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ABSTRACT

A possible alternative to fine topology tuning for Neural
Network (NN) optimization is to use Echo State Networks
(ESNSs), recurrent NNs built upon a large reservoir of sparsely
randomly connected neurons. The promises of ESNs have
been fulfilled for supervised learning tasks, but unsupervised
learning tasks, such as control problems, require more flexi-
ble optimization methods. We propose here to apply state-
of-the-art methods in evolutionary continuous parameter op-
timization, to the evolutionary learning of ESN. First, a
standard supervised learning problem is used to validate our
approach and compare it to the standard quadratic one. The
classical double pole balancing control problem is then used
to demonstrate that unsupervised evolutionary learning of
ESNs yields results that compete with the best topology-
learning methods.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning— Connectionism
and neural nets

General Terms
Algorithms, Design

Keywords
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1. SUPERVISED LEARNING OF ESN

Echo state networks (ESNs) [4] are discrete time, continu-
ous state, recurrent neural networks in which the input layer
is totally connected to a hidden layer called reservoir, that is
itself totally connected to the output layer. The connectivity
and weights of the connections within the reservoir are ran-
domly generated during ESN building and remain constant
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during learning. The main point in ESN is that only the
weights going from reservoir (hidden) nodes to the output
ones are to be learned. Any supervised learning problem us-
ing some mean-squared error objective is thus reduced to a
quadratic optimization that can be quickly solved by any
deterministic optimization procedure, even for very large
reservoirs. ESNs have been shown to perform surprisingly
well in such context of supervised learning, in particular for
problems of prediction of time series [4].

The idea of Evolutionary Learning for Echo State Net-
works amounts to replace the gradient descent that is used
to optimize the outgoing weights in the classical ESN ap-
proach by an Evolutionary Algorithm (EA). As a first toy
example, we reproduce one of the initial settings of the sem-
inal ESN paper [4] in which the network is trained to pro-
duce an univariate time-series output, yteqcnh(n) = %u7(n)
(where n denotes time) from an univariate sinusoidal in-
put, u(n) = sin(n/5). The actual network output y(n) is
computed from the reservoir neurons according to y(n) =
FOON we x x;(n)) where w{™ denotes the weight of the
i-th output connection, z;(n) is the state of i-th neuron
at time step n, f(z) = (1 — e **)/(1 + e %) and a is
the half-slope of f at the origin. As in [4], the fitness to
minimize is the Mean Square Error of the network that
is computed between time steps 101 and 300 according to
MSE¢rain = 1/20032% | (y(n) — atanh(yreacn(n)))>.

We have compared three variants of the ESN evolution-
ary optimization: (7) optimizing the output weights only, de-
noted Std in the following; (i) optimizing the output weights
and the spectral radius p of the reservoir, denoted Rho; and
(éi1) optimizing the sigmoidal slopes a of the function f, de-
noted Slopes. With a reservoir size of N = 100 neurons, we
observed (not shown) that CMA-ES (Std) can be as precise
as the gradient method reported in [4] (i.e. with a MSE of
the order of 107'), though undoubtedly requiring a much
greater computational effort. Interestingly, the results also
show that optimizing only the reservoir slopes (Slopes) yields
precisions that are only similar to the original ESN learning
method. Note however that with smaller reservoir sizes (e.g.
N = 30), optimizing the reservoir neuron slopes (Slopes vari-
ant) yielded better fitness than the standard procedure (not
shown). Finally, our results also evidence that increasing
the search space fails to improve precision: the Rho variant
yields the worst precision in this supervised task.
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Table 1: Experimental results for the double pole balancing. Reservoir size was N = 20 neurons

Cheap  Fitness New Fitness
Variant Avg. Std.  Genera- % | Avg. Std.  Genera- %
Eval. Dev. lization success | Eval. Dev. lization success
Std 14960 6291 234 6.8% | 16303 11511 209 82.3%
Rho 23571 10175 241 52.7% | 19796 6770 224 91.4%
Std - Opt | 19168 21782 232 9.5% | 15965 11813 208 86.8%

2. UNSUPERVISED LEARNING OF ESN

The double pole balancing problem without velocity in-
formation is a challenging task that is commonly used to
compare different neuroevolution methods that evolve both
the topology and the weights of neural networks [5, 3, 1].
The system consists of a cart moving along the x axis, and
two poles of different lengths and masses that are connected
to the car by an hinge. The poles have one degree of free-
dom (their angle w.r.t. the vertical). The challenge is to
keep both poles up (i.e. within given bounds for the an-
gles) as long as possible using the ESN output, which is
interpreted as a force applied to the cart. To avoid heavy
computational cost, many, if not all, previous works have
used a simplified fitness (referred to as Fepeqp below), where
the controller performance only depends on its ability to
maintain the poles up during a single trial of 1,000 time
steps. Only the best individual in the population (for this
fitness) is then picked up and evaluated through two gener-
alization tests: a first test is passed if the individual keeps
the system within the success domain during 100,000 fur-
ther time steps. The second test is passed if the controller as
well succeeds in balancing the system for 1,000 time steps
starting from 625 different initial positions. When the best
individual in the population succeeds for at least 200 of
those 625 trials, the run is stopped and this individual is
returned as the solution. However, some individuals com-
monly obtain a very high fitness but fail on the second test,
while some others pass all 200 generalization tests with a
rather low Fipeap. Hence we have also used a new fitness
(Fgen.) that takes into account all 3 tests describe above:
Fyen. = Feneap + 107°n1 4 30ns/625 where nr is the num-
ber of iterations where the system was maintained within
the success domain during the first generalization test, and
ns is the number of generalization trials passed by the con-
troller during the second one. The constant 30 was chosen
by trial and error.

The results are summarized in Table 1. For each vari-
ant, the columns show the number of needed evaluations
averaged over the successful runs (column Avg Fwal.), its
standard deviation (Std Dev.), the number of tests (out of
625) passed during the third generalization test (General-
ization), and, most importantly, the percentage of success
(% success), i.e. of runs where the best individual did pass
the 3 tests. Using the Cheap Fitness, table 1 shows that the
Std variant (output weight minimization) obtains poor per-
formance results. The only variant that can compete with
other published results is the Rho one: more than half of the
runs succeeded, with an average cost of 23,571 evaluations,
which is still worse than NEAT [5] and AGE [1], but within
the same order of magnitude.

As expected, the results really improve with the new fit-
ness (Fgen.), that takes into account the generalization abil-

ity of the network: the Rho variant almost always finds a
solution (except for one run out of 220), and the Std variant
improves a lot over its results with the cheap fitness. More
importantly, all variants reach performances that are at the
level of those of NEAT [5], AGE [1] or a totally recurrent
network with 9 neurons [3].

It has always been advocated by ESN pioneers that the
upper bound on the spectral radius was important for suc-
cessful ESN use. However, the most remarkable fact here
is that for all settings, the Rho variant, that explicitly op-
timizes the spectral radius, almost always gives the best re-
sults. This is surprising when compared to the situation in
the supervised context (see above), where the Rho variant
performed the worst of all. Further experiments were run,
using the Std variant but fixing the Spectral Radius to the
final value found by the Rho method (see the lines “Std —
Opt” in Table 1). Though it generally slightly improves the
results over the Std variant, it does not allow to reach the
same level of performance than the Rho method itself. The
important feature is thus that p is allowed to vary during
the optimization, and not the final value it reaches.

Finally, the influence of the initialization of the topology
of the reservoir is clearly large. Indeed, in the case of meth-
ods with low performance, all the successful runs often stem
from a small number of initial reservoir topologies, while a
majority the initial reservoir topologies fail to generate even
a single success. Together with the differences noted in the
supervised learning context, this makes a clear picture that
the topology of the reservoir matters. Why, and how to take
advantage of this fact, is left to further work.
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