N
N

N

HAL

open science

New Algorithms for Controlling Active Contours Shape
and Topology

Hervé Delingette, Johan Montagnat

» To cite this version:

Hervé Delingette, Johan Montagnat. New Algorithms for Controlling Active Contours Shape and
Topology. European Conference on Computer Vision (ECCV00), Jun 2000, Dublin, Ireland. pp.381-

395. inria-00615846v2

HAL 1d: inria-00615846
https://hal.science/inria-00615846v2

Submitted on 26 Apr 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/inria-00615846v2
https://hal.archives-ouvertes.fr

New Algorithms for Controlling Active Contours
Shape and Topology

H. Delingette and J. Montagnat

Projet Epidaure
IN.R.L.A.
06902 Sophia-Antipolis Cedex, BP 93, France

Abstract

In recent years, the field of active-contour based image segmentation have seen
the emergence of two competing approaches. The first and oldest approach rep-
resents active contours in an explicit (or parametric) manner corresponding to
the Lagrangian formulation. The second approach represent active contours in an
implicit manner corresponding to the Eulerian framework. After comparing these
two approaches, we describe several new topological and physical constraints ap-
plied on parametric active contours in order to combine the advantages of these
two contour representations. We introduce three key algorithms for independently
controlling active contour parameterization, shape and topology. We compare our
result to the level-set method and show similar results with a significant speed-up.

1 Introduction

Image segmentation based on active contours has achieved considerable success
in the past few years [15]. Deformable models are often used for bridging the gap
between low-level computer vision (feature extraction) and high-level geometric
representation. In their seminal paper [8], Kass et al choose to use a parametric
contour representation with a semi-implicit integration scheme for discretizing
the law of motion. Several authors have proposed different representations [16]
including the use of finite element models [3], subdivision curves [6] and analyt-
ical models [17]. Implicit active contour representation were introduced in [13]
following [19]. This approach has been developed by several other researchers
including “geodesic snakes” introduced in [2].

The opposition between parametric and implicit contour representation cor-
responds to the opposition between Lagrangian and Eulerian frameworks. Qual-
ifying the efficiency and the implementation issues of these two frameworks is
difficult because of the large number of different algorithms existing in the lit-
erature. On one hand, implicit representations are in general regarded as being
less efficient than parametric contours. This is because the update of an implicit
contour requires the update of at least a narrow band around each contour. On
the other hand, parametric contours cannot in general achieve any automatic
topological changes, also several algorithms have been proposed to overcome
this limitation [11, 14, 10].

This paper includes three distinct contributions corresponding to three dif-
ferent modeling levels of parametric active contours:

1. Discretization. We propose two algorithms for controlling the relative ver-
tex spacing and the total number of vertices. On one hand, the vertex spacing
is controlled through the tangential component of the internal force applied
at each vertex. On the other hand, the total number of contour vertices is
periodically updated in order to constrain the distance between vertices.

2. Shape. We introduce an intrinsic internal force expressions that do not
depend on contour parameterization. This force regularizes the contour cur-
vature profile without producing any contour shrinkage.

3. Topology. A new algorithm automatically creates or merges different con-
nected components of a contour based on the detection of edge intersections.
Our algorithm can handle opened and closed contours.

We propose a framework where algorithms for controlling the discretization,
shape and topology of active contours are completely independent of each other.
Having algorithmic independence is important for two reasons. First, each mod-
eling component may be optimized separately leading to computationally more
efficient algorithms. Second, a large variety of active contour behaviors may be
obtained by combining different algorithms for each modeling component.

2 Discretization of active contours

In the remainder, we consider the deformation over time of a two-dimensional
parametric contour C(u,t) € IR? where u designates the contour parameter and
t designates the time. The parameter u belongs to the range [0, 1] with C(0,t¢) =
C(1,t) if the contour is closed. We formulate the contour deformation with a
Newtonian law of motion:

o2C oc

Fre) = —’YE + fint + fext (1)

where fit and feyy correspond respectively to internal and external forces. A
contour may include several connected components, each component being a
closed or opened contour.

Temporal and spatial discretizations of C(u, ¢) are based on finite differences.
Thus, the set of N* vertices {pt}, i =0...N* —1 represents the contour C(u,t)
at time t. The discretization of equation 1 using centered and right differences
for the acceleration and speed term leads to:

Pt =pl+ (1 —27)(p! — P Y) + ai(fint)i + Bi(foxt)i- (2)

In order to simplify the notation, we will write p; instead of p! the vertex
position at time t. At each vertex p;, we define a local tangent vector t;, normal
vector n;, metric parameter €; and curvature k;. We propose to define the tangent
vector at p;, as the direction of the line joining its two neighbors: t; = (pi+1 —

pi—1)/(2r;) where r; = ||pit+1 — pi—1||/2 is the half distance between the two
neighbors of p;. The normal vector n; is defined as the vector directly orthogonal
to t;: n; =t with (x,9)T = (—y, z). The curvature k; is naturally defined as the
curvature of the circle circumscribed at triangle (p;—1, P, Pit+1). If we write as ¢;,
the oriented angle between segments [p;_1, p;] and [p;, pi+1], then the curvature
is given by k; = sin(¢;)/r;. Finally, the metric parameter €; measures the relative
spacing of p; with respect to its two neighboring vertices p;—1 and p;41. If F;
is the projection of p; on the line [p;—1,pit1], then the metric parameter is:
€ = ||Fi — pitall/(2ri) = 1 — ||Fiz1 — pi—1]|/(27;). In another words, €; and
1 — ¢; are the barycentric coordinates of F; with respect to p;—1 and p;y1:
F, =epic1 + (1 —€)pit1-

i+l

Fig. 1. Left: The geometry of a discrete contour; definition of t;, n;, ki, ¢;, and F;.
Right: The internal force associated with the curvature-conservative flow is proportional
to p; — pi-

Other definitions for the tangent and normal vectors could have been cho-
sen. However, our tangent and normal vectors definitions has the advantage of
providing a simple local shape description:

Pi = €pi—1 + (1 — €)piy1 + L(ri, ¢:, €:)n;, (3)

where L(ri, ¢;,€;) = 1 (1 + /14 4e(1 — €) tan? ¢) with p = 1 if |¢| < 7/2
and p = —11if |¢| > 7/2. Equation 3 simply decomposes vertex position p; into
a tangential and normal component. The importance of this equation will be

revealed in sections 3.

3 Parameterization control

For a continuous active contour C(u,t), the contour parameterization is char-
acterized by the metric function: g(u,t) = ||%|| If g(u,t) = 1 then the para-
meter of C(u,t) coincides with the contour arc length. For a discrete contour,
the parameterization corresponds to the relative spacing between vertices and is
characterized by ¢; = ||pi — Pi—1]|-

For a continuous representation, parameterization is clearly independent of
the contour shape. For a discrete contour represented by finite differences, shape
and parameterization are not completely independent. The effect of parameter-
ization changes is especially important at parts of high curvature. Therefore,

parameterization is an important issue for handling discrete parametric con-
tours. In this section we propose a simple algorithm to enforce two types of
parameterization:

1. uniform parameterization: the spacing between consecutive vertices is
uniform.

2. curvature-based parameterization: vertices are concentrated at parts of
high curvature. This parameterization tends to optimize the shape descrip-
tion for a given number of vertices.

To modify a contour parameterization, only the tangential component of
the internal force should be considered. Indeed, Kimia et al [9] have proved that
only the normal component of the internal force applied on a continuous contour
C(u,t) has an influence on the resulting contour shape. Therefore, if t, n are the
tangent and nogrcnal vector at a point C(u,t), then the contour evolution may

be written as: 5= = fine = a(u,t)t 4+ b(u,t)n. Kimia et al [9] show that only

the normal component of the internal force b(u,t) modifies the contour shape
whereas the metric function g(u, t) = ||9<|| evolution is dependent on a(u,t) and
b(u,t):

dg _ Ja(u,t)

at Ou

The tangential component of the internal force a(u,)t constrains the nature

of the parameterization. We propose to apply this principle on discrete para-
metric contours as well by decomposing the internal force fi,¢ into its normal
and tangential components: (fint)i = (fig)i + (far)s with (fig): - n; = 0, and
(fur): - t; = 0. More precisely, since the tangent direction t; at a vertex is the
line direction joining its two neighbors, we use a simple expression for the tan-
gential component: (fig)i = (€F —€;)(Pit1 — Pi—1) = 27;(€} —¢€;)t; where €} is the
reference metric parameter whose value depends on the type of parameterization
to enforce.

+ b(u, t)kg. (4)

3.1 Uniform vertex spacing

To obtain evenly spaced vertices, we simply choose: € = % This tangential
force moves each vertex in the tangent direction towards the middle of its two
neighbors. When the contour reaches its equilibrium, i.e. when (fig); = 0, ps

is then equidistant from p;,—; and p;y1. It equals to (fig)i = (gic ~t) t =

%t. Because the second derivative vector % is the first variation of the weak
string internal energy ([, || % ||?dw), this force is somewhat related to the classical

“snakes” approach proposed in [8].

3.2 Curvature based vertex spacing

To obtain an optimal description of shape, it is required that vertices concentrate
at parts of high curvature and that flat parts are only described with few vertices.

To obtain such parameterization, we present a method where edge length is
inversely proportional to curvature. If e; is the edge joining p; and p;;1, then
we compute its edge curvature Kt as the mean absolute curvature of its two
vertices: KT = (Jk;| + |ki11])/2. Then at each vertex p;, we can compute the
local relative variation of absolute curvature AK; € [-1,1] as: AK; = (KT —
K!_)/(KI** +K!_,). To enforce a curvature-based vertex spacing, we compute
the reference metric parameter €} as: €/ = 1 — 0.4 AK;.

When vertex p; is surrounded by two edges having the same curvature then
AK; = 0 and therefore €] is set to % which implies that p; becomes equidistant
from its two neighboring vertices. On the contrary, when the absolute curvature
of p;;1 is greater than the absolute curvature of p;_; then AK; becomes close
to 1 and therefore € is close to 0.1 which implies that p; moves towards p;+1.

3.3 Results of vertex spacing constraints

To illustrate the ability to decouple parameterization and shape properties, we
propose to apply an internal force that modifies the vertex spacing on a contour
without changing its shape. We define a curvature conservative regularizing force
that moves p; in the normal direction in order to keep the same local curvature:

fnr = (L(Ti,(,ﬁi,ﬁ?) - L(Tiv¢i75i))ni' (5)

This equation has a simple geometric interpretation if we note that the total
internal force fint = fig + fur 18 simply equal to p} — p; where p is the point
having the same curvature as p; but with a metric parameter €. From right of
figure 1, we can see that fi, corresponds to the displacement between F} and
F; whereas f,, corresponds to the difference of elevation between p} and p;.

Given an open or closed contour we iteratively apply differential equation 2
with the internal force expression described above. Figure 2 shows an example of
vertex spacing constraint enforced on a closed contour consisting of 150 vertices.
The initial vertex spacing is uneven. When applying the uniform vertex spacing
tangential force (ef = 0.5), after 1000 iterations, all contour edge lengths become
equal within less 5 percent without greatly changing the contour shape, as shown
in figure 2 (upper row). The diagram displays the distribution of edge curvature
as a function of edge length. Similarly, with the same number of iterations, the
contour evolution using the curvature-based vertex spacing force tends to con-
centrate vertices at parts of high curvature. The corresponding diagram clearly
shows that edge length is inversely proportional to edge curvature.

3.4 Contour resolution control

In addition to constraining the relative spacing between vertices, it is important
to control the total number of vertices. Indeed, the computational complexity of
discrete parametric contours is typically linear in the number of vertices. In order
to add or remove vertices, we do not use any global contour reparameterization
as performed in the level-set method [19] because of its high computational cost.

Edge Curvature
~

8 %

0.080

0.084

0.045

003z

0016

RIS RTEEE 88 oo

1641 szez 4325 6564 6205
Edge Length

Edge Curvature
4 °

o0

0136 ©
0103

.
1

.
0.054 o%’é%%
.
o go®
0027 0%8@%0
S %,
A B SN

7915 15831 23748 31661 39.578

¥
Edge Length

Fig. 2. (up) contour after applying the uniform vertex spacing tangential force; (bot-
tom) contour after applying the curvature-based vertex spacing constraint.

Instead, we propose to locally add or remove a vertex if the edge length does not
belong to a given distance range, similarly to [7,12]. Our resolution constraint
algorithm proceeds as follows. Given two thresholds sy, and sy,.x corresponding
to the minimum and maximum edge length, we scan all existing contour edges. If
the current edge length is greater than sp,.x and 2 * sp,;, then a vertex is added.
Otherwise if current edge length is less than s.,;, and if the sum of the current
and previous edge length is less than sp.x, then the current vertex is removed.
In general, this procedure is called every friesolution = 5 deformation iterations.

4 Shape regularization

The two internal forces defined in previous section have little influence on the
contour shape evolution because they are only related to the contour parame-
terization. In this section, we deal with the internal force normal component
which determines the contour shape regularization. The most widely used in-
ternal forces on active contours are the mean curvature motion [13], Laplacian
smoothing, thin rod smoothing or spring forces.

Laplacian Smoothing and Mean Curvature Motion have the drawback of sig-
nificantly shrinking the contour. This shrinking effect introduces a bias in the
contour deformation since image structures located inside the contour are more
likely to be segmented than structures located outside the contour. Furthermore,
the amount of shrinking often prevents active contours from entering inside fine
structures.

To decrease the shrinking effect, Taubin [20] proposes to apply a linear fil-
ter to curves and surfaces in order to reduce the shrinking effect of Gaussian

smoothing. However, these two methods only remove the shrinking effect for a
given curvature scale. For instance, when smoothing a circle, this circle would
stay invariant only for one given circle radius which is related to a set of filter-
ing parameters. Therefore, in these methods, the choice of these parameters are
important but difficult to estimate prior to the segmentation process. A regular-
izing force with higher degrees of smoothness such as the Thin Rod Smoothing
causes significantly less shrinking since it is based on fourth derivatives along the
contour. However, the normal component of this force —(% -n)n is dependent
on the nature of the parameterization which is a serious limitation.

4.1 Curvature diffusion regularization

We propose to use the second derivative of curvature with respect to arc length
as the governing regularizing force:
2
fint = %n (6)
This force tends to diffuse the curvature along the contour, thus converging
towards circles, independently of their radii, for closed contours. For the dis-
cretization of equation 6, we do not use straightforward finite differences, since
it would lead to complex and potentially unstable schemes. Instead, we propose
a geometry-based implementation that is similar to equation 5:

fnr = (L(Tiv :7 6:’) - L(T‘iv ¢i76i))ni (7)
where ¢ is the angle at a point p} for which ‘;Sk = 0. The geometric interpreta-

tion of equation 7 is also straightforward, since the internal force finy = fig + far
corresponds to the displacement py — p;. The angle ¢} is simply computed by
¢r = arcsin(kf * ;) where kY is the curvature at p*. Therefore, k¥ is simply
computed as the local average curvature weighted by arc length:

_Ipipi— 1kt + ||Pipis1 ki1

IPipit1ll + IPipi-1]]
Furthermore, we can compute the local average curvature over a greater neigh-
borhood which results in increased smoothness and faster convergence. If o; > 0
is the scale parameter, and [; ;4; is the distance between p; and p;;; then we
compute k; as :

ST Lk + i ki !
k= =1 —2 ’ with ;4 = lPitk—1Pitrll-
i liyimj + it Y 1; Z l

This scheme generalizes the intrinsic polynomial stabilizers proposed in [5]
that required a uniform contour parameterization. Because of this regularizing
force is geometrically intrinsic, we can combine it with a curvature-based vertex
spacing tangential force, thus leading to optimized computations. Finally, the
stability analysis of the explicit integration scheme is linked to the choice of ;.
We have found experimentally, without having a formal proof yet, that we obtain
a stable iterative scheme if we choose a; < 0.5.

L

2

5 Topology constraints

Automatic topology changes of parametric contour has been previously proposed
in [11, 14, 10]. In McInerney et al approach, all topological changes occur by com-
puting the contour intersections with a simplicial decomposition of space. The
contour is reparameterized at each iteration, the intersections with the simplicial
domain being used as the new vertices. Recently Lachaud et al [10] introduced
topologically adaptive deformable surfaces where self-intersections are detected
based on distance between vertices. Our algorithm is also based on a regular lat-
tice for detecting all contour intersections. However, the regular grid is not used
for changing the contour parameterization and furthermore topology changes
result from the application of topological operators. Therefore unlike previous
approaches, we propose to completely decouple the physical behavior of active
contours (contour resolution and geometric regularity) with their topological be-
havior in order to provide a very flexible scheme. Finally, our framework applies
to closed or opened contours.

A contour topology is defined by the number of its connected components
and whether each of its components is closed or opened. Our approach consists
in using two basic topological operators. The first operator illustrated in figure 3
consists in merging two contour edges. Depending whether the edges belong
to the same connected component or not, this operator creates or remove a
connected component. The second topological operator consists in closing or

opening a connected component.

e

Fig. 3. Topological operator applying on (left) two edges on the same connected com-
ponent or (right) two different connected components.

Our approach for modifying a contour topology can be decomposed into three
stages. The first stage creates a data structure where the collision detection
between contour connected components is computationally efficient. The second
determines the geometric intersection between edges and the last stage actually
performs all topological modifications.

5.1 Data structure for the detection of contour intersections

Finding pairs of intersecting edges has an a priori complexity of O(n?) where n
is the number of vertices (or edges). Our algorithm is based on a regular grid of
size d and has a complexity linear with the ratio £/d where L is the length of the
contour. Therefore, unlike the approach proposed in [14], our approach is not
region-based (inside or outside regions) but only uses the polygonal description
of the contour.

The two dimensional Euclidean space with a reference frame (o,x,y) is de-
composed into a regular square grid which size d is user-defined. The influence
of the grid size d is discussed in section 6.1. In this regular lattice, we define
a point of row and column indices r and ¢ as the point of Cartesian coordi-
nates 0griq +7X + cy where 0gyiq is the grid origin point. This point is randomly
determined each time topology constraints are activated in order to make the al-
gorithm independent of the origin choice. Furthermore, we define a square cell of
index (r, ¢) as the square determined by the four points of indices (r, ¢), (r+1, ¢),
(r+1,c+1)and (r,c+1).

In order to build the sampled contour, we scan all edges of each connected
components. For each edge, we test if it intersects any row or columns of the
regular lattice. Since the row and column directions correspond to the directions
x and y of the coordinate frame, these intersection tests are efficiently computed.
Each time an intersection with the row or column direction is found, a grid
vertex is created and the intersecting contour edge is stored in the grid vertex .
Furthermore, a grid vertex is stored in a grid edge structure. A grid edge is either
a pair of grid vertices or a grid vertex associated with an end vertex (when the
connected component is an opened line). Finally, the grid edge is appended to
the list of grid edges inside the corresponding grid cell.

Grid Vertex Associated Contour Edge

=

Contour Edge
Grid Edge
N\ LN
TR L Nl o
‘ V—‘ .x ° —\'/' I End Vertex
N ¥ e ‘ Grid Edge

Fig. 4. (left) The original contour with the regular grid the contour decomposed on
the regular grid; (right) Definition of grid vertex, grid edge, grid cell and contour edge
associated with a grid edge.

5.2 Finding intersecting grid edges

In order to optimize memory space, we store all non-empty grid cells inside a
hash table, hashed by its row and column indices. The number of grid cells is
proportional to the length £ of the contour. In order to detect possible contour
intersections, each entry to the hash table is scanned. For each cell containing
n grid edges with n > 1, we test the intersection between all pairs of grid edges
(see figure 4, left). Since each grid edge is geometrically represented by a line
segment, this intersection test only requires the evaluation of two dot products.

Once a pair of grid edges has been found to intersect, a pair of contour edges
must be associated for the application of topological operators (see section 5.3).
Because a contour edge is stored in each grid vertex, one contour edge can be
associated with each grid edge. Thus, we associate with each grid edge, the
middle of these two contour edges (in terms of topological distance) as shown in
figure 4, right.

Our contour edges intersection algorithm has the following properties: (i) if
one pair of grid edges intersects then there is at least one pair of contour edges
that intersects inside this grid cell; and (ii) if a pair of contour edges intersects
and if the corresponding intersecting area is greater than d * d then there is a
corresponding pair of intersecting grid edges. In another words, our method does
not detect all intersections but is guaranteed to detect all intersection having
an area greater than d * d. In practice, since the grid origin o444 is randomly
determined each time the topology constraint is enforced, we found that our
algorithm detected all intersections that are relevant for performing topology
changes.

5.3 Applying topological operators

All pairs of intersecting contour edges are stored inside another hash table for
an efficient retrieval. Since in general two connected components intersect each
other at two edges, given a pair of intersecting contour edges, we search for the
closest pair of intersecting contour edges based on topological distance. If such
a pair is found, we perform the following tasks. If both edges belong to the same
connected component, then the they are merged if their topological distance
is greater than a threshold (usually equal to 8). This is to avoid creating too
small connected components. In all other cases, the two edges are merged with
the topological operator presented in figure 3. Finally, we update the list of
intersecting edge pairs by removing from the hash table all edge pairs involving
any of the two contour edges that have been merged.

5.4 Other applications of the collision detection algorithm

The algorithm presented in the previous sections merges intersecting edges re-
gardless of the nature of the intersection. If it corresponds to a self-intersection,
then a new connected component is created, otherwise two connected compo-
nents are merged. As in [14] our framework can prevent the merging of two
distinct connected components while allowing the removal of self-intersections.
To do so, when a pair of intersecting contour edges belonging to distinct con-
nected components is found, instead of merging this edges, we align all vertices
located between intersecting edges belonging to the same connected component
(see figure 5). Thus, each component pushes back all neighboring components.
In figure 5, right, we show an example of image segmentation where this repul-
sive behavior between components is very useful in segmenting the two heart
atriums.

6 Results
6.1 Topology algorithm cost

We evaluate the performance of our automatic topology adaptation algorithm
on the example of figure 6. The contour consisting of 50 vertices, is deformed
from a circular shape towards a vertebra in a CT image. The computation time
for building the data structure described in section 5.1 is displayed in figure 6,

s . {,rrlrt . 1\;/",1 i-\x\!
. \ C L i

Fig. 5. (from left to right) Two intersecting connected components; after merging the
two pairs of intersecting edges; after aligning vertices along the intersecting edges.
Example of 2 active contours reconstructing the right and left ventricles in a MR
image with a repulsive behavior between each components.

right, as a function of the grid size d. It varies from 175 ms to 1 ms when
the grid size increases from 0.17 to 10 image pixels on a Digital PWS 500 Mhz.
The computation time for applying the topological operators can be neglected in
general. When the grid size is equal to the mean edge distance (around 2 pixels),
the computation time needed to detect edge intersections becomes almost equal
to the computation time needed to deform the contour during one iteration (4.8
ms).

0.050

0.040
[0.030
0020
0.010
0.000
00 10 20 30 40 50 60 7.0 80 90 100
4 L 4 Grid Size

Fig. 6. Segmentation of a vertebra in a CT image; Topology algorithm computation
time.

Computation Time

When the grid size increases, the contour sampling on the regular grid be-
comes sparse and therefore some contour intersections may not be detected.
However, we have verified that topological changes still occur if we choose a grid
size corresponding to 20 image pixels with contour intersections checked every 20
iterations. In practice, we choose a conservative option with a grid size equal to
the average edge length and with a frequency for topology changes of 5 iterations
which implies an approximate additional computation time of 20 percent.

6.2 Segmentation example

This example illustrates the segmentation of an aortic arch angiography. Figure 7
shows the initial contour (up left) and its evolution towards the aorta and the
main vessels. External forces are computed as a function of vertex distance to
a gradient point to avoid oscillations around image edges and are projected on
the vertex normal direction. The contour is regularized by a curvature diffusive
constraint. The contour resolution constraint is applied every 10 iterations which
makes the resampling overhead very low. Topology constraints are computed
every 5 iterations on a 4 pixel grid size to fuse the self-intersecting contour
parts. Intersections with image borders are computed every 10 iterations and
the contour is opened as it reaches the image border.

Fig. 7. Evolution of a closed curve towards the aortic arch and the branching vessels.

7 Comparison with the level-set method

The main advantage of the level-set method is obviously its ability to automati-
cally change the contour topology during the deformation. This property makes
it well-suited for reconstructing contours of complex geometries for instance tree-
like structures. Also, by merging different intersecting contours, it is possible to
initialize a deformable contour with a set of growing seeds. However, the ma-
jor drawbacks of level-sets methods are related to their difficult user interaction
and their computational cost, although some speed-up algorithms based on con-
straining the contour evolution through the Fast-Marching method [19] or by
using an asynchronous update of the narrow-band [18] have been proposed. The
formal comparison between both parametric and level-set approaches have been
recently established in the case of geodesic snakes [1]. In this section, we pro-
pose a practical comparison between both approaches including implementation
issues.

7.1 Level-set implementation

The level-set function ¥ is discretized on a rectangular grid whose resolution
corresponds to the image pixel size. The evolution equation is discretized in space
using finite differences in time using an explicit scheme, leading to : ¥/ 4" =
@+ Atv|| Vi @5 || [13] where v;; denotes the propagation speed term and At
is the discrete time step.

Fig. 8. (Five left figures) Discrete contour deformation; (Five right figures) level-set
deformation.

The propagation speed term v is designed to attract C towards object bound-
aries extracted from the image using a gradient operator with an additional reg-
ularizing term: v(p) = B(p) (k(p) + ¢). k(p) denotes the contour curvature at
point p while ¢ is a constant resulting in a balloon force [4] on the contour. Fi-
nally, 8(p) € [0, 1] is a multiplicative coefficient dependent on the image gradient
norm at point p. When C moves across pixels of high gradients, this term slows
down the level-set propagation. A threshold parameter determines the minimal
image boundary strength required to stop a level-set evolution. We speed-up
the level-set by using a narrow band method [13] which requires to periodically
reinitialize the level-set contour.

In order to compare active contours to level-sets, we compute external forces
similar to level-set propagation at discrete contour vertices. First, we use mean
curvature motion as the governing internal force and we have implemented for
the external force, a balloon force weighted by the coefficient 3 proposed above.
Finally, we were able to use the same gradient threshold in both approaches.

7.2 Torus example

We first propose to compare both approaches on the synthetic image shown in
figure 8. This image has two distinct connected components.

A discrete contour is initialized around the two components. A medium grid
size (8 pixels resolution) is used and topology constraints are computed every
10 iterations. Throughout the deformation process, vertices are added and re-
moved to have similar edge length along the contour. A corresponding level-set
is initialized at the same place that the discrete contour. A 7 pixel wide narrow
band appeared to optimize the convergence time. A 0.3 time step is used. It is
the maximal value below which the evolving curve is stable.

Figure 8 shows the convergence of the discrete contour (left) and the level-set
(right). The discrete contour converges in 0.42 seconds opposed to 3.30 seconds
for the level-set, that is a 7.85 acceleration factor in favor of the discrete contour.
The difference of computational time is due to the small vertex number used for
the discrete contour (varying between 36 and 48 vertices) compared to the much
greater number of sites (from 1709 up to 3710) updated in the level-set narrow
band.

7.3 Synthetic data

This experiments shows the ability of the discrete contour topology algorithm
to follow difficult topology changes. We use a synthetic fractal image showing a

GIGICICISICICIoI
o Joo(Joo(Jo
030 0BI0 000
000
o Jo
000
00 0 BIOIoI0 0 O
o Joo(Joo(Jo

000000000

5 N GIerGIGIcIGIcIcIe!

of Joao[Joo Jo

0o0oco0o0oo0o00

aoo
o[Jo
oo o

0Oooc0o0o0o0o00

of Joo[Joo[Jo

Q0o o0o00o0

Fig.9. (upper row) Discrete contour convergence in a fractal image; (bottom row)
Level-set convergence in the same image.

number of small connected components. Figure 9, upper row, shows the discrete
contour convergence in the image while the bottom row shows the level set
convergence.

In both cases, the initial contour is a square located at the image border. It
evolves under a deflation force that stops on strong image boundaries. For the
discrete contour, a small grid size is used due to the small image structure size
(4 pixels grid size and 5 iterations algorithm frequency). A weak regularizing
constraint allows the contour to segment the square corners. The contour is
checked every 10 iterations to add the necessary vertices. A 0.3 time step is used
for the level-set. This high value leads to a rather unstable behavior as can be
seen in figure 9. As the level-set contours gradually fills-in the whole image, we
have verified that the convergence time is not minimized by using any narrow
bands. Again, the speed-up is 3.84 in favor of the discrete contour.

8 Conclusion

We have introduced three algorithms that greatly improve the generality of para-
metric active contours while preserving their computational efficiency. Further-
more, these algorithms are controlled by simple parameters that are easy to
understand. For the internal force, a single parameter a between 0 and 1 is used
to set the amount of smoothing. For resolution and topology constraint algo-
rithms, distance parameters must be provided as well as the frequency at which
they apply. Given an image, all these parameters can be set automatically to
meaningful values providing good results in most cases.

Finally, we have compared the efficiency of this approach with the level set
method by implementing parametric geodesic snakes. These experiments seem
to conclude that our approach is at least three times as fast as the implicit
implementation. Above all, we believe that the most important advantage of
parametric active contours is their user interactivity.

References

1. G. Aubert and L. Blanc-Féraud. Some Remarks on the Equivalence between 2D
and 3D Classical Snakes and Geodesic Active Contours. International Journal of

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Computer Vision, 34(1):5-17, September 1999.

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic Active Contours. International
Journal of Computer Vision, 22(1):61-79, 1997.

I. Cohen, L.D. Cohen, and N. Ayache. Using Deformable Surfaces to Segment 3-D
Images and Infer Differential Structures. Computer Vision, Graphics, and Image
Processing: Image Understanding, 56(2):242-263, September 1992.

. L.D. Cohen. On Active Contour Models and Balloons. Computer Vision, Graphics,

and Image Processing: Image Understanding, 53(2):211-218, March 1991.

H. Delingette. Intrinsic stabilizers of planar curves. In third European Conference
on Computer Vision (ECCV’94), Stockholm, Sweden, June 1994.

J. Hug, C. Brechbiiler, and G. Székely. Tamed Snake: A Particle System for Ro-
bust Semi-automatic Segmentation. In Medical Image Computing and Computer-
Assisted Intervention (MICCAI’99), volume 1679 of Lectures Notes in Computer
Science, pages 106—-115, Cambridge, UK, September 1999. Springer.

J. Ivins and J. Porrill. Active Region models for segmenting textures and colours.
Image and Vision Computing, 13(5):431-438, June 1995.

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. Inter-
national Journal of Computer Vision, 1:321-331, 1988.

B. Kimia, A. Tannenbaum, and S. Zucker. On the evolution of curves via a function
of curvature i. the classical case. Journal of Mathematical Analysis and Applica-
tions, 163:438-458, 1992.

J.-O. Lachaud and A. Montanvert. Deformable meshes with automated topol-
ogy changes for coarse-to-fine three-dimensional surface extraction. Medical Image
Analysis, 3(2):187-207, 1999.

F. Leitner and P. Cinquin. Complex topology 3d objects segmentation. In SPIE
Conf. on Advances in Intelligent Robotics Systems, volume 1609, Boston, November
1991.

S. Lobregt and M. Viergever. A Discrete Dynamic Contour Model. IEEE Trans-
actions on Medical Imaging, 14(1):12-23, 1995.

R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape Modeling with Front Propaga-
tion : A Level Set Approach. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(2):158-174, 1995.

T. Mclnerney and D. Terzopoulos. Topologically adaptable snakes. In Inter-
national Conference on Computer Vision (ICCV’95), pages 840-845, Cambridge,
USA, June 1995.

T. Mclnerney and D. Terzopoulos. Deformable models in medical image analysis:
a survey. Medical Image Analysis, 1(2):91-108, 1996.

S. Menet, P. Saint-Marc, and G. Medioni. Active Contour Models: Overview,
Implementation and Applications. IEEFE Trans. on Systems, Man and Cybernetics,
pages 194-199, 1993.

D. Metaxas and D. Terzopoulos. Constrained Deformable Superquadrics and non-
rigid Motion Tracking. In International Conference on Computer Vision and Pat-
tern Recognition (CVPR’91), pages 337-343, Maui, Hawai, June 1991.

N. Paragios and R. Deriche. A PDE-based Level-Set Approach for Detection and
Tracking of Moving Objects. In International Conference on Computer Vision
(ICCV’98), pages 1139-1145, Bombay, India, 1998.

J.A. Sethian. Level Set Methods : Evolving Interfaces in Geometry, Fluid Mechan-
ics, Computer Vision and Materials Science. Cambridge University Press, 1996.
G. Taubin. Curve and Surface Smoothing Without Shrinkage. In International
Conference on Computer Vision (ICCV’95), pages 852-857, 1995.

