Cu = argmin L x — ACB|3 + 2 [ Calh)1 5)
k=1

This approach was developped for ¢ = 1 [3] with an interpretation as a MAP
estimation of the sources under a Laplacian model and Gaussian white noise e.

4 Perspectives

Today, most SCA techniques for BSS rely on the sparsity of the sources in a
common basis to separate them based on their spatial diversity. Its principle
is essentially to decompose the mixture into elementary components, which are
then grouped according to the similarity between their spatial patterns, before
being finally recombined to reconstruct the sources. Such a principle is amenable
to more general types of decompositions [22], provided that a proper grouping
criterion makes it possible to distinguish which components of the decomposition
correspond to which source. Below we discuss how this has been or could be
used in various frameworks.

4the square root of the sum of all squared entries in a matrix.
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Combining spatial and morphological diversity. If the sources happen to be
sparse in different (known) dictionaries, it is also possible to rely on sparsity to
separate the sources, even in the single channel separation case where no spatial
diversity is available. Such an approach has been called morphological component
analysis [23] since it relies in the different typical shapes of the sources to separate
them, and it was successfully exploited for the separation of piecewise smooth
content and textures in images [24], or the decomposition of musical sounds into
a tonal and a transient layer for coding [25]. A technique to exploit both spatial
and morphological diversity of the sources, called multichannel morphological
component analysis [26], was recently proposed: with a specific algorithm, it
decomposes a mixture as

N
x:Zan-cn@(”)+e—Zch 2,y (6)

n=1 n=1 k=1

where a, is the spatial direction of the source s, and ¢, - &M is a sparse
approximation thereof in a specific dictionary &™) (e.g., in audio a wavelet
basis for drums, and a Gabor dictionary for a violin and a piano). The estimated

sources are reconstructed as 5, 1=y cn(k)gogcn).

Convolutive degenerate mixtures. So far, SCA has been mostly used to deal
with linear instantaneous mixtures, with notable extensions to anechoic (time-
delayed) mixtures [7, 27]. More generally, one can face the problem of separat-
ing (possibly underdetermined) convolutive mixtures x = A *s + e. Examining
whether and how sparse source models can at all help identify the mixing condi-
tions today remains a serious challenge. Extending SCA to separate the mixed
sources, when the mixing conditions are known, seems an easier perspective
which is in the spirit of ! -based deconvolution [28]. Formally, given an estimate
of the mixing matrix of filters, one can decompose a mixture as

N
x:Zan (cn - BM) +e—Zch an*gol(gn)-l-e, (7)
n=1

n=1 k=1

and reconstruct the sources as 5, := >, cn(k)goén). The success of the approach

certainly depends on the global diversity of the multichannel waveforms an*gogcn),

and the practical validity of this approach is yet to be demonstrated.

5 Challenges and open problems

One of the main bottlenecks which prevents the wide exploration of potential
applications of SCA with overcomplete signal dictionaries is the computational
complexity of the optimization algorithms it involves. It is therefore of the
utmost importance to carefully design sparse approximation algorithms that
would ideally combine two crucial properties : good “quality” of the resulting
decomposition, and numerically efficient design (in terms of moderate usage of
computation resources such as flops and memory for large-scale problems).
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Provably good algorithms. In the last decade, several sparse approximation al-
gorithms have been proposed, either for simultaneous approximation Eq. (4) or
for the demixing step Eq. (5). Among them, ¢! optimisation techniques and
greedy algorithms have been quite extensively studied in a huge body of recent
work (see e.g. [9, 10, 11, 12] and the references therein) initiated by Dono-
ho and Huo [8]. These techniques have good decomposition performance —in
some precise mathematical sense— provided that the sparse source model is sat-
isfied with good accuracy. Nonconvex /¢ optimisation principles® have also been
analyzed for 0 < ¢ < 1 [12]. The performance of convex ¢? optimization for
1 < ¢ < 2, which —quite surprinsingly— remains unexplored, certainly deserves
its own analysis, and simultaneous approximation algorithms also raise their fair
share of questions.

Numerically efficient algorithms. From a computational point of view, the so-
lution of (4) and (5) for ¢ = 1 typically rely on convex programming techniques
which unfortunately remain computationally very demanding, except for very
small problem sizes. For 0 < g < 1, iterative reweighted least squares (IRLS)
techniques such as FOCUSS and M-FOCUSS [29, 30] converge in few iterations
to a local minimum of the criterion, yet they need a good initialization and in-
volve the costly inversion of large matrices (or the numerical solution of large
linear systems). Hopefully, £9, ¢ < 1 optimization are not the only approaches to
sparse signal decompositions. Iterative algorithms such as Matching Pursuit [20]
indeed provide a good alternative with a much lower computational complexity
to tackle both the simultaneous approximation problem (4) — with Multichannel
Matching Pursuit [5, 22, 31]- and the source separation step itself (5) — with a
variant known as Demixing Pursuit [19]. A fast N log N open implementation of
Multichannel as well as Demixing Matching Pursuits (called MPTK) has recent-
ly been proposed [32] and is freely available ®. With overcomplete dictionaries
such as multiscale Gabor dictionaries, which are relevant for audio signal pro-
cessing, MPTK can provide close to real time decompositions even in very large
dimension. More recent algorithms such as iterative thresholding [33, 34, 35]
are very promising in terms of numerical efficiency, though not yet defined in a
simultaneous approximation setting.

Learning the mixing matriz ...and the dictionary. Last, but not least in a
series of open questions about SCA for BSS comes the issue of analyzing the
identifiability of the mixing matrix, and the robustness of the separation algo-
rithms when A is unprecisely known. Related problems involve the analysis of
the role of the choice of the dictionary ® in the separation performance, in close
connection with learning and sparse coding issues, where the dictionary itself
might be learned from data [1].

5For 0 < ¢ < 1, the €9 quasi-norm |c[lq := (3 |e(k)|?)'/9 satisfies the quasi-triangle
inequality |lc + d||2 < ||c||§ + ||d||? instead of the triangle inequality. For ¢ = 0 the £° quasi-
norm [|¢||p simply counts the number of nonzero entries in a vector.
Shttp://mptk.gforge.inria.fr
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Overall, SCA has proved a very succesful tool for degenerate source separation,
and a key to its most visible successes (such as the DUET algorithm [7]) is
the combination of simplicity and efficiency of the model and corresponding
algorithms. Whether or not SCA can fulfill its new promises will depend on
on whether we overcome the computational challenges it raises, and explore the
new lands it uncovers.
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