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Abstract: In our previous work, we have shown that the Helios 2.0 electronic
voting protocol does not satisfy ballot independence and exploit this weakness
to violate privacy; in particular, the Helios scheme is shown to be vulnerable to
a replay attack. In this note we examine two further electronic voting protocols
– namely, the schemes by Sako & Kilian and Schoenmakers – that are known
not to satisfy ballot independence and demonstrate replay attacks that violate
privacy.
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Une note sur l’utilisation des attaques par rejeu

pour compromettre la confidentialité dans les

protocoles de vote électronique

Résumé : Dans un résultat précédent, nous avons montré que le protocole de
vote électronique Helios 2.0 ne garantissait pas l’indépendance des votes et que
cela pouvait être utilisé pour compromettre la confidentialité des votes. Cette
attaque repose en particulier sur le fait que le protocole Helios est vulnérable aux
attaques par rejeu. Dans cette note, nous examinons le cas de deux autres pro-
tocoles de vote de la littérature – les protocoles Sako & Kilian et Schoenmakers
– qui sont connus pour ne pas garantir l’indépendance des votes. Nous montrons
comment cette vulnérabilité peut être à nouveau exploitée pour compromettre
la confidentialité.

Mots-clés : vote électronique, indépendance des bulletins, confidentialité des
votes, attaque par rejeu
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1 Introduction

Paper-based elections derive ballot independence from physical characteristics
of the real-world, for example, ballots are constructed in isolation inside polling
booths and complete ballots are deposited into locked ballot boxes. By compari-
son, in a digital setting, ballots are sent using publicly readable communications
channels and, in end-to-end verifiable elections, stored on a publicly readable
bulletin board. Nevertheless, the provision of ballot independence is important
to ensure privacy, as demonstrated in our earlier work [SC10, CS11] who exploit
the lack of ballot independence in Helios 2.0 [AMPQ09] to violate ballot secrecy.

Informally, ballot independence is characterised by Gennaro [Gen95, ➜1.1] as
follows.

Ballot independence. Observing another voter’s interaction with the election
system does not allow a voter to cast a related vote.

In addition to the apparent relationship between ballot independence and pri-
vacy, ballot independence is important because it prohibits the voting system
from influencing a voter’s behaviour; more formally, this requires that observa-
tion of the voting system (that is, observing interaction between participants)
does not leak information that may affect a voter’s vote.

The concept of privacy for electronic voting systems has been informally
defined by the following properties [KR05, BHM08, DKR09].

Ballot secrecy. A voter’s vote is not revealed to anyone.

Receipt freeness. A voter cannot gain information which can be used to
prove, to a coercer, how she voted.

Coercion resistance. A voter cannot collaborate, with a coercer, to gain in-
formation which can be used to prove how she voted.

Other desirable properties of electronic voting systems include verifiabil-
ity [JCJ02, Par07, KRS10].

Individual verifiability. A voter can check that her own ballot is published
on the election’s bulletin board.

Universal verifiability. Anyone can check that all the votes in the election
outcome correspond to ballots published on the election’s bulletin board.

Eligibility verifiability. Anyone can check that each ballot published on the
bulletin board was cast by a registered voter and at most one ballot is
tallied per voter.

The verifiability properties (also called end-to-end verifiability [JCJ02, CRS05,
Adi06]) allow voters and election observers to verify – independently of the
hardware and software running the election – that votes have been recorded,
tallied and declared correctly.
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4 B. Smyth & V. Cortier

We [SC10, CS11] have shown in Helios 2.0 it is possible to replay a voter’s
ballot (without knowing the vote contained within that ballot). This imme-
diately violates ballot secrecy in an election with three voters. For example,
consider the electorate Alice, Bob, and Mallory; if Mallory replays Alice’s bal-
lot, then Mallory can reveal Alice’s vote by observing the election outcome and
checking which candidate obtained at least two votes.

Contribution. We take two schemes presented at CRYPTO – namely, the
protocols due to Sako & Kilian [SK94] and Schoenmakers [Sch99] – that are
known not to satisfy ballot independence and show that these protocols are
both vulnerable to replay attacks that violate privacy.

The study of Sako & Kilian [SK94] is interesting because it was one of the
first electronic voting protocols to adopt the Fiat-Shamir heuristic to derive
non-interactive proofs (this evolution was key for the development of end-to-
end verifiable electronic voting systems). However, we will show that the appli-
cation of the Fiat-Shamir heuristic compromises ballot secrecy. In particular,
the interactive nature of zero-knowledge proofs guarantees ballot independence;
whereas, non-interactive proofs, derived using the Fiat-Shamir heuristic, do not
assure independence. This can be exploited by a replay attack to violate ballot
secrecy.

In earlier work [SC10, CS11], we acknowledge that our attack against Helios
may not be practical in large-scale elections, but it is particularly well suited
to small-scale elections. The scheme by Schoenmakers [Sch99] was explicitly
designed for small-scale elections (for example, boardroom elections) and, hence,
we find it interesting to study the possibility of violating ballot secrecy in this
setting. Once again, we violate privacy using a replay attack.

Related work. The concept of independence was introduced by Chor et al.
[CGMA85] and the possibility of compromising security properties due to lack
of independence has been considered, for example, by Chor & Rabin [CR87],
Dolev, Dwork & Naor [DDN91, DDN00] and Gennaro [Gen95, Gen00]. In
the context of electronic voting, Gennaro [Gen95] demonstrates that the appli-
cation of the Fiat-Shamir heuristic in the Sako-Kilian electronic voting proto-
col [SK94] violates ballot independence, and Wikström [Wik06, Wik08] studies
non-malleability for mixnets to achieve ballot independence. By comparison,
we focus on the violation of ballot secrecy rather than ballot independence.

2 Sako-Kilian voting protocol

The Sako & Kilian [SK94] electronic voting scheme capitalises upon advances
in cryptography to improve the Banaloh & Yung protocol [BY86]. In partic-
ular, the Fiat-Shamir heuristic is adopted to derive non-interactive proofs of
knowledge.

INRIA



Replay attacks that violate privacy in electronic voting schemes 5

2.1 Protocol description

The scheme is based upon a pair of partially compatible homomorphic encryption
functions, that is, a pair of functions f1, f2 over Zq, where q is prime, such that
for all i, j ∈ {1, 2} the following properties are satisfied:

❼ fi(x + y) = fi(x) · fi(y), where x, y ∈ Zq

❼ Distributions (fi(x), fj(y)) and (fi(x), fj(x)) are computationally indis-
tinguishable, where x and y are chosen uniformly in Zq.

The Sako-Kilian voting protocol is defined for m ∈ N voters as follows.

Setup. Talliers T and T ′ publish public keys k and k′ for a public key en-
cryption scheme E (which need not be homomorphic).

Voting. Given vote vi ∈ {−1, 1}, the voter generates nonces xi, x
′
i ∈ Zq such

that vi = xi + x′
i and constructs her ballot as follows:

Yi = f1(xi)
Y ′

i = f2(x
′
i)

Zi = E(k, xi)
Z ′

i = E(k′, x′
i)

In addition, the voter is required to prove xi + x′
i ∈ {1,−1} in zero-knowledge.

However, to avoid an interactive proof, the Fiat-Shamir heuristic is applied to
derive a signature of knowledge σi. (For brevity we omit the construction of σi,
see [SK94, Figure 1] for details.)

Tallying. Given ballots Y1, Y
′
1 , Z1, Z

′
1, σ1, . . . , Yn, Y ′

n, Zn, Z ′
n, σn, tallier T de-

crypts each Zi to recover x̂i and checks Yi = f1(x̂i), similarly, tallier T ′ decrypts
Z ′

i to recover x̂′
i and checks Y ′

i = f1(x̂
′
i); the talliers also check the signature

of knowledge σi. The talliers publish V =
∑m

i=1 x̂i and V ′ =
∑m

i=1 x̂′
i, and the

result is T = V + V ′, which can be verified by checking f1(V ) =
∏m

i=1 Yi and
f2(V

′) =
∏m

i=1 Y ′
i .

2.2 Attacking ballot secrecy

Ballot secrecy means a voter’s vote is not revealed to anyone. We show that
Sako-Kilian voting protocol does not satisfy this definition of ballot secrecy, by
presenting a replay attack which allows an adversary to reveal a voter’s vote.

Intuitively, an adversary may observe the ballot posted by a particular voter
and recast this ballot by corrupting dishonest voters. The multiple occurrences
of the voter’s ballot will leak information in the tally and the adversary can
exploit this knowledge to violate the voter’s privacy. An informal description of
the attack will now be presented in the case of three eligible voters.

RR n➦ 7643



6 B. Smyth & V. Cortier

2.2.1 Attack description.

Let us consider an election with three eligible voters who have identities id1, id2

and id3. Suppose that voters id1, id2 are honest and id3 is a dishonest voter
controlled by the adversary. Further assume that the adversary has observed
the ballot

Yk, Y ′
k, Zk, Z ′

k, σk

being cast by the voter whose privacy will be compromised.

Exploiting the absence of ballot independence. As shown by Gennaro
[Gen95], an adversary can replay the ballot Yk, Y ′

k, Zk, Z ′
k, σk, thereby violating

ballot independence. (The violation of ballot independence is due to the adver-
sary’s ability to cast the same vote as the honest voter.) Since the ballot was
constructed by an honest voter, it is trivial to see that it will be considered valid
by the talliers. We will now show how the lack of ballot independence can be
exploited to violate privacy.

Violating privacy. The bulletin board will be constructed as follows

Y1, Y
′
1 , Z1, Z

′
1, σ1, Y2, Y

′
2 , Z2, Z

′
2, σ2, Yk, Y ′

k, Zk, Z ′
k, σk, V, V ′

where k ∈ {1, 2}, V = x1 + x2 + xk and V ′ = x′
1 + x′

2 + x′
k. It follows from

the protocol description that vi = xi + x′
i, where i ∈ {1, 2, k}, and the result

T = V +V ′ = v1+v2+vk. Since there will be at least two votes for the candidate
voter idk voted for, the voter’s vote can be revealed: if T ≥ 2, then vk = 1;
otherwise vk = −1. It follows that the voter’s privacy has been compromised;
moreover, the vote of the remaining honest voter is T − 2 · vk.

3 Schoenmakers’s voting protocol

The electronic voting scheme by Schoenmakers [Sch99] is based upon [CFSY96,
CGS97] and aims to provide efficient small-scale elections. Ballot independence
is explicitly not provided [Sch99, ➜5].

3.1 Protocol description

Given cryptographic parameters (Gq, g, h) and hash function H, where Gq is a
group of prime order q such that computing discrete logarithms is infeasible and
g, h are distinct generators of Gq, let us recall the scheme for n ∈ N talliers and
m ∈ N voters using some threshold t ≤ n.

Setup. Each tallier i ∈ n selects a private key xi ∈R Z
∗
q and computes the

public part yi = hxi .

INRIA



Replay attacks that violate privacy in electronic voting schemes 7

Voting. The voter selects coefficients α0, . . . , αt−1 ∈R Z
∗
q and constructs the

polynomial ρ:
ρ(x) = α0 · x0 + · · · + αt−1 · xt−1

Given vote v ∈ {0, 1}, the ballot consists of the following components:

❼ Vote: U = hα0+v.

❼ Commitments: Cj = gαj , where 0 ≤ j ≤ t − 1.

❼ Random shares: Yi = y
ρ(i)
i , where 1 ≤ i ≤ n.

In addition, the ballot includes a signature proof of knowledge [Ped91, CP93]
demonstrating the correct construction of encrypted shares and a signature proof
of knowledge [CDS94] demonstrating that v ∈ {0, 1}:

❼ Proof of correct construction. Let Xi =
∏t−1

j=0(Cj)
ij

, where 1 ≤ i ≤
n. For all 1 ≤ i ≤ n, select a random nonce wi ∈R Z

∗
q and com-

pute witnesses ai = gwi , bi = ywi

i . Derive the common challenge c =
H(X1, Y1, a1, b1, . . . , Xn, Yn, an, bn), and for all 1 ≤ i ≤ n compute re-
sponse ri = wi − c · ρ(i).

❼ Proof of valid vote. Compute challenge ĉ1−v ∈R Z
∗
q , response r̂1−v ∈R Z

∗
q

and witnesses â1−v = gr1−v ·C ĉ1−v

0 and b1−v = hr1−v ·(U/h1−v)ĉ1−v . Select

a random nonce ŵ ∈R Z
∗
q . Compute witnesses âv = gw and b̂v = hw,

challenge ĉv = H(â0, b̂0, r̂0, â1, b̂1, r̂1)− ĉ1−v and response rv = w−α0 · ĉv.

To prevent a voter casting multiple ballots, the ballots are assumed to be asso-
ciated with the voter’s identity on the bulletin board.

Verification. For each ballot U,C0, . . . , Ct−1, Y1, . . . , Yn and associated proofs
a1, b1, r1 . . . , an, bn, rn and â1, b̂1, ĉ1, r̂1, â2, b̂2, ĉ2, r̂2, check for all 1 ≤ i ≤ n and
v ∈ {0, 1} that

ai = gri · Xc
i bi = yri

i · Y c
i

âv = gr̂v · C ĉv

0 b̂v = hr̂v · (U/hv)ĉv ĉ0 + ĉ1 = H(â0, b̂0, â1, b̂1)

where Xi =
∏t−1

j=0(Cj)
ij

and c = H(X1, Y1, a1, b1, . . . , Xn, Yn, an, bn). (Observe

Xi = g
Pt−1

j=0
αj ·i

j

= gρ(i).)

Tallying. Given encrypted shares Y1,1, . . . , Y1,n, · · · , Ym,1, . . . , Ym,n of m vot-
ers, the homomorphic combination of encrypted shares Y ∗

i is derived, where
1 ≤ i ≤ n:

Y ∗
i =

m
∏

j=1

Yj,i

Let ρj denotes the jth voter’s secret polynomial. For all 1 ≤ i ≤ n, each

tallier derives the partial decryption Vi = (Y ∗
i )1/xi ; since Y ∗

i = y
Pm

j=1
ρj(i)

i =

RR n➦ 7643



8 B. Smyth & V. Cortier

hxi·
Pm

j=1
ρj(i), it follows that Vi = h

Pm
j=1

ρj(i). The talliers must also prove
correctness of decryption; it is sufficient to prove equality between discrete log-
arithms logh yi and logVi

Y ∗
i , we omit these details.

Given partial decryptions V1, . . . , Vt from t talliers, we can compute V =
h

Pm
j=1

αj,0 as shown below, where αj,0 is the jth voter’s first coefficient and, for
simplicity, t = n. Let Lagrange coefficient λi =

∏

l∈{1,...,i−1,i+1,...,n}
l

l−i , where
1 ≤ i ≤ n.

n
∏

i=1

V λi

i =

n
∏

i=1

(

h
Pm

j=1
ρj(i)

)λi

= h
Pm

j=1(
Pn

i=1
ρj(i)·λi) = h

Pm
j=1

ρj(0) = V

The result T =
∑m

j=1 vj can be derived as follows, where vj is the jth voter’s
vote.

logh

m
∏

j=1

Uj − logh V = logh h
Pm

j=1
αj,0+vj − logh h

Pm
j=1

αj,0 = logh h
Pm

j=1
vj = T

Although the computation of discrete logarithms is hard in general, given the
restricted domain [0,m], the result T can be computed efficiently; for example,
the complexity is O(m) by linear search or O(

√
m) using the baby-step giant-

step algorithm [Sha71] (see also [LL90, ➜3.1]).

3.2 Attacking ballot secrecy

We show that Schoenmakers’s voting protocol does not satisfy ballot secrecy, by
presenting a replay attack which allows an adversary to reveal a voter’s vote. In-
tuitively, an adversary may identify a voter’s ballot on the bulletin board (since
it is linked to the voter’s identity) and recast this ballot by corrupting dishonest
voters. As previously discussed, the multiple occurrences of the voter’s ballot
will leak information in the tally and the adversary can exploit this knowledge
to violate the voter’s privacy. An informal description of the attack will now be
presented in the case of three eligible voters.

3.2.1 Attack description.

Let us consider an election with n talliers and three eligible voters who have
identities id1, id2 and id3. Suppose that voters id1, id2 are honest and id3 is
a dishonest voter controlled by the adversary. Further assume that the honest
voters have cast their ballots. The bulletin board entries are as follows:

id1, e1, spk1, spk′
1

id2, e2, spk2, spk′
2

where for i ∈ {1, 2} we have

ei = Ui, Ci,0, . . . , Ci,t−1, Yi,1, . . . , Yi,n

spki = ai,1, bi,1, ri,1 . . . , ai,n, bi,n, ri,n

spk′
i = ai,1, b̂i,1, ĉi,1, r̂i,1, âi,2, b̂i,2, ĉi,2, r̂i,2

INRIA



Replay attacks that violate privacy in electronic voting schemes 9

That is, ei contains the ith voter’s vote Ui, commitments Ci,0, . . . , Ci,t−1 and
random shares Yi,1, . . . , Yi,n; spki demonstrates that the random shares are cor-
rectly formed; and spk′

i demonstrates that Ui contains either 0 or 1.

Exploiting the absence of ballot independence. The adversary observes
the bulletin board and selects ek, spkk, spk′

k where k ∈ {1, 2} and idk is the
voter whose privacy will be compromised. The adversary submits the ballot
ek, spkk, spk′

k and it immediately follows that the bulletin board is composed as
follows:

id1, e1, spk1, spk′
1

id2, e2, spk2, spk′
2

id3, ek, spkk, spk′
k

It is trivial to see that each bulletin board entry is valid; that is, spk1, spk′
1, spk2,

spk′
2, spkk, spk′

k are all valid signatures of knowledge. We have shown that
the protocol does not satisfy ballot independence (observing another voter’s
interaction with the election system allows a voter to cast the same vote), and
this will now be exploited to violate privacy.

Violating privacy. The partial decryptions of the homomorphic combination
of encrypted shares can be used to reveal the result T = logh hv1+v2+vk , where
k ∈ {1, 2} and v1, v2 are the votes of honest voters. Since there will be at least
two votes for the candidate voter idk voted for, the voter’s vote can be revealed:
if T ≥ 2, then vk = 1; otherwise vk = 0. It follows that the voter’s privacy has
been compromised; moreover, the vote of the remaining honest voter is T −2·vk.

4 Discussion

We have informally shown that the protocols due to Sako & Kilian [SK94] and
Schoenmakers [Sch99] are vulnerable to a replay attack which violates ballot
secrecy. In this section we briefly discuss how application of the Fiat-Shamir
heuristic may erode privacy, examine how the attacks can be extended beyond
the three voter setting, and explore the attacks in the context of standard se-
curity definitions.

Independence and the Fiat-Shamir heuristic. The interactive nature of
zero-knowledge proofs guarantees independence; by comparison, non-interactive
proofs, derived using the Fiat-Shamir heuristic, do not assure independence. As
a consequence, application of the Fiat-Shamir heuristic may compromise the
security of cryptographic protocols and this paper has shown how ballot secrecy
in electronic voting schemes can be violated.

Generalised attacks against ballot secrecy. Our attacks demonstrate that
the ballot of an arbitrary voter can be replayed by any other voter. In general,
this does not reveal the voter’s vote. However, some information is leaked, and

RR n➦ 7643



10 B. Smyth & V. Cortier

colluding voters can replay sufficiently many ballots to leak the voter’s vote.
Moreover, we have previously shown that there is a realistic threat from a small
coalition of dishonest voters [SC10, CS11].

Violating standard definitions of ballot secrecy. Intuitively, it should fol-
low that the protocols due to Sako & Kilian [SK94] and Schoenmakers [Sch99]
cannot satisfy ballot secrecy in formal settings defined by Kremer et al. [KR05,
DKR09] and Backes, Hriţcu & Maffei [BHM08]. These privacy definitions con-
sider two voters A, B and two candidates t, t′. Ballot secrecy is captured by
the assertion that an adversary (controlling arbitrary many dishonest voters)
cannot distinguish between a situation in which voter A votes for candidate t
and voter B votes for candidate t′, from another one in which A votes t′ and B
votes t. This can be expressed by the following equivalence.

A(t) | B(t′) ≈ A(t′) | B(t)

Formally proving that these protocols do not satisfy these definitions is beyond
the scope of this paper. However, informally this result can be trivially witnessed
and we deduce either: these definitions are too strong, or there are indeed
weaknesses in the protocols we have studied.
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[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying
privacy-type properties of electronic voting protocols. Journal of
Computer Security, 17(4):435–487, July 2009.

[Gen95] Rosario Gennaro. Achieving independence efficiently and securely.
In PODC’95: 14th Principles of Distributed Computing Symposium,
pages 130–136. ACM Press, 1995.

RR n➦ 7643



12 B. Smyth & V. Cortier

[Gen00] Rosario Gennaro. A Protocol to Achieve Independence in Constant
Rounds. IEEE Transactions on Parallel and Distributed Systems,
11(7):636–647, 2000.

[JCJ02] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-
Resistant Electronic Elections. Cryptology ePrint Archive, Report
2002/165, 2002.

[KR05] Steve Kremer and Mark D. Ryan. Analysis of an Electronic Voting
Protocol in the Applied Pi Calculus. In ESOP’05: 14th European
Symposium on Programming, volume 3444 of LNCS, pages 186–200.
Springer, 2005.

[KRS10] Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability
in electronic voting protocols. In ESORICS’10: 15th European Sym-
posium on Research in Computer Security, volume 6345 of LNCS,
pages 389–404. Springer, 2010.

[LL90] Arjen K. Lenstra and Hendrik W. Lenstra Jr. Algorithms in Number
Theory. In Jan van Leeuwen, editor, Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complexity, chapter 12,
pages 673–716. MIT Press, 1990.

[Par07] Participants of the Dagstuhl Conference on Frontiers of E-Voting.
Dagstuhl Accord. http://www.dagstuhlaccord.org/, 2007.

[Ped91] Torben P. Pedersen. A Threshold Cryptosystem without a Trusted
Party. In EUROCRYPT’91: 10th International Conference on the
Theory and Applications of Cryptographic Techniques, number 547
in LNCS, pages 522–526. Springer, 1991.
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