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A Robust Method to Count and Locate Audio Sources
in a Stereophonic Linear Instantaneous Mixture

Simon ARBERET, Rémi GRIBONVAL, Frédéric BIMBOT

IRISA, France

Abstract. We propose a robust method to estimate the number of audioesou
and the mixing matrix in a linear instantaneous mixture newéh more sources
than sensors. Our method is based on a multiscale Short TaueeF Trans-
form (STFT), and relies on the assumption that in the neigidmd of some
(unknown) scales and time-frequency points, only one soaontributes to the
mixture. Such time-frequency regions provide local estésaf the correspond-
ing columns of the mixing matrix. Our main contribution is @nclustering al-
gorithm called DEMIX to estimate the number of sources ardniixing matrix
based on such local estimates. In contrast to DUET or othelesisparsity-based
algorithms, which rely on a global scatter plot, our alduritexploits a local
confidence measure to weight the influence of each time-émexyupoint in the
estimated matrix. Inspired by the work of Deville, the coafide measure relies
on the time-frequency local persistence of the activigetivity of each source.
Experiments are provided with stereophonic mixtures aravstie improved
performance of DEMIX compared to K-means or ELBG clusteafgprithms.

1 Introduction

The problem of estimating the number of audio sources anehtkieg matrix is consid-
ered in a possibly degenerate noisy linear instantaneousm@im(t) = SN_; amnsn(t) +
em(1), 1< m< M, more conveniently written in matrix fors(t) = As(t) +e(t). While
theM signalsxn(T) are observed, the numbirof sources as well as thé x N mixing
matrix A, theN source signals,(t) and the noise signaés,(t) are unknown.

Our approach relies on assumptions similar to those of DUHTafd TIFROM
[2, 3]. It exploits the fact that for each source, there iseatst one time-frequency re-
gion where it is the only source contributing to the mixturkis assumption is related
to sparsity of the time-frequency representation of thees) which is a well-known
property of a variety of audio sources. In many sparsityedasource separation ap-
proaches [4, 5, 1] this property is exploited globally bywirsg a scatter plot of the
time-frequency valueX(t, f) }+ r — which more or less displays lines directed by the
columnsa, of the mixing matrix — and cluster them inkbclusters. Such a global clus-
tering approach is sensitive to the parameters of the clogtalgorithm, and to the fact
that the direction of some sources of weak energy might noeapclearly in the global
scatter plot. Rather than using a full scatter plot, our agph is to exploit the local
time-frequency persistence [2, 3] of the activity/inaityiwf each source to get a robust
estimation of the numbeM of sources and the mixing matri. This is similar to the
TIFROM [2, 3] method, which —in the stereophonic case— usevariance of the ratio
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iigg within a time-frequency region to determine whether thémegontains a single

active source or more. Our main contributions are to:

1. use a multi-resolution framework (multiple window STHR®)account for the dif-
ferent possible durations of audio structures in each sourc

2. rely on a local confidence measure to determine how validesassumption that
only one source contributes to the mixture in a given tinegffrency region;

3. propose a new clustering algorithm called DEMIX, basedhenconfidence mea-
sure, that counts the sources and locates them.

In Section 2, after some reminders on related approacheasitoate the mixing matrix,

we give the outline of our approach and describe the confelereasure. In Section 3
we describe the new clustering algorithm DEMIX, and Sectiaa devoted to experi-
ments that compare several methods on audio mixtures.

2 Exploiting Sparsity & Persistence

Let us analyze briefly the most simple sparse source modeinasthat at each time
T, only one source := n(T) is active /(1) # 0 ands(t) = 0 Yk # n). In such a case,
the noiseless mixture at tines x(1) = ansy(1). In other word each point(t) € RM is
aligned on one of the columaasg of the mixing matrixA. In fact this simple model is not
very sparse, but (the real and imaginary parts of) STFT wa¥ug, f) approximately
displays such a behaviour, since the linear mixture mdelf) = AS(t, f) + E(t, f)
holds and immanytime-frequency pointét, f), only one source is dominant compared
to the others. However, there are points where severalesare similarly active, which
can make it difficult to estimate the mixing matrix by simplystering the global scatter
plot.

2.1 Related work

Many source separation methods for the stereophonic ddse 2) use the idea of
sparsity in order to find mixing directions. In Bofill and Zibusky'’s algorithm [4] and
DUET [1], the global (time-frequency) scatter plot is trioreed into angular values
(t, ) =tan 1 (Xa(t, f)/X4(t, T)), and the columns of the mixing matrix are estimated
by finding maxima in an energy weighted smoothed histograthexe values. One of
the difficulties with this approach is that it seems difficaladjust how much smoothing
must be performed on the histogram to resolve close direstiwithout introducing
spurious peaks.

Another approach is the TIFROM method [2, 3] which consistselecting only
time-frequency points that have a great chance of beingrgteby only one source. In
TIFROM, for each time-frequency poiftt, f), the meam + and variancaart%f of Time-
Frequency Ratios Of Mixtures(t’, f') = %(t’, ') /% (t’, f’) are computed using all
timest’ within a neighborhood dfand f’ = f. By searching for the lowest value of the
variance, a time-frequency domain is located where esdntine source is present,
and the corresponding column #f is identified as being proportional td, o 1 )".
However, it seems quite difficult to exploit TIFROM to actiyadleterminehow many
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sources are present in the mixture and find their directionsddition, theasymmetric
roles given byo(t’, ) to the left and right channels of a stereophonic mixture is no
fully satisfying as for sources located almost on the firsrotel (i.e., with mixing
column close td0,1)"), the corresponding variance are likely to remain highneste
good time-frequency points.

2.2 Proposed approach

We propose to overcome these limitations of TIFROM by reiplache local vari-
ance and mean of the ratic%% with the principal direction of the local scatter
plot (Xi(t, f),%2(t, f)), together with a measure of how strongly it points in its prin
cipal direction. For this, we first define time-frequencygiiorhood<; + around
each time-frequency poirit, f). A discrete STFT with a window of size computed
with half overlapping windows and no zero padding providakigs on the discrete
time-frequency grid = kL/2, ke Z andf =1/L, 0<1 <L/2. A possible shape of
time-frequency neighborhood of a time-frequency péint) is Q; f = {(t+KkL/2, f +

K /L), |kl < Sr,|K| < S} but the approach is amenable to using or combining several
shapes and size of neighborhoods. Each neighborhood pso&itbcal scatter plot cor-
responding to 8 x card Qy 1) matrix X, , with entries R&X(t', f')] and In{X(t’, f')]
for (', f') € Q¢ ¢. Performing a Principal Component Analysis (PCA)X#, ; we ob-
tain a principal direction as a unit vectoft, f) € RM. In the stereophonic casé = 2,
the direction of the estimated principal unit veddt, f) € R? is equivalently translated
into an angled(t, ).

2.3 A confidence measure

To have an idea of how likely it is that the unit principal vedii(t, ) corresponds to a
direction of the mixing matrix, we need to know with what caolefince we can trust the
fact that a single source is active in the corresponding kxzatter plot. We propose to
rely again on PCA to define the confidence measure

~ A M ~
‘T(t’f) = }\l(taf)/z)\l(tvf) (1)

whereh(t, f) > ... > Au(t, f) are the eigenvalues of tihé x M matrixXQt‘fX(T)t - As
explained in Appendix A, this measure can be viewed as a kigahl to noise ratio
between the dominant source and the contribution of ther athes together with the
noise, so we will often express it in deciBels, that is to s@jog,o7 .

Figure 1(a)-(b) shows the local scatter plot in two timegfrency regions: one
where many sources are simultaneously active, and anotieewbere essentially one
source is active. Itillustrates the good correlation ofthkeie of the confidence measure
with the validity of the tested hypothesis. R

Figure 2(a) displays the collection of pai({ f),20logo7 (t, f)), or direction-
confidence scatter pl¢DCSP), obtained by PCA for all time-frequency regions @f th



(© 2006 Springer. This is the author version of an article published in Springer Lecture Notes in Computer Sciences.
The original publication is available at www.springerlink.com

1501
1001

50r

-100-

5050 -100 -50 0 50 100 15¢ 5 -4 -3 -2 -1 0 1 2 3 4 5

@) (b)

Fig. 1. Two local scatter plots for a stereophonic noiseless maxairfour audio sources. Solid

lines indicate all possible true directions, the dashed indicates the direction estimated by
PCA. (a) Local scatter plot in a region where multiple soarcentribute to the mixture. The

measured confidence value is low (9.4 dB) (b) Region wherentisdly only one source con-

tributes to the mixture. The measured confidence value is (1i91.4 dB) and the dashed line
coincides with one of the solid lines.

signal, together with four lines indicating the angles esponding to the true underly-
ing directions. One can observe that the higher the confalehe smaller the average
distance between the point and one of the true directionsdigéiss in Appendix A
a statistical analysis of the significance of the confideneasure in the stereophonic
case, which is used to build the DEMIX clustering algorithescribed in the next sec-
tion.

3 The DEMIX Algorithm

We propose a clustering algorithm called DEMIX (Directiostifhation of Mixing ma-
trIX) which estimates both the number of sources and thectiines of the columns of
the mixing matrix. The algorithm is deterministic and does rely on a prior knowl-
edge on the numbeX of columns ofA. However, in the case where this number is
known the algorithm can be adapted to incorporate this mé&tion. The algorithm is
described in the stereophonic cdde= 2 using angleé to denote mixing directions,
but the approach extendsltb> 2 mixtures by clustering the directiofit, f) instead.

The first step of the algorithm consists in iteratively ciregK clusters by selecting
points(@k, 7i) with highest confidence and aggregating sufficiently clasatp around
them. The second step is to estimate the direcﬁﬁ)nf each cluster. Finally, we use
a statistical test to eliminate non significant clusters keepN < K clusters which
centroids provide the estimated directions of the mixingrina

3.1 Step 1: cluster creation

DEMIX iteratively create K clusterSy C P—whereP is the DCSP- starting froid = 0,
P« =Py=P:
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1. find the point(@K,f?K) € P with the highest confidence;

2. create a clusteZx with all points(@,%) € P “sufficiently close” to(@K,f?K);
3. if Pk+1:= Pk \ Ck = 0, stop; otherwise incremeit— K 4+ 1 and go back to 1.

Note that in step 2 the newly created cluster might intetgs@vious clusters. To give
a precise meaning to the notion of being “sufficiently clotm(@K, ffK) we rely onthe
statistical model developped in Appendix A and mcIud@maII pomts(e ‘T) such
that|® — Bk| < 0'(‘2' 'IK) where the expression of(fr 'IK) is given in Equation (8).

3.2 Step 2: direction estimation

Since the clusters might intersect, the estimation of thetrogl @E of a clusterCy is
based on a subs€f c Cy of “unbiased” points that belonexclusivelyto Cy. Due to
lack of space we skip the description of how these subsetseteeted. In light of the
statistical model developped in Appendlx A, the pOI(’ﬁST) € C/ are assumed inde-
pendent and distributed 8s- 2 (6", 63(7 )) where8l“® is the unknown underlying
direction ando%( ) is defined in equation (6). The centroid of the cluster if ¢iere
defined as the minimum variance unbiased estimatéj'¢t

0= Y 0%(7)8/ Y op(7). 2)
(8,7)ec) (8,7)ec)

3.3 Step 3: cluster elimination

The last step aims at removing possibly spurlous clusteangrtheK that have been
built. We propose to use the vananC/eg(ej C‘,(,oe 2(7') of the centroid est|matdac

to help decide which clusters should be kept. We define tvadegiies: (DEMIXN) if
we know the true number N of true directions, we keep the toes of the N clusters
with the smallest centroid variance; (DEMIX) otherwise, ienove the directions of a
clustersC; whenever there is another clus@y# C; with

B —8l </ 5 0p(7) 3)
(®.7)eCy

where the quantilg, defines a confidence interval (see the Appendix). Itis alssipte
to replacegg with a slightly modified versior@g relying on a quantiley; to define a
confidence interval, see Eq. (7). To finish, we recompute #mraids of the clusters
defined by the remaining directions, as described in SexBchand 3.2.

4 Experiments

We compared on several test mixtures the proposed algaitbEMIX and DEMIXN)
and the classical K-means [6] and ELBG [7] clustering aldyonis. Two variants of
K-means and ELBG were considered, one on the scatter plarof(Xy/X)(t, f),
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the other one on that of the anglég, f) obtained after the proposed local PCA. The
mixtures were based on signals taken from a set of 200 Pobi&te \excerpts of 5
seconds sampled at 4kHzNoiseless linear instantaneous mixtures were performed
with mixing matrices in the most favorable shape where adictions are equally spaced
(asin [4]), with a number of directions ranging fraw= 2 toN = 15. For eactN, we
choseT = 20 differents configurations of signals sources among tlea®@ilable. A
first measure of performance was the rate of success in tineagisin of the number of
sources (for DEMX and DEMXN only, because K-means and ELB@lafix number
of clusters). We observed that up kb= 8 sources, DEMIX estimates correctly the
number of directions in more than four cases out of five, buémi > 10 it always
fails to count the number of sources. DEMIXN is similarly sassful up toN = 10
sources and always fails fof > 12. The reason why DEMIXN can fail in finding the
right number of sources while it is known is that the clusteation stage might result
in K < N clusters. In case success, we could also measurartgelar mean error
(AME) which is the mean distance in degrees between truetilires and estimated
ones. Distances are computed in the best way to pair estirdatctions with the true
ones. For each tested algorithm, we computedatferageAME among test mixtures
whereN = N. Since K-means and ELBG are randomly initialized, we ramthe- 10
times for each test mixture and focussed on the smallest AkéEtbese 10 runs, which
gives an optimistic estimate of their performance.

As can be seen on Figure 2(b), DEMIX and DEMIXN algorithmsadithe best
performance. Since the AME for DEMIX and DEMIXN can only beasared when a
correct number of sources is estimated, it is not computezhw> 10 (respN > 12)
for DEMIX (resp. DEMIXN).

——DEMIX when number of sources correctly identify
—=— DEMIXN when number of sources correctly identify|
——K-Means

2F ——ELBG

-« -K-Means after PCA

- +~ELBG after PCA

]
?

8

confidence
8
error in degrees

12 14

ki A T 8 10
angle in radians number of sources:

(a) Direction-confidence scatter plot (DCSHp) Average AME as a function of the number of
sources

Fig. 2. (a) Direction-confidence scatter plot of poinésZOIoglof}) obtained by PCA on time-
frequency regions based on a single STFT with window size=s4096 and neighborhoods of
size|Q; 1| = 10. (see section 2.3). (b) Experimental results of section 4

1 The signals are available at http://mlsp2005.conwizmigk.php?id=30
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5 Conclusion

We designed,developped, and evaluated a new algorithntitoags the source direc-
tions of the mixing matrix in the instantaneous underdeieechtwo-sensor case. The
proposed DEMIX algorithm yields better experimental réstthan those obtained by
K-means and ELBG clustering algorithms on the same mul&s8&FT data. Further-
more DEMIX estimates itself the number of mixing sourcesisTdigorithm was de-
signed using a confidence measure which is one of the mainwation of the article.
The confidence measure allows to well detect regions of fieguency points where
essentially one source is active. This confidence measuwrie etso be used in the
source separation process, in addition with the estimaigthgimatrix, to determine
which source should be estimated in which time-frequengiore possibly providing
a fully adaptive local (pseudo) Wiener filter. Further woikslude the extension of the
DEMIX algorithm to delayed and convolved mixtures. We argodboking into the
practical aspects and validation of the algorithm for sewgeparation with more than
two sensors.

A Statistical analysis in the stereophonic case

In this appendix we make a statistical model in theAstereDtu:mase ¥ = 2) to better
understand the significance of the confidence meas(rgef) as a measure of how ro-
bustly@(t, f) estimates the “true” underlying direction of the dominanirge. For that,
we model the STFT coefficients of the most active source inithe-frequency region
Q.+ with a centered normal distribution of (large) variare® and the contribution
of all other sources, plus possibly noise, as 2-dimensiceretered normal distribution
with covariance matrixa?ld . Letting a be the normalized||@||> = 1) column of the
mixing matrixA which corresponds to the most active source, then the metiei for
(t', ') € Qi1 we have:
x(t', f)=st’, f)a+n(t’, ) 4)

where

S(t', ') ~ A (0,06%), n(t', f') ~ A (0,6%Id ) (5)
thereforex(t/, ') ~ a¢ (0,6%Id2+0%aa’). Let A1 > A, be the eigenvalues of the co-
variance matri := 6°ld, +c%aa’ andu = (uy,up)" be a unit eigenvector correspond-
ing with A;. By elementary linear algebra we ha%ge: azgzc’z =1+ g—i and, ifA1 > Ao
(i.e.,0 > 0), u is colinear toa. Therefore, the true directidi™® = tan*l(g—i) is given

by the direction of the principal component. Note that irsttmodel\1 /A is related to
the “local signal to noise ratio? /32 between the most active source and the others.

A.1 Precision of PCA

Since the value8(t, f) andT (t,f)= 3\1/3\2 are computed by PCA on sampleraf=
cardQ r) points, they only provide estimates of the true directiod ahthe “true”
confidence\1 /A, with a finite precision which we want to estimate as a functibthe
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sample sizen. For that, we use the following result which is an immediatplization
of [8, Theorems 4.11, 5.7, 9.4] : for large sample siz¢(A1/A2) converges in law to
A (1,02) with 02 = 4/(m— 1), and6 converges in law ta (8¢, a3(A1/A2)) with

G2(7) = mi_lﬁ (6)

A.2 Confidence intervals

If A&1/A2 is known, then we know the standard deviation of the estithategled with
respect to the true one. Since we know the distribution ofctin&idence measure
which is close, but not equal t /A2, we can only predict the deviation 6f with
respect to a “true” direction” using confidence intervaldgtiAprobability exceeding
1—o0a(qi)/2, we have\1 /A, > 7 /(1+ a0, ). Therefore, instead af3(7 ) we can use

63(7) =03 (7 /(1+moy)) 7)

and modeB asb ~ o (e”ue,ag(r})) instead 0B ~ 2 (e"ue,og(r})).
Neglecting the possible dependencies betw@emd 7 and following the same

path, we get a statisticalpper bounqé —gtrue] < qzc“fe(f}) with confidence level +
a(qgz)/2. We use it to determine whether two points belong to the seuster in the

cluster creation step. This leads to the definition
o(7,7°) = op (66(T) +3o(7)) ®)

We use quantil valuegs = g2 = 2.33 to provide confidence levels of 99 percent.
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