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Consistency, accuracy and entropic behaviour of

remeshed particle methods

Résumé : Nous analysons la consistance, la précision et certaines propriétés
entropiques des méthodes particulaires avec remaillage dans le cas d’une loi de
conservation scalaire monodimensionnelle. Comme dans [7] nous ré-écrivons
les méthodes de ce type dans le formalisme des différences finies. Cela nous
permet de montrer leur consistance ainsi que des propriétés de précision liées à
la précision des noyaux d’interpolation utilisés. Cottet et Magni ont introduit
récemment dans [5] et [19] des techniques de remaillage TVD pour les méthodes
particulaires. Nous étendons ces résultats au cas non linéaire avec signe de la
vitesse quelconque. Nous présentons ensuite des résultats numériques obtenus
avec ces nouveaux schémas pour les équations d’Euler dans le cas du tube à
choc de Sod. Puis nous montrons que les schémas particulaires obtenus avec ces
techniques de remaillage TVD convergent vers l’unique solution entropique de
la loi de conservation scalaire considérée.

Mots-clés : méthodes particulaires avec remaillage, noyaux d’interpolation,
consistance, erreur de troncature, inégalités entropiques, variation totale, limi-
teurs, convergence.
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1 Introduction

Particle methods are Lagrangian techniques that have been designed for advection-
dominated physical problems. In this class of methods, the fluid is discretized
on small masses concentrated on points: the particles, which are moved in
a lagrangian way. The classical particles methods used in fluids dynamics are
Smoothed Particle Hydrodynamics (SPH) [24], [1], [10] introduced by Monaghan
and Particle-In-Cell (PIC) methods [11], [9]. If nothing is done, the distribu-
tion of particles becomes less and less uniform as time goes on, because they
accumulate naturally in certain zones, for instance near strong gradients, and
rarefy elsewhere. This phenomenon can lead to a loss of accuracy. A common
remedy to this problem consists in periodically creating new particles uniformly
distributed by an interpolation of the values of the existing particles, what is
usually called remeshing the particles. The remeshing step creates new particles
in a conservative way, by distributing the quantities carried by the particles at
the nodes of an underlying grid. The frequency at which the interpolation must
be performed depends on the simulated flow, but it is often chosen to remesh
particles at each time step. This choice allows to solve the non convective part
of the considered equations (pressure gradient, diffusion for instance) with vari-
ables located on a grid, thus more easily as if they were irregurarly distributed.
The ability of particle methods with remeshing to simulate satisfactorily fluid
dynamics has been studied and validated in the past: [15], [4], [27], [26], [6] for
instance. More recent works include [14], [29], and [3].

In [7] remeshed particle methods were rewritten as finite-difference methods
and analyzed in this formalism. For example the particle scheme corresponding
to a second order interpolation kernel named Λ2 was found to be equivalent
to the Lax-Wendroff scheme in the linear case, whereas in the non-linear case
it provided a new finite difference scheme. Recently, Cottet and Magni ([5],
[19], [20]) devised TVD particle schemes, with flux limiters in the remeshing
kernels. In this paper we keep on focusing on the finite difference analysis of
remeshed particles methods, and study their properties of consistency, accuracy
and convergence toward entropy solution on a monodimensionnal non linear
scalar transport equation in a infinite domain:

ut + (g(u)u)x = 0, t ≥ 0, −∞ < x < +∞ (1)

A convergence proof in Lp
loc has been established in [25] for a weighted particle

method belonging to SPH methods which are purely lagrangian methods. In
[17] and [16] are studied the convergence in L2 and L1 of renormalized SPH
methods. To our knowledge, such an analysis for remeshed particle methods
has not been performed yet. Moreover, thanks to the flux limiting, we will
deal here with higher degree interpolation kernels than in the latter references,
where the kernels were assumed to be positive, and thus performed only linear
interpolation. In section 2 we recall briefly the principles of remeshed parti-
cle methods, and the interpolation kernels that are classically used to perform
remeshing. In section 3 we present how a finite difference scheme can be de-
rived from the particle method with remeshing. Then we study the consistency
and accuracy of remeshed particle methods under a CFL condition. Cottet and
Magni ([5], [19]) introduced recently a way to perform flux limiting on particles
schemes and make them TVD. In section 4 we present how TVD remeshing
schemes can be built for non-linear conservation laws with arbitrary sign of the
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particle velocity, and a numerical application to the Euler equation. In section
5 we study the convergence of these TVD particle methods toward the entropy
solution. This study is motivated by a numerical observation: contrary to some
finite difference schemes, as the Lax-Wendroff scheme for instance, the particle
methods with remeshing seem to converge toward the entropic solution of the
Burgers equation, as it is noticed in [5]. Using techniques inspired by [21], we
prove that the new TVD remeshing schemes converge in the L1

loc norm toward
the entropy solution.

2 Particle methods with remeshing

2.1 Particle discretization

Here we present how a particle method with remeshing can be introduced to
solve the model transport equation (1). If we express this equation using the
Lagrangian derivative associated to the material velocity g(u):

du

dt
=

∂u

∂t
+ g(u)

∂u

∂x

we get:
du

dt
+

∂g(u)

∂x
u = 0.

Let V (t) be a material volume element moving at the flow velocity. By applying
the Reynolds theorem, we get:

d

dt

( ∫

V (t)

u dV
)

=

∫

V (t)

du

dt
dV +

∫

V (t)

u
∂g(u)

∂x
dV

Thus:

d

dt

( ∫

V (t)

u dV
)

= 0.

Following this property, the particle discretization consists in cutting the fluid
into small masses concentrated on points: the particles. Each particle j has a
location xj , carries the constant quantity αj = Vj uj , with Vj the volume of
the particle, and moves at velocity g(uj). The variables carried by the particle
satisfy the following equations:

dαj

dt
= 0

dxj

dt
= g(uj).

To solve this system with the particle method, one has to move particles during
one time step and then interpolate them on the nodes of the underlying uniform
grid. All particles are initialy located on the nodes of a uniform grid, with space
step dx. The volumes of particles are equal to the cell volumes. We note xn

j the
location of particle j at time n dt, un

j the value of u carried by the particle, and
g̃(u)n

i the velocity at which the particle is moved. g̃(u)n
i may be equal to g(un

i )

RR n° 7759
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but not necessarily. An example will be given later. It may also be a function
of several variables providing a consistent approximation of g(u):

g̃(u)n
i = F (uj−m, ..., uj+m) (2)

For consistency reasons that will appear in the proof of the consistency in sec-
tion 3.2 we impose that F (u, ..., u) = g(u).

2.2 Interpolation kernels

In this section we shortly review interpolation kernels commonly used for the
class of particle methods considered here. More details can be found in [4].
We only present monodimensionnal interpolation kernels, because very often
interpolation kernels in higher dimensions are devised by tensorial products of
mono-dimensional interpolation formulas.

Let be a distribution of particles indexed with q, located in xq, carrying
quantities αq. For instance, in the case of Euler equations for gas dynamics,
αq can be the mass, the momentum or the total energy of particle q. For
incompressible flows, in the case of Vortex-In-Cell methods, αq is the vorticity.
Let W be an interpolation kernel. The remeshing process creates new particles
at the nodes of an uniform underlying grid, with space step dx. The new
quantities α̃i at grid points x̃i are computed from the former values with the
formula:

α̃i =
∑

q

αqW (
x̃i − xq

dx
) (3)

The usual interpolation kernels are symetrical, so as not to favour one di-
rection compared to the others. With a Fourier analysis one can prove that the
order of the interpolation is equal to the number of momentums preserved by
the new particle distribution, i.e.:

∑

i

α̃i =
∑

q

αq

∑

i

α̃i(x − x̃i) =
∑

q

αq(x − xq)

∑

i

α̃i(x − x̃i)
2 =

∑

q

αq(x − xq)
2

...

A family of interpolation kernels can be built by imposing the conservation
of a given number of momentums M with a minimal number of grid points. It
is about to solve the following system:

M∑

i=1

W (x − xi)x
a
i = xa for 0 ≤ a ≤ M − 1.

Λ1 is the first kernel built with this principle, with M = 2. It preserves the first
two momentums of the particle distribution.

Λ1(x) =

{
1 − |x| if |x| ≤ 1
0 if |x| > 1.

RR n° 7759
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This kernel is in practise very diffusive and is not very used by itself. The
next interpolation kernel, preserving the first three momenta of the particle
distribution, is:

Λ2(x) =







1 − x2 if |x| ≤ 1/2
(1 − |x|)(2 − |x|)/2 if 1/2 < |x| ≤ 3/2
0 if |x| ≥ 1.5.

Although successfully used in the past, this kernel has the drawback of being
very dispersive. This is partially explained by the fact that it is not continuous:
a small error on the location of a particle can thus result in a big error on
the values of the particles created by the interpolation step. The following
interpolation kernels of this family, Λ3 and Λ4 respectively need four and five
grid points and preserve one or two additionnal momentums.

Other interpolation kernels can be built by successive convolutions of Λ1.
They are of increasing regularity, but only preserve the first two momentums
thus it is only possible to perform linear interpolation with them. The kernel
M3, which is C1, is traditionnally referred in Particle-In-Cell methods as the
TSC (Triangular-shaped cloud) interpolation function.

M3(x) =







1/2(x + 3/2)2 − 3/2(x + 1/2)2 if |x| ≤ 1/2
1/2(−|x| + 3/2)2 if 1/2 ≤ |x| ≤ 3/2
0 if |x| > 3/2.

M4 and M5 are the following kernels of this family, respectively C2 and C3.
Monaghan [23] devised the well known M ′

4 kernel with a Richardson extrapola-
tion from a linear combination of M4 and its derivative.

M ′
4(x) =







1 − 5x2/2 + 3|x|3/2 if |x| ≤ 1
(2 − |x|)2(1 − |x|)/2 if 1 < |x| ≤ 2
0 if |x| ≥ 2.

This kernel is C1 and preserves the first three momentums.

3 Consistency and accuracy of particle methods

with remeshing

3.1 Results

Following the notations introduced in subsection 2.1, we denote un
j the value

carried by the particle initially located on grid point j, at time n∆t. It is
possible to express un+1

j as a function of the un
i :

Proposition 1 If we note g̃(u)n
i the velocity used to move the particle i between

the times n dt and (n+1) dt, and Λ the interpolation kernel used for the remesh-
ing step, we can express the particle method with remeshing as a finite-difference
scheme:

un+1
j =

∑

i

un
i Λ

(
j − i − dt g̃(u)n

i

dx

)
. (4)

RR n° 7759
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Remark: In the latter formula, we use the symbol
∑

i

without specifying to

which interval belong the i indices. Because the interpolation kernel considered
here have all compact supports, but of various sizes, this notation avoids us to
specify the support of the considered interpolation kernel.

Proof of Proposition 1:
The location of the particle i after being moved is:

x̃i = xi + dt g̃(u)n
i .

The particles are remeshed on the same uniform grid as the one on which they
were initially defined. Thus the locations of the new particles are again the
nodes of the grid, and their volumes are all equal to dx. The new particle
distribution is computed from the old one with the interpolation formula:

αn+1
j =

∑

i

αn
i Λ

(xi − x̃i

dx

)
.

We can re-write the latter equation as:

un+1
j V n+1

j =
∑

i

un
i V n

i Λ
(xj − xi − dt g̃(u)n

i

dx

)
.

As V n+1
j = V n

i = dx this equation simplifies in:

un+1
j =

∑

i

un
i Λ

(xj − xi − dt g̃(u)n
i

dx

)
.

xi and xj being the nodes of a uniform grid, with space step dx, we have:

xj − xi

dx
= j − i.

We finally get:

un+1
j =

∑

i

un
i Λ

(
j − i − dt

dx
g̃(u)n

i

)
.

�

We recognize the form of a finite-difference or finite-volume scheme. For
example, if we develop this formula with the kernel Λ2 in the linear case g(u) =
a > 0, with the CFL condition |a dt

dx | < 1
2 we get the Lax-Wendroff scheme.

Monaghan ([22]) had already noticed a similarity between particle methods and
finite differences methods. In [8], Wee et Ghoniem used an analysis similar to
ours to build modified interpolation kernels taking into account diffusion terms.
The formula (4) is difficult to interpret by itself, because the weights associated
to the values un

i are expressed with the kernel Λ. But it is possible to obtain
several properties of the particle scheme only with the knowledge of the number
of momentums preserved by the interpolation kernel Λ. The first one adresses
the consistency of particles methods:

RR n° 7759
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Proposition 2 Let Λ be an interpolation kernel piecewise polynomial of degree
N with compact support, which preserves at least the two first momentums. The
scheme (4) can be written in a conservative form consistent with the equation
(1).

To solve a flow where shocks may appear, it is crucial that the numerical
scheme can be written in conservative form consistent with the equation to
solve. In hyperbolic problems this property ensures the scheme to satisfy the
discrete Rankine-Hugoniot conditions across discontinuities. Thus, if the scheme
is converging, it converges necessarily toward a weak solution of the considered
equation. At the contrary, a non-conservative scheme used to solve conservation
laws will have a problematic convergence ([2] and [13]).

One can distinguish two kinds of interpolation kernels: kernels whose support
size is an even integer (for example kernels Λ1, Λ3, M4 and M ′

4), and kernels
whose support size is odd (for example Λ2 and M3). For the sake of briefness,
in the following we will call them respectively kernels with even or odd support.
The finite difference stencil provided by kernels with even support varies with
the sign of the velocity of the particles. For this reason these kernels suffer
from problems of consistency in the finite difference sense (visible through an
analysis of the truncation error)) if the velocity of the particles changes sign, as
it is proved in [20] and [19]. On the contrary, kernels with odd support like Λ2

are defined on intervals [k− 1/2, k +1/2], and the formula used to interpolate a
particle on a grid point does not depend on the velocity of the particle. Under
a CFL condition |g(uj)

dt
dx | < 1

2 ∀j these kernels do not suffer from consistency
problems. In the following we will therefore focus our study on kernels with
odd support. The second property that we will prove adresses the accuracy of
particle schemes:

Proposition 3 Let Λ be an interpolation kernel with odd support, piecewise
polynomial of degree N , which preserves the M first momentums, and u a so-
lution of equation (1). For a given n ≥ 0, we denote un

j = u(jdx, ndt) ∀j. If

we suppose that the functions u et g̃ are at least of class CM−1, and the CFL
condition |g(uj)

dt
dx | < 1

2 ∀j is satisfied, then un+1
j defined by (4) satisfies:

un+1
j =

M−1∑

i=0

dti

i!
(−1)i ∂

i(ug̃i)

∂xi
(jdx, ndt) + O(dxM ) (5)

This property is also satisfied by kernels with even support, if the sign of the
velocity of the particles is constant. In this case actually, the stencil used to
remesh the particles does not change, and the reasoning is the same as for ker-
nels with odd support. The proofs of propositions 2 et 3 are detailed in section
3.2.

The formula (5) allows us to evaluate the accuracy of the particle method
with respect to time and space. We assume that dx and dt are proportional. If

RR n° 7759
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we take g̃(u) = g(u), the truncation error En+1
j is:

En+1
j =

u(jdx, (n + 1)dt) − un+1
j

dt

=
u(jdx, (n + 1)dt − u(jdx, ndt))

dt
+ (g(u)u)x(jdx, ndt)

−dt

2
(g(u)2u)xx(jdx, ndt) + O(dx2)

= ut(jdx, ndt) +
dt

2
utt(jdx, ndt) + (g(u)u)x(jdx, ndt)

−dt

2
(g(u)2u)xx(jdx, ndt) + O(dx2) + O(dt2)

= O(dt)

The scheme is thus first order accurate even if the interpolation kernel preserves

a higher number of momentums, because of the non-zero term ∂2u
∂t2 − ∂2(g(u)2u)

∂x2 .
Actually, the choice g̃(u) = g(u) consists in moving the particle during the time
step dt with its velocity evaluated at the beginning of the time step:

x̃j = xj + dt g(uj).

It is an explicit first order Euler scheme, and consequently the particle moving is
also order one. Therefore, in order to increase the scheme accuracy, the velocity
of particles during time step dt needs to be evaluated with a better accuracy.
In [7] was introduced a new Runge-Kutta 2 advancing scheme for the particles,
allowing to recover in the non-linear case a second order accuracy. The idea is to
use the velocity of the particle at the middle of the time step, at t+ dt

2 . Because
this value is not exactly known, it is replaced by a second order approximation:
g(u + dt

2
du
dt ). Thus we move the particles at velocity:

g̃(u) = g

(

u +
dt

2

du

dt

)

. (6)

That is:

x̃j = xj + dt g

(

u +
dt

2

du

dt

)

x=xj

.

Proposition 4 For smooth enough solutions, the particle scheme (4) computed
with the corrected velocity (6) is second order accurate if Λ preserves at least
the first three momentums.

Proof of Proposition 4:
The scheme truncation error becomes:

En+1
j =

u(jdx, (n + 1)dt) − un+1
j

dt

= ut(jdx, ndt) +
dt

2
utt(jdx, ndt) + (g(u +

dt

2

du

dt
)u)x(jdx, ndt)

−dt

2
(g(u +

dt

2

du

dt
)2u)xx(jdx, ndt) + O(dx2)

= ut(jdx, ndt) +
dt

2
utt(jdx, ndt) + (g(u)u)x(jdx, ndt)

+
dt

2
(
du

dt
ug′(u))x(jdx, ndt) − dt

2
(g(u)2u)xx(jdx, ndt) + O(dx2).

RR n° 7759
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We want to prove that the terms: utt + (du
dt ug′(u))x − (g(u)2u)xx vanish.

utt = −(g(u)u)tx = −(g′(u)uut + g(u)ut)x =
[
(g′(u)u + g(u))(g(u)u)x

]

x

du

dt
= −(g(u))x

We check that:
[
(g′(u)u + g(u))(g(u)u)x

]

x
− ((

∂(g(u))

∂x
ug′(u))x − (g(u)2u)xx = 0.

Thus we obtain:
En+1

j = O(dx2).

�

3.2 Proof of propositions 2 and 3

We present in this subsection the proofs of propositions 2 and 3 in the case of a
kernel with odd support. These proofs are based on the fact that interpolation
kernels preserve a certain number of momenta. We begin with the proof of an
lemma that will be used in the following.

Lemma 1 Let Λ be a interpolation kernel with odd support, preserving the M
first momentums. ∀m,∀i such that 0 ≤ i ≤ M − 1 we have:

∑

k

kiΛ(m)(k) = (−1)i i! δm
i (7)

Proof of lemma 1

Λ preserves the M first momenta:
∑

k

kiΛ(k − x) = xi ∀ 0 ≤ i ≤ M − 1.

We deduce from this formula that:

if i = 0 and m > 0
∑

k

kiΛ(m)(k − x) = 0

if i = m = 0
∑

k

kiΛ(m)(k+ − x) =
∑

k

Λ(k − x) = 1

if i 6= 0 and 0 ≤ m ≤ i
∑

k

ki(−1)mΛ(m)(k − x) = i(i − 1)...(i − m + 1)xi−m

if i 6= 0 and m > i
∑

k

ki(−1)mΛ(m)(k − x) = 0.

Thus, for x = 0 we have:

if i = 0 and m > 0
∑

kiΛ(m)(k) = 0

if i = m = 0
∑

k

kiΛ(k) = 1

if i 6= 0 and m 6= i
∑

k

kiΛ(m)(k) = 0

if i 6= 0 and m = i
∑

k

kiΛ(m)(k) = (−1)ii!.
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�

Proof of proposition 2 (consistency of the scheme)

Let u be a smooth solution of equation ut + (g(u)u)x = 0 for a given initial
condition. Let us denote:

un
j = u(jdx, ndt) ∀n ≥ 0,∀j.

We consider the formula (4) written in a slightly different form:

uj
n+1 =

∑

k

un
j+k Λ(k +

dt

dx
g̃(u)n

j+k). (8)

For the sake of clarity we note g̃j+k = g̃(u)n
j+k, uj = un

j and λ = dt
dx . Formula

(8) becomes:

uj
n+1 =

∑

k

uj+k Λ(k + λg̃j+k).

N is the degree of Λ. The kernel Λ being derivable on each interval [k−1/2, k+
1/2], and because of the CFL condition, we can develop each term in a Taylor
expansion:

Λ
(
k + λg̃j+k

)
=

N∑

i=0

Λ(i)(k)

i!

(
λg̃j+k

)i
.

We deduce from the latter that:

un+1
j =

∑

k

N∑

i=0

λi

i!
Λ(i)(k)uj+kg̃i

j+k (9)

As we have assumed that the support of Λ is compact, it can be included in
[−d, d], with d an integer, and equation (9) can be re-written:

un+1
j =

d∑

k=−d,k 6=0

[ N∑

i=0

uj+k
λi

i!
Λ(i)(k+)g̃i

j+k

]

+
[ N∑

i=0

uj
λi

i!
Λ(i)(0+)g̃i

j

]

As
∑

k

Λ(k + x) = 1 ∀ x, we have:

Λ(i)(0) = δi
0 −

∑

k 6=0

Λ(i)(k)

Thus:

un+1
j = uj +

d∑

k=−d,k 6=0

N∑

i=0

λi

i!
Λ(i)(k)

[
uj+kg̃i

j+k − uj g̃
i
j

]

un+1
j = uj +

d∑

k=1

N∑

i=0

λi

i!

[

Λ(i)(k)
[
uj+kg̃i

j+k − uj g̃
i
j

]
+ Λ(i)(−k)

[
uj−kg̃i

j−k − uj g̃
i
j

]]
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We notice that:

uj+kg̃i
j+k − uj g̃

i
j =

k∑

a=1

uj+ag̃i
j+a −

k−1∑

a=0

uj+ag̃i
j+a

uj−kg̃i
j−k − uj g̃

i
j = −

0∑

a=−k+1

uj+ag̃i
j+a +

−1∑

a=−k

uj+ag̃i
j+a

Thus:

un+1
j = uj +

d∑

k=1

N∑

i=0

λi

i!

[

Λ(i)(k)
[

k∑

a=1

uj+ag̃i
j+a −

k−1∑

a=0

uj+ag̃i
j+a

]

+Λ(i)(−k)
[
−

0∑

a=−k+1

uj+ag̃i
j+a +

−1∑

a=−k

uj+ag̃i
j+a

]

We can then write:

un+1
j = uj − λ

[
G(uj+d, ..., uj−d+1) − G(uj+d−1, ..., uj−d)

]

with:

G(uj+d, ..., uj−d+1) = −
d∑

k=1

N∑

i=0

λi−1

i!

[

Λ(i)(k)

k∑

a=1

uj+ag̃i
j+a − Λ(i)(−k)

0∑

a=−k+1

uj+ag̃i
j+a

]

Consequently the scheme (4) can be written in conservative form. Moreover:

G(u, ..., u) = −
d∑

k=1

N∑

i=0

λi−1

i!

[

Λ(i)(k)

k∑

a=1

ug(u)i − Λ(i)(−k)

0∑

a=−k+1

ug(u)i
]

G(u, ..., u) = −
d∑

k=1

N∑

i=0

ug(u)i λ
i−1

i!

[

kΛ(i)(k) − kΛ(i)(−k)
]

According to lemma 1, we have then:

G(u, ..., u) = ug(u).

The scheme (4) is therefore consistent with equation (1).
�

Proof of proposition 3 (accuracy of the scheme)

We start again from formula (8):

uj
n+1 =

∑

k

uj+k Λ(k + λg̃j+k).

The kernel Λ being derivable on each interval [k − 1/2, k + 1/2], we have:

Λ
(
k + λg̃j+k

)
=

N∑

i=0

Λ(i)(k)

i!

(
λg̃j+k

)i
.
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Thus:

un+1
j =

∑

k

N∑

i=0

λi

i!
Λ(i)(k)uj+kg̃i

j+k.

We define (fi)j+k = uj+kg̃i
j+k and develop these terms in a Taylor serie:

(fi)j+k =
M−1∑

a=0

∂a(fi)

∂xa
(xj)

kadxa

a!
+ O(dxM )

Thus:

un+1
j =

∑

k

N∑

i=0

λi

i!

M−1∑

a=0

kadxa

a!
Λ(i)(k)

∂a(fi)

∂xa
(xj) + O(dxM ).

We exchange the symbols
∑

:

un+1
j =

N∑

i=0

λi

i!

M−1∑

a=0

dxa

a!

∂a(fi)

∂xa
(xj)

∑

k

kaΛ(i)(k) + O(dxM ).

With the results of lemma 1 we simplify the latter expression:

un+1
j =

M−1∑

i=0

λi

i!

dxi

i!

[∂i(fi)

∂xi
(xj)(−1)ii!

]

+ O(dxM )

=
M−1∑

i=0

λi

i!
(−1)idxi ∂

i
(
ug̃(u)i

)

∂xi
(xj) + O(dxM ).

�

4 TVD remeshing formulas

Recently Cottet and Magni derived in [5], [19] and [20] TVD remeshing for-
mulas for particle methods. This subsection gives the principles to construct
TVD remeshing formulas based on the Λ2 kernel in the non-linear case and for
CFL conditions less than 1/2, avoiding consistency problems evocated in [19].
Exemples are given for Burgers and Euler equations.

4.1 Principle of TVD remeshing schemes

Let the velocity be positive (0 < λg̃ < 1/2). The remeshing of a particle with
the Λ2 kernel is equivalent to affect the weights







α(yj) = αj = yj (yj − 1) /2
β(yj) = βj = 1 − y2

j

γ(yj) = γj = yj (yj + 1) /2
(10)

to the amount carried by the particle and redistribute it on the neighbouring
grid points. This is sketched on the Figure 1, where yj = λg̃j is the relative
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j

Space

Time

t

t+dt

xjxj−1 xj+1

γ(yj)β(yj)α(yj)

Figure 1: Λ2 remeshing formulas, 0 < λg̃ < 1/2.

distance between the remeshed particle j and the grid point at the left. The
scheme resulting of the Λ2 remeshing (10) at the grid point xj and the time
tn = n dt is

un+1
j =

∑

k un
j+k Λ2 (k + λg̃j+k)

= γj−1 un
j−1 + βj un

j + αj+1 un
j+1.

(11)

If now the velocity is negative (−1/2 < λg̃ < 0) as shown in the figure 2, the

j

Space

Time

t+dt

t

xjxj−1 xj+1

γ
′

(yj)β
′

(yj)α
′

(yj)

Figure 2: Λ2 remeshing formulas, −1/2 < λg̃ < 0.

weights are






α
′

(yj) = α(yj − 1)

β
′

(yj) = β(yj − 1)

γ
′

(yj) = γ(yj − 1)

(12)

and the scheme is

un+1
j = γ

′

j−1 un
j−1 + β

′

j un
j + α

′

j+1 un
j+1. (13)

Since yj = λg̃j + 1, (11) is equivalent to (13) and a unique scheme is given
at the point xj independently of the velocity sign. The order of accuracy is
two, and the drawback of this scheme is to be not TVD, allowing numerical
oscillations. In order to have a TVD scheme, it is possible to introduce some
numerical diffusion in (11) by adding a parameter σ to the remeshing formulas
(10)-(12). This new formula (14) is called M̄3, in reference to the M3 formula
obtained when σ = 1/8 and used in traditional Particle In Cell methods. The
interpolation kernel M̄3 preserves the two first momenta and thus provides order
one accuracy. The value of σ will be evaluated in section 4.2 to ensure the TVD
property of the M̄3 scheme.







αM3(yj) = yj (yj − 1) /2 + σ, αM3′

(yj) = αM3(yj − 1)

βM3(yj) = 1 − y2
j − 2σ, βM3′

(yj) = βM3(yj − 1)

γM3(yj) = yj (yj + 1) /2 + σ, γM3′

(yj) = γM3(yj − 1).

(14)
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A TVD remeshing formula of order two in smooth regions can be built
introducing a limiter φ to combine the TVD formula M̄3 (obtained when φ = 0)
and the second order Λ2 formula (φ = 1). The weights (10) and (12) must be
replaced respectively by (15) if 0 < λg̃ < 1/2 and (16) if −1/2 < λg̃ < 0.







αTV D(yj , φ) = yj (yj − 1) /2 + σ
(
1 − φj−1/2

)

βTV D(yj , φ) = 1 − y2
j − σ

(
1 − φj−1/2

)
− σ

(
1 − φj+1/2

)

γTV D(yj , φ) = yj (yj + 1) /2 + σ
(
1 − φj+1/2

)
,

(15)







αTV D′

(yj , φ̄) = αTV D(yj − 1, φ̄)

βTV D′

(yj , φ̄) = βTV D(yj − 1, φ̄)

γTV D′

(yj , φ̄) = γTV D(yj − 1, φ̄).

(16)

The limiters φj±1/2 = φ
(
rj±1/2

)
with rj+1/2 = (uj − uj−1) / (uj+1 − uj), rj−1/2 =

(uj−1 − uj−2) / (uj − uj−1) and φ̄j±1/2 = φ
(
r̄j±1/2

)
with r̄j+1/2 = (uj+2 − uj+1) / (uj+1 − uj),

r̄j−1/2 = (uj+1 − uj) / (uj − uj−1) will be calculated in section 4.3 to ensure the
TVD property of the scheme for all grid points xj .

In the case of a velocity changing sign, we must take care about the limiters.
φ(r) 6= φ(r̄) so the scheme in some grid points is different of (11) and (13).
To overcome this difficulty it is possible to replace formulas (15)-(16) to remesh
some specific particles. More precisely, if the particle j−1 has a positive velocity
and j has a negative velocity, this particle must be remeshed by the formulas







αTV D′

j = (yj − 1) ((yj − 1) − 1) /2 + σ
(
1 − φ

(
rj−1/2

))

βTV D′

j = 1 − (yj − 1)
2 − σ

(
1 − φ

(
rj−1/2

))
− σ

(
1 − φ

(
r̄j+1/2

))

γTV D′

j = (yj − 1) ((yj − 1) + 1) /2 + σ
(
1 − φ

(
r̄j+1/2

))
.

(17)

In the same way, if j−1 has a negative velocity and j is a particle with positive
velocity, it must be remeshed with







αTV D
j = yj (yj − 1) /2 + σ

(
1 − φ

(
r̄j−1/2

))

βTV D
j = 1 − y2

j − σ
(
1 − φ

(
r̄j−1/2

))
− σ

(
1 − φ

(
rj+1/2

))

γTV D
j = yj (yj + 1) /2 + σ

(
1 − φ

(
rj+1/2

))
.

(18)

Remark:
The TVD remeshing formulas (15)-(16)-(17)-(18) are still consistent with an
order one accuracy at least, and conservative since the sum of the weights used
to remesh any particle is one.

4.2 The TVD scheme M̄3

We give the proof of the TVD property of the M̄3 scheme discussing on the value
of the parameter σ. This parameter can be viewed as an artificial viscosity since
when σ = 0 the M̄3 scheme reduced to the Λ2 scheme, and to the M3 scheme
when σ = 1/8. Let f and h be the two following functions

f(u, g(u)) = λgu (λg + 1)
h(u, g(u)) = λgu (λg − 1) .

(19)

RR n° 7759



Consistency, accuracy and entropic behaviour of remeshed particle methods 16

Let us define ∆fj+1/2 = fj+1 − fj , ∆fj−1/2 = fj − fj−1, and the same notation
hold replacing f by h or u. If the particles are remeshed with the formulas
(15)-(16), the scheme at the grid point xj is

un+1
j = un

j + Cj+1/2

(
un

j+1 − un
j

)
− Dj−1/2

(
un

j − un
j−1

)
, (20)

with 





Cj+1/2 = σ + 1
2

∆hj+1/2

∆uj+1/2

Dj−1/2 = σ + 1
2

∆fj−1/2

∆uj−1/2
+ σ

(
φj+1/2

rj+1/2
− φj−1/2

)

,
(21)

and following the Taylor-Lagrange formula, there exists ũ ∈]uj−1, uj [ and ˜̃u ∈
]uj−1, uj [ such as

{

Cj−1/2 = σ + 1
2h

′

(˜̃u)

Dj−1/2 = σ + 1
2f

′

(ũ) + σ
(

φj+1/2

rj+1/2
− φj−1/2

)

.
(22)

The scheme M̄3 is reached doing φ = 0 in (22). Following the Harten theorem
[12], the scheme (20) will be TVD if

{
Cj−1/2 ≥ 0
0 ≤ Dj−1/2 ≤ 1 − Cj−1/2.

(23)

Or if forall u 





σ + 1
2h

′

(u) ≥ 0

σ + 1
2f

′

(u) ≥ 0

2σ + 1
2f

′

(u) + 1
2h

′

(u) ≤ 1,

(24)

wich is written again







σ + 1
2λg (λg − 1) + 1

2g
′

(u)λu (2λg − 1) ≥ 0

σ + 1
2λg (λg + 1) + 1

2g
′

(u)λu (2λg + 1) ≥ 0

2σ + λ2g2 + 2g
′

(u)λ2gu ≤ 1.

(25)

Assuming
{ |λg| ≤ C

|λg
′ | ≤ C ′,

(26)

1
2

∣
∣
∣f

′

∣
∣
∣ = 1

2

∣
∣
∣h

′

∣
∣
∣

≤ 1
2 |λg|2 + 1

2 |λg| + 1
2 |u|

∣
∣
∣λg

′

∣
∣
∣ + |λg|

∣
∣
∣λg

′

∣
∣
∣ |u|

≤ 1
2 C (C + 1) + 1

2 C
′

max |u| (1 + 2C)
≤ σ

(27)

if C and C
′

max |u| are small enough. So,

{
1
2 |f

′ | ≤ σ
1
2 |h

′ | ≤ σ,
(28)

and chosing σ = 1/4,






1
2

(

|f ′ | + |h′ |
)

≤ 2σ = 1/2

1
2

(

|f ′ | + |h′ |
)

≤ 1 − 2σ = 1/2,
(29)
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the scheme M̄3 is TVD. This proof holds in the general case, but requires some
constraint on the velocity field and his derivative: (26) with C and C

′

max |u|
small enough. When the velocity field is given, an optimal value of σ can be
determined with the CFL condition corresponding. We study the case of the
Burgers and the Euler equations.

4.2.1 Burgers equation

Let us consider the Burgers equation, ie g(u) = u/2. Since g
′

(u) = 1/2 there
exists two constants C and C

′

satisfying (26) under a CFL condition. Knowing
the velocity g it is possible to find an optimal parameter σ allowing the biggest
CFL condition to have the scheme M̄3 TVD.

Indeed, the conditions (25) becomes







σ ≥ 1
2λu − 3

8 (λu)
2

σ ≥ −1
2λu − 3

8 (λu)
2

σ ≤ 1
2 − 3

8 (λu)
2
.

(30)

Setting c = λ
(

u
2

)
and according to the two first inequalities of (30), σ ≥ 1/6 if

|c| ≥ 1
3 . According to the last condition, CFL condition must be max|c| ≤

√
2/3 ≃

0.47 to have σ ≤ 1/6, and then we chose σ = 1/6.

Remark:
If σ = 1/4 the CFL condition is reduced to 1/

√
6 = 0.41 and the M̄3 formula is

more diffusive than with σ = 1/6.

4.2.2 Euler equations

Let be u1 = ρ, u2 = ρu and u3 = ρE. Then, the Euler equations are written






∂u1

∂t + ∂
∂x

(

u1
u2

u1

)

= 0

∂u2

∂t + ∂
∂x

(

u2
u2

u1

)

= − ∂p
∂x

∂u3

∂t + ∂
∂x

(

u3
u2

u1

)

= − ∂
∂x

(

p u2

u1

)

p = (γ − 1)
(

u3 − 1
2

u2
2

u1

)

.

(31)

This equations are solved using a splitting method of two steps. The press-
sure effects are solved in a Lagrange step and the convective part is solved in an
advection step [29]. We are interested in this last step wich consists to advect
particles to the velocity g(u1, u2, u3) = u2/u1 and remesh them on a grid with
TVD formulas. In this paragraph, we find optimal parameters σ to construct
TVD formulas M̄3 allowing the biggest CFL condition. The limiters used in the
remeshing formulas (15)-(16) will be constructed in the section 4.3.

Since the optimal parameter depends on the amount u carrying by the par-
ticles, the calculation must be done for the three equations of the system (31).
Let us consider the first equation. u = u1, g = u2/u1 and g

′

= −u2/u2
1, so with

c = λu2/u1 (25) becomes






σ − 1
2c2 ≥ 0

σ − 1
2c2 ≥ 0

2σ − c2 ≤ 1.
(32)
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Since to ensure the consistency of the Λ2 remeshing [19] −1/2 ≤ c ≤ 1/2, the
CFL condition is max|c| ≤ 1/2 and σ = 1/8.

In the same way, for the second equation of (31), u = u2, g = u2/u1, g
′

=
1/u1 and (25) becomes







σ + 3
2c2 − c ≥ 0

σ + 3
2c2 + c ≥ 0

2σ + 3c2 ≤ 1.
(33)

As for Burgers equation, the optimal value for the parameter σ is 1/6 and the
CFL condition is max|c| ≤

√
2/3.

Finaly, for the energy equation, u = u3, g = u2/u1 and g
′

= 0. So (25)
becomes 





σ + 1
2c2 − 1

2c ≥ 0
σ + 1

2c2 + 1
2c ≥ 0

2σ + c2 ≤ 1,
(34)

and the optimal parameter is σ = 1/8 allowing a CFL condition of
√

3/2 wich
is reduced to 1/2 for the consistency.

We want to use the same parameter σ to remesh ρ, ρ u or ρ E with the M̄3

formula. So we chose the smallest value of sigma, ie σ = 1/6, and the CFL
condition is max|c| ≤

√
2/3.

4.3 Calculation of the limiter φ(r)

Let us assume the velocity g ≥ 0. The limiters are built from (20)-(22) using
again the Harten theorem [12]. Assuming that the paramter σ is chosen to have
a M̄3 scheme TVD as explained in the section 4.2, then the coefficient Cj−1/2

given in (21) is positive from the conditions (23). So the scheme (20) obtained
using the Λ2-TVD remeshing formulas (15)-(16) will be TVD if

0 ≤ Dj−1/2 ≤ 1 − Cj−1/2 ∀u. (35)

This condition is written again

0 ≤ 1 +
1

2σ
f

′

(u) − φj−1/2 +
φj+1/2

rj+1/2
≤ 1

σ
− 1 − 1

2σ
h

′

(u), (36)

which is verified if the limiters satisfy






0 ≤ φj−1/2 ≤ 1 + 1
2σ f

′

(u)

= 1 + 1
2σ λ2g2 + 1

σ λ2gg
′

u + 1
2σ λg + 1

2σ λg
′

u

0 ≤ φj+1/2/rj+1/2 ≤ 1
σ − 1 − 1

2σ h
′

(u)

= 1
σ − 2 − 1

σ λ2g2 − 2
σ λ2gg

′

u.

(37)

If the velocity g ≤ 0, the coefficients Cj+1/2 and Dj−1/2 can be chosen in order
to introduce the slope ratio r̄j−1/2 = ∆uj+1/2/∆uj−1/2:







Cj+1/2 = σ + 1
2

∆hj+1/2

∆uj+1/2
+ σ

(
φj−1/2

r̄j−1/2
− φj+1/2

)

Dj−1/2 = σ + 1
2

∆fj−1/2

∆uj−1/2
.

(38)

The limiters are built by imposing 0 ≤ Cj+1/2 ≤ 1 − Dj+1/2,
{

0 ≤ φj+1/2 ≤ 1 + 1
2σ λ2g2 + 1

σ λ2gg
′

u− 1
2σ λg− 1

2σ λg
′

u

0 ≤ φj−1/2/r̄j−1/2 ≤ 1
σ − 2 − 1

σ λ2g2 − 2
σ λ2gg

′

u.
(39)
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In the case of a velocity changing sign, particles are remeshed by the formulas
(17) and (18). Then the scheme obtained on the grid point xj is

un+1
j = un

j + 1
2 (hj+1 − hj) + σ

(
un

j+1 − un
j

)

− 1
2 (fj − fj−1) − σ

(
un

j − un
j−1

)

−σ
[
φ( ¯rj+1/2)

(
un

j+1 − un
j

)
− φ(rj−1/2)

(
un

j − un
j−1

)]
.

(40)

This scheme will be TVD if






σ + 1
2f

′ − σφj−1/2(r) ≥ 0

σ + 1
2h

′ − σφj+1/2 (r̄) ≥ 0

2σ + 1
2

(

f
′

+ h
′

)

− σ
(
φj+1/2 (r̄) + φj+1/2(r)

)
≤ 1.

(41)

The first equation is satisfied since (37) hold and the second also with (39). The
last is also satisfied since following the inequality (35),

2σ +
1

2

(

f
′

+ h
′

)

− σφ (r̄) ≤ 1 − σ
φ (r̄)

r̄
≤ 1 + σφ(r), (42)

since

−φ (r̄)

r̄
≤ 0 ≤ φ (r) . (43)

So, the scheme obtained in the case of a velocity changing sign is TVD if (37)
and (39) hold.

4.3.1 Exemples

As in the section 4.2, let us look at the case of the Burgers equation and the Euler
equations. For the Burgers equation, g(u) = u/2, g

′

(u) = 1/2, and σ = 1/6, so
always with c = λg the equations (37) and (39) are written:

{
0 ≤ φ ≤ 1 ≤ 1 + 9c2 + 6|c|
0 ≤ φ ≤ r

(
4 − 18c2

)
.

(44)

Then the limiter is built in order to be as large as possible:

φ (r) = max
{
0, min

[
1 + 9 max c2 + 6 max |c|,

(
4 − 18 max c2

)
r
]}

, (45)

or
φ (r) = max

{
0, min

[
1,

(
4 − 18 max c2

)
r
]}

, (46)

and r = r̄ if the velocity g of the remeshed particle is negative.

For the Euler equations, σ = 1/6. So, for the first equation (mass conserva-
tion),(37)-(39) becomes

{
0 ≤ φ ≤ 1 − 1

2σ c2 = 1 − 3c2

0 ≤ φ ≤ r
(

1
σ − 2

)
= 4r ≤ r

(
1
σ

(
1 + c2

)
− 2

)
.

(47)

For the second Euler equation (momentum conservation),(37)-(39) becomes






0 ≤ φ ≤ 1 ≤ 1 + 3
2σ c2 + 1

σ c = 1 + 9c2 + 6c, c ≥ 0
0 ≤ φ ≤ 1 ≤ 1 + 3

2σ c2 − 1
σ c = 1 + 9c2 − 6c, c ≤ 0

0 ≤ φ ≤ r
(

1
σ − 2

)
− 3

σ c2 = r
(
4 − 18c2

)
,

(48)
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and for the last equation (energy conservation),(37)-(39) becomes






0 ≤ φ ≤ 1 ≤ 1 + 1
2σ c2 + 1

2σ c = 1 + 3c2 + 3c, c ≥ 0
0 ≤ φ ≤ 1 ≤ 1 + 1

2σ c2 − 1
2σ c = 1 + 3c2 − 3c, c ≤ 0

0 ≤ φ ≤ r
(

1
σ

(
1 − c2

)
− 2

)
= r

(
4 − 6c2

)
.

(49)

We have chosen to remesh the variables ρ, ρu and ρE by the same formula.
To do this, the same limiter must be used in (15)-(16), so it must satisfy in the
same time inequalities (47), (48) and (49). Setting

r
(1)
j+1/2 =

∆ρj−1/2

∆ρj+1/2
, r

(2)
j+1/2 =

∆ (ρu)j−1/2

∆ (ρu)j+1/2

, r
(3)
j+1/2 =

∆ (ρE)j−1/2

∆ (ρE)j+1/2

, (50)

and

r̄
(1)
j−1/2 =

∆ρj+1/2

∆ρj−1/2
, r̄

(2)
j−1/2 =

∆ (ρu)j+1/2

∆ (ρu)j−1/2

, r̄
(3)
j−1/2 =

∆ (ρE)j+1/2

∆ (ρE)j−1/2

, (51)

the limiter is built like this

φ
(

r(1), r(2), r(3)
)

= max
{

0, min
[

1 − 3 max c2, 4r(1),
(
4 − 18 max c2

)
r(2),

(
4 − 6 max c2

)
r(3)

]}

,

(52)
replacing r with r̄ for negative velocities.

4.4 Numerical validation: Sod shock tube

In this section we present numerical results for the TVD particle methods ap-
plied to the 1D Euler equations. We adress the classical test case ([28]) of a
shock tube initially made up two compartments, each containing a perfect gas
(γ = 1.4). The initial conditions are the following:

~U(x, 0) = 0

ρ(x, 0) = 1 if 0 ≤ x ≤ 0.5

0.125 if 0.5 < x ≤ 1

P (x, 0) = 2.5 (γ − 1) if 0 ≤ x ≤ 0.5

0.25 (γ − 1) if 0.5 < x ≤ 1

We solve the Euler equations using a splitting between the Lagrangian step,
where are taken into account pressure effects, and the advection step, during
which the particles are moved and remeshed. The Lagrangian step is solved
with an approximate Riemann solver (acoustic approximation) with a limited
MUSCL reconstruction. On Figure 3 are presented the results at t = 0.2 for the
density, velocity, pressure and thermal energy. The oscillations near the discon-
tinuities observed in [29] that were created by classical interpolation kernels as
Λ2, Λ3 or M ′

4 have disappeared.
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Figure 3: Sod shock tube, 100 particles, from left to right and from top to
bottom: density, velocity, pressure, thermal energy.

5 Convergence of TVD particle methods toward

entropy solution

5.1 Results

In this section we address the convergence of TVD particle schemes as defined
in previous section toward the unique entropy solution of equation (1). In the
remaining of the section we make the following assumptions:

• the initial condition u0 of equation (1) has its total variation bounded:
TV (u0) < +∞ and is bounded in L∞ norm.

• the function g is of class C1(R).

Let us give more details about how the numerical scheme that we study is
defined. We denote xj = j∆x, xj+1/2 = (j+1/2)∆x and tn = n∆t. We suppose
that ∆t et ∆x are proportional to each other: ∆t

∆x = λ with λ a constant. The
sequence (un

j )n≥0,j∈Z is defined by recurrence by equation (4) and the initial
sequence (u0

j )n≥0,j∈Zis defined by:

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx ∀j ∈ Z.

Because we have assumed that TV (u0) < +∞, we have also on the discrete
level: ∑

j

|u0
j+1 − u0

j | < +∞.
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We define the piecewise constant function:

u∆x(x, t) = un
j for (x, t) ∈ [xj+1/2, xj−1/2) × [tn, tn+1).

The velocity of the particles is evaluated with second order accuracy, in order
that a particle scheme with a second order kernel is really second order. We
consider the TVD particle scheme built with the kernels Λ2 and M̄3 as presented
in section 4. If we name G2

j+1/2 the flux of the Λ2 kernel, and Ḡ3
j+1/2 the flux

of the M̄3 kernel, the TVD particle scheme can be expressed as:

un+1
j = uj − λ

[
(1 − φj+1/2) G2

j+1/2 + φj+1/2 Ḡ3
j+1/2 − (1 − φj−1/2) G2

j−1/2 − φj−1/2 Ḡ3
j−1/2

]
.

With the expression of the flux obtained in section 3 this can be re-written:

un+1
j = uj −

d∑

k=1

N∑

i=0

λi

i!

[

(1 − φj+1/2)
(
− Λ

(i)
2 (k)

k∑

a=1

uj+ag̃i
j+a + Λ

(i)
2 (−k)

0∑

a=−k+1

uj+ag̃i
j+a

)

+φj+1/2

(
− M̄3

(i)
(k)

k∑

a=1

uj+ag̃i
j+a + M̄3

(i)
(−k)

0∑

a=−k+1

uj+ag̃i
j+a

)

−(1 − φj−1/2)
(
− Λ

(i)
2 (k)

k−1∑

a=0

uj+ag̃i
j+a + Λ

(i)
2 (−k)

−1∑

a=−k

uj+ag̃i
j+a

)

−φj−1/2

(
− M̄3

(i)
(k)

k−1∑

a=0

uj+ag̃i
j+a + M̄3

(i)
(−k)

−1∑

a=−k

uj+ag̃i
j+a

)]

.

Therefore we can write for the expression of such a TVD particle scheme:

un+1
j =

d∑

k=−d

un
j+kΛ̄(k, φj−1/2, φj+1/2, λg̃j+k) (53)

The remeshing weights depend of the values of the other neighbouring particles,
through the limiting function φ. The two interpolation kernels used in this
non-linear combination can in fact be any interpolation kernel preserving the
two first momentums and giving TVD remeshing formulas, and any other more
accurate interpolation kernel, as long as the combination of their fluxes is TVD
and consistent.

Proposition 5 The particle scheme defined by (53), built as a TVD combina-
tion of the kernels Λ2 and M̄3 as described in 4: and satisfying the following
CFL condition:

∀k,∀n, λ|g̃(un
k )| < 1/2 and λ|g(un

k )| < 1/2.

converges in L1
loc norm to the unique entropic solution of (1).

5.2 Proof of Proposition 5

We firstly need to prove that the TVD particle scheme is stable in L∞(R+ ×R)
norm. In that purpose we assume that the particle scheme is not stable in this
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norm and show that it leads to a contradiction. Without a loss of generality
one can assume for example that, ∀M > 0,∃n0, j0 such that un0

j0
> M . Because

the particle scheme can be written in conservative form, we have:

∆x
∑

j

un+1
j = ∆x

∑

k

u0
k.

There exists necessarily an index j1 such that un0

j1
<

M

2
. Thus:

∑

j

|un0

j+1 − un0

j | ≥ |un0

j0
− un0

j1
| ≥ M

2

which is not possible if we choose M such that
M

2
>

∑

j

|u0
j+1 − u0

j |. There-

fore the TVD particle scheme in bounded in L∞(R+ × R) norm, and thus also
bounded in L1(Ω) for every bounded open set Ω ∈ R

+ × R.

Now we want to prove that for every bounded open set Ω ∈ R
+×R the total

variation of the scheme over Ω is bounded. Cottet and Magni have devised their
flux limited particle method in order to have:

∑

j

|un+1
j+1 − un+1

j | ≤
∑

j

|un
j+1 − un

j |∀n.

We use a result in [18], saying that if a conservative scheme with a Lipschtiz-

continuous flux satisfies the property
∑

k

|un+1
j+1 − un+1

j | ≤
∑

k

|un
j+1 − un

j |, then

the total variation of the scheme is bounded. The flux G1
j+1/2+φj+1/2(G

2
j+1/2−

G1
j+1/2) with G1

j+1/2 and G2
j+1/2 defined as in subsection 5.1 is locally Lipschitz-

continuous, and the scheme is stable in L∞(R+ × R) norm. Thus the total
variation of the scheme is bounded.

Now we follow the type of reasoning presented in [18]: we consider a sequence
of numerical approximations u(∆xi) obtained with the particle scheme with grid
parameters ∆xi tending to zero when i tends to infinity. We assume that this
sequence does not converge in L1(Ω) toward u the entropic solution of (1), and
show that this assumption leads to a contradiction. If the particle scheme does
not converge toward u, then there exists some ǫ > 0 and a subsequence u(∆̃xi)

such that:
||u(∆̃xi) − u||L1(Ω) > ǫ ∀i.

Because u(∆̃xi) is bounded in L1(Ω) ∩ TV (Ω), and because of the Helly theorem,
one can extract a subsubsequence u(∆̄xi) that converges in L1(Ω). Let us call ū
the limit of u(∆̄xi). The particle scheme is bounded in L∞(R+ × R) norm, can
be written in conservative form consistent with the equation (1), thus because
of the Lax-Wendroff theorem, u(∆̄xi) is necessarily a weak solution of (1).

Now we want to prove that ū satisfies a weak entropic inequality for all
Kruzkov entropies, ie: ∀φ ∈ C1

0 (R+ × R), φ ≥ 0, ∀K ∈ R,
∫ +∞

0

∫ +∞

−∞

∂φ

∂t
|ū−K|+sgn(ū−K)

(

g(ū)ū−g(K)K
)∂φ

∂x
dxdt+

∫ +∞

−∞

|ū(0, x)−K|φ(0, x) dx ≥ 0.
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This will be possible thanks to the form of the particle scheme: the new particle
values are expressed as a weighted sum of the old values, unlike finite difference
schemes like the Lax-Wendroff scheme. We define:

(I) =

∞∑

n=0

∑

j

1

∆t

[

φn
j |un+1

j − K| − φn
j

∑

k

sgn(un
k − K)[un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))]
]

∆x∆t.

with φ ∈ C1
0 (R+×R) a positive function whose support is included in [−D,D]×

[0, T ]. We firstly want to prove that:

lim
∆t→0

(I) = −
∫ +∞

0

∫ +∞

−∞

φt|ū−K|+sgn(ū−K)(g(ū)ū−g(K)K)φx dxdt−
∫ +∞

−∞

|ū(0, x)−K|φ(0, x) dx

and secondly that:
lim

∆t→0
(I) ≤ 0.

By exchanging the indices j and k and making a change of variable on k we get:

(I) =
∞∑

n=0

∑

j

1

∆t

[

φn
j |un+1

j − K| − sgn(un
j − K)un

j

∑

k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j )

+sgn(un
j − K)K

∑

k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K))

]

∆x∆t.

With a change of variables for indices n the equation becomes:

(I) =
∞∑

n=1

∑

j

1

∆t

[

φn−1
j |un

j − K| − sgn(un
j − K)un

j

∑

k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j )

+sgn(un
j − K)K

∑

k

φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K))

]

∆x∆t

− 1

∆t

∑

j

[

sgn(u0
j − K)u0

j

∑

k

φ0
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃0

j )

−sgn(u0
j − K)K

∑

k

φ0
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K))

]

∆x∆t.

The idea is to recognize in the terms
∑

k φn
j−kΛ̄(k, φj−k−1/2, φj−k+1/2, λg̃n

j ) a

discrete approximation of φ(xj , t
n)−∆t g(un

j )∂φ
∂x (xj ,∆t). The TVD remeshing

scheme is obtained by combining the fluxes of a linear interpolation kernel, which
gives a first order scheme, and another kernel which provides at least second
order interpolation. The resulting scheme is thus at least first order accurate
on every grid point. Therefore, we can write as in the proof of Proposition 3 in
section 3:

∑

k

Λ̄(k, φj−k−1/2, φj−k+1/2, λg̃n
j ) = φ(xj , t

n) − ∆tg(un
j )

∂φ

∂x
(xj , t

n) + O(∆t2)

∑

k

Λ̄(k, φj−k−1/2, φj−k+1/2, λg̃(K)) = φ(xj , t
n) − ∆tg(K)

∂φ

∂x
(xj , t

n) + O(∆t2).
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Therefore when ∆t tends to zero:

(I) → −
∫ +∞

0

∫ +∞

−∞

φt|u − K| + sgn(u − K)(g(u)u − g(K)K)φx dxdt

−
∫ +∞

−∞

|u(0, x) − K|φx(0, x) dx.

Now we want to prove that lim∆t→0(I) ≤ 0. By noting Φ the maximum of |φ|
on [−D,D] × [0, T ] we have:

(I) ≤ Φ

T/∆t
∑

n=0

∆t
∑

j,j∆x∈[−D,D]

∣
∣
∣|un+1

j − K| −
∑

k

sgn(un
k − K)[un

k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))]
∣
∣
∣∆x.

We define:

(Bn) =
∑

j,j∆x∈[−D,D]

∣
∣
∣|un+1

j − K| −
∑

k

sgn(un
k − K)

[

un
k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
]∣
∣
∣∆x.

We want to prove that (Bn) tends to zero when ∆x tends to zero. Because of
the definition of the particle scheme (53):

(Bn) =
∑

j,j∆x∈[−D,D]

∣
∣
∣|

∑

k

un
k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − K|

−
∑

k

sgn(un
k − K)

[

un
k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
]∣
∣
∣∆x.

The kernels involved in the formula of Λ have a compact support, and we have
assumed that a CFL condition was satisfied. So there exists a real S such that:

Λ̄(k − j, φj−1/2, φj+1/2, λg̃k) = 0

if k − j > S.Let η > 0 be a real such that Sdx < η ∀dx. Because u is locally
bounded, for all ǫ > 0 there exists uǫ ∈ C1([−D − η, D + η] × [0, T ]) such that

||u(t, .) − uǫ(t, .)||L1([−D−η,D+η]) ≤ ǫ
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. We split (Bn) into several terms:

(Bn) ≤
∑

j,j∆x∈[−D,D]

∣
∣
∣

∑

k

(un
k − uǫ(xk, tn))Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )
∣
∣
∣∆x

︸ ︷︷ ︸

(a)

+
∑

j,j∆x∈[−D,D]

∣
∣
∣

∑

k

uǫ(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) − uǫ(xj , t

n)
∣
∣
∣∆x

︸ ︷︷ ︸

(b)

+
∑

j,j∆x∈[−D,D]

∣
∣
∣sgn(uǫ(xj , t

n) − K)(uǫ(xj , t
n) − K)∆x

︸ ︷︷ ︸

(c)

−
∑

k

sgn(uǫ(xk, tn) − K)
(

uǫ(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

︸ ︷︷ ︸

(c)

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
)∣
∣
∣

︸ ︷︷ ︸

(c)

+
∑

j,j∆x∈[−D,D]

∣
∣
∣

∑

k

sgn(uǫ(xk, tn) − K)
[

uǫ(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )

︸ ︷︷ ︸

(d)

−KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
]

︸ ︷︷ ︸

(d)

−sgn(un
k − K)

[

un
k Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − KΛ̄(k − j, φj−1/2, φj+1/2, λg̃(K))
]∣
∣
∣∆x

︸ ︷︷ ︸

(d)

.

(a) ≤
∑

j,j∆x∈[−D,D]

∑

k

|un
k − uǫ(xk, tn)||Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )|∆x

≤
∑

k,k∆x∈[−D−S∆x,D+S∆x]

|un
k − uǫ(xk, tn)|

∑

j,|j−k|≤S

|Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k )|∆x

≤ 2S||Λ̄||∞
∑

k,k∆x∈[−D−S∆x,D+S∆x]

|un
k − uǫ(xk, tn)|∆x

≤ 2S||Λ̄||∞
∫ D+(S+1/2)∆x

−D−(S+1/2)∆x

|u∆x(x, t) − uǫ(x, t)| dx

+2S||Λ̄||∞
∑

k,k∆x∈[−D−S∆x,D+S∆x]

|
∫ (k+1/2)∆x

(k−1/2)∆x

uǫ(x, t) − uǫ(xk, tn) dx|.

Thus (a) tends to zero when ∆x tend to zero. One can prove similarly that (d)
tends to zero. Now the term (b):
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(b) =
∑

j,j∆x∈[−D,D]

∣
∣
∣

∑

k

uǫ(xk, tn)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
k ) −

∑

k

uǫ(xj , t
n))Λj,k(k − j + λg̃k)

+
∑

k

uǫ(xj , t
n)Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − uǫ(xj , t
n)

∑

k

Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
j )

︸ ︷︷ ︸

=1

∣
∣
∣∆x

The term
∑

k Λ̄(k−j, φj−1/2, φj+1/2, λg̃n
j ) is equal to 1 because if we consider

the TVD remeshing formula (53) with un
k = u ∀k :

un+1
j =

∑

k

uΛ̄(k − j, φj−1/2, φj+1/2, λg̃(u))

we have, due to the property of consistency of the fluxes: un+1
j = u. Thus

∑

k

Λ̄(k − j, φj−1/2, φj+1/2, λg̃(u)) = 1.

(b) ≤
∑

j,j∆x∈[−D,D]

∑

k

∣
∣
∣uǫ(xk, tn) − uǫ(xj , t

n)
∣
∣
∣

∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )
∣
∣
∣∆x

︸ ︷︷ ︸

(1)

+
∑

j,j∆x∈[−D,D]

∣
∣
∣

∑

k

uǫ(xj , t
n)

∣
∣
∣

∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
j )

∣
∣
∣∆x

︸ ︷︷ ︸

(2)

.

(1) ≤
∑

k,k∆x∈[−D−S∆x,D+S∆x]

∑

j,|j−k|≤S

∣
∣
∣uǫ(xk, tn) − uǫ(xj , t

n)
∣
∣
∣

∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k )
∣
∣
∣∆x.

The function uǫ belongs to C1([−D− η, D + η]× [0, T ]), thus there exists a real
K such that:

∀x, y ∈ [−D − η, D + η] |uǫ(x, t) − uǫ(y, t)| ≤ K|x − y|.

(1) ≤ ||Λ̄||∞
∑

k,k∆x∈[−D−S∆x,D+S∆x]

∑

j,|j−k|≤S

K
∣
∣
∣k − j

∣
∣
∣ ∆x2

≤ 2S2||Λ̄||∞K
∑

k,k∆x∈[−D−S∆x,D+S∆x]

∆x2 ≤ 4S2||Λ̄||∞K(
D

∆x
+ S) ∆x2.

Therefore (1) tends to zero when ∆t tends to zero.
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(2) ≤ ||uǫ||∞
∑

j,j∆x∈[−D,D]

∑

k,k∆x∈[−D−S∆x,D+S∆x]
∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃n

k ) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃n
j )

∣
∣
∣∆x

≤ ||uǫ||∞
∑

k,k∆x∈[−D−S∆x,D+S∆x]

∑

j,|j−k|≤S
∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃k) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uǫ(xk, tn)))

∣
∣
∣∆x

+
∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uǫ(xk, tn))) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uǫ(xj , t

n))
∣
∣
∣∆x

+
∣
∣
∣Λ̄(k − j, φj−1/2, φj+1/2, λg̃(uǫ(xj , t

n))) − Λ̄(k − j, φj−1/2, φj+1/2, λg̃j)
∣
∣
∣∆x.

We have assumed that:

∀k,∀n, λ|g̃(un
k )| < 1/2 and λ|g(un

k )| < 1/2.

Λ̄ is of class C1. The function g is also of class C1(R). We have assumed that
the scheme converges in L1

loc when ∆x and ∆t tend to zero. We conclude that
(2), thus (b), tend to zero when ∆x and ∆t tend to zero. With the same kind
of reasoning we could also prove that (c) tends to zero.
We conclude that the limit ū satisfies ∀φ ∈ C1

0 (R+ × R), ∀K ∈ R:

−
∫ +∞

0

∫ +∞

−∞

φt|u − K| + sgn(u − K)(g(u)u − g(K)K)φx dxdt −
∫ +∞

−∞

|u(0, x) − K|φx(0, x) dx ≥ 0.

Therefore ū is the unique entropic solution of (1), which contradicts the initial
assumption. We conclude that the TVD particle scheme (53) converges in L1(Ω)
to the unique entropic solution of (1).

6 Conclusion

We have studied the consistency and accuracy properties of remeshed particle
methods in the case of a scalar one-dimensional conservation law. The accuracy
of the particle scheme depends on the accuracy of the interpolation kernel used.
In the linear case, if the interpolation kernel preserves the first M momentums
then the particle scheme is of order M − 1. In the non-linear case, the particle
scheme is a priori only of order one, because of the first order evaluation of the
particle moving, unless a correction of the evaluation of the particle velocities
is used. Cottet and Magni [5] introduced recently TVD remeshing schemes for
particle-grid methods. We have extended the construction of these new TVD
particle schemes to non-linear conservation laws with a possible change of ve-
locity sign, with application to Burgers and Euler equations. Numerical results
obtained in the case of the Sod shock tube for the Euler equations have been
presented. Then we have proved that with these new TVD remeshing schemes
the particle schemes converge toward the entropy solution. The perspectives of
this work are the application of the TVD particle schemes to systems of con-
servation laws, for instance more complex 2D and 3D compressible flows like
hydrodynamic instabilities.
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