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Abstract

To achieve geometric reconstruction from �D datasets two complementary ap�

proaches have been widely used� On one hand the deformable model framework

locally applies forces to �t the data� On the other hand� the non�rigid registration

framework computes a global transformation minimizing the distance between a

template and the data� We �rst show that applying a global transformation on a

surface template� is equivalent to applying certain global forces on a deformable

model� Second we propose a scheme which combines the registration and free�form
deformation� This globally constrained deformation model allows us to control the

amount of deformation from the reference shape with a single parameter� Finally� we

propose a general algorithm for performing model�based reconstruction in a robust

and accurate manner� Examples on both range data and medical images are used to

illustrate and validate the globally constrained deformation framework�

Key words� Registration� Free�form deformation� Deformable models�

Segmentation� �D Reconstruction� Medical images

� Introduction

In this paper we are interested in model�based reconstruction of data and
the segmentation of images� Model�based approaches proved to be powerful
for many reconstruction tasks by providing an a priori shape knowledge of
the data to recover� We intend to build a robust reconstruction algorithm for
the modeling of �D and �D data using respectively deformable contours� and
deformable surface meshes�

The model�based reconstruction problem can be summarized in the following
manner� letM be a contour or surface model of a given object consisting of a
set of vertices fVi � IRdg� �i � �� � � � � n	� Let D be a �D dataset� The problem
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is to 
nd a geometric transformation T such that T �M� is an appropriate
representation of the object in D� Two main model�based approaches can be
found in the literature for the computation of T � free�form deformation and
registration�

��� Free�form Deformation

With free�form deformation �FFD	� the transformation T is only de
ned at the
model vertices� There is no a priori restriction on the transformation which can
be seen as a set of independent displacement vectors� �Vi �M �� T �Vi� � IRd�

The active contours originally proposed by Kass et al� ��
 derive the trans�
formation T from external forces representing data attachment and internal�
or regularizing� forces� The external forces are devised to deform the model
towards the data� The internal forces are based on the intrinsic geometric
properties of the model used� The FFD scheme is illustrated in 
gure ��
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Fig� �� The iterative scheme for free�form deformation�

Each model vertex Vi is thus submitted to a weighted sum of internal� f int
i �

and external� f ext
i � forces� We use a Newtonian law of motion to update each

vertex� Vi� position� m
d�Vi

dt�
� �� dVi

dt
��f int

i ��f ext
i � where � and � are weights

and � is a damping coe�cient� By discretizing time and space with 
nite
di�erences we get an explicit scheme�

V t��
i � V t

i � ��� ���V t
i � V t��

i � � �f int
i � �f ext

i ��	

where V t
i is the location of vertex Vi at time t� In this equation� the time

step 	t does not appear� It is part of the coe�cients �� �� and �� FFD is very
�exible since the only regularizing constraints are internal forces computed
locally at each vertex� It is also quite sensitive to noise and outliers� Section �
shows FFD a example and associated problems�

��� The Registration Framework

Registration of a template consists of 
nding a global transformation T min�
imizing the distance between the transformed template and the dataset� T is
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constrained to belong to a transformation space Treg� usually a group for the
composition operator� T � Treg� �P � IRd �� T �P � � IRd�

Typical registration methods iteratively compute the best transformation through
least squares estimation until some convergence criterion is met� Besl ��
 and
Zhang ���
 proposed an Iterative Closest Point algorithm �or ICP	� The gen�
eral registration scheme is illustrated in 
gure �� As will be shown in section ��
registration provides a robust framework for shape recovery by restricting the
set of allowed transformations� Yet� it su�ers from limited shape variability or
computation instability problems�
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Fig� 	� The iterative scheme for template registration�

��� Known Problems and Previous Work

For many shape�based reconstruction problems� the registration approach does
not have enough degrees of freedom �DOF	 for the recovery of complex and
high variable shapes� contrary to FFD which may not enforce the regularity of
the deformation to make the model robust to noise and data outliers� Internal
forces� even computed at a large scale over the surface� are not equivalent to
restricting the number of DOF in a model�

Several approaches have been proposed in computer vision for controlling the
amount of allowed deformation of a model� On one hand� researchers have
introduced more general deformations in the registration framework either
by applying global transformations locally ��
 or by regularizing deformation

elds ���
�

On the other hand� several methods for improving the global control of FFD
have been devised� A 
rst approach consists of decomposing a deformation 
eld
into a set of hierarchical deformation modes� For instance� in ���� ��
 Metaxas
and Terzopoulos superimpose a deformable superquadrics over a surface spline
function� Modal analysis ���� ��
� Fourier domain analysis ���
� or wavelet basis
���
 provide a set of deformation modes with a decreasing scale of extent�
Principal component analysis ��
 introduces meaningful deformation modes
from statistical study of shape variation�

A second approach consists of including global parameters in the regularizing
functionals� In ���
� translation and rotation parameters are included in the
internal energy to take� explicitly� into account rigid motions� In ��
� Delingette
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introduces a rigidity parameter that controls the extent of the regularizing
forces�

� Globally constrained deformation

In this section we provide a link between computing a global transformation
and applying an external force 
eld on a modelM� We then propose a uni
ed
framework encompassing both FFD and registration�


a� rigid 
� � �� 
b� GCD 
� � ���� 
c� FFD 
� � ��

Fig� �� Di�erent displacement �elds on a cross�shaped surface�

��� Registration as a Displacement Field

Let V t
i be the vertex position of M at time t� In the registration framework�

we 
rst 
nd the best transformation T t and 
nally apply the transformation
at each vertex� V t��

i � T t�V t
i �� The displacement 
eld applied between two

iterations is therefore T t � I where I is the identity transformation� D �
T t � I � fT t�V t

i � � V t
i g� To illustrate we �� apply some external forces on

a cross�shaped surface model and we plot the displacement vector at each
model vertex� Figure ��a	 shows the displacement 
eld resulting from a rigid
transformation while 
gure ��c	 shows the displacement 
eld of FFD�

�



In equation �� we have seen that the displacement 
eld applied in the FFD
is equal to� fV t��

i � V t
i g � f�� � ���V t

i � V t��
i � � �f int

i � �f ext
i g� We can

therefore consider that the registration method based on the ICP algorithm is
equivalent to having a deformable model without inertial and internal forces
�� � �� � � 
	 and submitted to the global force f global

i � T t�V t
i �� V t

i �

The global force is an external force which leads to a deformation 
eld with
fewer DOF than the usual external forces since it is constrained by the nature
of the transformation T �

��� Globally Constrained Deformation

We have demonstrated the equivalence between registration�based deforma�
tion and the application of a global force to a deformable model� We now
propose a constrained deformation scheme� where a deformable model is sub�
mitted to global� external� and internal forces� The purpose of this scheme is
to have a computer�e�cient deformable model with an easy control on the
number of DOF� Our approach is to weight with a single parameter � the
in�uence of the global forces versus the local forces �see 
gure �	�

V t��
i � V t

i � ��� ���V t
i � V t��

i � � �
�
�f int

i � �f ext
i

�
� ��� ��f global

i ��	

We call �� the locality parameter� It controls the number of DOF of the de�
formable model� With � � 
� the model is under the in�uence of global forces
and internal forces� and therefore has very few DOF� With � � �� the model
is under the in�uence of internal forces and external forces and therefore has a
maximum number of DOF� With intermediate values of �� we can control the
shape variation allowed during the deformation� Figure ��b	 shows a globally
constrained deformation �GCD	 
eld with � � 
���
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Fig� 
� The iterative scheme for globally constrained deformations�

� Implementation

To motivate the introduction of the GCD framework� we perform experiments
using our deformable model implementation based on simplex meshes� This is

�



a discrete representation of models whose formalism applies in �D �deformable
contours or snakes	 as well as �D �deformable surface meshes	�

Simplex meshes ��
 are meshes with constant vertex adjacency� They allow
a local description �at each vertex	 of the shape they represent� They may
model objects with almost any topology without dealing with surface param�
eterization problems� ��simplex meshes are a natural extension of snakes in
�D and they provide a powerful framework to express regularizing constraints�
The simplex mesh framework is computationally very e�cient since local force
computation does not require a minimization step�

For internal forces� we are using a shape constraint that enforces local shape
around a vertex up to a similarity� It provides an interesting behavior to
models in parts where no dataset is available� they tend to keep locally the
reference shape� Registration and FFD require the model vertices to match
data points� To enforce robustness against outliers� we search for a data point
to match vertex Vi only within a limited distance of Vi� We compute the
external force f ext

i as a vector directed along the normal direction proportional
to the distance from Vi to the dataset�

� Free�Form Deformation Example

Figure � shows an example of FFD used to segment a left ventricle from an
MR image� Figure ��a	 shows three orthogonal slices of the volumetric image�
�b	 is the gradient image for the corresponding slices� �c	 shows the model
inside the volumetric image� initialized as a sphere it deforms toward image
gradient points� �d	 is the resulting model after a re
nement stage�


a� image 
b� gradient 
c� deformation 
d� result

Fig� �� Free�form deformation example�

FFD allows the model to deform with few restrictions� This enables the recon�
struction of complex shapes such as the ventricle shown in 
gure ��d	 starting
from a very di�erent template �here a ��� vertices sphere	� However� in case
of noisy or sparse data� FFD leads to an under�constrained system and the
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model is likely to lock on unwanted local energy minima� An under�constrained
model is also likely to intersect itself�

� Registration Examples

We implemented rigid transformations �� DOF	� similarities �� DOF	� and
a�ne transformations ��� DOF	 using the closed�form expression proposed in
���
� We also investigated a cubic B�spline transformation evaluation �many
DOF depending on the number of knots	 based on a gradient descent ��
�

��� In�uence of the Degrees of Freedom

Figure � shows a face reconstruction example using the four transformation
classes presented above� The dataset is a cloud of �D points acquired with a
Cyberware scanner� The template �rendered surface	 represents another face�
The role of the template is to provide an a priori information on the shape
to recover� Thus it is geometrically adapted �vertices are concentrated in high
curvature areas	�


a� initial 
b� rigid 
c� similar 
d� a�ne 
e� spline

Fig� �� Face registration with di�erent transformations�

It appears that increasing the number of DOF improves accuracy of the 
t�
We measure the goodness of the 
t by computing the accumulated distance
between each vertex and its closest data point �see 
gure �	� In the case of
cubic B�spline deformations� the number of DOF is su�cient to get a close
approximation of the data� However� the entailed deformations do not preserve
the a priori geometry of the model �for instance� due to the initial position of
the model� nose vertices migrated toward the left jaw	�

Figure � also compares the computation time of the four transformations used�
In general� increasing the number of DOF increases the computation time since
it involves the convergence of a minimization stage in the ICP algorithm�
However� a�ne transformations are slightly more e�cient to compute than
rigid ones �see ���
 for details	�
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Fig� �� Comparison between transformation classes�

��� Computation Cost Issues

As can be seen in 
gure �� increasing the number of DOF causes an augmen�
tation of the computation time� In particular� the B�spline transformation is
far more expensive than other transformation classes� The registration com�
putation cost is the sum of the cost for 
nding the closest points and the
LSE algorithm� Cregistration � Cclosest�N� � CLSE�D� where N is the number
of model vertices and D the number of transformation DOF� Cclosest�N� is
only dependent on the number of vertices� CLSE�D� depends on the number
of DOF and the LSE algorithm used� Thus Cclosest�N� is constant for di�erent
transformations� and Cregistration is almost constant as long as CLSE�D� re�
mains negligible compared to Cclosest�N�� this is the case for rigid� similarities
and a�ne transformations� For the B�spline transformation� the LSE algo�
rithm uses a gradient descent method �see ��
 for details	 which is much more
costly than the matching algorithm�

��� Numerical Stability Issues

Another issue is the stability of the method used� The number of equations
needed is proportional to the number of DOF of the transformation� In the
case of an a�ne transformation� only �� parameters are evaluated� With more
DOF� a su�cient number of equations� i�e� a minimum number of matches
between model vertices and data points� must be found to stabilize the equa�
tion system� We encountered numerical stability problems with B�splines when
data is noisy and no enough matches can be found�

� A General Algorithm for Model�Based Segmentation

To overcome problems encountered with the FFD and the registration frame�
work we proposed a GCD scheme that provides an intermediate behavior
between these two ends� In fact� we integrate the GCD in a �coarse to 
ne�
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algorithm that gradually increases the amount of deformation allowed during
the deformation process�

	�� Hierarchical Registration

In 
gure ��e	 we show a face reconstruction example using B�spline� The de�
formed surface is close to data points but the high number of B�spline DOF
combined with a rough initialization lead to the destruction of the geometri�
cal correspondences during the deformation process� To achieve an accurate
reconstruction with proper geometrical correspondences� we propose to grad�
ually increase the number of DOF� By starting the transformation with few
DOF� we can enforce the robustness of the reconstruction� Figure � shows the
face registration result� when 
rst using rigid transformations� then similarity�
then a�ne� and 
nally B�spline transformations�


a� initial 
b� rigid 
c� similar 
d� a�ne 
e� spline

Fig� �� Registration with increasing number of DOF�

The remaining problem is to determine when to change the transformation
class and therefore increase the number of DOF� Consider 
gure � which rep�
resents for each registration stage the total displacement of all model vertices
between two successive iterations of the ICP algorithm� Due to the fast conver�
gence of the ICP algorithm �notice the log�scale on the Y axis	� the displace�
ment is sharply decreasing� When the displacement is low enough the model
does not evolve signi
cantly anymore� Therefore we can set a low threshold
to stop a deformation stage and increase the number of DOF by changing
the transformation� This leads to good results with preservation of the model
geometry as can be seen in 
gure ��e	�

We propose two strategies to set the low threshold� An absolute threshold
value can be provided by the user as a percentage of the initial mesh size�
A relative threshold is computed as a percentage of the initial displacement�
After evolving a few iterations �three for instance	� we compute the mean
displacement and we set the threshold as a fraction of the obtained distance�

We made the face registration experiment with automatic thresholding� each
deformation stage ends when the model displacement is lower than ���� of
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d� B�spline

Fig� �� Displacement of model�

initial displacement� Figure ���a� b	 shows the resulting mesh� Figure ���c	
compares the manual and automatic threshold strategies� This reveals a sig�
ni
cant diminution in the total computation time� More convergence results
are given in section ������
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Fig� ��� Registration with automatic thresholding�

	�� From Rigid Registration to Free�form Deformation

A natural idea is to extend the previous incremental process using GCD� To
optimize computational cost and numerical stability we use transformations
with few DOF such as rigid� similarity� or a�ne transformations� The locality
parameter allows us to tune the number of DOF� GCD extends the registra�
tion framework in a computationally e�cient manner since the search for the
closest points has to be performed only once for the computation of the global
and external forces� The resulting deformation scheme is illustrated in 
gure
��� We 
rst increase the number of DOF by making the global transformation
evolve� We then gradually increase � using the same displacement criterion�
We can therefore have an automatic model�based reconstruction algorithm�

It is di�cult to estimate the maximal value that the locality parameter should
have �do we go up to FFD or do we stop for a maximal � value�	� With high
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� values the model is more likely to 
t the data but it is also more sensitive to
noise� Thus the � maximal value choice is a trade�o� between reconstruction
accuracy and data quality� We let the user decide�

� Results

In this section� we present reconstruction and segmentation examples to vali�
date our algorithm�


�� Qualitative Results

We consider a multi�modality face reconstruction example by 
tting a face
template on an MR image of the head� Figure ���a	 shows a face template�
The model is embedded in the volume image �b	 then registered and deformed
toward the edge point using the GCD� The resulting surface is shown in �c	�
A control of the result �the model intersection with three orthogonal image
slices	 can be seen in �d	�


a� model 
b� deformed 
c� result 
d� control

Fig� �	� Face reconstruction from an MR image�

Image segmentation is a key issue in many computer vision applications� We
demonstrate here the ability of the GCD to automatically segment anatomical
structures� For example� the liver is a soft organ that exhibits drastic inter�
patient variations� The model has to be deformable enough to take into account
the shape variations� Abdominal organs have close grey�level values and they
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are di�cult to isolate� Therefore the model has to be constrained enough to
be robust against noise and weak contours while deforming�

Figure �� shows a liver segmentation example from an abdominal CT�scan�
One slice of the CT�image can be seen in �a	� the template �b	 is 
rst registered
then iteratively deforms by gradually increasing the locality parameter up to
��� �c	� The result can be seen as the model trace in one slice of the data �d	�


a� image 
b� template 
c� deformed 
d� result

Fig� ��� Liver segmentation from contrast enhanced spiral CT�scan image�

Another application is the segmentation of blood vessels and aneurisms from
angiographic images� For the segmentation of blood vessels� we use cylindrical
models with a speci
c axial constraint� The axial constraint is a class of global
transformations that makes the surface model bend along its axis� Details on
the axial constraint computation can be found in ���
� Figure �� �a	 shows
three orthogonal slices of an angiography� Models are initialized around the
aneurism and the vessels �b	� Then constrained deformations are used to 
t the
model �c	� �d	 shows the result obtained after having connected the di�erent
models through topological operations�


a� slices 
b� models 
c� deform 
d� result

Fig� �
� Aneurism segmentation from an angiographic image�


�� Quantitative Results

The quantitative results given here validate the GCD accuracy for reconstruc�
tion and segmentation tasks�
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���� Reconstruction accuracy

We ran the face reconstruction example proposed in section � using the GCD
framework� The rigid� similar� and a�ne registration stages are identical� For
high DOF 
tting� we use GCD with a�ne constraint instead of B�spline reg�
istration� Figure �� compares the result obtained by GCD �a	 and B�spline
registration �b	� Since FFD has more DOF than B�spline registration� the
GCD yields a more accurate 
t� This can be seen in sub
gure �c	 showing the
distance to data� Moreover� GCD has a lower computational cost due to the
prohibitive cost of B�spline computation �sub
gure �d		�
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Fig� ��� Comparison between the GCD and B�spline registration�


���� Geometric Properties

In this section� we demonstrate the relevance of the GCD scheme compared
to the registration and FFD frameworks� Given some range data of a foot� we
have built the model M of 
gure �� �a	� The model was manually deformed
to get the model M� of 
gure �� �b	�
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a� foot model� 
b� range data and deformed model� 
c� distance to data�

We then 
t the mesh M� on the original range data for a 
xed number of
iterations to get model M�� Running the deformation process with di�erent
deformation schemes� the quality of registration is evaluated as the pointwise
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distance between the reconstructed model M� and M� d �
P

i kVi � V �

i k
��

A small value of d implies that vertices positions of M� are close to those
of M and therefore the transformation is robust and accurate� Figure ���c	
shows the values of d for a rigid registration �
rst point	� an a�ne registration
�second point	� or a GCD �with a�ne constraint	 following a 
rst rigid 
t
�other points	� We get the best results at the intermediate values of the locality
parameter � whereas FFD or global �a�ne	 transformation lead to maximum
distance values� This result can be interpreted in the following manner � if the
model is too constrained� it cannot deform enough to 
t the dataset� On the
contrary� if it has too many DOF� the surface vertices can be subject to large
displacements during the deformation�


���� Convergence results

We used our algorithm to perform segmentation of the liver in images of an
abdominal CT�scan database �an example of a particular image is given in

gure ��	� Figure �� reproduces convergence results such as the one given in
section � but at a larger scale� Figure ���a	 shows the number of iterations set
manually �bars	 for each deformation step� These thresholds have been chosen
so that the deformation process properly segment any of our �� liver images�
They had to be high enough to allow convergence in any case� The solid line of

gure ���a	 shows the mean number of iterations used by automatic threshold�
ing and the minimal and maximal values� Figure ���b	 shows the convergence
of the algorithm for six di�erent models during the rigid registration step�
Figure ���c	 shows the convergence of the GCD step �with � � �

	�

	 Conclusion

We have introduced a general reconstruction framework that encompasses
both deformable models and registration approaches� GCD is an e�cient and
simple algorithm for controlling the amount of deformation� It leads to good
conservation of shape properties �such as curvature	 during the deformation�

We have shown that most accurate results are obtained by 
rst globally regis�
tering the template� As the model converges� we increase the number of DOF
by using the GCD scheme� The evolution of the � parameter allows us to
gradually increase the amount of deformation from a�ne transformation to
free�form deformation�

Using deformable models we bene
t from an a priori shape and geometrical
information relevant throughout the deformation process� It is possible to ob�
tain drastic shape variations of templates� By merging registration with the
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Fig� ��� Liver convergence measures�

free�form deformation framework� we make the deformation process robust
to noise and outliers while remaining computationally e�cient� However� the
total amount of deformation allowed is left to the user� By constraining the
model� we reduce problems that can arise with FFD such as model self inter�
section but we do not strictly avoid them� The whole deformation algorithm
is also very dependent on the closest point computation�

In the future� we plan to incorporate some additional statistical information in
the reference model� in order to introduce meaningful deformation constraints�
The statistical study of medical databases should allow for the introduction
of statistically relevant deformation modes�
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