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A Robust Method to Count and Locate Audio Sources
in a Stereophonic Linear Instantaneous Mixture

Simon ARBERET, Rémi GRIBONVAL, Frédéric BIMBOT

IRISA, France

Abstract. We propose a robust method to estimate the number of audio sources
and the mixing matrix in a linear instantaneous mixture, even with more sources
than sensors. Our method is based on a multiscale Short Time Fourier Trans-
form (STFT), and relies on the assumption that in the neighborhood of some
(unknown) scales and time-frequency points, only one source contributes to the
mixture. Such time-frequency regions provide local estimates of the correspond-
ing columns of the mixing matrix. Our main contribution is a new clustering al-
gorithm called DEMIX to estimate the number of sources and the mixing matrix
based on such local estimates. In contrast to DUET or other similar sparsity-based
algorithms, which rely on a global scatter plot, our algorithm exploits a local
confidence measure to weight the influence of each time-frequency point in the
estimated matrix. Inspired by the work of Deville, the confidence measure relies
on the time-frequency local persistence of the activity/inactivity of each source.
Experiments are provided with stereophonic mixtures and show the improved
performance of DEMIX compared to K-means or ELBG clusteringalgorithms.

1 Introduction

The problem of estimating the number of audio sources and themixing matrix is consid-
ered in a possibly degenerate noisy linear instantaneous mixturexm(τ)= ∑N

n=1amnsn(τ)+
em(τ), 1≤m≤M, more conveniently written in matrix formx(τ) = As(τ)+e(τ). While
theM signalsxm(τ) are observed, the numberN of sources as well as theM×N mixing
matrixA, theN source signalssn(τ) and the noise signalsem(τ) are unknown.

Our approach relies on assumptions similar to those of DUET [1] and TIFROM
[2, 3]. It exploits the fact that for each source, there is at least one time-frequency re-
gion where it is the only source contributing to the mixture.This assumption is related
to sparsity of the time-frequency representation of the sources, which is a well-known
property of a variety of audio sources. In many sparsity-based source separation ap-
proaches [4, 5, 1] this property is exploited globally by drawing a scatter plot of the
time-frequency valuesX(t, f )}t, f – which more or less displays lines directed by the
columnsan of the mixing matrix – and cluster them intoN clusters. Such a global clus-
tering approach is sensitive to the parameters of the clustering algorithm, and to the fact
that the direction of some sources of weak energy might not appear clearly in the global
scatter plot. Rather than using a full scatter plot, our approach is to exploit the local
time-frequency persistence [2, 3] of the activity/inactivity of each source to get a robust
estimation of the numberN of sources and the mixing matrixA. This is similar to the
TIFROM [2, 3] method, which –in the stereophonic case– uses the variance of the ratio
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X2(t, f )
X1(t, f )

within a time-frequency region to determine whether the region contains a single
active source or more. Our main contributions are to:

1. use a multi-resolution framework (multiple window STFT)to account for the dif-
ferent possible durations of audio structures in each source.

2. rely on a local confidence measure to determine how valid isthe assumption that
only one source contributes to the mixture in a given time-frequency region;

3. propose a new clustering algorithm called DEMIX, based onthe confidence mea-
sure, that counts the sources and locates them.

In Section 2, after some reminders on related approaches to estimate the mixing matrix,
we give the outline of our approach and describe the confidence measure. In Section 3
we describe the new clustering algorithm DEMIX, and Section4 is devoted to experi-
ments that compare several methods on audio mixtures.

2 Exploiting Sparsity & Persistence

Let us analyze briefly the most simple sparse source model: assume that at each time
τ, only one sourcen := n(τ) is active (sn(τ) 6= 0 andsk(τ) = 0 ∀k 6= n). In such a case,
the noiseless mixture at timeτ is x(τ) = ansn(τ). In other word each pointx(τ) ∈R

M is
aligned on one of the columnsan of the mixing matrixA. In fact this simple model is not
very sparse, but (the real and imaginary parts of) STFT values X(t, f ) approximately
displays such a behaviour, since the linear mixture modelX(t, f ) = AS(t, f )+ E(t, f )
holds and inmanytime-frequency points(t, f ), only one source is dominant compared
to the others. However, there are points where several sources are similarly active, which
can make it difficult to estimate the mixing matrix by simply clustering the global scatter
plot.

2.1 Related work

Many source separation methods for the stereophonic case (M = 2) use the idea of
sparsity in order to find mixing directions. In Bofill and Zibulevsky’s algorithm [4] and
DUET [1], the global (time-frequency) scatter plot is transformed into angular values
θ(t, f ) = tan−1 (X2(t, f )/X1(t, f )), and the columns of the mixing matrix are estimated
by finding maxima in an energy weighted smoothed histogram ofthese values. One of
the difficulties with this approach is that it seems difficultto adjust how much smoothing
must be performed on the histogram to resolve close directions without introducing
spurious peaks.

Another approach is the TIFROM method [2, 3] which consists in selecting only
time-frequency points that have a great chance of being generated by only one source. In
TIFROM, for each time-frequency point(t, f ), the mean̄αt, f and varianceσ2

t, f of Time-
Frequency Ratios Of Mixturesα(t ′, f ′) = x̂2(t ′, f ′)/x̂1(t ′, f ′) are computed using all
timest ′ within a neighborhood oft and f ′ = f . By searching for the lowest value of the
variance, a time-frequency domain is located where essentially one source is present,
and the corresponding column ofA is identified as being proportional to(1, ᾱt, f )

T .
However, it seems quite difficult to exploit TIFROM to actually determinehow many
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sources are present in the mixture and find their directions.In addition, theasymmetric
roles given byα(t ′, f ′) to the left and right channels of a stereophonic mixture is not
fully satisfying as for sources located almost on the first channel (i.e., with mixing
column close to(0,1)T ), the corresponding variance are likely to remain high, even at
good time-frequency points.

2.2 Proposed approach

We propose to overcome these limitations of TIFROM by replacing the local vari-
ance and mean of the ratioŝx2(t, f )

x̂1(t, f ) with the principal direction of the local scatter

plot (x̂1(t, f ), x̂2(t, f )), together with a measure of how strongly it points in its prin-
cipal direction. For this, we first define time-frequency neighborhoodsΩt, f around
each time-frequency point(t, f ). A discrete STFT with a window of sizeL computed
with half overlapping windows and no zero padding provides values on the discrete
time-frequency gridt = kL/2, k ∈ Z and f = l/L, 0≤ l ≤ L/2. A possible shape of
time-frequency neighborhood of a time-frequency point(t, f ) is Ωt, f = {(t +kL/2, f +
k′/L), |k| ≤ ST , |k′| ≤ SF} but the approach is amenable to using or combining several
shapes and size of neighborhoods. Each neighborhood provides a local scatter plot cor-
responding to aM×card(Ωt, f ) matrixXΩt, f with entries Re[X(t ′, f ′)] and Im[X(t ′, f ′)]
for (t ′, f ′) ∈ Ωt, f . Performing a Principal Component Analysis (PCA) onXΩt, f we ob-
tain a principal direction as a unit vectorû(t, f ) ∈ R

M. In the stereophonic caseM = 2,
the direction of the estimated principal unit vectorû(t, f )∈R

2 is equivalently translated
into an anglêθ(t, f ).

2.3 A confidence measure

To have an idea of how likely it is that the unit principal vector û(t, f ) corresponds to a
direction of the mixing matrix, we need to know with what confidence we can trust the
fact that a single source is active in the corresponding local scatter plot. We propose to
rely again on PCA to define the confidence measure

T̂ (t, f ) := λ̂1(t, f )/
M

∑
i=2

λ̂i(t, f ) (1)

whereλ̂1(t, f )≥ . . .≥ λ̂M(t, f ) are the eigenvalues of theM×M matrixXΩt, f X
T
Ωt, f

. As
explained in Appendix A, this measure can be viewed as a localsignal to noise ratio
between the dominant source and the contribution of the other ones together with the
noise, so we will often express it in deciBels, that is to say 20log10 T̂ .

Figure 1(a)-(b) shows the local scatter plot in two time-frequency regions: one
where many sources are simultaneously active, and another one where essentially one
source is active. It illustrates the good correlation of thevalue of the confidence measure
with the validity of the tested hypothesis.

Figure 2(a) displays the collection of pairs (θ̂(t, f ),20log10 T̂ (t, f )), or direction-
confidence scatter plot(DCSP), obtained by PCA for all time-frequency regions of the
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Fig. 1. Two local scatter plots for a stereophonic noiseless mixture of four audio sources. Solid
lines indicate all possible true directions, the dashed line indicates the direction estimated by
PCA. (a) Local scatter plot in a region where multiple sources contribute to the mixture. The
measured confidence value is low (9.4 dB) (b) Region where essentially only one source con-
tributes to the mixture. The measured confidence value is high (101.4 dB) and the dashed line
coincides with one of the solid lines.

signal, together with four lines indicating the angles corresponding to the true underly-
ing directions. One can observe that the higher the confidence, the smaller the average
distance between the point and one of the true directions. Wediscuss in Appendix A
a statistical analysis of the significance of the confidence measure in the stereophonic
case, which is used to build the DEMIX clustering algorithm described in the next sec-
tion.

3 The DEMIX Algorithm

We propose a clustering algorithm called DEMIX (Direction Estimation of Mixing ma-
trIX) which estimates both the number of sources and the directions of the columns of
the mixing matrix. The algorithm is deterministic and does not rely on a prior knowl-
edge on the numberN of columns ofA. However, in the case where this number is
known the algorithm can be adapted to incorporate this information. The algorithm is
described in the stereophonic caseM = 2 using angleŝθ to denote mixing directions,
but the approach extends toM > 2 mixtures by clustering the directionsû(t, f ) instead.

The first step of the algorithm consists in iteratively creating K clusters by selecting
points(θ̂k, T̂k) with highest confidence and aggregating sufficiently close points around
them. The second step is to estimate the directionθ̂c

k of each cluster. Finally, we use
a statistical test to eliminate non significant clusters andkeepN̂ ≤ K clusters which
centroids provide the estimated directions of the mixing matrix.

3.1 Step 1: cluster creation

DEMIX iteratively create K clustersCk⊂P –whereP is the DCSP– starting fromK = 0,
PK = P0 = P:
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1. find the point(θ̂K , T̂K) ∈ PK with the highest confidence;

2. create a clusterCK with all points(θ̂, T̂ ) ∈ P “sufficiently close” to(θ̂K , T̂K);
3. if PK+1 := PK \CK = /0, stop; otherwise incrementK← K +1 and go back to 1.

Note that in step 2 the newly created cluster might interesect previous clusters. To give
a precise meaning to the notion of being “sufficiently close”to (θ̂K , T̂K), we rely on the
statistical model developped in Appendix A and include inCK all points(θ̂, T̂ ) such
that|θ̂− θ̂K | ≤ σ(T̂ , T̂K) where the expression ofσ(T̂ , T̂K) is given in Equation (8).

3.2 Step 2: direction estimation

Since the clusters might intersect, the estimation of the centroid θ̂c
k of a clusterCk is

based on a subsetC′′k ⊂Ck of “unbiased” points that belongexclusivelyto Ck. Due to
lack of space we skip the description of how these subsets areselected. In light of the
statistical model developped in Appendix A, the points(θ̂, T̂ ) ∈C′′k are assumed inde-

pendent and distributed asθ̂∼ N
(
θtrue

k ,σ2
θ(T̂ )

)
whereθtrue

k is the unknown underlying

direction andσ2
θ(T̂ ) is defined in equation (6). The centroid of the cluster if therefore

defined as the minimum variance unbiased estimator ofθtrue
k

θ̂c
k := ∑

(θ̂,T̂ )∈C′′k

σ−2
θ (T̂ )θ̂/ ∑

(θ̂,T̂ )∈C′′k

σ−2
θ (T̂ ). (2)

3.3 Step 3: cluster elimination

The last step aims at removing possibly spurious clusters among theK that have been
built. We propose to use the variance 1/∑(θ̂,T̂ )∈C′′k

σ−2
θ (T̂ ) of the centroid estimator̂θc

k

to help decide which clusters should be kept. We define two strategies: (DEMIXN) if
we know the true number N of true directions, we keep the directions of the N clusters
with the smallest centroid variance; (DEMIX) otherwise, weremove the directions of a
clustersCj whenever there is another clusterCo 6= Cj with

|θ̂c
j − θ̂c

o| ≤ q2/ ∑
(θ̂,T̂ )∈C′′j

σ−2
θ (T̂ ) (3)

where the quantileq2 defines a confidence interval (see the Appendix). It is also possible
to replaceσθ with a slightly modified version̂σθ relying on a quantileq1 to define a
confidence interval, see Eq. (7). To finish, we recompute the centroids of the clusters
defined by the remaining directions, as described in Sections 3.1 and 3.2.

4 Experiments

We compared on several test mixtures the proposed algorithms (DEMIX and DEMIXN)
and the classical K-means [6] and ELBG [7] clustering algorithms. Two variants of
K-means and ELBG were considered, one on the scatter plot oftan−1(X2/X1)(t, f ),
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the other one on that of the anglesθ̂(t, f ) obtained after the proposed local PCA. The
mixtures were based on signals taken from a set of 200 Polish voice excerpts of 5
seconds sampled at 4kHz1. Noiseless linear instantaneous mixtures were performed
with mixing matrices in the most favorable shape where all directions are equally spaced
(as in [4]), with a number of directions ranging fromN = 2 to N = 15. For eachN, we
choseT = 20 differents configurations of signals sources among the 200 available. A
first measure of performance was the rate of success in the estimation of the number of
sources (for DEMX and DEMXN only, because K-means and ELBG have a fix number
of clusters). We observed that up toN = 8 sources, DEMIX estimates correctly the
number of directions in more than four cases out of five, but when N > 10 it always
fails to count the number of sources. DEMIXN is similarly successful up toN = 10
sources and always fails forN > 12. The reason why DEMIXN can fail in finding the
right number of sources while it is known is that the cluster creation stage might result
in K < N clusters. In case success, we could also measure theangular mean error
(AME) which is the mean distance in degrees between true directions and estimated
ones. Distances are computed in the best way to pair estimated directions with the true
ones. For each tested algorithm, we computed theaverageAME among test mixtures
whereN̂ = N. Since K-means and ELBG are randomly initialized, we ran them I = 10
times for each test mixture and focussed on the smallest AME over these 10 runs, which
gives an optimistic estimate of their performance.

As can be seen on Figure 2(b), DEMIX and DEMIXN algorithms obtain the best
performance. Since the AME for DEMIX and DEMIXN can only be measured when a
correct number of sources is estimated, it is not computed whenN > 10 (resp.N > 12)
for DEMIX (resp. DEMIXN).
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Fig. 2. (a) Direction-confidence scatter plot of points (θ̂,20log10 T̂ ) obtained by PCA on time-
frequency regions based on a single STFT with window size isL = 4096 and neighborhoods of
size|Ωt, f |= 10. (see section 2.3). (b) Experimental results of section 4.

1 The signals are available at http://mlsp2005.conwiz.dk/index.php?id=30
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5 Conclusion

We designed,developped, and evaluated a new algorithm to estimate the source direc-
tions of the mixing matrix in the instantaneous underdetermined two-sensor case. The
proposed DEMIX algorithm yields better experimental results than those obtained by
K-means and ELBG clustering algorithms on the same multiscale STFT data. Further-
more DEMIX estimates itself the number of mixing sources. This algorithm was de-
signed using a confidence measure which is one of the main contribution of the article.
The confidence measure allows to well detect regions of time-frequency points where
essentially one source is active. This confidence measure could also be used in the
source separation process, in addition with the estimated mixing matrix, to determine
which source should be estimated in which time-frequency region, possibly providing
a fully adaptive local (pseudo) Wiener filter. Further worksinclude the extension of the
DEMIX algorithm to delayed and convolved mixtures. We are also looking into the
practical aspects and validation of the algorithm for source separation with more than
two sensors.

A Statistical analysis in the stereophonic case

In this appendix we make a statistical model in the stereophonic case (M = 2) to better
understand the significance of the confidence measureT̂ (t, f ) as a measure of how ro-
bustlyθ̂(t, f ) estimates the “true” underlying direction of the dominant source. For that,
we model the STFT coefficients of the most active source in thetime-frequency region
Ωt, f with a centered normal distribution of (large) varianceσ2, and the contribution
of all other sources, plus possibly noise, as 2-dimensionalcentered normal distribution
with covariance matrix̃σ2Id 2. Letting a be the normalized (‖a‖2 = 1) column of the
mixing matrixA which corresponds to the most active source, then the model is that for
(t ′, f ′) ∈Ωt, f we have:

x(t ′, f ′) = s(t ′, f ′)a+n(t ′, f ′) (4)

where
s(t ′, f ′)∼ N

(
0,σ2) , n(t ′, f ′)∼ N

(
0, σ̃2Id 2

)
(5)

thereforex(t ′, f ′) ∼ N
(
0, σ̃2Id2 + σ2aaT

)
. Let λ1 ≥ λ2 be the eigenvalues of the co-

variance matrixΣ := σ̃2Id2+σ2aaT andu = (u1,u2)
T be a unit eigenvector correspond-

ing with λ1. By elementary linear algebra we haveλ1
λ2

= σ̃2+σ2

σ̃2 = 1+ σ2

σ̃2 and, ifλ1 > λ2

(i.e.,σ > 0), u is colinear toa. Therefore, the true directionθtrue = tan−1(a2
a1

) is given
by the direction of the principal component. Note that in this modelλ1/λ2 is related to
the “local signal to noise ratio”σ2/σ̃2 between the most active source and the others.

A.1 Precision of PCA

Since the valueŝθ(t, f ) andT̂ (t, f ) = λ̂1/λ̂2 are computed by PCA on sample ofm :=
card(Ωt, f ) points, they only provide estimates of the true direction and of the “true”
confidenceλ1/λ2 with a finite precision which we want to estimate as a functionof the
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sample sizem. For that, we use the following result which is an immediate application
of [8, Theorems 4.11, 5.7, 9.4] : for large sample size,T̂ /(λ1/λ2) converges in law to
N

(
1,σ2
T

)
with σ2

T = 4/(m−1), andθ̂ converges in law toN (θtrue,σ2
θ(λ1/λ2)) with

σ2
θ(T ) :=

1
m−1

T

(T −1)2 . (6)

A.2 Confidence intervals

If λ1/λ2 is known, then we know the standard deviation of the estimated angleθ̂ with
respect to the true one. Since we know the distribution of theconfidence measurêT
which is close, but not equal toλ1/λ2, we can only predict the deviation ofθ̂ with
respect to a “true” direction” using confidence intervals. With probability exceeding
1−α(q1)/2, we haveλ1/λ2≥ T̂ /(1+q1σT ). Therefore, instead ofσ2

θ(T̂ ) we can use

σ̂2
θ(T̂ ) := σ2

θ

(
T̂ /(1+q1σT )

)
(7)

and model̂θ asθ̂∼ N
(

θtrue, σ̂2
θ(T̂ )

)
instead of̂θ∼ N

(
θtrue,σ2

θ(T̂ )
)

.

Neglecting the possible dependencies betweenθ̂ and T̂ and following the same
path, we get a statisticalupper bound|θ̂−θtrue| ≤ q2σ̂θ(T̂ ) with confidence level 1−
α(q2)/2. We use it to determine whether two points belong to the samecluster in the
cluster creation step. This leads to the definition

σ(T̂ , T̂ c) = q2

(
σ̂θ(T̂ )+ σ̂θ(T̂

c)
)

(8)

We use quantil valuesq1 = q2 = 2.33 to provide confidence levels of 99 percent.
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