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Résumé

Cette thèse concerne l’étude de l’algorithmique et de la complexité des communications dans les

réseaux radio. En particulier, nous nous sommes intéressés au problème de rassembler les informa-

tions des sommets d’un réseau radio en un noeud central.

Ce problème est motivé par une question de France Telecom (Orange Labs) “comment amener

Internet dans les villages”. Les sommets représentent les maisons des villages qui communiquent

entre elles par radio, le but étant d’atteindre une passerelle connectée à Internet par une liaison

satellite. Le même problème se rencontre dans les réseaux de senseurs où il s’agit de collecter les

informations des senseurs dans une station de base.

Une particularité des réseaux radio est que la distance de transmission est limitée et que les trans-

missions interfèrent entre elles (phénomènes d’interférences). Nous modélisons ces contraintes en

disant que deux sommets (équipements radio) peuvent communiquer s’ils sont à distance au plus

dT et qu’un noeud interfère avec un autre si leur distance est au plus dI . Les distances sont consid-

érées dans un graphe représentant le réseau. Une étape de communication consistera donc en un

ensemble de transmissions compatibles (n’interférant pas).

Notre objectif est de trouver le nombre minimum d’étapes nécessaires pour réaliser un tel rassem-

blement et de concevoir des algorithmes réalisant ce minimum. Pour des topologies particulières

comme le chemin et la grille, nous avons établi des résultats optimaux ou quasi optimaux.

Nous avons aussi considéré le cas systolique (ou continu) où on veut maximiser le debit offert à

chaque noeud.
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Abstract

This thesis concerns the study of the algorithmic and the complexity of the communications in

radio networks. In particular, we were interested in the problem of gathering information from the

nodes of a radio network in a central node.

This problem is motivated by a question of France Telecom (Orange Labs) “How to bring Internet

in villages”. Nodes represent the houses of the villages which communicate between them by radio,

the goal being to reach a gateway connected to Internet by a satellite link. The same problem can

be found in sensor networks where the question is to collect data from sensors to a base station.

A peculiarity of radio networks is that the transmission distance is limited and that the transmis-

sions interfere between them (interference phenomena). We model these constraints by saying that

two nodes (radio devices) can communicate if they are at distance at most dT and a node interferes

with another one if their distance is at most dI . The distances are considered in a graph represent-

ing the network. Thus, a communication step will consist in a compatible (non interfering) set of

transmissions.

Our goal is to find the minimum number of steps needed to achieve such a gathering and design

algorithms achieving this minimum. For special topologies such as the path and the grid, we have

proposed optimal or near optimal solutions.

We also considered the systolic (or continuous) case where we want to maximize the throughput

(bandwidth) offered to each node.
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Chapter 1

Introduction

In this thesis, we study problems related to routing informations in a communication network where

the links between nodes are established by radio transmissions.

When one thinks of wireless networking, arising examples are often 1-hop applications, for example

mobile cellular phones or WiFi access points. In these settings there is a radio link between mobile

terminals (mobiles, laptops, PDAs, etc.) and the antenna of a router connected to a backhaul

network, most likely wired, which bridges the routers and a backbone infrastructure.

There are however many settings in which a wired backhaul network is not available, because

it is technically impossible (e.g. randomly spread sensor networks) or unaffordable (very dense

urban networks or underdeveloped countries). This case arises in particular in rural areas where an

operator wants to bring Internet to villages [BBS05]. This is indeed the motivation of the research

environment of this thesis, proposed by France Telecom (now Orange Labs). As an Internet

provider, they wish a planning to bring high speed Internet to a central antenna in each village and

share this connectivity through some fixed multi-hop infrastructure of wireless routers installed in

the houses of the village (see fig 1.1).

Figure 1.1: A group of clients accessing Internet through a central gateway or antenna.

A broader view of this kind of fixed ad-hoc network is known as wireless mesh networks (WMNs).

In this type of networks, there are basically three kinds of devices: the clients, the routers and the

gateways. The clients are often laptops, cell phones and other wireless devices while the routers

forward traffic to and from the gateways which connect to the Internet. Wireless mesh networks
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can be implemented with various wireless technologies including 802.11, 802.16 and micro-waves

technologies.

Using radio transmissions is cheaper than deploying a wired network. Nevertheless, radio transmis-

sion causes interference between them: when a device transmits, its radio signal is propagated to a

region surrounding this node. This radio signal may interfere with a second radio signal performed

at the same time, causing data loss. Thus, if many transmissions are performed concurrently, many

of them may fail, degrading the overall communication process.

The study of wireless networks performance has motivated many research works. WMNs deploy-

ment in operational situations such as urban areas requires quality of service (QoS) criteria that are

challenging to guarantee. Indeed, recent works have pointed out fundamental issues with capacity

and scalability. A seminal work by Gupta and Kumar has shown that, under specific topological,

physical, traffic and routing assumptions, the transport capacity of wireless networks degrade by

a factor of order O(1/
√

n) with the number of nodes, n [GK00]. Many other studies have then

refined and confirmed this result under more generic assumptions such as hierarchical or geometric

routing, non uniform emitting power, etc. [DFTT04, MPR06].

These works indicate that a theoretical limit to the transport capacity exists because of inter-

ferences and lack of coordination. One consequence has been to motivate studies about the

theoretical bounds on transport capacity induced by routing protocols, in order to complement

simulation-based evaluations. Generic capacity evaluation frameworks have been proposed using

linear programming, providing a measure that is independent of the routing protocols studied

in [RTV09, JPPQ03].

One objective was to evaluate the cost, in terms of maximum achievable transport capacity, of a

self-organization of the nodes. In particular, it has been highlighted that self-organization protocols

can have a negligible impact on the network capacity with a traffic pattern any-to-any. However,

efforts have to be done for self-organizations based routing in a many-to-one traffic pattern. This

traffic pattern is precisely the most relevant one for WMNs since it corresponds to backhauling

usage.

Another particular example of radio networks is known as sensor networks. Sensor networks consist

in dense wireless networks of devices used usually to collect and disseminate data, often environ-

mental information. Each device, called sensor node, is equipped of an antenna and a processor with

a limited battery. Because of these limitations, an important question is how to use the minimum

number of transmissions in each task, and avoid interfering transmissions.

This thesis focuses on two fundamental optimization problems arising in WMNs, and sensor net-

works. Minimum Time Gathering consists in gathering pieces of data sent by the nodes of the

network to a central gateway or sink or base station while minimizing the total makespan. This

problem has a straightforward application in sensor networks. It can also be interpreted as the

initialization phase of the network. Round Weighting Problem tackles the permanent regime

of the network: Messages are periodically created in their sources and then, a permanent communi-
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cation between the nodes is sent over time. One seeks to optimize the transport capacity by means

of optimizing the transmissions made during a period.

Both problems are detailed in sections 1.2 and 1.3, but we first precise in section 1.1 the models of

transmission and interference we use.

1.1 Communication Models

The purpose of communication networks is that of exchanging information between their members.

In the communication model it is needed to determine which communications can be performed or

not and which of those can be done simultaneously.

In what follows we use the term call to refer to a transmission from one device to another. In a

call we distinguish the sender and the receiver. We denote a call from the sender u to the receiver

v as u→ v. We also denote V as the set of all the devices of the network.

Time plays an important role on wireless communication. If multiple nodes send data at the same

time to a single node, a collision occurs. Also data communication requires time and minimizing

the communication time or delay time is an important issue. There are two main distinctions in

time models: the distinction between continuous and discrete time and between synchronous and

asynchronous time.

In a continuous time model, nodes can start communication at any given time. This feature is

commonly used to model the case where devices do not have a clock, hence they do not have the

notion of time. In a discrete time model time is divided into time-slots. This model is used in cases

when devices have a time clock and the devices have notions of the starting and ending time of

each time-slot.

Time synchronization is an important issue in wireless networks. We suppose that there is a physical

time which is a reference for the clocks of the devices in the network. In the synchronous time model,

devices are considered to be synchronous with the physical time. Typically, in centralized models

it is common to assume that devices have access to a single clock which indicates physical time.

We consider that time is synchronous and discrete: time is divided into time-slots of fixed length.

The length of the time-slots corresponds to the time needed to transmit one call. During a time-

slot, a number of compatible calls can be performed. When a call is performed, we consider that

one message is transmitted from the sender to the receiver.

In wireless mesh networks there are two important notions: the transmission range or connectivity

and the interference. They depend on many factors. One of them is the type of antennas used.

Types of antennas. There are two types of transmitter devices, based on the antenna being

either unidirectional or omnidirectional (see [BKK+09a]). In the omnidirectional case, the signal

is broadcasted in every direction. According to the signal level, we distinguish two regions. The

3



broadcast region is the area where devices succesfully receive the information transmitted by the

signal. The interference region is the area where the signal level is not enough to receive the

information but it is enough to avoid devices to receive any other trasnmission. In this case, the

broadcast region is usually modeled as a ball centered at the sender and the interference region is also

modeled as another ball centered at the sender with a larger radius. In the unidirectional antennas

case, the beam of the antenna can be pointed to a specific direction and then, the broadcast region

is modeled as a narrow cone centered at the sender. Interference is also localized in a larger narrow

cone, but there is also some interference in the back of the antenna.

In all cases, we will suppose that we are in half-duplex mode: a node cannot send and receive during

the same slot (contrarily to wired networks when full-duplex mode is used.)

Another parameter is the possibility or not of buffering in intermediate nodes

Buffering. In some cases, in particular for sensor networks with limited storage, the gathering

problem has been studied when no buffering is allowed at intermediary nodes (see [Gar07], [RS07],

[FFM04a]). This implies that, if a message is received by a node at a certain time-step, then it must

be sent at the following time-step. This assumption is also known in wired networks as hot-potato

or deflection routing [BHW00, GG93]. In particular, hot-potato routing algorithms are well-suited

for optical networks because it is difficult to buffer optical messages [BHW00].

1.1.1 General Models

1.1.1.1 The connectivity model

The connectivity model determines whether a device is able to send a signal to another device or

not. Connectivity does not need to be a permanent property: devices can be turned off or a device

may be moved far. Similarly, connectivity is not necessarily a symmetric property: device u may

be able to transmit to v but conversely, v may not be able to perform a call to u. Connectivity also

depends on the power of the transmission (which itself might depend on many factors: distance,

weather, obstacles, etc.).

There are different ways to represent the possible transmissions. One, which represents the balls

of transmissions, consists in a geometrical model with a transmission radius: a device is able

to transmit to all the devices which are within some geometrical distance of it (that distance

depending on the transmission power). Here, we will use a model proposed by France Telecom

(now Orange Labs) based on distances in a graph which represents the topology of the network

(see section 1.1.2 for precise definitions). An between two nodes means that they are neighbors. In

particular, if there are obstacles (hill, walls, etc) there is no edge between two nodes which might

be geometrically near.
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1.1.1.2 The interference model

Even if some devices may be connected permanently, it may occur that two calls cannot be per-

formed simultaneously. It is the case of radio networks, where a call may not succeed if other calls

are performed at the same time due to interferences. If such a situation occurs, what happens

depends on the model. It may happen that, for example, only one of the two transmissions is

received, a part of the transmissions is received, or any of the two transmissions is received.

In general, interference is modeled with a Signal-to-Noise Radio (SNR) [Rap96] model to take into

account interference from all the neighbors. The SNR model compares the level of the transmission

signal with the level of the background noise. In this way, transmissions are received with different

intensities. However, in this thesis we only consider the binary interference model described below.

1.1.1.3 Binary interference model

In a binary conflict model, if two calls are performed in the same slot and if they interfere, then

both transmissions fail and, consequently, no information is transmitted. We will say that two calls

are compatible if they do not interfere. The interference model is then obtained by specifying the

groups of compatible calls which can be done during a slot. A set of calls is denoted a round if the

calls are pairwise compatible.

A conflict model consists in defining the set of all the possible rounds. This set is denoted by R.

Notice that the size of R might be exponential in the number of nodes. For this reason, the set R
will be usually defined by a rule determining whether a group of calls is a (valid) round or not.

1.1.1.4 The interference graph

We say that a binary interference model is one-to-one if any two calls are either compatible or they

interfere and this does not depend on other possible calls being performed at the same time. In

this case, the interference model can be entirely described by an interference graph.

The interference graph GI = (C,I) is the graph whose vertices are the calls and there exists an

edge between two calls if they are interfering. Notice that in this case, each round corresponds to

an independent set of the conflict graph GI .

Let us now precise the transmission and interference models we will use in this thesis.

1.1.2 Models studied in this thesis

Our models are based on distance on graphs. In a connected graph G(V,E), we define the distance

between two nodes u and v as the length of a shortest directed path between them. The distance

is denoted dG(u, v) or simply d(u, v).
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1.1.2.1 Transmission model

The transmission range is represented by an integer dT . A sender is able to transmit directly to any

node at distance at most dT . In other words, a transmission u→ v may occur if dG(u, v) 6 dT . The

particular case dT = 1 is interesting as in this case the edges of G represents exactly the possible

calls and G is called the transmission graph. This model is used in many articles (see, for example,

references of table 1.4 in section 1.3.3).

1.1.2.2 Interference model

We present two binary interference models which are considered in this thesis. These models are

suitable for different transmission and interference distances.

First of all, recall that we consider half-duplex radio devices. Then, a node of the graph cannot

transmit and receive at the same time. In terms of rounds, it implies that a round is always

a matching, in other words, a set of edges without common vertices. In many articles on radio

networks only this constraint is taken into account and this model is often called primary node

interference or node-exclusive interference model [MSS06].

Asymmetrical Interference model

We consider the so-called (dI , dT )-interference model [BGK+06b, BKMS08a, BKK+09a, Gar07].

The parameter dT ∈ N denotes the transmission distance and dI ∈ N, with dI > dT , denotes the

interference distance.

In terms of avoiding collisions, two calls u→ v and u′ → v′ are interfering if either dG(u, v′) 6 dI or

dG(u′, v) 6 dI ; otherwise the calls are compatible. Recall that dG(u, v) corresponds to the distance

in the graph G between the nodes u and v. An example of compatible and interfering calls with

dI = dT = 1 and dI = 2, dT = 1 are shown in figure 1.2.

We call this model an asymmetrical interference model because the calls interfering with u→ v are

not the same calls which interfer with v → u.

Symmetrical Interference Model

Notice that if device u calls device v, it is desirable that v had a way to let u know that the

transmission has been successful (acknowledgment or ACK ). Such feedback is performed as a trans-

mission from v to u. Furthermore, that is the model considered in the protocol 802.11 and is named

in some papers as the 802.11 interference model [Wan09a]. For this reason most applications and

consequently models assume that transmission as well as interference are symmetrical. Therefore,

we also use a symmetrical version of the interference model.

In this version, two calls interfere if one call has one of its end vertices in the interference range

of some end vertex of the other call. More precisely, a call between u and v interfere with a call
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(a) Compatible calls
with dT = dI = 1

(b) Interfering calls
with dT = dI = 1

(c) Compatible calls with
dT = 1, dI = 2

(d) Interfering calls with
dT = 1, dI = 2

Figure 1.2: Examples of compatible and interfering calls for the asymmetrical interference model.

between u′ and v′ if minx∈{u,v},y∈{u′,v′} dG(x, y) < ds
I , for ds

I ∈ N and ds
I > dT . Notice that this

interference model makes no difference between the sender and the receiver of a call. So, calls in

this interference model are said to be symmetrical and a call between u and v is denoted u ↔ v.

The particular case ds
I = dT = 1 is nothing else than the primary node interference model, a round

being a matching. In the case ds
I = 2 and dT = 1 we get the so called distance-2 interference

model [KMPS04, BKK+09a, Wan09a, WWLS08]. In this case, a round is an induced matching.

The conflict graph in the case ds
I = dT = 1 corresponds to the line graph L(G) of G. The vertices

of L(G) represent the edges of G and two vertices are joined in L(G) if their corresponding edges

intersect. More generally, for any ds
I and dT = 1, the conflict graph is the ds

I -th power of L(G)

(The k-th power of a graph being the graph with two vertices joined if their distance is less than

or equal to k).

Unlike asymmetrical interference models, the interfering calls produced by u → v are the same as

v → u.

1.1.2.3 Relationship between Asymmetrical and Symmetrical models

As depicted in Figure 1.3, we observe the following relation between both models: a round in the

symmetrical (ds
I = 2, dT = 1)–interference model is a round in the asymmetrical (dI = 1, dT = 1)–
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(a) Compatible calls for symmetrical interfer-
ence with ds

I = 2, dT = 1.
(b) Compatible calls for asymmetrical interfer-
ence with dI = dT = 1.

(c) Compatible calls for asymmetrical interfer-
ence with dI 6 2, dT = 1.

(d) Interfering calls for asymmetrical interfer-
ence with dI = 2, dT = 1.

Figure 1.3: Comparison between symmetrical and asymmetrical interference for different values
of dI .

interference model. Conversely, each round in the asymmetrical (dI = 2, dT = 1)–interference

model is a round in the symmetrical (dT = 1, ds
I = 2)–interference model. In general, a round

in the (d, dT )–symmetrical model is a round in the (d − 1, dT )–asymmetrical model; conversely, a

round in the (d, dT )–asymmetrical model is a round is the (d, dT )–symmetrical model.

1.1.2.4 Topologies

In this thesis we will focus on the path which corresponds in particular to directional antennas.

We will also consider grids as they model well cities. Furthermore, grids (in particular hexagonal

grids) are a good approximation of balls and many problems are more tractable on grids than in a

geometrical model enabling us to obtain exact results or good approximations.
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1.2 Mimimum Time Gathering Problem

Recall that the problem asked originally by France Telecom consisted of sending (or receiving)

data to (from) a specific node (connected via a high speed access to Internet) called base station.

In the case where the node wants to send information to the base station, the problem is known

as gathering or data collection. This problem appears also in sensor networks where the sensors

have to send some data to a base station. In the discrete version case, where there is only one

sending, it is important to minimize the total delay of transmission or the minimum completion

time (makespan) of the gathering protocol. In our model it corresponds to minimize the total

number of rounds. We will call this problem Minimum Time Gathering and denote it MTG. We

will see in the next section another version of the gathering problem (the continuous one) where the

criteria is to reserve enough bandwidth to the nodes. Another criterion of optimization considered

in [BKMS08b, BKK+09a] is the delay between the sending of a message and its reception to the

base station, called flow time of the message. The objective consists in minimizing the maximum

flow time over all the messages.

The problem where the base station (central node) wants to send information to all the nodes of the

network is the inverse of the MTG problem and it is called personalized broadcasting. It differs from

the classical broadcasting problem where a source sends the same message to all the nodes; here

the source sends different messages to different nodes. We will see after that these two problems

are equivalent (see section 2.2 and chapter 4). The solution of one gives the solution to the other.

1.2.1 The model

The base station where all the messages are gathered will be denoted BS. In some cases, it is called

a sink [KMP08, BGK+06b, BKK+09a] or gateway [BP05] and also source, when one considers the

personalized broadcasting problem [BNRR09a].

We will denote by w(u) the number of unitary messages a node has to transmit to the base station;

the unity being the amount of information which can be transmitted during a call (that depends on

the technology). The interference model will be either (dI , dT )-asymmetrical or (ds
I , dT )-symmetrical

model (see section 1.1.2).

A gathering protocol consists of a sequence of rounds, such that the rounds in the protocol are

executed according to the order of the sequence and exactly w(u) messages will be gathered from

node u ∈ V into the base station BS.

The goal of the Minimum Time Gathering problem consists in finding a gathering protocol which

requires the minimum number of rounds.

An example of a gathering protocol is presented in figure 1.4. Here, w(u) = 1 for any u, 1 6 u 6 6.

We consider the asymmetric interference model with dI = 2, dT = 1. This protocol is optimal and

the number of rounds in the protocol is 18. Indeed the 4 calls 1 → 0, 2 → 1, 3 → 2, 4 → 3 are
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interfering and so at most one of them can be done during one round. Therefore, we need at least 4

calls to transmit the message from each node 4, 5, 6 and i calls for the message of node i, 1 6 i 6 3.

All together we need at least 18 calls.

1

2

3

4

5

6

7

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

8

21BS = 0 3 4 5

21BS = 0 3 4 5

9
21BS = 0 3 4 5

6

6

6

6

6

6

6

6

6

10

11

12

13

14

15

16

18
21BS = 0 3 4 5

17
21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

21BS = 0 3 4 5

6

6

6

6

6

6

6

6

6

Figure 1.4: A protocol for gathering on a path with 7 nodes when dI = 2, dT = 1. Nodes from 1 to
6 have one message each. The protocol gathers all the messages into BS in 18 time-steps.

Uniform case

Each node of the graph (except the base station) may have messages to be gathered. When each

node of the graph has the same number of messages w > 0 to be gathered, the demand is called

uniform. In particular, if w = 1 (i.e, each node has one message to be gathered), the demand is

called unitary. In all the other cases, the demand will be denoted non-uniform or general demand.

As we will see later, the gathering problem with uniform demand has been studied in different cases

and, depending on the case, good approximations may be given. However, for general demand, the

problem becomes more difficult even for obtaining good bounds.

1.2.2 Hardness results

In the following we discuss the hardness of the MTG problem and then we present some known

approximation algorithms.

It has been proved in [BGK+06b] that MTG with the (dI , dT )-interference model is NP-hard

for arbitrary graphs. The problem remains NP-hard even for uniform demand (See [BGK+06b]

for the case dI > dT and [Kor08] for the case dI = dT ). An interesting open question is to

find the complexity of MTG for general graphs when buffering is not allowed in intermediary

nodes [BGR08].

In the following, we present the idea of the proof of NP-hardness for the MTG based on the

reduction of the well-known NP-Hard Problem of determining the chromatic number of a graph

(see [Col02] and [BKK+09a]). The chromatic number of a graph is the minimum number of colors

needed to color all the nodes of the graph so that no two adjacent nodes have the same color.

Theorem 1.1 ([BKK+09a]) The problem MTG with the (dI , dT )-interference model is NP-

hard for any dI > dT .
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Idea: We present the reduction only for the case dI = 2 and dT = 1. Let G be the graph which

is the instance of the Chromatic Number. We will construct a graph G′ such that G′ will be

an instance of MTG. Let V (G) = {v1, . . . , vn} be the nodes of the graph G. Let H the graph

consisting in the isolated vertices u1, . . . , un.

Let V (G′) = V (H) ∪ V (G) ∪ BS be the nodes of the graph G′. The edges of G′ are defined as

follows: There is an edge between ui and vi, for each i. There is an edge between each node of G

and BS. Finally, all the edges in G are also edges in G′. In other words, E(G′) = E(G) ∪ {(ui, vi) |
i = 1, . . . , n} ∪ {(vj ,BS) | j = 1, . . . , n}.

Now, we consider the problem of MTG over the graph G′ where each node of H has one message

to be gathered into BS. Recall that the interference model considered is dI = 2 and dT = 1. For

this case, note that two calls ui → vi and uj → vj can be performed simultaneously iff there is no

edge in G between vi and vj . Moreover, note that if a call occurs between a node in G and BS,

then no other call can occur at the same time-step. Both remarks lead us to conclude that any

gathering protocol collects all the messages into BS in at least χ(G) + n time-steps, where χ(G) is

the chromatic number of G. The idea is depicted in figure 1.5. 2

1.2.3 A 4-approximation

A protocol for general graphs with an approximation factor of at most 4 is presented in [BGK+06b].

An extension of the problem where messages can be released over time is considered in [BKMS08a]

and a 4-approximation algorithm is also shown. Moreover, in [BKMS08a] the authors study the

quality of this approximation when a shortest path following algorithm is used. A shortest path

following algorithm is a an algorithm where each message is sent over some shortest path towards

the sink. They have shown that, for example, for dI = 2, dT = 1, the best approximation one can

obtain with a shortest path following algorithm has a ratio tending to 4. The idea of the proof

is depicted in figure 1.6. The figure represents a graph such that there are m messages to gather

into BS. These messages are located in nodes u1, . . . , um. Note that, if the algorithm routes the

messages via the shortest paths (i.e., passing through node u), then any protocol needs at least 4m

time-steps. However, there is a solution such that no message is routed via the node u. It suffices

to route any message from ui to the BS via the node vi. Thus, in 4 steps, all the messages arrive to

nodes vi. Then, we send the message stored in vi to BS in m rounds. So, messages can be gathered

in at most m + 4 time-steps. The approximation ratio is 4m
m+4 = 4− 16

m+4 which tends to 4 when m

tends to infinity.

For the case dI = dT the best approximation ratio for any shortest path following algorithm is

3 [Kor08].
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Table 1.1: Complexity results for general graphs
Interference Demand buffer problem topology result reference

asymmetric dI = dT general buffer MGT general NP-hard [Kor08]
asymmetric dI , dT general buffer MGT general NP-hard, [BGK+06b]
asymmetric dI = dT uniform – MGT general NP-hard [Kor08],
asymmetric dI > dT uniform – MGT general NP-hard [BGK+06b]

symmetric ds
I = 2, dT = 1 general – MGT general NP-hard [BKK+09a]

symmetric ds
I = dT = 1 uniform – MGT general poly [GR06a]

asymmetric dI , dT general no-buffer MGT general ?? (open) [GR06a]

u1 u2 u3 un· · ·

v1 v2 v3 vn

G

BS

H

Figure 1.5: Reduction from the chromatic number problem. Instance for MGT where each node
of H has one message to be gathered into BS. The (dT , dI)-interference model considered is dI = 2
and dT = 1. Green arrows indicate compatible calls, red arrows indicate two calls that interfere
between them.

u2

u1

um

u3...

BSu

v1

v2

v3

vm

...

Figure 1.6: Any shortest-path following algorithm is no better than a 4-approximation. In this
case, dI = 2, dT = 1
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1.2.4 Specific topologies

The uniform case has been considered for specific topologies, mainly for the asymmetrical inter-

ference model. The unitary case (each node has one message to transmit to the base station) in

the path with dT = 1 and arbitrary dI is studied in [BCY06] and in [BCY09]. The authors give

protocols and lower bounds on the minimum number of rounds when BS is either at one end or at

the center of the path. The protocols are shown to be optimal for any dI in the first case, and for

1 6 dI 6 4, in the second case. In chapter 3, we generalize these results for arbitrary dT using a

different approach, proving 1-approximation and giving good protocols when the BS is at the end.

For the two-dimensional square grid, the problem with unitary demand is studied in [BP05] for

dT = 1 and when the BS is placed in the center of the grid. In [BP05], the algorithms attain the

optimal and near-optimal solution for dI odd and dI even respectively. In [BP09] optimal solutions

are given for dI even and also for hexagonal grids.

For trees, in the case dI = dT = 1 with unitary demand, an optimal solution is presented in [BY08]

when buffering is allowed. The method consists in classifying the subtrees and applying specific

sub-algorithms for each type. The same case but without buffering in intermediary nodes is solved

in [BGR08]. In this case, the method is different and consists in studying the related problem of

collision free labelings.

In [BGK+06a], a 1-approximation is given for stars.

The symmetric model interference has been studied mainly in the case ds
I = dT = 1 (primary node

interference model). In [FFM04a] exact formulas are given for paths and for general demands.

That has been extended to trees in [GR06a, GR09]. In [GR06a, GR09] a polynomial algorithm

is given for any graph but with unitary demand. A related gathering problem has been studied

in [BNRR09a]. In this case, the BS is placed in one of the corners of the grid and the interference

is symmetrical with ds
I = dT = 1. For this settings, a +1-approximation algorithm is presented as

well as a distributed +2-approximation version. These results are presented in detail in chapter 4.
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Table 1.2: Algorithms for the MTG Problem
Interference Demand buffer topology result reference

asymmetric dI , dT general buffer general 4-approx [BGK+06b]
asymmetric dT = 1, any dI uniform buffer path BS end optimal [BCY06],[BCY09]

dT = 1, 1 6 dI 6 4 uniform buffer path BS center optimal
asymmetric dT = 1, dI odd uniform buffer grid optimal [BP05, BP09]
asymmetric dT = 1, dI even uniform buffer grid optimal
asymmetric dI = dT = 1 uniform buffer tree optimal [BY08]
asymmetric dI = dT = 1 uniform no-buffer tree optimal [BGR08]
asymmetric dI , dT uniform buffer path 1-approx chapter 3
asymmetric dI , dT uniform buffer grid 1-approx [BGK+06a]
asymmetric dI , dT uniform buffer stars 1-approx [BGK+06a]

symmetric ds
I = dT = 1 general no-buffer path optimal [FFM04a]

symmetric ds
I = dT = 1 general no-buffer tree optimal [GR09]

symmetric ds
I = dT = 1 uniform no-buffer general optimal [GR09]

symmetric ds
I = dT = 1 general no-buffer grid +1-approx [BNRR09a]
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1.3 The Round Weighting and Gathering Problem

The Minimum Time Gathering focus on the problem of routing a given demand from each node

to the base station. Thus, the goal is completed when the last message reaches the BS and the

protocol ends. This may not be the case for certain applications, where a permanent communication

between the nodes is sent over time, i.e., messages are permanently created in their sources. This

introduces a new type of model where traffic has to be allocated permanently, in a periodic way.

When the network is in a steady state, the relevant time-scale to focus on is the period. In our

case, such a period is a sequence of round activations providing enough capacity for routing the

flow of messages.

In other words, there is enough capacity for each node v to send b(v) messages, each message to be

forwarded toward the sink, and the sink to receive
∑

v b(v) messages at each period. In particular, a

given message may need several periods to reach its destination and the data rate provided to node

v equals b(v)
W , where W is the length of the period. A fair optimization of the transport capacity is

therefore equivalent to minimizing W such that there is enough capacity to send a given demand

at each node.

In this thesis, we address the relaxation of this problem in which a solution is no longer a sequence

of rounds, but a continuous (no longer discrete) weight function w : R → R+ on the set of rounds

R. In this case, w(R) represents how often round R should be activated in such a way that b(v)

messages are sent by each node v during each period, and W =
∑

R∈R w(R).

The Round Weighting Problem (RWP) has been formalized in [KMP08], that jointly considers

the multi-commodity flow problem and the weighted fractional coloring problem. In fact, they

consider the problem for general demands b(u, v) for any ordered pair (u, v). Here we restrict

ourselves to the gathering instances.

Now, we formally introduce the round weighting problem.

Problem: Round weighting for gathering instances

Input: a graph G = (V,E), a base station BS ∈ V , a set of possible

rounds R ⊂ 2E (whose size may be exponential), and a flow

demand function b : V → R+, corresponding to the demand

from v ∈ V to the BS.

Solution: A round weight function w defined over R that satisfies the

traffic demand b.

Goal: Minimize the overall weight of w, i.e. W =
∑

R∈R w(R).

1.3.1 Model

In the following we present the round weighting problem as a linear program and we study it

through its dual for the case of gathering.
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We consider a traffic gathering where the demand b : V → R+ represents the flow b(v) needed to

be sent from v to the base station BS.

We say that a round weight function w satisfies the traffic demand b if there exists a flow φ such

that

• it satisfies the traffic demand b

(∀v ∈ V )
∑

P∈Pv,BS

φ(P ) ≥ b(v),

where Pv,BS denotes the set of paths between v and BS, and

• it respects the capacity cw induced by w:

(∀e ∈ E)
∑

P∈P:e∈P

φ(P ) ≤ cw(e) =
∑

R∈R:e∈R

w(R).

Summarizing, the round weighting problem can be written as:

min
w,φ

∑

R∈R

w(R)

−
∑

P∈Pv,BS

φ(P ) 6 −b(v) (∀v ∈ V ) (1.1)

∑

P∈P:e∈P

φ(P )−
∑

R∈R:e∈R

w(R) 6 0 (∀e ∈ E) (1.2)

w,φ > 0

Now, we derive the dual using positive multipliers. Let λv be the multiplier associated to (1.1) and

l(e) to that of (1.2). Thus, the dual formulation consists in:

max
λ,l

∑

v∈V

λvb(v)

∑

e∈P

l(e) > λv (∀v ∈ V )(∀P ∈ Pv,BS) (1.3)

∑

e∈R

l(e) 6 1 (∀R ∈ R) (1.4)

λ, l > 0

Notice that l(e) can be seen as the length of a call e. Therefore l(e) induces a metric dl(u, v) which

corresponds to dl(u, v) = minP∈Pu,v l(e), the path with shortest length (in terms of l) between two
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v1 v2 v3 v4 v5BS = v0

R1

R2

R3

w(R1) = 5

w(R2) = 4

w(R3) = 3

(a) primal solution

v1 v2 v3 v4 v5BS = v0

1 1 1 0 0

(b) dual solution

Figure 1.7: Example of solution of RWP over a path with 6 vertices. In fig. 1.7(b) labels below
each edge indicate the value of l.

nodes u,v. As the goal of the dual problem is to maximize λvb(v), with b(v) > 0, by (1.3), the

optimum choice is λv = dl(v,BS). In summary, we obtain the following property:

Property 1.1 ([KMP08]) The dual problem of round weighting consists of finding a metric l :

E → R+ onto the call set maximizing the total distance that the traffic needs to travel (W =
∑

v∈V dl(v,BS)b(v)) and such that the maximum length of a round is 1 ((∀R ∈ R) w(R) =
∑

e∈R dl(e) ≤ 1).

We present an example for the case of a path with 6 vertices as depicted in figure 1.7. Vertices are

denoted v0, . . . , v5, the vertex at the corner, v0, corresponds to the BS. Each one of the remaining

nodes, v1, . . . , v5 has a 1 unit of demand to be gathered into BS. The interference considered

corresponds to a symmetrical model with ds
I = 2 and dT = 1. Due to the interference, a solution

consists in using the rounds R1 = {(BS, v1); (v3, v4)}, R2 = {(v1, v2); (v4, v5)} and R3 = {(v2, v3)}.
The weight of each round is w(R1) = 5, w(R2) = 4, w(R3) = 3 and zero for all the remaining

rounds in R.

Notice that the induced capacity associated to each edge, which is the sum of the weights of the

rounds containing the edge, corresponds to, cw((BS, v1)) = 5, cw((v1, v2)) = 4, cw((v2, v3)) = 3,

cw((v3, v4)) = 5, cw((v4, v5)) = 4. These capacities satisfies the flow φ induced to each edge. For

example, all the demand must go through the edge (BS, v1). In this case, the flow going through

(BS, v1) is φ(BS, v1) = 5 and the capacity constraint is satisfied.

The solution attains a cost of
∑

R∈R = 12.

Let us see now the dual solution proposed. It consists of l(BS, v1) = l(v1, v2) = l(v2, v3) = 1 and

zero for the remaining edges. Notice that any possible round R formed by two edges satisfies that
∑

e∈R l(e) 6 1. Indeed, the edges between v3, v4, v5 has a length l = 0 and the edges between

BS, v1, v2, v3 has a length l = 1 and each round must use at most one edge of each group. The value

of the solution is dl(v5,BS) = dl(v4,BS) = dl(v3,BS) = 3 and dl(v2,BS) = 2 and dl(v1,BS) = 1.

Therefore,
∑

v 6=BS
dl(v,BS) = 12, which is optimal due to the value is equal to the primal solution.

We will see in chapter 5 that dual approach give us a powerful tool to obtain good lower bounds

that, in some cases, optimal solutions are attained.
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1.3.2 Related Work

The use of a duality in problems of routing flow in wireless ad-hoc networks has been also presented

in [CLD05]. However, the approach proposed is different. In particular, they propose a lagrangian

relaxation and then, they prove the convergence of their method towards the optimal solution.

It has been shown in [KMP08] that the RWP is NP-Hard in general (reduction in the case

dI = 2, dT = 1 to the fractional coloring problem). They also showed that for gathering instances,

RWP remains NP-Hard even when restricted to unitary demands. The authors present a 4-

approximation algorithm in this case. Finally, they conjecture that it is always possible to get a

PTAS for gathering instances.

The complexity of the problem has been also studied for specific topologies. For paths and trees,

under gathering instances, RWP can be solved in polynomial time on the length of the path. (The

idea is presented in [KMP08]). For general instances in trees, the problem admits a FPTAS. For

grids, RWP remains NP-Hard, but it admits a PTAS[KMP08]. However, the PTAS proposed

is purely theoretical. Moreover they posed the following question: Is it possible to get simple

and efficient algorithms for the 2-dimensional grids? Is it possible to give purely combinatorial

algorithms that would not use linear programming? In chapter 6 we answer these questions by

presenting optimal solutions for dI , dT arbitrary and uniform demands. This work is a generalization

of [GPRR08] where the case ds
I = 2, dT = 1 is solved.

A related problem consists in finding the maximum round (in terms of number of calls) satisfying the

distance-2 interference model. This problem is also called maximum induced matching [SV82] and

maximum distance 2 matching (D2EMIS) [BBK+04]. D2EMIS is known to be APX-complete for

regular graphs [Mah00], but admits a PTAS for disk graphs [BBK+04]. The problem is generalized

for arbitrary dI in [MSS06] by considering different weights to the edges. The problem is called

the maximum weighted K-valid matching problem (MWKVMP) for K = ds
I in our case. The

MWKVMP is polynomial when ds
I = 1. However, if ds

I > 2 then the problem is NP-hard and not

approximable. The authors also provide a PTAS for unit disk graphs.

Interference Demand problem topology result reference

asymmetric dI , dT general RWP general NP-hard [KMP08]
uniform RWP–gathering NP-hard
uniform RWP–gathering 4-approx

Table 1.3: Complexity Results for RWP in general topologies. RWP–gathering indicates the
RWP restricted to gathering instances.

1.3.3 Hardness of Round Weighting

As seen in section 1.3.2 the Round Weighting Problem is NP-Hard. Now, we show that the

RWP remains NP-Hard even for gathering instances.
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Interference Demand problem topology result reference

asymmetric dI , dT general RWP–gathering path Poly [KMP08]
RWP–gathering tree FPTAS

asymmetric dI , dT general RWP grid NP-Hard [BGK+06c]
RWP grid PTAS

asymmetric dI , dT general RWP–gathering grid NP-Hard ??
(open)

Table 1.4: Approximation algorithms for for RWP in specific topologies. RWP–gathering indi-
cates the RWP restricted to gathering instances.

Theorem 1.2 ([KMP08]) The RWP in graphs with asymmetrical interference dI = 2, dT = 1

is NP-Hard even for gathering instances.

Idea: The reduction is from Maximum Independent Set. Let G the graph which is an instance

of Maximum Independent Set, we will construct a new graph H such that H will be an instance

of RWP. Let α the size of the maximum independent set in G = (V,E). Since checking whether

α = 1 is polynomial, we will assume that α > 2. Let G′ = (V ′, E′) a copy of G. Now we

define the graph H. The set of nodes in H is the set V ∪ V ′ ∪ {s,BS}. The edges of H are

defined as follows: the edges of G and G′ are also edges in H. There exists one edge between s

and each node of G. There exists one edge between each node of G′ and BS. There is an edge

between each node v in G and its copy v′ in G′. In other words, the set of edges in H is the set

{(s, v) | v ∈ V } ∪ {(v, v′) | v ∈ V, v′ copy of v in G′ } ∪ {(v′,BS) | v′ ∈ V ′} ∪ E ∪ E′. The graph

H is depicted in figure 1.8. We define the associated demand function as f(s,BS) = b > 0 and 0

otherwise.

Since the interference parameters are dT = 1, dI = 2 the construction assures that two calls (u, u′)

and (v, v′), u, v ∈ V , u′, v′ ∈ V ′ are compatible if and only if u and v are independent nodes

in G. Note also that rounds containing calls of type (v, v′) cannot contain calls of type (s, v) or

(v′,BS). Moreover, if a call occurs between s and a node v in V , the only possible compatible call

corresponds to an edge (v′,BS) such that (v, v′) is not an edge in H. Let w∗ the optimal weight

function and W ∗ the corresponding weight solution. Let R∗ be the largest round composed by calls

of type (v, v′) and such that w∗(R∗) > 0. Notice that this round induces an independent set in G.

Indeed, the number of calls in the round corresponds to the size, denoted α∗, of this independent

set. It follows that W ∗ > b
α∗ + b.

Now, let us propose a weight function w which is solution for the round weighting problem.

We define I = (vi)
α−1
i=0 as a maximum independent set of G. The weight function proposed is

w({(s, vi), (v
′
(i+1) mod α,BS)}) = b

α , for i = 0, . . . , α − 1; w({(vi, v
′
i)

α−1
i=0 }) = b

α ; and 0 for all the

other rounds. The overall weight W of this solution satisfies W ∗ 6 W = b
α + b. From both, lower

and upper bound of W ∗ combined, we conclude that α∗ > α. Therefore, the problem of determining

W ∗ is as difficult as the maximum independent set problem. 2

The proof can be also extended to gathering instances with unitary demand [KMP08].
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BS

s

G

G′

Figure 1.8: Reduction from the maximum independent set problem. Instance for RWP where node
s has b unit-demand to be gathered into BS. The (dI , dT )-interference model considered is dI = 2
and dT = 1. Green arrows indicate compatible calls, red arrows indicate two calls that interfere
between them.

1.3.4 Relationship between gathering and round weighting

To get some idea of the relationship between the Round Weighting and the Minimum Time

Gathering problems we present the example of figure 1.9. In this figure, we present the case of

a network which is a path with n nodes numbered from 0 to n − 1. The base station is placed in

node 0. The demand consists in one message placed in node n − 1. We suppose an asymmetrical

interference model with parameters dT = dI = 1.

For the case of Minimum Time Gathering(see 1.9(a)) having 1 unit of demand in node n − 1

means that the message must be transmitted from node n − 1 to node BS = 0. The solution

presented requires n − 1 time-steps. Indeed, we can observe that this solution is optimal. The

solution consists of n − 1 rounds where the round i consists in one call transmitting the message

between nodes n− i and n− i− 1.

For the case of the Round Weighting Problem(see 1.9(b)) having 1 unit of demand in node

n − 1 means that we look for the minimum period W such that 1 message must be routed from

node n− 1 to BS in a period of length W . The solution proposed consists in a function of weights

over the rounds w which is non-zero for three rounds denoted R1, R2 and R3. This rounds are

defined as Ri = {j → j − 1 | j = i mod 3},i = 1, 2, 3 where j → j − 1 denotes a call between node

j and node j − 1. The weight of each round is defined as Ri = 1 for i = 1, 2, 3 and 0 for all the

other rounds. In this way, the associated capacity cw of each edge of the path is 1. Then, there

exists a flow function satisfying the capacity cw of each node and transmits 1 unit of demand from

n − 1 to BS. The total weight of the solution is W (w) = w(R1) + w(R2) + w(R3) = 3. Hence, we

have that the solution routes 1/3 units per time-step from node n− 1 to BS. As a remark, we can

observe that this solution is optimal.
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n − 3
n − 2
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round
round
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BS = 0 n − 1n − 2· · ·6 7

(a) A solution for Minimum Gathering Problem

1 2 3 4 5

round 1

BS = 0 n − 1n − 2· · ·6 7

R1

R3

R2

(b) A solution for the Round Weighting Problem

Figure 1.9: Comparison between solutions for Minimum Time Gathering and Round Weight-
ing. In both cases, the instance is the same: A path with n nodes, BS placed in node 0, and 1 unit
of demand in node n− 1 to be gathered into BS.

As an interesting remark, note that the length of the optimal gathering protocol increases in the

length of the path. However, the solution of the round weighting problem remains constant. This

constant depends on the parameters of the interference model dI and dT .
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Chapter 2

Summary of the results

In this chapter, we give a brief overview of the results we have obtained. Full versions are given in

chapters 3,4, 5, 6 and appendix A.

In chapters 3 and 4 we study the Minimum Time Gathering Problem. Chapter 3 is focused

on the complexity of the problem in the path. Chapter 4 studies the MTG in the grid when no

buffering is allowed in intermediate nodes.

Chapter 5 and 6 study the Round Weighting Problem. Chapter 5 studies the case where the

demand may be routed by means of a cycle between each demanding node and the base station.

In chapter 6 we present lower bounds and, for the case of the grid, we present upper bounds which

are optimal for unitary demand, and optimal in many cases for general demand.

Table 2.1 summarizes the problems MTG and RWP studied in this thesis and the main results

obtained.

Interference Demand buffer problem topology result reference

asymmetric dT = 2, 3, 5, any dI unitary buffer MTG path BS at end optimal chapter 3
asymmetric dI , dT unitary buffer MTG path 1-approx

symmetric ds
I = dT = 1 general no-buffer MTG grid +1-approx, chapter 4,

distributed [BNRR09a],
+2-approx [BNRR09b]

symmetric ds
I = dT = 1 general – RWP general near optimal chapter 5

(routing)
symmetric dT = 1, any ds

I uniform – RWP grid optimal chapter 6,
general – RWP grid approx [GPRR08]

Table 2.1: Results of this thesis related to MTG and RWP.

As an appendix, and not related to gathering problems, we study we deal with the question of how

to provide measures of congestion in networks. Using random graph theory we studied the number

of paths and the connectivity of the network (see appendix A).

In the following we explain the different problems studied in this thesis. We explain briefly each
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model, its settings, important results and notations.
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2.1 Gathering radio messages in the path

In chapter 31, we address the problem of MTG in the path. First, we discuss lower an upper

bounds when the base station is placed in an arbitrary vertex. Afterthat, we focus the study on

the complexity of the problem when the base station is an end-vertex of the path. To do that, the

question to solve is how to construct a protocol for a certain path starting with a protocol for a

path of smaller size.

The base station is called sink and it is denoted t.

2.1.1 Interference

In terms of interference, we consider the asymmetrical (dI , dT )-interference model. Notice that

in this chapter we consider arbitrary values of dI and dT (with dI > dT ).

2.1.2 Demand

We deal with uniform demand. More precisely, we consider unitary demand: each node has one

message to be sent into the sink. However, some results are also valid for general demand.

2.1.3 Methodology

For a path with n nodes, denoted Pn, we devise a procedure that, given a gathering protocol Sn for

Pn, allows us to construct a protocol Sn+1 for Pn+1. The protocol Sn+1 is constructed incrementally

on the protocol Pn. That is: the rounds of Sn+1 correspond to the same rounds of Sn plus some

extra (compatible calls), and some additional rounds. An example is depicted in figure 2.1 We

show that this procedure allows us to construct optimal gathering protocols for Pn+1, i.e., that

there always exists a gathering protocol Sn that we can increment, and that is optimal.

2.1.4 Results

When the location of the sink is arbitrary, we have calculated lower bounds for the minimum

number of rounds. These bounds improve over the lower bounds of previous works (valid for the

non-unitary case). We have also presented specific protocols for the unitary case and shown that

the number of rounds required for these protocols is greater than our lower bounds, but only by a

constant number of rounds.

When the sink is located in an end-vertex of the path, we conjecture that the problem of calculating

a protocol using a minimum number of rounds is polynomial in the length of the path (for the

unitary case). We give an explicit way to implement the incremental procedure. That give optimal

1Joint work with Jean-Claude Bermond, Ralf Klasing, Nelson Morales and Stephane Pérennes.
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Figure 2.1: An example of an incremental protocol. On the left, the starting protocol for P14.
On the right, the incremental protocol for P15. The sink denoted t corresponds to node 0. The
interference considered is dI = 4, dT = 3. (Numbers over calls indicate the original vertex of the
message transmitted in the call. New calls are dashed.)

protocols for dT = 2, 3, 5. We have also optimal protocols for other values of dT , dI according to the

congruence classes, namely if dI = pdT + q, 0 6 q < dT , we have optimal protocols if q = dT − 1;

q = 0 and dT 6 7; q + 1 and dT relatively primes; and dT − q − 1 6 p + 4.

It will be interesting to find polynomial algorithms for paths with the BS anywhere and in particular

in the center of the path for any dI , dT . However in view of the complexity of the solution for the

case dT = 1 where the answer is known only for dI 6 4, that appears as a difficult task.

Results are summarized in table 2.2.

Table 2.2: Settings of the problem studied in chapter 3
Interference Demand buffer problem topology result
asymmetric with dI = pdT + q

dT = 2, 3, 5, any dI unitary buffer MGT path BS at end optimal
any dT , q = dT − 1 unitary buffer MGT path BS at end optimal
any dT 6 7, q = 0 unitary buffer MGT path BS at end optimal
q + 1 and dT rel primes unitary buffer MGT path BS at end optimal
dT − q − 1 6 p + 4 unitary buffer MGT path BS at end optimal

asymmetric dI , dT arbitrary unitary buffer MGT path 1-approx
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2.2 Minimum delay Data Gathering in Radio Networks

The aim of chapter 42 is to design efficient gathering algorithms for the MTG over the grid where

the base station is placed in one of the corners and interference constraints are present.

2.2.1 Interference

In terms of the interference models presented above, it corresponds to a symmetrical interference

model with ds
I = dT = 1.

2.2.2 Demand

We suppose a non-uniform demand. It means that nodes may have different numbers of messages

to be gathered. Notice that for the case with uniform demand (all the nodes have the same number

of messages to be gathered) the problem becomes easy.

2.2.3 Methodology

Formally, we consider the grid as a graph where the nodes are represented by their coordinates.

The base station, denoted BS is placed at (0, 0) and called source. We considered a set of messages

M to be gathered.

We consider an equivalent formulation of the gathering problem which is the personalized broad-

casting. In this way, we suppose that the base station BS must send the M messages to the

corresponding nodes.

The idea of the solution consists in finding a protocol such that, at each time-slot, the BS sends one

messsage. Due to the interference, the paths of two consecutive messages (i.e, at two consecutive

time-steps) must be disjoint (see figure 2.2).

In the solution proposed, the base station sends each message by a path following the direction

of either horizontal-vertical or vertical-horizontal as shown in figure 2.2. Therefore, and due to

the interference, the solution consists in a protocol such that the base station sends alternately a

message horizontally and vertically at each time-slot. The problem is reduced to provide BS with

a good delivery order of the messages.

2.2.4 Results

We propose a very simple algorithm that achieves makespan plus two, as well as a more involved +1-

approximation algorithm. In addition, we show a distributed version of the +2-approximation algo-

2Joint work with Jean-Claude Bermond, Nicolas Nisse and Hervé Rivano
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BS

m′

m

Figure 2.2: Configuration when two consecutive messages interfer.

rithm. The best known algorithm for grids was a multiplicative 1.5-approximation algorithm [RS07].

Furthermore our algorithms need no buffering. Results are summarized in table 2.3.

This work is published in [BNRR09a]. An extended version of this work has been accepted in the

conference AdHocNow’09 [BNRR09b].

Table 2.3: Settings of the problem studied in chapter 4
Interference Demand buffer problem topology result reference
symmetric ds

I = dT = 1 general no-buffer MGT grid +1-approx, [BNRR09b]
+2-approx
distributed
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2.3 Round weighting in the primary node interference model

In chapter 53 we discuss mainly the problem of RWP for routing the demand. In this case, we deal

with the problem of routing the demand by means of two paths between each demanding node and

the base station.

In this chapter the base station is called gateway.

2.3.1 Interference Model

In this chapter we consider a symmetrical interference with ds
I = dT = 1. Then, a round

corresponds to a matching over the graph.

2.3.2 Demand

We consider instances of general demand. Indeed, in most of our results, the demand of each

node is routed independently to the other nodes and then, different nodes use different rounds to

route the demand. Hence, the methodology to tackle with uniform or the general demand is the

same.

2.3.3 Methodology

The idea consists in covering the cycle which consists in two paths between a demanding node and

the base station. Let us suppose that we have to sent b units of demand from one node to the base

station. If there exists a cycle of even length containing the demanding node and the gateway, then

it is possible to present a solution for the RWP with cost W = b. In this case, b
2 units of flow are

sent by one path and b
2 by the other. Two rounds labeled 1 and 2 are used. The weight of each

round is b
2 . The solution is depicted in figure 2.3.

2

11

1

2 2

s v

Figure 2.3: Routing b units in the even cycle C6. Each round has a cost of b/2, thus W = b.
Label over each edge represent the round covering the edge. Black and cyan nodes represent the
demanding node v and the base station.

However, if the there is no even cycle between the demanding node and the base station, more than

two rounds are needed. Therefore, the total weight of the solution depends inversely on the length

of the cycle.

3Joint work with Jean-Claude Bermond, Hervé Rivano, Stephane Pérennes and Joseph Yu.
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For each type of cycle considered, we will propose protocols and we will check that in some cases

protocols are optimal by presenting lower bounds derived from dual solutions.

2.3.4 Results

We propose solutions for routing the demand of each node by means of a simple cycle, a cycle with

ears and cycles with chords. For the case of the cycle with ears, we have shown that the solution

proposed is optimal by means of studying the lower bounds provided by the dual formulation.

Results are summarized in table 2.4.

Table 2.4: Settings of the problem studied in chapter 5
Interference demand buffer problem topology results reference
symmetric ds

I = dT = 1 general – RWP general near optimal chapter 5
(routing)
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2.4 Round Weighting Problem and Gathering in wireless net-

works with symmetrical interference

In chapter 64 we considered the RWP for gathering instances. We present methods to obtain lower

bounds for general topologies using cliques of calls. However, explicit lower bounds and optimal

results are presented for grids with the base station placed either at the center or at the corner. A

preliminary version has been presented in [GPRR08] for the case ds
I = 2, dT = 1.

In this chapter, the base station is denoted g (as a reference of gateway).

2.4.1 Interference

The interference considered corresponds to the symmetrical interference model for dT = 1 but

ds
I > 1 arbitrary.

2.4.2 Methodology

We deal with this problem by studying the sets of edges defined by the fact that all the edges in the

set are pairwise interfering. This set of edges are called call-cliques. Let us see as an example in the

grid where the call-clique considered is placed around the base station as shown in figure 2.4. In

this case, the interference considered corresponds to ds
I = 3 and dT = 1. We can check that if one

of the edges depicted belongs to a round, due to the interference, no other edge in the figure may

be in the same round. Notice that the call-clique depicted covers two levels of edges: the first level

consist of the edges adjacent to the base station; and the second level which are the edges adjacent

to the edges in the first level. The lower bounds that we will propose depend on the number of

levels covered.

The technique of covering the edges using one call-clique sometines will not be enough to attain

the optimal solution. In some cases we will need to combine different call-cliques and even using

call-cliques which are not around the base station.

g

Figure 2.4: Each depicted edge around the base station must be activated in a different round. In
this scheme, ds

I = 3, dT = 1.

4Joint work with Jean-Claude Bermond, Cristiana Gomes and Hervé Rivano.
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2.4.3 Results

We present lower bounds for general topologies. For the case of the grid in the uniform demand,

we present upper and lower bounds which attain the optimal solution. The results are valid when

the base station is placed either in the center or in a corner of the grid. For general demand, we

determine the zones of the grid where the demand is crucial. Results are summarized in table 2.5.

Table 2.5: Settings of the problem studied in chapter 6
Interference demand buffer problem topology result reference
symmetric ds

I , dT general – RWP general LB chapter 6
symmetric ds

I , dT general – RWP grid UB, LB chapter 6
symmetric ds

I , dT uniform – RWP grid optimal chapter 6
symmetric ds

I = 2, any dT uniform – RWP grid optimal [GPRR08]
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2.5 Asymptotic Congestion Wireless Ad-Hoc and Sensor Networks

In appendix A5, we study a measure of link-level congestion in static wireless ad-hoc and sensor

networks randomly deployed over an area. The measure of congestion considered is the inverse

of the greatest eigenvalue of the adjacency matrix of the random graph. This measure gives an

approximation of the average quantity of wireless links of a certain length in the network.

2.5.1 Methodology

We use concepts of spectral graph theory and we analyze the asymptotic behavior of the number

of paths of length k.

The adjacency matrix of a graph G, denoted A, is the matrix with rows and columns labelled

by graph vertices, defined as

Aij =

{

1 if i and j are connected by an link,

0 otherwise.

We will denote Ak the k-th power of the adjacency matrix. In this way, the coordinate (i, j) of Ak

will represent the number of paths of length exactly k between nodes i and j.

Furthermore, the spectral radius of a graph G, denoted λA, is the size of the largest eigenvalue

of the adjacency matrix of the graph that can be written as

λA = sup
x∈Rd\{0}

〈x,Ax〉
〈x, x〉 .

where 〈x, y〉 denotes the vector multiplication. Using the Perron-Frobenius’ theorem, [HJ90], we

can combine both definitions achieving that

lim
k→+∞

(~1∗Ak~1)1/k = λA.

where ~1 corresponds to the vector in which all of the elements are ones, and ~1∗ is its transpose.

From this result we obtain that the number of paths of length k in G is approximately λk
A, for k

large enough.

In this way we define the congestion number as the inverse of the spectral radius of the graph

λ−1
A .

The intuitive explanation to this definition is that while we have more paths of a fixed length in

order to send information, we can split the information on these paths and coordinate it to arrive

with the same number of hops at the receiver.

5Joint work with Alonso Silva and Mérouane Debbah (Supelec).
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2.5.2 Results

We have provided a model to deal with congestion of randomly deployed wireless nodes. For

Bernoulli random graphs and Geometric random graphs we have provided, in the case of large

networks, the congestion number which is linked to the number of connected paths of some given

length. Quite remarkably, the mean congestion number can be explicitly derived using asymptotic

results of random matrix theory and the results hold even for a not so large number of nodes.
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Part I

Gathering
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Chapter 3

Gathering radio messages in the Path

In this chapter, we address the problem of gathering information in one node (sink) of a radio

network where interference constraints are present: when a node transmits, it produces interference

in an area bigger than the area in which its message can actually be received. The network is

modeled by a graph; a node is able to transmit one unit of information to the set of vertices at

distance at most dT in the graph, but when doing so it generates interferences that do not allow

nodes at distance up to dI (dI ≥ dT ) to listen to other transmissions.

We are interested in finding a gathering protocol, that is an ordered sequence of rounds (each round

consists of non-interfering transmissions) such that w(u) messages are transmitted from node u to

a fixed node t (the sink). We focus on the specific case where the network is a path and where the

traffic is unitary (w(u) = 1 for all u). Our aim is to find the minimum number of rounds called

gathering time.

We give lower and upper bounds that differ only by a constant (independent of the length of the

path) so obtained a 1+-approximation.

When the sink is an end vertex of the path, we give a way to construct incremental protocols. An

incremental protocol for the path on n + 1 vertices is obtained from a protocol for n vertices by

adding new rounds and new calls to some rounds but without changing the calls of the original

rounds. We conjecture that this incremental construction gives optimal protocols and prove it in

special cases (small dT in particular).

3.1 Introduction

3.1.1 Background and motivation

In radio networks a set of radio devices communicate by using radio transmissions which, depending

on the technology used, are subject to different interference constraints (see for instance for 802.11

[Bia00, Gal04, Müh02]). This means that only certain transmissions can be performed simultane-
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ously, therefore the devices have to act in a cooperative manner in order to achieve an effective

flow of information in the network. In this context, we study a problem proposed by France

Telecom, about “how to provide Internet to villages” (see [BBS05]).

The houses of the village are equipped with radio devices and they want to access the rest of the

world via Internet. For that purpose they have to send (and receive) information via a gateway

where there is a central antenna. This creates a special many-to-one information flow demand in

which the access to the gateway must be provided. Therefore, we will consider a specific traffic

pattern, similar to a single commodity flow with a distinguished node representing the gateway,

called sink and denoted t.

Unlike in wired networks, when a node u transmits a message it does not use a resource as simple

as some capacity on a link; instead it produces a signal that may prevent other transmissions

to occur. The set of possible concurrent transmissions follows from a complex n-ary interference

relation which properly models the idea that the noise intensity must be small enough compared

to the signal intensity. In order to get tractable models, a widely used simplification consists of

associating to each node a transmission area in which it can transmit a message and an interference

area in which it produces a strong noise (see [SW06]). Then, the communication from a node u to

a node v is possible if v is in the transmission area of u, and no third node transmitting has v in

its interference area. Note that, by doing so, we replace the n-ary relation with a binary relation :

two (possible) transmissions (that we will denote calls) can be performed concurrently when they

do not interfere.

3.1.2 Modeling aspects

One possible way of modeling would be to represent the houses (radio devices) as nodes in the plane

with Euclidean distance (the areas of transmission and interference being disks). Here, we choose

to model the network by an undirected graph G = (V,E), where V is the set of devices in the

network and to use as distance the distance between nodes in the graph. Firstly, it simplifies the

analysis and enables us to give tractable gathering algorithms. Secondly, for some graphs like grids

or hexagonal grids the distance in the graphs is a good approximation for the Euclidean distance.

Finally, some nodes which are close to each other in the plane might not be able to communicate

due to different reasons like obstacles, hills, social relations, security. So, there is an edge if two

houses are neighbors and able to communicate.

We model the transmission area and the interference area as balls in the graph by introducing

two parameters: dT , the transmission radius and dI , the interference radius and we suppose that

dI ≥ dT . The transmission area (resp. interference area) is then the ball of radius dT (resp. dI).

The information transmitted by a node becomes available to all the nodes that are in its transmission

area if they are listening, and if they are not in the interference area of a third transmitting node.

We will denote the fact that node s (like sender) is transmitting a message to node r (like receiver)
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Figure 3.1: Interfering/compatible calls.

by saying there is a call s → r. We will say that two calls s → r and s′ → r′ with s 6= s′ are

compatible if s does not interfere with r′ and s′ does not interfere with r.

Figure 3.1 shows a set of 3 calls, which are represented by the arrows over the edges of the graph.

If dT = dI = 1, all these calls are compatible. However, if dT = 1, dI = 2, vertex b is under the

interference of vertex e, and vertex f is under the interference of vertices a and c. In this case,

a round could either consist of one single call (a → b or c → d or e → f), or of the two calls

a→ b, c→ d.

Under this model, the problem raised by France Telecom consists of gathering information from

each node of the network into the central node (the sink t). We will suppose that each node u has

to transmit an integer w(u) > 0 number of units of information to the sink.

Time is considered discrete, i.e., divided into time-steps of fixed length, so during a time-step, a

number of compatible calls (a round) is performed. We look then for an optimal protocol (sequence

of rounds), such that if the rounds of the protocol are performed, then exactly w(u) messages travel

from u to the sink t. Our measure for optimality is the completion time (i.e., the number of rounds)

needed to achieve gathering, hence our objective is to study the minimum time gathering problem

(called also makespan). For example, Figure 3.2 shows an optimal gathering protocol using 18

rounds for a path with 7 vertices (each having one piece of information), with dT = 1, dI = 2 and

sink t = 0.

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

1
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6

7

21t = 0 3 4 5 6
8

21t = 0 3 4 5 6
9

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6

21t = 0 3 4 5 6
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21t = 0 3 4 5 6

21t = 0 3 4 5 6
17

21t = 0 3 4 5 6

10

11
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14

15

16

18

Figure 3.2: A gathering protocol in the path when dT = 1, dI = 2 and every vertex has one message
to send to the sink t = 0.
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Note that we may as well study the converse problem called (personalized broadcast) for which we

need to send personalized information from the central node to each node. Indeed, like in many

other communication models, we can simply reverse the order of the communication steps and the

direction of the calls to get that gathering and personalized broadcast are formally equivalent. Due

to this equivalence, all the results (algorithms, complexity, bounds) that we give are also valid for

personalized broadcast. Here, we focus on gathering issues.

3.1.3 Related work

Basic communication problems for the dissemination of information (like gathering, broadcasting,

gossiping) have been widely studied in classical interconnection networks (see the book [HKP+05]).

The broadcasting and gossiping problems in radio networks with dT = dI = 1 are studied in [CW91,

EK04, GP02] and [CGR02, GM03, CGL02, BGP98, BGRV98] respectively. Note that broadcasting

is different to our problem because in a broadcast the same information has to be transmitted to

all the other nodes and therefore flooding techniques can be used.

With respect to the gathering problem (see [BKK+09a] for a survey) different cases have been

studied. In [BGK+06b] a protocol for general graphs with an approximation factor of at most 4

is presented. An extension of this problem where messages can be released over time is studied

in [BKMS08a] and a 4-approximation is presented. Using the same interference model, a relaxed

approach has been studied in [KMP08] where the problem is studied in terms of collecting the flow

demands. The unitary case (where each node has one unit of information to transmit) has been

considered under different topologies. The unitary case in the path with dT = 1 and arbitrary dI

is studied in [BCY06] and in [BCY09]. For the two-dimensional square grid, optimal solutions are

provided in [BP05] and [BP09]. For trees, in the case dT = dI = 1, an optimal solution is presented

in [BY08], and in [BGR08] if no buffering is allowed in intermediate nodes.

The fact that no buffering is allowed come from the application in sensor networks. In sensor

netorks (see [Gar07] for a survey), a model closer to ours is considered in [FFM04a]. Here, they

consider mainly one directional antenna and the so called primary node interference model where

a node cannot receive and transmit during the same time slot. In [FFM04a] they give optimal

gathering protocols for paths and trees. The results have been extended to general graphs in the

unitary case in [GR06a, GR09] where a polynomial algorithm is given.

Finally, note that some articles consider symmetric interference models, due to the fact that in

the protocol 802.11 when a message is transmitted, acknowledments need to be transmited as well.

Indeed, in some papers this model is named the 802.11 interference model (see [Wan09b]).
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3.1.4 Structure of the paper

In Section 3.2 we introduce the notation and precise the problem to solve. In sections 3.3,3.4 and 3.5

we consider the case where the sink is an end-vertex of the path.

In section 3.3, we present the classical lower bound and an algorithm which turns out to be optimal

when dI = pdT + dT − 1.

In section 3.4, we give a new lower bound for the asn we show that the preceding algorithm gives

a 1+-approximation (the number of rounds differ from the lower bound by a constant independent

of the length of the path).

In section 3.5 we give a procedure such that, given a gathering protocol for the path of length n, it

produces a solution for the path of length n+1. We call this procedure incrementing as it does not

modify the solution for n, but it only adds extra calls and rounds to gather the additional message

(for the new vertex). We next show that this procedure can be used to obtain better protocols.

In particular, it gives optimal protocols for small dT and dI such that if dI = pdT + q then q + 1

is relatively prime with dT . That gives optimal solutions for dT = 2, 3, 5. We conjecture that an

optimal solution can be obtained by the incremental procedure; if true that will give an optimal

protocol polynomially in the length of the path.

In section 3.6 we extend the protocol and lower bounds of section 3.4 for arbitrary positions of the

sink obtaining a 1+-approximation.

3.2 Preliminaries

In this section we introduce the model and main notation, and we state the problem to solve.

3.2.1 The model: definitions and notation

In the whole paper, we are given a graph G = (V,E) with n vertices and with a distinguished

vertex t ∈ V , called the sink, and two integers dI , dT ∈ N, such that dI ≥ dT > 0, where dI is the

interference distance and dT is the transmission distance. The distance between two vertices u and

v is the length of the shortest path from u to v and is denoted dG(u, v).

In the gathering problem, every node u ∈ V has w(u) unitary pieces of information (called shortly

messages) which have to reach the sink t, where w(u) is a nonnegative integer. We denote by m(u)

any of the w(u) messages originated in the node u.

A call is a couple (s, r) with s, r ∈ V , 0 < d(s, r) 6 dT , and where s is the sender and r the

receiver. We denote the call (s, r) as s → r. Call s → r interferes with call s′ → r′ if d(s, r′) 6 dI

or d(s′, r) 6 dI . We say that the two calls s→ r and s′ → r′ are compatible if they do not interfere,

that is both d(s, r′) > dI and d(s′, r) > dI . During one unit of time only one (unitary) message can
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be transmitted.

A round is a set of compatible calls. If R is a round and s → r ∈ R is a call, we say that s → r is

performed during round R, and this corresponds to the sender s transmitting a message to receiver

r if there is one message available.

A gathering protocol is an ordered sequence of rounds that allows to gather the information of the

nodes in the sink.

We will often specify protocols by giving simply the sequence of rounds, without specifying which

message is sent, indeed that is irrelevant as long as each vertex can forward something new. Also,

observe that when gathering it is not useful to have multiples copies of a message in different

vertices: it suffices to keep the copy that arrives first to the sink. This allows us to consider simply

calls of the type s→ r, meaning that the sender can select a unique receiver between the potential

ones.

3.2.2 The Minimum Time Gathering Problem

Let us now precise the problem to solve. We call it the Minimum Time Gathering problem. The

input of the problem is given by a tuple (G,w, t, dI , dT ) with

1. A base graph G = (V,E).

2. A weight function w : V → N∪{0}, w(u) being the number of messages to gather from vertex

u into the sink t.

3. A sink t ∈ V .

4. A transmission distance dT ∈ N, dT ≥ 1.

5. An interference distance dI ∈ N, dI ≥ dT (dI = pdT + q, with 0 6 q < dT ).

We will often write simply (G,w, t) for an instance of Minimum Time Gathering.

Definition 3.1 (Gathering protocol) A gathering protocol (or simply protocol) is an (ordered)

sequence of rounds such that, once all the rounds in the protocol are executed, exactly w(u) messages

have been gathered from vertex u ∈ V into the sink t.

The goal of Minimum Time Gathering Problem is to find a protocol that requires a minimum number

of rounds, called gathering number.

Definition 3.2 (Gathering number) Given an instance (G,w, t, dI , dT ) of gathering, the min-

imum number of rounds for any gathering protocol for the instance will be called the gathering

number and will be denoted as gdI ,dT
(G,w, t), or simply g(G,w, t) if dI , dT are clear from the

context.
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In this article, we restrict ourselves to the case where G = Pn, the path with n vertices. Formally,

Pn is the graph with vertex set {0, 1, . . . , n − 1} and edges between vertices i and j if and only if

|i−j| = 1. We consider protocols only for Unitary Minimum Time Gathering which is the the unitary

case where w(u) = 1 for all u 6= t. However, lower bounds are given for general values of w.

In the next sections (except the last one), we suppose the sink is the end vertex of the path

t = 0. We will use the simplified notation gdI ,dT
(Pn, w) for gdI ,dT

(Pn, w, t = 0) and gdI ,dT
(Pn)

for gdI ,dT
(Pn, w = 1, t = 0). We will also denote A(Pn) for a gathering protocol that gathers one

message from each vertex i 6= 0 into the sink t = 0.

3.3 Lower Bounds and Simple Protocols for the sink as an end-

vertex

In the rest of the paper, we suppose dT and dI are given. Let dI = pdT + q with p and q integers,

p > 1 (or dI > dT ) and 0 6 q < dT . We will also use intensively the notation D = dI + dT + 1.

3.3.1 A first lower bound

In [BGK+06b] the authors give a general lower bound which is presented in the following proposition

for the path Pn with the sink at vertex 0 and general weights w.

Proposition 3.1 ([BGK+06b]) We have gdI ,dT
(Pn, w) > LB0(Pn, w), where

LB0(Pn, w) =
∑

i6dI+1

w(i)

⌈

i

dT

⌉

+

⌈

dI + 2

dT

⌉

∑

i>dI+1

w(i)

Note that the bound can be easily obtained in that case by noting that there is at most one call

(s, r) with r 6 dI + 1.

3.3.2 Optimal Protocols for Pn, n 6 (p + 1)dT + 1

Using a greedy protocol we can obtain the value of gdI ,dT
(Pn) for small n, specifically for n 6

(p + 1)dT + 1.

Proposition 3.2 Let dI = pdT + q, 0 6 q < dT . For n 6 (p + 1)dT + 1, gdI ,dT
(Pn, w) =

∑

i6n−1 w(i)
⌈

i
dT

⌉

Proof: From proposition 3.1, by noting that ⌈dI+2
dT
⌉ > p + 1 and that for dI + 2 6 i 6 (p + 1)dT

we have ⌈ i
dT
⌉ = p + 1, we get LB0(Pn, w) >

∑

i6n−1 w(i)⌈ i
dT
⌉.
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Figure 3.3: The rounds {i + kD → max[0, i + kD − dT ] : k ≥ 0, i + kD ≤ n − 1} for 1 ≤ i ≤ D in
P21 when t = 0, dI = 4, dT = 3 and hence D = 8.

Now the bound is attained by considering the greedy protocol consisting of single rounds of length

dT if possible. More precisely, for a message located at a vertex i = αdT + β with 1 6 β 6 dT , the

protocol performs α + 1 = ⌈ i
dT
⌉ rounds which are i − jdT → i − (j + 1)dT for 0 6 j 6 α − 1 and

(i− αdT = β)→ 0. �

3.3.3 A simple gathering protocol

The algorithm we describe is very similar to the general algorithm of [BGK+06b] which gives a
3
2 -approximation in the particular case of Pn. But as we consider only the unitary case (w(u) =

1,∀u 6= 0), it is very simple. However, it will be sufficient to solve completely the case q = dT − 1

(dI = pdT +dT−1) and to give in general a +1-approximation. It can also be viewed as an extension

of the algortihm given in [BCY09] for dT = 1. Recall D = dT + dI + 1.

We will use the rounds {i + kD → max[0, i + kD − dT ] : k ≥ 0, i + kD ≤ n− 1} that we define for

i = 1, . . . ,D (see Figure 3.3 for an example on P21). We observe that the rounds are well-defined,

because the distance between two consecutive transmitters is D.

The algorithm consists of 2 phases: a loop that reduces the instance into an instance of Pk, where

k 6 D and a simple greedy gathering for Pk.
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Input: n, dI , dT

while n− 1 ≥ D do1

for i = 1 to D do2

Apply the round {i + kD → max[0, i + kD − dT ] : k ≥ 0, i + kD ≤ n− 1}
end

n← n− dT

end

Gather each message independently, using a shortest path to the sink.3

Algorithm 1: Algortihm A1 solves gathering in Pn for t = 0

Proposition 3.3 Algorithm 1 gathers in |A1(Pn)| rounds, where

|A1(Pn)| =
{

|A1(Pn−dT
)|+ D if n− 1 > D,

∑n−1
i=1

⌈

i
dT

⌉

if n− 1 < D

Proof: Clearly, the result holds if n− 1 < D, thus we focus on the case n− 1 ≥ D. For n− 1 ≥ D,

we have that each iteration of the inner for loop (Step 2) requires D rounds and transforms the

instance (Pn, 0) into instance (Pn−dT
, 0), hence the claim. �

3.3.4 Case q = dT − 1 (dI = pdT + dT − 1)

In the case of q = dT − 1, we can give exact values as we will see that LB0(Pn) and |A1(Pn)|
are equal. This case can be viewed as an extension of dT = 1 (see [BCY09]) as q < dT implies

q = 0 = dT − 1 for dT = 1.

Proposition 3.4 If dI = pdT +dT −1 (q = dT −1), then gdI ,dT
(Pn) =

∑

i6dI+1

⌈

i
dT

⌉

+(p+2)(n−
dI − 2)

Proof: In that case dI + 2 = (p + 1)dT + 1 and so
⌈

dI+2
dT

⌉

= p + 2 and so by proposition 3.1 (with

w(i) = 1)

LB0(Pn) =
∑

i6dI+1

⌈

i

dT

⌉

+ (p + 2)(n − dI − 2)

We also have D = dI + dT + 1 = (p + 2)dT and so |A1(Pn)| =∑i6dI+1

⌈

i
dT

⌉

+ (p + 2)(n− dI − 2).

�

For the other cases q 6= dT − 1, we get that for n > (p + 1)dT + 1, LB0(Pn) and |A1(Pn)| are

different. Indeed when n increases 1, LB0(Pn) increases p + 1 (as q < dT − 1, then
⌈

dI+2
dT

⌉

= p + 1)

and so when n increases dT , LB0(Pn) increases (p + 1)dT , but |A1(Pn)| increases D > (p + 1)dT .

In the next subsection we give another lower bound which increases D when n increases dT and

hence, we will deduce an 1+-approximation result.
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∆Γℓ(R) = 2 + 1 = 3

ℓ = 6

t = 0 1 2 3 4 5 6 7

Figure 3.4: An example of the distance contribution in a specific neighborhood of the sink. Round
R contains the calls 2→ 0 and 7→ 5.

3.4 Another lower bound and a 1+-approximation

3.4.1 Another lower bound

Let us define the distance contribution ∆D(R) of a round R in the interval [0,D] as the distance

that the message transmitted during round R advances towards the sink t = 0 inside the interval

[0,D] (see figure 3.4 for an example). More precisely

∆D(R) =
∑

s→r∈R

max[0,min[dG(s, 0)− dG(r, 0),D − dG(r, 0)]

Note that if r is not in [0,D−1], then D−dG(r, 0) 6 0 and hence, the call contributes 0 in ∆D(R).

If a call is backwards s < r, dG(s, 0)−dG(r, 0) < 0 and then such a call also contributes 0 in ∆D(R).

If R = (Rj)j∈J is a sequence of rounds, we define its contribution as the sum of the contribution

of its rounds ∆D(R) =
∑

j∈J ∆D(Rj).

These definitions are useful to prove the following lower bound. We give it for general w although

we will use only for the unitary case.

Proposition 3.5 gdI ,dT
(Pn, w) > LB1(Pn, w), where

LB1(Pn, w) =
1

dT





D−1
∑

i=1

iw(i) + D
∑

i>D

w(i)





In particular for the unitary case

gdI ,dT
(Pn) > LB1(Pn) =

D(n−D)

dT
+

D(D − 1)

2dT

Proof: Let R = (Rj)
|R|
j=1 be a gathering protocol. We observe that, even when two receptions

can be performed inside the interval [0,D] during the same round (because the distance between a
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vertex receiving a message and a vertex transmitting another is at least dI + 1), then

(∀j = 1, . . . , |R|), ∆D(Rj) ≤ dT (3.1)

We also observe that

• if i ≥ D, a message from node i has to travel at least a distance D inside [0,D] to reach the

sink and there are
∑

i≥D w(i) such messages; and

• if i < D, a message from node i needs to travel a distance i inside [0,D] to reach the sink

and in the beginning there are w(i) messages at vertex i, thus overall these messages need to

travel a distance iw(i) towards the sink.

Adding these values for i = 1, . . . , n− 1, it follows that

∆D(R) ≥
D−1
∑

i=1

iw(i) + D
∑

i≥D

w(i) (3.2)

but from the definition of distance contribution and (3.1)

∆D(R) =

|R|
∑

j=1

∆D(Rj) ≤ dT |R|. (3.3)

Using (3.2) and (3.3), we have that for any gathering protocol dT |R| ≥
∑D−1

i=1 iw(i)+D
∑

i≥D w(i),

which corresponds to the first claim.

Now, for the second claim, we distinguish two cases.

If n ≥ D, then
∑D−1

i=1 i = (D−1)D
2 and

∑

i≥D 1 = n−D, hence

gdI ,dT
(Pn) ≥ D

dT
(n−D) +

D(D − 1)

2dT
.

If n < D,
∑n−1

i=1 i =
∑D−1

i=1 i−∑D−1
i=n i >

D(D−1)
2 + D(n−D) as i 6 D − 1. �

3.4.2 A 1+-approximation

Recall that an algorithm A calculates a 1+-approximation for the Unitary Minimum Gathering

Time if there exists a constant C = C(dI , dT ) independent of n such that |A(Pn)| 6 gdI ,dT
(Pn)+C.

That means that the gap between the number of rounds of algorithm A and the optimum value is

an additive constant which does not increase with the size of the path.

Theorem 3.1 Algorithm A1 gives a 1+-approximation for gdI ,dT
(Pn).
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Proof: Let n > (p + 1)dT + 1, n = D − γ + kdT , where 0 6 γ < dT then

|A1(Pn)| = kD +

D−γ−1
∑

i=1

⌈

i

dT

⌉

=
(n−D + γ)

dT
D +

D−γ−1
∑

i=1

⌈

i

dT

⌉

=
D(n−D)

dT
+ C1(dI , dT )

By proposition 3.5

LB1(Pn) =
D(n−D)

dT
+

D(D − 1)

2dT
=

D(n−D)

dT
+ C2(dI , dT )

and so |A1(Pn)|
LB1(Pn) → 1 as n→∞. Said more precisely,

|A1(Pn)| − gdI ,dT
(Pn) 6 C(dI , dT ) = C1(dI , dT )− C2(dI , dT ).

�

3.5 Incremental Protocols

In what follows, it will be convenient to define X = {1, 2, . . . , dT }, the set of possible transmission

lengths and consider the translation function f : X → X,x 7→ f(x) = [(x + q) mod dT ] + 1.

3.5.1 Construction of the Incremental Protocol

In this section, we are interested to construct protocols incrementaly from n to n + 1 by adding

new calls (without changing the former calls). More formally, protocol R+ = (Rj)j6|R+| for the

path Pn+1 is an increment of R = (Rj)j6|R| for the path Pn, if Rj ⊂ R+
j , for all 1 6 j 6 |R|. We

show how to construct a specific increment of a gathering protocol R for Pn, using a single round

d→ 0 of R. We will call it R+ or Inc(R, d) if we want to precise the call d→ 0 used.

We show that the protocol Inc(R, d) satisfies the following properties:

Lemma 3.1 Let n > D+1 (the contribution works also for (p+1)dT +1 6 n 6 D if d 6 n−2−dI

). Let R be a gathering protocol for Pn containing a simple round {d → 0}. There exists an

incremental protocol for Pn+1 denoted Inc(R, d) with the following properties

(i)

|Inc(R, d)| = |R|+
{

p + 1 d ≤ dT − q − 1,

p + 2 d > dT − q − 1

(ii) The family of single rounds of the form {s→ 0} of Inc(R, d) is the family of single rounds of
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R minus one round {d→ 0} and perhaps another round plus the round {f(d)→ 0}, where f

is the translation function f(d) = [(d + q) mod dT ] + 1.

Before going in the construction, let us give a simple example to show how the construction works.

Let dT = 2, dI = 2 (p = 1, q = 0), so D = 5. For n = 5 = (p + 1)dT + 1 the greedy protocol

of proposition 3.2 consists of 6 single rounds R1 = {4 → 2}, R2 = {3 → 1}, R3 = {2 → 0},
R4 = {1→ 0}, R5 = {2→ 0}, R6 = {1→ 0}. Using d = 1 we obtain the increment R+ = Inc(R, 1)

for n = 6 by keeping rounds R1 to R5, replacing R6 by R+
6 = {1 → 0} ∪ {5 → 4} and adding

R+
7 = {4 → 2}, R+

8 = {2 → 0}. Here f(d) = 2 and the number of rounds of Inc(R, 1) is

8 = 6 + (p + 1). Starting from R+, as n = 6 > D + 1, we can increment it using again d = 1

(Round R4) obtaining a protocol R++ = Inc(R+, 1) for n = 7 using the same rounds of R+ except

R+
4 replaced by R++

4 = {1→ 0} ∪ {6→ 4} and two new rounds R++
9 = {4→ 2}, R++

10 = {2→ 0}.
Note that R++ is optimum as LB1(P7) = 5·2

2 + 5·4
4 = 10. Now in R++ there are 4 single rounds

s → 0 but all of them of the form 2 → 0 and so an increment of R++ will have 3 more rounds

giving a protocol for n = 8 with 13 rounds (LB1(P8) = 12.5) but with a new single round 1 → 0

which can be used to obtain an increment for P9 with 15=LB1(P9) rounds.

Construction Inc: The idea of the construction is that, given the gathering protocol R for the

instance (Pn, 0) (i.e. R gathers messages from vertices i = 1, . . . , n − 1 into the sink), we will

show that there exist rounds in R such that m(n) (recall that n is the last vertex in Pn+1) can

be transmitted near to the sink by extending these rounds of R with some additional calls. Once

message m(n) is close to the sink, we will add x additional single rounds to complete gathering in

Pn+1.

Let Rj0 be the round Rj0 = {d→ 0}, which exists by hypothesis.

For k ∈ N such that k ≥ 1 and d + kdT ≤ n − 1, define jk in such a way that the last round in R

with a transmitter s, d + (k − 1)dT + 1 ≤ s ≤ d + kdT is Rjk
. Notice that we have that jk+1 < jk

and if s transmits during round Rjk
then s ≤ d + kdT . Let also kd be the largest k such that

d + dI + 1 + kdT ≤ n− 1. (See Figure 3.5 for an example of the construction.). Note that kd exists

(kd > 0); indeed by hypothesis either n > D + 1 or d 6 n− 2− dI .

For j = 1, . . . , |R|, j 6= jk, k = 0, . . . , kd we set R+
j = Rj.

For k = 0, . . . , kd − 1 we set R+
jk

= Rjk
∪ {d + dI + 1 + (k + 1)dT → d + dI + 1 + kdT } and obtain

a valid round as by maximality of kd for k 6 kd − 1, d + dI + 1 + (k + 1)dT 6 n − 1. Indeed, any

transmitter s in Rjk
is such that s ≤ d + kdT , hence the distance from the receiver of the new call

to the largest transmitter in Rjk
is d(s, d + dI + 1 + kdT ) ≥ d + dI + 1 + kdT − d− kdT = dI + 1.

For k = kd we observe that the distance from vertex n to d + dI + 1 + kddT is at most dT , hence

we can set R+
jkd

= Rjkd
∪ {n→ d + dI + 1 + kddT }.

The protocol we have devised consists of |R| rounds, it gathers the same messages as R, and

transmits message m(n) from vertex n up to vertex v0 = d + dI + 1. Note that there always exists

a call ending in v0. Indeed, either n > D +1 and as d 6 dT , v0 = d+dI +1 6 dT +dI +1 = D < n;
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Figure 3.5: An example of the step for constructing incremental protocols. x = p+1 if d ≤ dT−q−1
or x = p + 2 otherwise.

or (p + 1)dT + 1 6 n 6 D, but in this case we choose d such that d 6 dT − q − 1 and so

v0 = d + dI + 1 6 (p + 1)dT < n.

Now we can add extra single rounds to transmit the message from vertex v0 up to the sink t = 0.

We do so using only calls of length dT (excepting, maybe, the last one). Notice that properties (i)

and (ii) are satisfied. Indeed we have added x =
⌈

d+dI+1
dT

⌉

rounds, hence x = p +
⌈

d+q+1
dT

⌉

and

therefore x = p+1 if d+q+1 ≤ dT (⇐⇒ d ≤ dT −q−1) or x = p+2 if d+q+1 > dT (notice that

d + q + 1 ≤ 2dT as q < dT and d ≤ dT ). We also obtain that the very last call performed in this

way, which is the only single call transmitting m(n) ending in 0, is d + q + 1→ 0 if d 6 dT − q − 1

or d + q + 1 − dT if d > dT − q − 1, that is f(d) → 0. Note that for k = 1, Rj1 contains a unique

call with sender s such that d + 1 6 s 6 d + dT . It might happen that s 6 dT and the call of Rj1

is an s→ 0. So, we might loose a second single call of type s→ 0. �

We can repeat this incremental construction Inc. Let us start at some value n0 with a protocol

A(Pn0) containing the family S0 of single rounds of the form {s → 0}. Let us define a sequence

(d0, . . . , dt, . . . , dn−n0−1) as admissible if dt ∈ St, where St is the family of values d of single rounds

d → 0 for the protocol at step t. By construction, St+1 ⊂ St \ {dt} ∪ {f(dt)}. Then for any

admissible sequence (d0, . . . , dn−n0−1) we get, by using the preceding construction at each step t,

a protocol A(Pn) which satisfies |A(Pn)| = |A(Pn0)| + (n − n0)(p + 1) + δ, where δ is the number

of dt such that dt > dT − q − 1). We will call such values bad values. Otherwise, the values dt for

which dt 6 dT − q − 1 are denoted good values.

The aim of the next section is to give examples which give optimal protocols, then to prove that

the best choice of dt is, in many cases, to choose the smallest d of St.

50



3.5.2 A gathering protocol when q = 0

Let us show how incremental protocols can give in some cases optimal solutions. We first deal with

the case q = 0 that is dI = pdT and suppose q 6= dT − 1, that is dT 6= 1 as we deal with this case in

proposition 3.1 and the result is already know (see [BCY06, BCY09]). By proposition 3.2 we know

that for n 6 n0 = (p+1)dT +1 we have an optimal protocol with
∑

i6n−1

⌈

i
dT

⌉

= (p+1)(p+2)
2 rounds.

Furthermore A(Pn0) contains p + 1 single rounds d → 0 for each d, 1 6 d 6 dT . Said otherwise,

the sequence S0 of admissible values of d consists of p + 1 values d for 1 6 d 6 dT . Note that for

each i we have also p rounds of the form dT + i → i which can be used for Rj1 in the preceding

construction. Note also that as q = 0, f(d) = d + 1 and for any d < dT the number of rounds in

Inc(R, d) is |R| + p + 1 and Inc(R, d) contains one more single round d + 1 → 0 (and at least one

less round d→ 0). We do first increments by choosing the smallest possible value d at each time.

Starting from A(Pn0), we use d = 1 for (p+1) steps as there are (p+1) rounds 1→ 0. We obtain a

protocol for n0 6 n 6 n1 = n0 + (p + 1). The protocol A(Pn1) contains now 2(p + 1) single rounds

2→ 0 (the (p + 1) rounds of A(Pn0) plus the p + 1 created by incrementing). We have also created

p + 1 rounds of the form dT + 2→ 2 and use no rounds of the form Rj1 .

We apply 2(p + 1) increments starting from A(Pn1) and using d = 2 getting a protocol for n1 6

n 6 n2 = n1 +2(p+1). We have used all the calls 2→ 0 in rounds Rj0 and also 2(p+1)−1 calls of

type dT + i→ i for i = 1, 2 for rounds Rj1 (Note that the −1 comes from the fact that for sending

n1, there is no need of round Rj1). Doing so, A(Pn2) contains 3(p + 1) single rounds 3 → 0 (the

(p+1) of A(Pn0)) and the 2(p+1) created by incrementing). We have also created 2(p+1) rounds

of the form dT +3→ 3. So altogether we have available for next rounds Rj1 3p+(p+1)+1 rounds

of type dT + i→ i for 1 6 i 6 3 (those existing in A(Pn1) minus 2(p+1)−1, plus 2(p+1) created).

We iterate the process until either we have used all the d → 0 with d < dT in rounds Rj0 (case

dT small); or at some step, we have not enough rounds available for Rj1. Indeed, at each step d

we use d(p + 1) rounds of the form dT + i → i (with 1 6 i 6 d) and create d(p + 1) of the form

dT + i+1→ i+1. So, the total number of rounds available at step d for round Rj1 is the dp rounds

of A(Pn0) of the form dT + i→ i, 1 6 i 6 d, plus the p+1 created at step 1, minus 2(p+1)−1 used

at step 2 plus 2(p + 1) created at step 2 and more generally minus those used at step d in number

equal to those created at the same step. So, altogether the number of calls available at any step is

dp + p + 2. But at some step d > 3 we need d(p + 1) calls for each Rj1 and so we are obliged to

use some single rounds s → 0 for Rj1 if d(p + 1) > dp + (p + 2) that is d > p + 2. Furthermore,

we can without problem use the calls dT → 0 (in number p + 1) for rounds Rj1 but no other calls

s→ 0. That works for dp + (p + 2) + (p + 1) > d(p + 1) that is d 6 2p + 3. If the condition is not

satisfied that is dT − 1 > 2p + 3 we need to use a round s → 0 with s 6 dT − 1 and the distance

contribution of the round Rj1 in the interval [0, d] will be s and the lower bound is not attained.

In summary, we have constructed a protocol guaranteed to be optimal only if dT 6 2p + 4 getting

the following proposition:
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Proposition 3.6 If dT 6 2p + 4 and q = 0 then we have an optimal protocol.

Corollary 3.1 If dT = 2 then we have an optimal protocol.

Proof: We have only two cases: q = 0 and q = 1. For the case q = 0, the result follows from

proposition 3.6. For the case q = 1 (case q = dT − 1), the result follows from proposition 3.4. �

Remark 3.1 For dT > 2p + 4 for example dT > 7 for p = 1 we have a gap between the number of

rounds of the increment and the lower bound. We conjecture that in fact the protocol is optimal and

that the lower bound should be increased. Anyway, this gap is small and better than that obtained

by using Algorithm 3.3.

3.5.3 Upper bound for incremental protocol

As we have seen in the case q = 0, it might be difficult to know the set of values d in St corre-

sponding to single calls d → 0. If we do not use single calls s → 0 in round Rj1 we will see after

(proposition 3.9) that the best choice is to select the smallest d in St. However we can overcome

this difficulty by always choosing a value of d for which we are sure it belongs to St. It suffices to

take the sequence (d, f(d), f2(d), . . . , f t(d) starting with a d in S0 as by lemma 3.1 we are sure that

f(d) ∈ S1 and more generally f t(d) ∈ St. Using this sequence of values of d we will get an upper

bound which have the same behaviour as LB(,1)(Pn). The following lemma indicates that we have

interest to choose the smallest d.

Lemma 3.2 If d < d′ the sequence {d, f(d), . . . , fh−1(d)} contains more good values(values such

that f i(d) 6 dT − (q + 1)) than {d′, f(d′), . . . , fh(d′)}

Proof: We will prove that if we have α good values in the sequence (d, f(d), . . . , fh(d)) with

d > 2, we have at least α good values in the sequence (d − 1, f(d − 1), . . . , fh−1(d − 1)). Indeed,

f i(d−1) = f i(d)−1 (the values being taken in [1, dT ]). Suppose f i(d) is a good value. We consider

two cases:

• Case f i(d) > 2, which is the case for i = 0. As f i(d) 6 dT−q−1, then 1 6 f i(d−1) < dT−q−1

and so f i(d− 1) is also a good value.

• Case f i(d) = 1, with i > 1. Then, f i−1(d) = dT − q and so f i−1(d) is a bad value. But

f i−1(d − 1) = dT − q − 1 and f i−1(d − 1) is a good value. So altogether we have at least as

much good values for d− 1 than for d (perhaps one more).

�
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Proposition 3.7 For any n, h ∈ N

gdI ,dT
(Pn+h) ≤ gdI ,dT

(Pn) +

⌈

hD

dT

⌉

.

Proof: We have to show that there exists a sequence of h increments such that the number of bad

values δ (those values d > dT −q−1) satisfies (p+1)h+δ 6

⌈

hD
dT

⌉

. As D = dI +dT +1 = (p+1)dT +

q + 1 it suffices to show that δ 6

⌈

h(q+1)
dT

⌉

. Let δh =
⌈

h(q+1)
dT

⌉

that is (δh − 1)dT < h(q + 1) 6 δhdT .

By lemma 3.2 it suffices to show that the worst sequence dT , f(dT ), . . . , fh−1(dT ) contains at most

δh bad values (Note that there exists always a sequence d, f(d), . . . , fh−1(d) as in any protocol the

last round is necessarily a single round.)

Fact 3.1 The sequence dT , f(dT ), . . . , fh−1(dT ) contains at most δh =
⌈

h(q+1)
dT

⌉

bad values.

Proof: By induction on h. The fact is true for h = 1 as δh = 1 and the sequence has one value

dT (bad in that case). Note that f i(dT ) = [i(q + 1)− 1] mod dT + 1. Suppose the fact is true for

h− 1. We distinguish two cases:

• If (h − 1)(q + 1) 6 (δh − 1)dT and so δh−1 = δh − 1 and by induction hypothesis we have at

most δh − 1 bad values and so at most δh bad values for h.

• If (h−1)(q+1) > (δh−1)dT . As fh−1(dT ) = [(h−1)(q+1)−1] mod dT +1 = (h−1)(q+1)−
(δh − 1)dT and h(q + 1) 6 δhdT , then fh−1(dT ) 6 δhdT − (q + 1)− (δh − 1)dT = dT − (q + 1).

Therefore fh−1(dT ) is a good value and so the number of bad values is δh−1

� �

Note that, taking h = dT in proposition 3.7, we find again proposition 3.3.

Proposition 3.8 If there exists N ∈ N such that LB1(PN ) = |A∗(PN )| where A∗(PN ) is a gath-

ering protocol for the path PN , then there exists an optimal protocol for the instance (Pn+h, 0) for

any h ≥ 0.

Proof: Because |A∗(PN )| = LB1(PN ) we have A∗(PN ) is optimum. Now, notice that

LB1(PN+h) = LB1(PN ) +
hD

dT
,

and that from proposition 3.7 we have gdI ,dT
(Pn+h) 6 gdI ,dT

(Pn) +
⌈

hD
dT

⌉

= |A∗(PN )|+
⌈

hD
dT

⌉

. But

|A∗(PN )| = LB1(PN ) and we can write

|A∗(PN )|+ hD

dT
≤ gdI ,dT

(PN+h, 0) ≤ |A∗(PN )|+
⌈

hD

dT

⌉

,
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from where the result follows. �

Proposition 3.9 For n > D +1, the protocol A∗(Pn) obtained from a protocol A(Pn0) by choosing

at each incremental step the smallest d possible is optimum among all the incremental protocols

obtained by incrementing A(Pn0), if we do not use rounds s→ 0 for the Rj1 .

Proof: The value of a sequence S = (d0, . . . , dn−1), denoted δ(S) is the number of bad values d (such

that d > dT − q−1). So |A(Pn)| = |A(Pn0)|+ δ(S)+(p+1)(n−n0). Let Sopt = (dopt
0 , . . . , dopt

n−n0−1)

the sequence obtained by incrementing A(Pn0) to achieve a protocol A(Pn) with the minimum

number of rounds. Let S∗ = (d∗0, . . . , d
∗
n−n0−1) defined as the sequence which increments at each

time by choosing the call d→ 0 such that d is minimum. If S∗ = Sopt, then we are done. Otherwise,

let t0 the first value where the two sequences differ, then d∗t0 < dopt
t0 . We distinguish two cases

• d∗t0 = dopt
t′ for some t′ > t0. In this case we simply replace in Sopt the value dopt

t0 by d∗t0 and

dopt
t′ = d∗t0 by dopt

t0 (we exchange the values in positions t0 and t′). The sequence obtained

is also a valid one which has exactly the same value as Sopt, so it is also optimal but it has

a large subsequence in common with S∗. That is valid only if we can use d∗t0 as dopt
t′ which

supposes that d∗t0 has not been used for a round Rj1 explaining the condition of the statement

of the proposition.

• t0
∗ do not appear in the rest of the sequence of Sopt. In this case, we replace in Sopt the element

dopt
t0 by d∗t0 . It might happen that in Sopt some dopt

t1 = f(dopt
t0 ), for t1 > t0, then we replace dopt

t1

by d′t1 = f(d∗t0) and so if there exists a sequence ti > ti−1 such that dopt
ti

= f(dopt
ti−1) = f i(dopt

t0
),

we replace each dopt
ti

by d′ti = f(d′ti−1
) = f i(d∗t0). We obtain a new valid sequence.

Let us show now that the new sequence denoted S′ satisfies that δ(S′) 6 δ(Sopt). To do that, it

suffices to prove that each time the second case is applied, the new sequence has no more bad values

as the precedent sequence. Since d∗t0 < dopt
t0 , lemma 3.2 guarantees that {d∗t0 , d∗t1 = f(d∗t0), . . . , d

∗
th

=

fh−1(d∗t0)} has at least the same number of good values than {dopt
t0 , dopt

t1 = f(dopt
t0 ), . . . , dopt

th
=

fh−1(dopt
t0 )} and so the result follows. �

3.5.4 Case q + 1 and dT are relatively prime

According to proposition 3.8 if we are lucky enough to find a value N for which |A(PN )| = LB1(PN )

(which in particular means LB(,1)(PN ) is an integer) we can conclude that for n > N the increment

R+h are all optimum. That is what happens for q = 0 where we found such an N = (p +

1)dT + (p + 1)dT −1
2 dT , when dT 6 2p + 4. In that case we started from the greedy protocol for

n = n0 = (p + 1)dT + 1. But in general it is not the good protocol to start with; in contrary we

might have to start from some non optimal protocol. To see what happens consider a case where

q 6= 0 and q 6= dT − 1 for example dT = 3, dI = 4 (p = 1, q = 1) and D = 8. For n0 = 7 we have the
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greedy optimal protocol with |R| = 9 rounds, containing two rounds {1→ 0}, two {2→ 0} and two

{3→ 0}. Using twice d = 1 when possible we get a protocol for n = 9 with 9 + 2 + 2 = 13 rounds

and single rounds twice {2→ 0} and 4 times {3→ 0} as f(1) = 3. It is optimal as LB(,0)(9) = 13.

Incrementing with d = 2, which give f(2) = 1 and then with d = 1 we obtain a protocol for n = 13

with 13 + 2 · 5 = 23 rounds. Here LB(,0)(13) = 21, but LB(,1)(13) = 22 + 2/3 and so it is optimal.

But then, we are obliged to use d = 3 wich gives f(d) = 2 and then d = 2. So for n = 15 we

have a protocol with 23 + 3 + 3 = 29 rounds but LB(,1)(15) = 28. Table 3.5.4 gives the values of

the number of rounds using the best increment and the corresponding values of LB(,0) and LB(,1).

Note that sometimes |A(Pn)| = ⌈LB(,1)(PN )⌉ but never |A(PN )| = LB(,1)(PN )

n 7 8 9 10 11 12 13 14 15 16 17 18

|A(Pn)| 9 11 13 16 18 21 23 26 29 31 34 37

|A∗(PN )| 12 14 16 18 21 23 26 28 31 34 36

LB(,1)(Pn) 7 9 2
3 12 14 2

3 17 1
3 20 22 2

3 25 1
3 28 30 2

3 33 1
3 36

LB(,0)(Pn) 9 11 13 15 17 19 21 23 25 27 29 31

Optimum * * * * * * * * * *

In fact we will see in the next proposition that if we start with the greedy protocol for n = D

containing only single rounds here n1 = 8 with |R| = 12 (not optimal) but with 3 single rounds

{1 → 0}, 2{2 → 0}, 2 {3 → 0} and increment it we get a protocol using the 3 rounds {1 → 0} for

n = 11 |R| = 12 + 3 · 2 = 18 and for n = 15 using the rounds {2 → 0} and {1 → 0} created, then

|R| = 18 + 2 · 5 = 28 which attain exactly LB(,1)(Pn). The values are indicated on A∗(PN ) which

is optimum for n > 15 by proposition 3.8 (In fact, it is also optimal for n = 13, 14).

Proposition 3.10 If q + 1 and dT are relatively prime and dT − q − 1 6 p + 4, then there exists

N such that A(Pn) is optimal, for any n ≥ N .

Proof: Let us start with the trivial non optimal solution R1 for n1 = D = (p + 1)dT + q + 1

consisting of the single rounds for i < n1, i = αdT + β, 1 6 β 6 dT {i → i − dT }, {i − dT →
i− 2dT }, . . . , {i − (α− 1)dT → i− αdT }, {i − αdT = β → 0}.

Starting from R1 we increment if by always chosing if it exists a round d→ 0 with d minimum and

d < dT and let A(Pn) be the protocol obtained for n. As q + 1 and p are relative primes then for

any d there exists an i such that f i(d) = dT . It follows that there exists some N such that A(PN )

contains no round d→ 0 with d < dT . Note that when we did an increment from some n to n + 1

using the round d→ 0 (with d < dT ) we add to the calls d→ 0 the call d+dI +dT +1→ d+dI +1

or n→ d+dI +1 if n 6 D+d (In fact, the second case does not appear if we choose the d minimum

as we have at least two rounds 1→ 0 (with d 6 2) used for D + 3, D + 4 and so on). Furthermore,

if the call d → 0 is used only in round Rj0 , the distance contributions of the rounds of A(PN ) in

the interval [0,D] are either dT → 0 or that of the 2 calls d→ 0 and D = dT + dI + 1→ d + dI + 1.

The total contribution being d + dT − d = dT . So LB(,1)(PN ) is exactly attained.
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A computation similar to the case q = 0 shows that no call d → 0 is used in rounds Rj1 if

dT − q − 1 6 p + 4.

�

Corollary 3.2 If dT = 3 or 5, we have an optimal protocol for n large enough.

Proof: 3 and 5 being primes, and dT 6 5 6 p + 4 + q + 1 implies by proposition 3.10 that A(Pn)

is optimal for n > N . �

For dT = 4, q = 0, 2 the result follows from proposition 3.10 but when q = 1, q + 1 = 2 is not prime

with 4 and then we can not apply the proposition. We can find a protocol with one more round

than LB(,1)(Pn) (we conjecture that this protocol is optimal which will need an improvement of

the lower bound).

We have seen in this section how to obtain in some cases exact or asymptotical results by using

incremental protocols. Clearly not all increments are optimal and the choice of the starting protocol

is not evident as we have seen.

The aim of section 3.5.6 is to show that there exists always an optimum protocol which is increment

of some protocol R. But first, in order to simplify the proofs we show that we can restrict ourselves

to a specific class of protocols that we call simple.

3.5.5 Simple protocols

In this first part we show that optimal gathering protocols in the path with t = 0 can be assumed to

have a certain simple structure. This will allow us to restrict ourselves to look for optimal solutions

in this smaller class of protocols.

Lemma 3.3 There always exists an optimal gathering protocol R = (Ri)
|R|
i=1 for the instance

(Pn, w, 0) of gathering such that:

(a) If s → r is a call in the protocol R, then there exists an actual message being transmitted in

the call.

(b) R only performs forward calls, i.e., calls s→ r such that r < s.

Proof:

(a) is direct: If a protocol performs calls that transmit no message, it suffices to remove the calls

that do not transmit an actual message.
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Rj0

Rjk
: 0 < k < k∗

Rjk∗

t = 0 rk∗ s0 sk∗ r0

Figure 3.6: Removal of a backward call in a gathering protocol in the path. Dashed calls are
deleted. Solid calls are added.

(b) To prove it, we describe a procedure that, given a gathering protocol that performs at least

one backward call s → r, s ≤ r, it removes one backward call from the protocol and the resulting

protocol has at most the same number of rounds as the original gathering protocol.

Let R = (Ri)
|R|
i=1 be a gathering protocol as in the statement of the lemma and let Rj0 be the

last round such that s0 → r0 ∈ Rj with s0 < r0 and name m the message being transmitted

in this call (if there are two backward calls in round Rj0 we pick anyone). Then there exist

rounds Rj1, Rj2 , . . . , Rjk
and calls sq → rq ∈ Rjq such that jq > jq−1, sq > rq and sq = rq−1, for

q = 1, . . . , jk where m is transmitted and with rk = t = 0. (See Figure 3.6.)

It follows that there exists k∗ such that rk∗ < s0 ≤ sk∗ and we can remove the call sq → rq from

round Rjq for any q ≤ k∗ and add call s0 → rk∗ to round Rjk∗
(s0 ≤ sk∗ ⇒ d(s0, rk∗) ≤ d(sk∗ , rk∗) ≤

dT and therefore s0 → rk∗ is a call) . In fact

• removing a call from the rounds Rjk
, k = 1, . . . , k∗ produces valid rounds because it does not

introduce interference (at most one of these rounds may become empty, in which case the

round is completely removed), and

• s0 → rk∗ can be added to the round Rk∗−{sk∗ → rk∗}, because (i) Rk∗ is a round, thus rk∗ is

not under the interference of any other transmitter (so it is available for receiving, in our case,

from s0); and (ii) s0 does not interfere any other receiver, as if s → r ∈ Rk∗ − {sk∗ → rk∗}
then either r > sk∗ ≥ s0 ⇒ d(r, s0) ≥ d(r, sk∗) > dI , or r < s < rk∗ < s0 ⇒ d(r, s0) >

d(s, rk∗) > dI (we have r < s because jk∗ > j0 and Rj0 is the last round with a backward

call).

Property (b) follows from the fact that the procedure can be applied iteratively, until every back-

ward call has been removed.

�
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We will say that a protocol that satisfies (a) and (b) is simple and from this point on we will restrict

ourselves to the class of protocols that are simple. Indeed, this subset of all possible protocols always

contains an optimal solution for the path Pn, hence there is no loss of generality.

3.5.6 Existence of optimal incremental protocols

We will show how to obtain for n > (p + 1)dT + 1 from a protocol R for n + 1 a protocol R− for

Pn such that there exists an increment S of R− with a number of rounds at most that of R. In

particular if R is optimum, then S is optimum.

Lemma 3.4 For n ≥ D + 1, consider a simple gathering protocol R = (Rj)
|R|
j=1 for the path Pn+1.

Then, there exist protocols R−, S, such that

(i) R− is a gathering protocol for the instance (Pn, 0),

(ii) S is a gathering protocol for the instance (Pn+1, 0),

(iii) S is an increment of R− obtained by construction Inc of lemma 3.1.

(iv) |S| ≤ |R|.

Proof: The sketch of the proof is the following. First, we construct the protocol R− for (Pn, 0)

based on R. Afterthat, we use Lemma 3.1 to obtain the protocol S for (Pn+1, 0) as an incremental

protocol of R−.

In order to construct R−, we mainly remove the calls (and potentially full rounds, if they consist

of a single call) that transmit m(n), that is the message corresponding to the last node in Pn+1,

in such a way that we can guarantee not only that R− is valid, but also that we can estimate its

length. However, this has to be done carefully, because if m(n) is not the very last message to reach

the sink, simply removing calls may not reduce enough the length of the resulting protocol.

Let us do now the proof and construct the protocol R− starting from R. Let Rj1 in R be the last

round containing a call c∗ = s∗ → r∗ such that s∗ > (p + 1)dT and r∗ 6 (p + 1)dT . Let u∗ be the

node such that m(u∗) is the message transmitted in s∗ → r∗.

After rounds Rj1 we are left with an instance such that w(u) = 0 for any u > (p + 1)dT and so

we have now an instance corresponding to a path of length n′ 6 (p + 1)dT + 1 and some weigth

function w′. We replace all the rounds appearing after Rj1 by those of the proof of proposition 3.2

getting a new protocol R′ with a number of rounds less than or equal to R. In particular we have

that m(u∗) is transmitted to the sink in exactly (p + 1) rounds all except the last one being of

length dT . Furthermore, to simplify the rest of the proof, we rearrange the rounds such that the

rounds transmitting m(u∗) are the last rounds of the protocol. Let us denote then Rj2 , . . . , Rjp+2.

Now, from R′ we will construct R−. We distinguish two cases depending on the node u∗.
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• If u∗ corresponds to the last node n of Pn+1, then we simply remove the rounds Rj2, . . . , Rjp+2.

• On the contrary, if u∗ 6= n, we will change the message transmitted by the last rounds in

such a way that Rj2, . . . , Rjp+2 become rounds transmitting m(n). Recall that u∗ is such that

u∗ > (p + 1)dT .

As m(u∗) is the last message which enters into the zone of nodes between t = 0 and (p+1)dT ,

there exists a round before Rj1 such that m(n) becomes closer to the sink than m(u∗). We

denote Rj0 this round. We denote also s0 → r0 the call in Rj0 which transmits m(n) and

such that m(u∗) is placed in one node v0 between s0 and r0.

Now we exchange the messages of n and u∗ as follows. We replace the call (s0, r0) in Rj0 by

the call (v0, r0) which will transmit m(u∗). Moreover all the rounds after Rj0 which transmit

m(n) become calls transmitting m(u∗). We add first after Rj0 a single round R′
j0

= {s0 → v0}
transmitting m(n) and then all the rounds after Rj0 which transmit m(u∗) become a call

transmitting m(n). So we are in a case similar to the first one and we delete R′
j0

and

Rj2 , . . . , Rjp+2 (which now carries m(n)).

After removing the rounds, we can also remove the remaining calls (not rounds) transmitting m(n),

because these calls will be no longer used in R−. Note that if Rj1 contains only one call, it will be

completely removed.

In summary, the resulting protocol R− is a valid protocol for the instance (Pn, 0). Moreover,

whatever the number of calls of Rj1, protocol R− contains at least p + 1 rounds less than R.

Now, we can construct the new protocol S, for the instance (Pn+1, 0) by means of incrementing R−

and using Lemma 3.1. To do that, we will set S = Inc(R−, d) and choose parameter d conveniently.

We distinguish two cases:

• If round Rj1 was removed (that is, it contained only one call in the original protocol R), then

we define d to be the sender from the call of the last round of R−. In other words, d = s

where s → 0 is the last call of R−. As in this case |R−| = |R| − (p + 2), then Lemma 3.1

guarantees |S| 6 |R−|+ p + 2 = |R|.

• If round Rj1 was not removed (it has exactly two calls in the original protocol R), it consists

only of a call s1 → r1. By definition of Rj1, node s1 satisfies that s1 6 dT − q − 1 and by the

choice of R′ and R− we have that r1 = 0. So, we apply Lemma 3.1 with d = s1 and get an

increment S such that |S| = |R−|+ p + 1 = |R|.

In this way we have shown that the protocol S satisfies that |S| 6 |R|. �

We conjecture that:

Conjecture 3.1 For any n = D + 1 there exist an optimal protocol S for Pn obtained by repeated

applications of construction Inc increments of some protocol R for PD+1.
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If conjecture 3.1 is true, we could prove the main conjecture:

Conjecture 3.2 Unitary Minimum Time Gathering in the path Pn with t = 0 is polynomial in the

length n of the path.

3.6 Gathering into an arbitrary vertex of the path

So far, we have discussed only the case where t = 0. In this section we remove this constraint and

take 0 < t < n− 1.

In [BCY06, BCY09] results are given for dT = 1 and an optimal solution is given for dI ∈ {1, 2, 3, 4}.
So, for dT > 1 there is no hope to find general optimal protocols. However, in this section we will

give a 1+-approximation in a similar manner than section 3.4.

Let us refer to the vertices i = 0, . . . , t− 1 as the left side, and j = t + 1, . . . , n− 1 as the right side.

Without loss of generality we will suppose that t 6 n− 1− t.

Proposition 3.11

gdI ,dT
(Pn, t) ≥ dI + dT + 1

dT
(max[t, n − 1− t]−D + 1) +

(dI + dT + 1)(dI + dT )

2dT
.

Proof: Recall that we assume that max[t, n−1− t] = n−1− t and consider the interval of vertices

I = {t, t + 1, . . . , t + D− 1}, with D = dI + dT + 1. As in proposition 3.5, we have that for i ∈ I, a

message originated in i has to travel (within I) a distance i− t to the sink, and that for j > t+D, a

message originated in j has to travel a distance D (within I) in order to reach the sink t. However,

we observe that even if two messages can move inside I, overall these two messages cannot progress

more than dT vertices toward the sink, from where it follows that

gdI ,dT
(Pn, t) ≥ D

dT
(n− t−D) +

D(D − 1)

2dT
.

�

Notice that this bound assumes perfect synchronization between the calls in the two sides, i.e., that

gathering messages from the shortest side does not delay gathering messages from the longest side.

In general, transmitting messages in one side produces interference in the other side, thus some

extra rounds may be required (see [BCY06]).

Now we want to extend the 1+-approximation result of Section 3.4.2. Since Proposition 3.11

establishes that the number of rounds required to gather the path that has two sides is, roughly,

lower bounded by the number of rounds needed to gather its longest side, the algorithm we introduce

works as follows: Given the protocol that gathers the longest side, its rounds are modified by adding

calls in the shorter side so messages coming from that side are gathered into the sink at the same
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time. Moreover, this is done in such a way that when finished, we can guarantee that only the

vertices in {t + 1, . . . , t + D − 1} have messages that are still unknown for the sink, and that they

have at most one message. Because these are O(1) vertices, each at a distance O(1) from the sink,

we deduce that we can gather these messages in constant time.

Theorem 3.2 Let n ∈ N. For the Unitary Minimum Time Gathering problem where the base graph

is a path Pn, the interference distance is dI , and transmission distance is dT , there exists a 1+-

approximation.

Proof: First, let ℓ1 = t, ℓ2 = n − 1 − t and recall that ℓ1 ≤ ℓ2. If D ≥ ℓ2, the size of the

network is bounded so to gather a message at a distance i from t requires at most c(i) = ⌈i/dT ⌉ ≤
⌈D/dT ⌉ ≤ 2 + dI/dT rounds. Therefore to gather the path in this case can be done in at most

2
∑D

i=1 c(i) ≤ 2(2 + dI/dT )D rounds, which does not depend on n.

To analyze the case ℓ2 ≥ D, let us rename the vertices of the path in such a way that vertex i

becomes i − t, so the sink is vertex 0, the left side consists of vertices −ℓ1,−(ℓ1 − 1), . . . ,−1 and

the right (and longer) side corresponds to vertices 1, 2, . . . , ℓ2.

We define Bi = {i + kD → max[0, i + kD − dT ] : k ≥ 0, i + kD ≤ ℓ2}. We have that, after

applying Bi, i = 1, . . . ,D, each message at the right side of the sink either has reached the sink

or it has advanced a distance dT towards the sink. Similarly, we define Ai = {i −D − 1 − kD →
min[0, i−D−1−kD+dT ] : k ≥ 0, i−D−1−kD ≥ −ℓ1} and have that after applying Ai, i = 1, . . . ,D,

each message at the left side of the sink has reached it or it moved a distance dT towards the sink.

The protocol we use is calculated by the following algorithm (recall that ℓ1 ≤ ℓ2):

Input: n, ℓ1, ℓ2, dI , dT

while ℓ2 − 1 ≥ D do1

for i = 1 to D do2

Apply Ai ∪ Bi.

end

ℓ1 ← ℓ1 − dT , ℓ2 ← ℓ2 − dT .

end

Gather each message independently, using a shortest path to the sink.3

Algorithm 2: Solves gathering in Pn for arbitrary t.

Indeed, this algorithm is almost identical to Algorithm 1, the only difference is that we have replaced

“Apply {i + kD → max[0, i + kD − dT ] : k ≥ 0, i + kD ≤ n− 1}” with “Apply Ai ∪Bi” (in fact, Bi

is precisely the set {i+ kD → max[0, i+ kD− dT ] : k ≥ 0, i+ kD ≤ n− 1} where we replaced n− 1

with ℓ2).

We only need to check that each call in Ai is compatible with each call in Bi. Indeed, for any i

the closest calls are i→ max[0, i − dT ] ∈ Bi and i−D − 1→ min[0, i −D − 1 + dT ] ∈ Ai, and we
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have d(i,min[0, i−D− 1 + dT ]) = D + 1− dT = dI + 1 and similarly d(max[0, i− dT ], i−D− 1) =

D + 1− dT = dI + 1.

Because Step 3 requires O(1) rounds, we focus on Step 1. This step requires at most max
[

0,D
⌈

ℓ2−D
dT

⌉]

≤
D ℓ2

dT
rounds. Adding up the overall number of rounds performed by the algorithm and using that

ℓ2 = max[t, n− 1− t] we get

gdI ,dT
(Pn, t) ≤ D

dT
(max[t, n − 1− t]−D + 1) + 2(2 + dI/dT )D.

But the second term does not depend on n, hence by using Proposition 3.11, we obtain that this is

a 1+-approximation. �

3.7 Conclusions

We studied the problem of finding the minimum number of rounds needed to gather information

in a path in the unitary case. This problem appears to be a difficult one (much more difficult than

we thought when starting the research).

We have obtained a +1-approximation for any position of the sink. When the sink is an end vertex

of the path, we have also described an incremental procedure which produces optimal protocols for

small dT .

We conjecture that this procedure always give optimal protocols. One challenging problem will be

to prove that the minimum time gathering problem can be solved in polynomial time in a general

or at least in the unitary case or even with the sink at the end of the path. Extending the result

to other topologies like trees will be of interest, although optimal solutions might be difficult to

obtain in view of the complicated proofs of the case dT = 1, dI = 1.
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Chapter 4

Minimum delay data gathering in

radio networks

[BNRR09a, BNRR09b]

4.1 Introduction

We address here the challenging problem of gathering information in a Base Station (denoted BS)

of a wireless multi hop grid network when interferences constraints are present. This problem is

also known as data collection and is particularly important in sensor networks, but also in access

networks.

The communication network is modeled by a graph. In this paper we focus on grid topologies as

they model well both access networks and also random networks (which approximatively behave

like if the nodes were on a grid [KLNP05]). We assume that the time is slotted and that during each

time slot, or step, a transmission that is activated between two neighboring nodes can transport

at most one data item (referred in what follows as a message). Each vertex of the grid may have

any number of messages to transmit, including none. We also suppose that each device (sensor,

station,. . . ) is equipped with an half duplex interface: a node cannot both receive and transmit

during a step. As for an example, this is a relevant model of mono-frequency smart antennas radio

system: at any step, each device can configure its antenna array to shape a beam and reach any

of its neighbours without interfering with others. Nevertheless, sending a message prevents a node

from receiving another one because, among other causes, of near-far effects. We refer to this model

as the smart-antennas model.

During any step a set of pairwise non interfering transmissions can be achieved, and such a set form

a matching of the grid. Our aim is to design algorithms to do a gathering under such hypotheses,

which minimize the minimum number of steps needed to send all messages to BS, this completion
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time is also denoted makespan of the call scheduling.

Following the work of Revah and Segal [RS07], we focus on the specific case of “open-grid”, that is

a grid network with the base station at a corner (say lower-left w.l.g.) and no message is generated

by a node on the lower and lefter borders of the grid (line 0 and column 0). As a matter of fact,

the case of closed-grid, which is by the way similar to having the BS anywhere on the grid, is

more complex and cannot be solved to optimality with shortest paths1. Even though we know

how to adapt our weakest algorithm, the value of the lower-bound in that case is still under active

investigation [BGN+09].

4.1.1 Related Work

A lot of authors have studied the gathering problem under various assumptions (see the surveys

[BKK+09b] and [Gar07]).

In [FFM04b], the smart antennas model is considered with the extra constraint that non buffering

is allowed in intermediary nodes: when a node receives a message at some step, it must transmit

it during the next step. In this setting, optimal polynomial-time algorithms are presented for

path and tree topologies [FFM04b, RS08]. The work of [FFM04b] has been extended to general

graphs in [GR06b] and [GR09] but in the uniform case where each node has exactly one message

to transmit. The case of open-grids is considered in [RS07] where a 1.5-approximation algorithm is

presented. The gathering problem has also been studied when nodes can both emit and receive a

message during the same step. When no buffering is allowed, this kind of routing is known as the

hot-potato routing and it is considered in [BHW00, MPS95].

The case of omnidirectional antennas has been extensively studied. In this model, nodes can

transmit at any of their neighbours at distance dT > 1 but any emission creates some interferences.

More precisely, when a node v transmits, any node at distance at most dI > dT of v cannot

receive a message from another node than v during the same step. Moreover, any node has to

transmit at least one message and buffering is allowed. In this setting, computing the makespan

is NP-hard [BGK+06d]. A 4-approximation algorithm and lower bounds for general graphs are

also provided in [BGK+06d]. A 4-approximation algorithm has been proposed to handle the online

version [BKMS08a]. In [BP05], the case of grids is considered when dT = 1: an optimal polynomial-

time algorithm is provided when BS stands at the center of the grid. Gathering in grids is also

considered within a continuous model in [GPRR08].

4.1.2 Our results

We focus on the gathering problem in open-grids. We provide a very simple algorithm that sched-

ules all messages within a lower bound of the makespan plus two steps, and a more involved +1

1The authors would like to thanks Prof. Frédéric Guinand who raised this question.
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approximation algorithm. As a matter of fact, we prove that our algorithms delay each message

by at most 1 or 2 steps (depending on which algorithm) from a given scheduling which would be

optimal if there were no interference (hence lower bounding the real makespan). We also provide a

linear-time (in the number of vertices of the grid) distributed algorithm for the +2–approximation

algorithm. Besides, our algorithms need no buffering, which considerably improves on existing al-

gorithms. Our algorithms are presentend in the smart antennas model, even though we conjecture

that they can be extended to other distance-based interference model.

One helpful idea is to actually study the related one–to-many personalized broadcast problem in

which the BS wants to communicate different data items to some other nodes in the network.

Using this framework, protocols may be described easier. Solving the above dissemination problem

is equivalent to solve data gathering in sensor networks. Indeed, let T denote the makespan (delay),

that is, the largest step used by a personalized broadcast algorithm; a gathering schedule with delay

T consists in scheduling a transmission from node y to x during slot t iff the broadcasting algorithm

schedules a transmission from node x to y during slot T − t + 1, for any t with 1 6 t 6 T .

4.2 Preliminaries

From now on, we consider the equivalent problem of personalized broadcasting where BS has to

transmit messages to some destination nodes in the open grid.

4.2.1 Notations

In the following, we consider a N × N grid G = (V,E) where vertices are given there natural

coordinates. The base station BS, also called the source, has coordinates (0, 0), and any vertex v

has coordinates (xv, yv). A vertex v is above (resp., below) w ∈ V if yv > yw (resp., if yv 6 yw).

Similarly, v is to the right (resp., to the left) of w ∈ V if xv > xw (resp., if xv 6 xw). Finally,

a vertex v is nearer to the source than w ∈ V is d(v,BS) 6 d(w,BS), where d(u, v) denotes the

classical distance between nodes u and v.

We consider a set of M > 0 messagesM that must be sent from the source BS to some destination

nodes. Let dest(m) ∈ V denote the destination of m ∈ M. A message m ∈ M is lower (resp.,

higher) than m′ ∈ M if dest(m) is below (resp., above) dest(m′). A message m is righter (resp.,

lefter) than m′, if dest(m) is to the right (resp., to the left) of dest(m′). We use d(m) to denote

d(dest(m), BS), and m � m′ if dest(m) is nearer to the source than dest(m′), that is, if d(m) 6

d(m′). We suppose in what follows that the messages are ordered by non increasing distance of

their destination nodes, and we note M = {m1, · · · ,mM} where mi � mj for any i 6 j 6 M , so

d(m1) > d(m2) > · · · > d(mM ).

S ⊙ S′ denotes the sequence obtained by concatenation of two sequences S and S′.
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4.2.2 Lower bound

Consider a model whitout interferences, i.e., any node can receive and transmit simultaneously, but

where the source can only send one message per step. Whatever be the broadcasting scheme, a

message m sent at step t > 1 will be received at step t′ > d(m) + t − 1. A broadcasting scheme

is said greedy if, given an ordered sequence S of the messages, the source sends one message per

step, in the ordering S, and each message follows a shortest path toward its destination node. Note

that, in the model without interferences, if the messages follow shortest paths, a vertex will never

receive more than one message per step.

Definition 4.1 LB = maxi6M d(mi) + i− 1.

Lemma 4.1 In the model without interferences, when the source emits at most one message per

step, a greedy algorithm following the ordered sequence of messages (m1,m2, · · · ,mM ) is optimal,

with makespan LB.

Proof: Clearly, sending the messages following the sequence (m1,m2, · · · ,mM ) along shortest

paths achieves such a makespan. Let us consider an optimal schedule of the messages (s∗1, · · · , s∗M )

different from (m1,m2, · · · ,mM ) and let i > 1 be the smallest integer such that s∗i 6= mi = s∗j (j >

i). Sending the messages following the sequence (s∗1, · · · , s∗i−1, s∗j , s∗i+1, · · · , s∗j−1, s∗i , s∗j+1, · · · , s∗m)

does not increase the makespan: indeed, only the ith and jth messages differ and max{d(s∗j ) + i−
1, d(s∗i )+ j− 1} 6 d(s∗j )+ j− 1 because d(mi) = d(s∗j) > d(s∗i ) and j > i. By iterating this process,

we get that the ordering of the sequence (m1,m2, · · · ,mM ) is also optimal. �

Corollary 4.1 In the smart antennas model, no algorithm can achieve a makespan less than LB.

4.3 Personalized Broadcasting Algorithms

In this section, we present a very simple broadcasting scheme that we prove to be sufficient to

obtain a good approximation of the optimal makespan. We then refine it to obtain an almost

optimal algorithm.

These algorithms use Horizontal-Vertical routing schemes, hence proving that fancier shortest path

routing is worthless with respect to the minimum makespan objective.

4.3.1 Horizontal-Vertical broadcasting

Given a message whose destination node v has coordinates (x, y), the message is sent horizontally to

v if it follows the shortest path from BS to v passing through (x, 0). The message is sent vertically

if it follows the shortest path from BS to v passing through (0, y).
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consecutive messages in-
terfer.

BS

c

b

a

(b) Configuration when
the trivial lower bound
cannot be achieved.

Figure 4.1: Two particular configurations

Definition 4.2 A Horizontal-Vertical broadcasting scheme, or HV-scheme, takes an ordering S of

M as an input and proceeds as follows. A direction, horizontal or vertical, is chosen for the first

message. Then, the source sends one message every step in the ordering S, alternating horizontal

and vertical messages.

Let us do some easy remarks about any HV-scheme. Consider two distinct messages sent by the

source x time-slots apart. Since these messages follow shortest paths, while the first message has

not reached its destination, both messages are separated by a distance at least x. Hence,

Claim 4.1 In a HV-scheme, only consecutive messages may interfer.

Let us characterize forbidden and acceptable configurations in HV-scheme. Assume that two mes-

sages are sent consecutively. It is possible to guess the respective positions of their destination

nodes by knowing whether both messages interfer or not. In Figure 4.1(a), messages in the grey

part are those higher and lefter than the message m. Figure 4.1(a) illustrates the following Fact.

Claim 4.2 Let m,m′ be 2 messages sent consecutively by a HV-scheme, with m sent vertically and

m′ sent horizontally. Messages m and m′ interfer if and only if their destinations are distinct and

m′ is higher and lefter than m.

Before continuing, let us remark that there exist configurations for which no gathering protocol can

achieve better makespan than LB + 1. Figure 4.1(b) represents such a configuration. Indeed, in

Figure 4.1(b), the three destinations a, b and c have coordinates (1, 1), (1, 2) and (1, 3), and LB = 4.

However, to achieve such a makespan, the first message must be sent to c (because c is at distance

4 from BS) and the second message must be sent to b (because the message start after the first

step and must go at distance 3). To avoid collision, the only possibility is to send the first message

vertically, and the second one horizontally. But then, the last message cannot reach a before step

5.
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Input: M = {m1, · · · ,mM}, the set of messages ordered in non increasing distance order
Output: (s1, · · · , sM ) an ordered sequence ofM satisfying (i) and (ii)
begin

Case M = 0 return ∅
Case M = 1 return (m1)
Case M > 2

Let q be the lowest message in {mM−1,mM} and let r be the other one
if M = 2 return (q, r)
else let O ⊙ p = TwoApprox({m1, · · · ,mM−2})

if p is higher than q return O ⊙ (p, q, r)
else return O ⊙ (mM−1, p,mM )

end

Figure 4.2: Algorithm TwoApprox
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Figure 4.3: M − 2 messages have been scheduled, finishing with the one to p ∈ {mM−2,mM−3}.
When the next two messages must be scheduled, two cases occur according to the position of mM−1

and mM relatively to p. In the figures, an arrow with label i represents the route of the ith message.

4.3.2 +2 approximation

Recall that (m1, · · · ,mM ) denotes the ordered sequence of the messages in the non increasing

ordering of the distance to their destinations. In this section, we give the Algorithm TwoApprox,

depicted in Figure 4.2, that computes an ordered sequence S = (s1, · · · , sm) of the messages

satisfying the two following properties:

(i) HV-scheme(S) broadcasts the messages without collisions, sending the last message vertically,

and

(ii) si ∈ {mi−2,mi−1,mi,mi+1,mi+2} for any i 6 M , and sM ∈ {mM−1,mM}

Theorem 4.1 Algorithm TwoApprox computes an ordering S of the messages satisfying proper-

ties (i) and (ii) and so HV-scheme(S) achieves makespan at most LB + 2.
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Proof: To prove the correctness of Algorithm TwoApprox, we proceed by induction on M . If

M 6 2, the result holds obviously. Let us assume that the ordering of the sequence computed by

TwoApprox({m1, · · · ,mM−2}) satisfies properties (i) and (ii). Let p be the last message of this

sequence. By the induction hypothesis, p ∈ {mM−3,mM−2} is sent vertically. Let t be the message

before p in this sequence. By Fact 4.2, p must be higher or lefter than t. The sequence is denoted

by O ⊙ p = O′ ⊙ (t, p).

Let q be the lowest message in {mM−1,mM} and let r be the other one. We consider two cases

depending on the positions of p, q and r.

a) Case p is higher than q. It is sufficient to send q horizontally at step M − 1, and r vertically

at step M . This case is depicted in Figure 4.3(a). Indeed, by Fact 4.1 only p and q, or q and

r may interfer. By Fact 4.2, there are no interferences. It is easy to check that O ⊙ (p, q, r)

satisfies (i) and (ii).

b) Case q and r are higher than p. Since q, r � p (i.e. q, r closer to BS than p.), they are

higher and lefter than p. This case is depicted in Figure 4.3(b). In this case, instead of sending

p at step M − 2, the source sends mM−1 vertically at step M − 2, then p horizontally at step

M − 1, and then mM vertically at step M . The transformation is depicted in Figure 4.3(c).

Clearly, O⊙ (mM−1, p,mM ) satisfies (i) and (ii). By Fact 4.1 only t and mM−1, or mM−1 and p,

or p and mM may interfer. Since mM−1 is higher and lefter than p that is higher or lefter than

t, by Fact 4.2, mM−1 interferes neither with t nor with p. Similarly, mM is higher and lefter

than p and these messages do not interfer.

�

4.3.3 +1 approximation

In this section, we give the Algorithm OneApprox, depicted in Figure 4.4, that computes an ordered

sequence S = (s1, · · · , sm) of the messages satisfying:

(i) HV-scheme(S) broadcasts the messages without collisions, sending the last message vertically,

and

(iii) si ∈ {mi−1,mi,mi+1} for any i 6 M (in particular, either sM = mM , or sM = mM−1 and

sM−1 = mM ).

An ordered sequence S = (s1, · · · , sM ) of M satisfying (i) and (iii) is said valid. Clearly, for any

valid sequence S, HV-scheme(S) achieves makespan at most LB + 1. To prove that Algorithm

OneApprox computes a valid ordered sequence of M, we proceed by induction on M . Roughly,

starting from a valid ordered sequence of {m1, · · · ,mM−2}, the algorithm includes mM−1 and mM
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Input: M = {m1, · · · ,mM}, the set of messages ordered in non increasing distance order
Output: (s1, · · · , sM ) an ordered sequence of M such that mi ∈ {si−1, si, si+1} for any
i 6 M
begin

Case M = 0 return ∅
Case M = 1 return (m1)
Case M > 2
Let q be the lowest message in {mM−1,mM} and let r be the other one
if M = 2 return (q, r)
else let O ⊙ p = OneApprox({m1, · · · ,mM−2})
if p is higher than q return O ⊙ (p, q, r)
else if p = mM−2 return O ⊙ (mM−1, p,mM )
else
/* This last case may occur only if M > 3 */
Let (s1, · · · , sM−4)⊙ (mM−2,mM−3) = OneApprox({m1, · · · ,mM−2})
return MakeV alid((s1, · · · , sM−4)⊙ (mM−3,mM−1,mM−2,mM ), 2)

end

Figure 4.4: Algorithm OneApprox

Input: A (j − 1)-good (see def. 4.3) sequence O = (s1, · · · , sM ) of a set of messages
{m1, · · · ,mM}, and an integer j, 1 < j 6 ⌊M/2⌋.
Output: A valid sequence of M

if sM−2j and sM−2j+1 do not interfer
/* In particular, this case occurs if M − 2j = 0 */
return O

else if sM−2j = mM−2j

/* In particular, this case occurs if M − 2j = 1 */
return

(s1, · · · , sM−2j−2)⊙ (sM−2j−1, sM−2j+1, sM−2j, sM−2j+2)⊙ (sM−2j+3, · · · , sM )
else return

/* This last case may occur only if M − 2j > 2 */
/* Note that, in this case, sM−2j = mM−2j−1 and sM−2j−1 = mM−2j */

MakeV alid ((s1, · · · , sM−2j−2)⊙ (sM−2j, sM−2j+1, sM−2j−1, sM−2j+2)
⊙(sM−2j+3, · · · , sM ), j + 1)

end

Figure 4.5: MakeValid
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Figure 4.6: Recursive modifications of the scheduling

in this ordered sequence. Then, either the obtained sequence S is valid, or it is 1-good, where the

notion of i-goodness is defined as follows:

Definition 4.3 Let i ∈ {1, · · · , ⌊M/2⌋ − 1}. An ordered sequence S = (s1, · · · , sM ) is i-good if

• sM−2i−1 = mM−2i−1, sM−2i = mM−2i+1 and sM = mM , and

• S satisfies properties (i) and (iii) but sM−2i−2 may interfer with sM−2i−1.

In the latter case, subprocedure MakeV alid (see Figure 4.5) is recursively applied to S increasing

the parameter of goodness until either a valid sequence is obtained or we arrive to an (⌊M/2⌋− 1)-

good sequence. But, by definition, a (⌊M/2⌋ − 1)-good sequence is always valid.

We now detail the execution of Algorithm OneApprox on the example depicted in Figure 4.6. In this

example, BS must send 8 messages {m1, · · · ,m8} to distinct vertices in a 6 × 6-grid. Algorithm

OneApprox first computes a valid ordered sequence (s1, · · · , s6) = (m1,m2,m4,m3,m6,m5) of

first 6 messages. This scheduling is depicted in Figure 4.6(a). Then, the positions of m7,m8

and s6 = m5 are compared. In the example, m8 is the lowest message among m7 and m8, and

it is higher than s6. Moreover, s6 6= m6. Hence, Algorithm OneApprox applies Subprocedure

MakeV alid to integer j = 2 together with the ordered sequence (s1, · · · , s4)⊙ (m5,m7,m6,m8) =

(m1,m2,m4,m3,m5,m7,m6,m8). The scheduling corresponding to this sequence is depicted in

Figure 4.6(b). It is easy to check that this sequence is 1-good: in particular, it is valid except for

the interference between m3 and m5. Note that the integer variable j in the input of Subprocedure
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MakeV alid simply indicates that the interference may appear between the M − 2jth and the M −
2j +1th messages of the given sequence. The goal of Subprocedure MakeV alid is to locally modify

the sequence in order to remove interference between the M − 2jth and the M − 2j + 1th messages.

However, a new interference may appear between the M − 2(j + 1)th and the M − 2(j + 1) + 1th

messages of the obtained sequence, in which case Subprocedure MakeV alid is recall recursively.

Such a situation occurs in the example. Indeed, in the sequence (m1,m2,m4,m3,m5,m7,m6,m8),

m3 and m5 interfere and the fourth message of this sequence is not m4. Then, Subprocedure

MakeV alid is applied to the sequence (m1,m2) ⊙ (m3,m5,m4,m7) ⊙ (m6,m8) with j = 3. This

sequence is depicted in Figure 4.6(c) and is 2-good since m2 and m3 interfer. Note that the second

message of this sequence interferes and that this message is actually m2. Therefore, the next call to

Subprocedure MakeV alid only exchanges m2 and m3 (Case 2 of the subprocedure) and returns the

ordered sequence (m1,m3,m2,m5,m4,m7,m6,m8). The scheduling corresponding to this sequence

is depicted in Figure 4.6(d) and it is easy to check that it is valid.

We now prove the correctness of Algorithm OneApprox and Subprocedure MakeV alid.

Theorem 4.2 Algorithm OneApprox computes an ordering S of the messages satisfying proper-

ties (i) and (iii) and so HV-scheme(S) achieves makespan at most LB + 1.

Proof: We prove that Algorithm OneApprox computes an ordered sequence of messages satisfying

the properties (i) and (iii). We proceed by induction on M . If M 6 2, the result holds obviously.

Let us assume that the sequence OneApprox({m1, · · · ,mM−2}) satisfies (i) and (iii). Let p be the

last message of this sequence. By the induction hypothesis, p ∈ {mM−3,mM−2} is sent vertically.

The sequence is denoted by (s1, · · · , sM−2).

For any i < M−2, Oi denotes (s1, · · · , si), i.e., (s1, · · · , sM−2) = Oi⊙(si+1, · · · , sM−2). Recall that

by induction hypothesis, p = sM−2 ∈ {mM−3,mM−2} and has been sent vertically. Let q be the

lowest message in {mM−1,mM} and let r be the other one. We consider the 3 cases of Algorithm

OneApprox (when M > 2).

a) Case p is higher than q. We proceed like in case (a) of the proof of Theorem 4.1. In this

way it is easy to check that O1 ⊙ (p, q, r) is valid.

b) Case q and r are higher than p, and p = mM−2. We proceed like in case (b) of the

proof of Theorem 4.1. The transformation is depicted in Figure 4.3(c). The sequence O1 ⊙
(mM−1, p,mM ) is valid.

c) Case q and r are higher than p, and p 6= mM−2 (i.e., sM−3 = mM−2 and p = sM−2 =

mM−3). Moreover, p is sent vertically. This case is depicted in Figure 4.3.3 (with M = 8).

In this case, Algorithm OneApprox returns the result of MakeV alid(OM−4 ⊙
(mM−3,mM−1,mM−2,mM ), 2). We now prove that the computed sequence is valid.
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By Claim 4.2 and because sM−3 � sM−2 = p, sM−3 is lower than sM−2 = p. Indeed, these

messages do not interfer in the ordered sequence (s1, · · · , sM−2) computed by Algorithm

OneApprox. Then, it is possible to send messages mM−3,mM−1,mM−2 and mM , alternatively

horizontal and vertical (starting horizontally) without any interference between these four

messages. Therefore, the scheduling OM−4⊙ (mM−3,mM−1,mM−2,mM ) is either valid or at

least 1-good.

Actually, the schedulingOM−4⊙(mM−3,mM−1,mM−2,mM ) has some more useful properties.

More precisely, it is 1-good, where a i-good sequence (i > 2) is defined as follows:

Let us do the following easy remarks related to the i-goodness that will be useful later.

1. In a (i− 1)-good sequence S, if sM−2i does not interfer with sM−2i+1 then S is valid.

2. In particular, if 2i = M , a (i− 1)-good sequence is valid.

Let i, 1 < i 6 ⌊M/2⌋ and let S be a (i − 1)-good sequence. By reverse induction on i,

we prove that MakeV alid(S, i) eventually computes a valid sequence. More precisely, we

prove that MakeV alid(S, i) directly returns a valid sequence (first two cases of Subprocedure

MakeV alid), or it returns the result of MakeV alid(S ′, i+ 1) where S ′ is an i-good sequence,

and so the result holds by induction.

By definition of an (i− 1)-good sequence,

S = (s1, · · · , sM−2i−2)⊙ (sM−2i−1, sM−2i, sM−2i+1, sM−2i+2)⊙ (sM−2i+3, · · · , sM )

= (s1, · · · , sM−2i−2)⊙ (sM−2i−1, sM−2i,mM−2i+1,mM−2i+3)⊙ (sM−2i+3, · · · , sM )

First we prove the initialization of the induction, i.e., we consider the case when 2i ∈ {M −
1,M}.

If 2i = M , then sM−2i does not interfer with sM−2i+1 (because sM−2i is not defined).

MakeV alid(S, i) returns S which is valid by Remark 2.

If 2i = M−1 and s1 and s2 do not interfer, MakeV alid(S, i) returns S that is valid by Remark

1. Otherwise, if 2i = M − 1 and s1 and s2 interfer, then S = (s1,m2,m4) ⊙ (s4, · · · , s2i+1).

This implies that s1 = m1. Moreover, by parity and because s2i+1 is sent vertically, m2 is

sent horizontally. By Claim 4.2 and because m1 � m2 � m4, m1 must be lower than m2

that is lower than m4. In this case, MakeV alid(S, i) returns (m2,m1,m4)⊙ (s4, · · · , s2i+1).

By Claim 4.1, the only possible interferences in the resulting scheduling may occur between

m1 and m2, or m2 and m4. The respective positions of the destination nodes of m1,m2,m4

imply that this sequence is valid.

Now, let us consider the case 2i < M − 1. For purpose of induction, let us assume that, for

any j > i, if S is (j − 1)-good, MakeV alid(S, j) returns a valid sequence. We prove that, for

any (i− 1)-good sequence S, MakeV alid(S, i) returns a valid sequence.
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c.1 sM−2i and sM−2i+1 do not interfer.

In this case, MakeV alid(S, i) returns S that is valid by Remark 1.

Let us then consider the case when sM−2i and sM−2i+1 interfer.

We first do general remarks on the relative positions of some destination’s nodes. By parity,

in S, sM−2i is sent vertically and sM−2i+1 horizontally. By Claim 4.2, sM−2i+1 is higher and

lefter than sM−2i. Moreover, since sM−2i+1 and sM−2i+2 do not interfer, then sM−2i+2 must

be higher or lefter than sM−2i+1. Similarly, sM−2i−1 must be either lower or righter than

sM−2i.

There are two cases to be considered according to the value of sM−2i. Recall that, because

sM−2i+1 = mM−2i+1, sM−2i ∈ {mM−2i,mM−2i−1}.

c.2 sM−2i and sM−2i+1 do interfer and sM−2i = mM−2i. In this case, MakeV alid(S, i)

returns the sequence (s1, · · · , sM−2i−2)⊙ (sM−2i−1, sM−2i+1, sM−2i, sM−2i+2)⊙
(sM−2i+3, · · · , sM ).

Because of their respective positions, no interferences are created between messages

sM−2i−1, sM−2i+1, sM−2i and sM−2i+2, when sending them alternatively horizontal and

vertical (starting horizontally). Moreover, only sM−2i+1 = mM−2i+1 and sM−2i =

mM−2i have been switched. Therefore, it is easy to check that it is valid.

c.3 sM−2i and sM−2i+1 do interfer and sM−2i = mM−2i−1. Note that this implies sM−2i−1 =

mM−2i.

In this case, MakeV alid(S, i) returns MakeV alid(S ′, i + 1) where

S ′ = (s1, · · · , sM−2i−2)⊙ (sM−2i, sM−2i+1, sM−2i−1, sM−2i+2)⊙ (sM−2i+3, · · · , sM )

= (s1, · · · , sM−2i−2)⊙ (mM−2i−1,mM−2i+1,mM−2i, sM−2i+2)⊙ (sM−2i+3, · · · , sM ).

Because of their respective positions, no interferences are created between messages

sM−2i, sM−2i+1, sM−2i−1 and sM−2i+2, when sending them alternatively horizontal and

vertical (starting horizontally). Hence, the only possible interference in the sequence S ′
is between sM−2i−2 and to sM−2i: It is easy to check that S ′ is i-good. Thus, the result

is valid by the induction assumption.

�

We prove that Algorithm OneApprox performs in linear time, with respect to the number of

messages.

Theorem 4.3 The time complexity of Algorithm OneApprox is O(M).

Proof: We note χ(i) the time-complexity of OneApprox({m1, · · · ,mi}). We prove by induction on

i that χ(i) 6 2i·O(1). Let S = (s1, · · · , sM ) be the ordered sequence computed by OneApprox(M).
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The pivot sM−2P of this sequence is the message such that sM−2P = mM−2P and minimizing P .

More precisely, we prove that χ(M) 6 O(1) · (2(M − 2P ) + P ). If M 6 1, the result is trivial. Let

us assume M > 2. By induction, the computation of OneApprox({m1, · · · ,mM−2}) takes time at

most O(1) · (2(M − 2− 2P ′) + P ′) where P ′ is the pivot of the obtained sequence. There are three

possible cases corresponding to the three cases the algorithm (when M > 2).

a. Clearly, in this case, χ(M) = χ(M − 2) + O(1). Moreover, either P = P ′ + 1 (if r = mM−1)

or P = 0 (if r = mM). In both cases, we get χ(M) 6 O(1) · (2(M − 2P ) + P ).

b. χ(M) = χ(M − 2) + O(1) and P = 0, thus χ(M) 6 O(1) · 2M .

c. Let χ′(M) be the complexity of Makevalid((s1, · · · , sM ), 2). In this case, χ(M) = χ(M−2)+

χ′(M) and P = 0 (because in the computed sequence, sM = mM ). Finally, when executed

Makevalid((s1, · · · , sM ), 2), the same subprocedure MakeV alid is recursively executed until

sM−2j and sM−2j+1 do not interfer, or sM−2j = mM−2j. Therefore, it is executed at most P ′

times and each execution takes O(1). Hence, χ(M) 6 O(1) · 2(M − 2P ′) + O(1) · P ′ 6 2M .

�

4.4 Distributed Algorithm

We present a synchronous distributed algorithm for the gathering in a N2-node grid, which is

based on the Algorithm TwoApprox, for personalized broadcasting presented in section 4.3.2. This

algorithm uses control messages of size O(log N) bits and it performs in O(N2) steps (with similar

complexity in terms of number of control messages), i.e., its time-complexity is linear in the size of

the grid.

4.4.1 Distributed Model

The network is assumed to be synchronous. Each node has only a local view of the network.

However, it has access to the following global information: its position (x, y) in the grid, the

position of BS (for sake of simplicity, we assume that BS has coordinates (0, 0)), and the size

N ×N of the grid (an upper bound on N is sufficient). Finally, any node v has m(v) > 0 messages

that it must send to BS. At every step, a node can send or (exclusive) receive a control message,

or signaling, of size O(log N) to (from) one of its neighbours. In the following, for any i 6 2N ,

Diag(i) denotes the set of vertices at distance i from BS. We refer to Diag(i) as the diagonal

i. The central node c(2a) (resp., c(2a + 1)) of Diag(2a) (resp., Diag(2a + 1)) is the node with

coordinates (a, a) (resp., (a + 1, a)). Finally, let AntiDiag be the set that consists of the vertices

c(i) for all i 6 2N . The algorithm consists of four phases that we describe now.
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4.4.2 Basic Description of Distributed Algorithm

Our algorithm aims at giving to any message m its position in the ordering S computed by Algo-

rithm TwoApprox (in terms of personalized broadcasting) and the makespan. This is performed in

Y = O(N2) steps (Y will be specified below) using O(N2) signalings. Then, with this information,

any message can compute its starting time, given that the first message will be sent at step Y + 1.

Let us give a rough description of the four phases of the distributed algorithm. First two phases

consist in giving to any message m its position in the non increasing order of their distance to BS

such that nodes in the same diagonal are ordered up to down (the ordering of messages hosted

at a same node is arbitrary). Moreover, each message m2a+1 with a > 0, resp., m2a+2, (actually,

the node hosting this message) will learn the position(s) of messages m2a+2,m2a+3,m2a+4, resp.,

m2a+1,m2a+3,m2a+4. Then the third phase starts. With the information previously learnt, accord-

ing to Algorithm TwoApprox, message m1 can decide the ordering in S of the first three messages:

s1, s2, s3. Two of these three positions are occupied by m1 and m2. The remaining place is occupied

by m3 or m4 (This comes from the definition of the TwoApprox algorithm). Then, at some step,

the message s2a+3 is fixed. With this information, we prove that message m2a+3 can extend the

ordering to s2a+4 and s2a+5 using the TwoAlgo algorithm. At the end of this phase, any node

knows its position in S and BS knows the makespan. During the last phase, BS broadcasts the

makespan to any node. With this information, each node can compute its starting time for the

gathering process.

4.4.3 Formal Description of Distributed Algorithm

Phase 1. It is divided into 2 processes executed “almost” simultaneously.

• The first one is executed in parallel by all diagonals. For any i 6 2N , it aims at collecting

some information in c(i), the central node of Diag(i). When this process ends up at step

i + 5, c(i) has learnt

– the number of messages li standing in Diag(i) in nodes with greater ordinate than c(i),

– the number of messages ri standing in Diag(i) in nodes with smaller ordinate than c(i),

– the position(s) of the three messages with greatest ordinate in Diag(i).

Moreover, at the end of the phase, any node v with coordinates (x, y) in Diag(i) has learnt

the position of the (at most 3) node(s) of Diag(i) hosting the closest 3 messages that are

higher (if y > x) or lower (if y 6 x) than v.

To do so, two signalings D1i and D1′i, initiated by nodes (i, 0) and (0, i) respectively, are

propagated toward c(i). From (i, 0) (resp., from (0, i)), D1i (resp., D1′i) is transmitted to

node (i, 1) and then to (i−1, 1) (resp., to (1, i) and then to (1, i−1)), and so on until reaching
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c(i). To avoid interferences, D1i and D1′i are initiated at step 1 by (i, 0) and (0, i) if i is odd.

If i is even, D1i is initiated at step 5 by (i, 0), and D1′i is initiated at step 6 by (0, i). It is

easy to see how information can be aggregated as D1i and D1′i go along, in order to obtain

the desired information. Moreover, signalings D1i (resp. D1′i) have size O(log N) since they

contain: the number of messages they met, the position(s) of the first three messages they

met, and the position(s) of the last three messages they met.

• At step 7, a signaling A1 is initiated in BS and is propagated along AntiDiag towards

(N − 1, N − 1). When c(i) receives A1 at step i + 6, it learns the total number of messages

hosting by nodes in
⋃

j<i Diag(j) and the position(s) of the three messages in
⋃

j<i Diag(j)

that are further to BS and with greatest ordinate. Then, using the information propagated

by messages D1i and D1′i, c(i) updates message A1 and sends it to c(i + 1) during the next

step.

The signaling A1 arrives to (N − 1,N − 1) at step 2N + 5 which concludes this phase.

Phase 2. The second phase is divided into three successive processes.

• At step 2N +6, a signaling A2 is initiated in (N−1,N−1) and is propagated along AntiDiag

towards (0, 0). When c(i) receives A2 at step 4N +6−i, it learns the total number of messages

M and the position(s) of the three messages in
⋃

j>i Diag(j) that are closest to BS and with

smallest ordinate.

Note that after step 4N +6−i, c(i) knows the interval of the positions occupied by messages in

Diag(i), i.e., from M−⋃j6i Diag(j)+1 =
⋃

j>i Diag(j)+1 to
⋃

j>i Diag(j)+li+ri+m(c(i)).

The two last processes ensure that any message m2a (resp., m2a+1) knows its position in the non

increasing order of their distance to BS, i.e., its position in the ordered sequence M, and the

position(s) of messages m2a+1,m2a+2,m2a+3 (resp. m2a,m2a+2,m2a+3).

• At step 4N +6−i+3 if i is odd and 4N +6−i+5 if i is even, a signaling D2i is initiated in c(i)

and is propagated toward (i, 0). D2i transmits: the next position (inM) to be attributed to

the messages in Diag(i) with smaller ordinates than c(i), i.e., from
⋃

j>i Diag(j)+ li +m(c(i))

to
⋃

j>i Diag(j)+ li +ri +m(c(i)) (in such a way that any message lower than c(i) in Diag(i)

learns its number in the ordering when it meets the signaling D2i), the position(s) of the last

three messages met by this signaling, and the position(s) of the three messages in
⋃

j<i Diag(j)

furthest to BS and with greatest ordinates.

• At step 4N + 6− i+ 2 if i is odd and 4N + 6− i + 6 if i is even, a signaling D2′i is initiated in

c(i) and is propagated toward (0, i). D2′i transmits: the next position (in the ordering) to be

attributed to the messages in Diag(i) with greater ordinates than c(i), i.e., from
⋃

j>i Diag(j)

to
⋃

j>i Diag(j) + li (in such a way that any message higher than c(i) in Diag(i) learns its
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number in the ordering when it meets the signaling D2′i), the position(s) of the last three

messages met by this signaling, and the position(s) of the three messages in
⋃

j<i Diag(j)

furthest to BS and with greatest ordinates.

This phase ends at slot 4N + 12.

Phase 3. Any message will learn its position in the final ordering S.

We define the start of this phase at slot 4N + 13 after finishing phase 2.

At the beginning of this phase, message m2a+1 (a > 0) knows its position in the ordered sequence

M and the position(s) of m2a+2,m2a+3, and m2a+4.

The procedure starts as follows. Node m1 knows m2,m3,m4. Using TwoApprox algorithm with

input (m1,m2,m3,m4), it computes the ordering of the first three positions of S. According

to the algorithm the possible configurations for the first three messages in S are (m1,m2,m3),

(m1,m3,m2), (m1,m2,m4), (m2,m1,m3), (m2,m3,m1), (m2,m1,m4). Note that, although the

algorithm returns also a message for the fourth position, it is not definitive because it could be

modified when the next pair of messages (m5,m6) is included. The first message s1 is decided

arbitrarily to be vertical.

Then, m1 computes the current makespan, i.e., maxj∈{1,2,3} d(BS, sj) + mj − 1 and propagates

the information to m2 and m3. That is, m1 sends them the ordering of the first three messages

(s1, s2, s3) of S (again, {s1, s2, s3} ⊂ {m1, · · · ,m4}) and the current makespan. The corresponding

signaling is sent at step 4N + 13 to m3 and at step 4N + 15 to m2. The signaling reaches m3 at

step 4N + 12 + t where t is the distance between m1 and m3.

The process continues iteratively until m2a+3 receives a signaling from m2a+1 at step 4N +12+t, for

t =
∑

06k6p dist(m2k+1,m2k+3). This signaling contains the positions of messages s2a+1, s2a+2, s2a+3,

and the current makespan, i.e., the makespan restricted to messages s1 to s2a+3. At this step, m2a+3

must decide which messages will occupy positions s2a+4 and s2a+5 in S. This decision is taken ac-

cording to Algorithm TwoApprox. Note that, Algorithm TwoApprox requires as input the next

pair of messages m2a+5,m2a+6 and the message m∗ ∈ {m1, · · · ,m2a+4} whose position in S has

not been decided yet. By property of Algorithm TwoApprox, m∗ ∈ {m2a+3,m2a+4}

Thus, m2a+3 is able to decide which messages will occupy positions s2a+4 and s2a+5 in S, and then

it can update the current makespan. Finally, at step 4N +12+ t+1 (resp., at step 4N +12+ t+3),

message m2a+3 sends a signaling to m2a+5 (resp., to m2a+4). This signaling contains the current

makespan, s2a+3, s2a+4 and s2a+5. The signaling is received by m2a+5 at step 4N +12+ t+ t′ where

t′ is the distance between m2a+3 and m2a+5.

The end of this phase is upper bounded by step 4N + 12 + 2N2.

Phase 4. At the end of previous phase, BS learns the makespan of a HV-scheme realizing the

computed ordering and starts broadcasting it to any node at step 4N + 13 + 2N2.
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This is done thanks to a signaling through AntiDiag, and signalings from c(i) to (i, 0) and (0, i)

(i 6 2N) in a similar way as Phase 2. This process ends at step 6N + 19 + 2N2.

Defining Y = 6N +19+2N2, each node knows the step when it has to send the message given that

the starting step is Y + 1. Moreover, the message sj is sent horizontally or vertically according to

the parity of j.

4.5 Conclusion and Further Works

In this paper, we have presented almost optimal centralized and distributed algorithms for the

minimum makespan personalized broadcasting in open-grid networks. In these settings, the problem

is strictly equivalent to the data gathering problem.

The next step is obviously to provide algorithms for the closed grid case. As a matter of fact, one

can check that the lower bound is weaker then and one cannot restrict the routing to shortest paths

anymore. The +2–approximation algorithm can be fixed to handle this case even though its actual

approximation gap is still under investigation [BGN+09].

Besides, one can note that our network model assumes that an optimal MAC layer is available. It

would be interesting to investigate on the behaviour of the problems under weaker assumptions,

such as faulty transmissions and/or intermittent nodes.

Another direction to investigate is the online version of the problems. It is worth pointing out that,

in this case, personalized broadcasting and gathering are no longer equivalent. Last but not least,

the time complexity of the gathering problem in (open) grids is an open problem.
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Part II

Round Weighting
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Chapter 5

Round weighting in the primary node

interference model

5.1 Introduction

In this chapter, we address the problem of allocating bandwidth efficiently in a radio network,

in such a way that given traffic demands are satisfied. Due to the sharing property of the radio

bandwidth, one has to schedule radio transmissions in the network in order to avoid concurrent

interfering transmissions. We consider traffic gathering where the nodes of the network have a

bandwidth requirement to send to a sink node called gateway. The problem is to find sets of

compatible communication links in the network, called rounds, such that the node bandwidth

requirements are achieved.

This problem can be seen as a relaxation of the Minimum Time Gathering Problem. In the

Minimum Time Gathering Problem the demand is a discrete quantity of messages and the goal

is to provide a sequence of rounds such that all the messages are collected. In our case, a solution is

no longer a sequence of rounds, but a continuous weight function on the rounds, and the objective

function is to provide enough capacity for a flow to fit the bandwidth requirements.

This problem has been formalized into the Round Weighting Problem (RWP) by [KMP08], that

jointly considers the multi-commodity flow problem and the weighted fractional coloring problem.

The radio network is modeled by a topology graph G, in which each node v is a router of the

network having a bandwidth demand b(v) to send to the sink node s called also the gateway. The

goal of the RWP is to assign weights to a set of rounds satisfying the demand and minimizing the

total weight.

To avoid transmission collisions, one has to define an interference model. Here, we consider

a binary interference model known as primary node interference or node-exclusive interference

model [MSS06], where each round corresponds to a matching over the graph.
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First, the method proposed consists in routing the demand of each node through a cycle. After, we

propose a routing by pairing the nodes. In both cases, we provide lower and upper bounds which

in some cases are optimal. Lower bounds are obtained by providing dual solutions.

In section 5.2 we introduce the Round Weighting Problem. In section 5.3 we discuss the case where

the demand is concentrated in only one node v, i.e, when b(u) = 0 for all node u 6= v. In section 5.4

we remove this constraint and we discuss the case with more general demand functions.

5.2 Model

In this section we present the round weighting problem as a linear program and study it through

its dual for the case of gathering. For more details, see section 1.3.

We considered a traffic gathering where the demand b : V → R+ represents the flow b(v) needed to

be sent from v to the gateway s.

We say that a round weight function w satisfies the traffic demand b if there exists a flow φ such

that

• it satisfies the traffic demand b

(∀v ∈ V )
∑

P∈Psv

φ(P ) ≥ b(v),

where Psv is the set of paths between the gateway and v.

• and respects the capacity cw induced by w:

(∀e ∈ E)
∑

P∈P:e∈P

φ(P ) ≤ cw(e) =
∑

R∈R:e∈R

w(R).

Summarizing, the round weighting problem can be seen as follows.

Problem: Round weighting

Input: a graph G = (V,E), a set of possible rounds R ⊂ 2E (whose

size may be exponential), and a flow demand function b :

V → R+ between each node v and the gateway s.

Solution: A round weight function w defined over R that satisfies the

traffic demand b.

Goal: Minimize the overall weight of w, i.e. W =
∑

R∈R w(R).

In order to obatin good lower bounds, we will use the dual formulation discussed in section 1.3. In

this case, we will only use the following property:
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Fact 5.1 ([KMP08]) The dual problem of round weighting consists of finding a metric l : E → R+

onto the call set maximizing the total distance that the traffic needs to travel (W =
∑

v∈V dl(v, s)b(v),

where dl is the distance induced by metric l) and such that the maximum length of a round is 1

(∀R ∈ R, w(R) =
∑

e∈R l(e) ≤ 1).

This fact will allow us to find a feasible dual solution which will give a lower bound for the primal

problem.

In the following, we will denote as cost the weigth of the rounds. We will denote the price of an

edge, the dual value l(e) associated to each edge e. The price of the solution is the value of the

objective function of a dual problem solution (
∑

v∈V dl(v, s)b(v)).

5.2.1 Interference Model: Matchings

We suppose that any node is able to perform a transmission to any of its neighbours. We consider

a basic interference model given by the following main assumption: a node cannot transmit and

receive at the same time. Thus a round is a set of edges which can be performed simultaneously,

therefore, in fact a matching. This model of interference is also known as primary node interference

or node-exclusive interference [MSS06].

5.3 One node with demand

In the following, we assume that the graph is simple. A simple graph is a graph containing no loops

or multiple edges. Moreover, all the paths are considered are simple, meaning that no vertices (and

thus no edges) are repeated.

We consider the case when the demand is concentrated over only one node. The demand of this

node v is denoted by b(v). We will present lower bounds via dual solutions and upper bounds by

providing protocols.

First, we present the following simple property.

Property 5.1 For an instance of RWP where the total demand is b, any protocol which attains

a cost of b is optimal.

This property is true due to the fact that any feasible solution must route all the demand and then,

the cost of the solution must be at least the value of the total demand. The property will be useful

later in order to prove optimality when the solution attains a cost equal to the demand.

In the following, we will present different methods of routing the demand between the node v and

the gateway s. We will give optimal solutions for path and cycles. Furthermore, we will show that

in the case of the cycles, the parity plays an important role.
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5.3.1 Paths

First, we show that routing all the demand of v through one path may not be a good solution.

Indeed the cost of the solution will be twice the demand (except when the path consists in only

one edge between s and v).

Lemma 5.1 Let v be a node with demand b. Routing the demand through a path between v and s

costs at most 2b.

Proof: As a path is 2-coloreable, we can cover the edges of the path with 2 rounds of weight b

each. �

Now we will present a lower bound which states that the solution above is optimal. The lower

bound is obtained from a dual solution.

Lemma 5.2 Let v be a node with a demand b. Routing the traffic through a path between v and s

costs at least 2b.

Proof: Recall that a dual solution consists in a length function l as in fact 5.1. The proposed length

function assigns a value (or price) of 1 for the two (consecutive) closest edges to the gateway, and 0

for the remaining ones. The idea is depicted in figure 5.1. Since two consecutive edges cannot be in

the same round, every round R satisfies
∑

e∈R l(e) 6 1. Therefore, by fact 5.1, the length function

is a feasible dual solution. Since the demand must use all the edges of the path in order to reach

s, in particular it uses the two edges with price 1. Thus, the value of the dual solution is 2b. �

0 0 0· · ·
vs

1 1 00

Figure 5.1: Dual solution for the path. Labels indicate the value of the length function for each
edge.

From the above lemmas we have the following optimal solution.

Theorem 5.1 Let v be a node with demand b. Routing the demand through a path between v and

s costs W = 2b.

We will see that the cost can be reduced using a cycle between v and s.

5.3.2 Even Cycles

We now present a simple lemma which gives a routing that attains a cost equal to the demand,

therefore we have an optimal solution.
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Theorem 5.2 Given an even cycle in G containing the gateway and a node v, then we can route

b units of demand from node v to the gateway with W = b

Proof: As the cycle is even, we can cover its edges with two rounds alternately (See Fig 5.2).

Considering a weight of b/2 for each round, we can route b/2 units of traffic for each path of the

cycle between v and the gateway. �

2

11

1

2 2

s v

Figure 5.2: Routing the demand from v to s in the even cycle C6. Labels over each edge represents
the round covering the edge.

Corollary 5.1 Given a 3-connected graph in which only one node has a demand b. Then, W = b.

Proof: As the graph is 3-connected, there exists an even cycle between the demanding node and

the gateway. Thus, lemma 5.2 shows that using 2 rounds with cost b
2 , the routing can be done with

W = b. �

Corollary 5.2 Given a 2-connected bipartite graph, where only one node v has a demand b, then

W = b.

Proof: A bipartite graph does not contain any odd cycle and therefore if it is 2-connected, then

there exists an even cycle between the demanding node and the gateway. By Lemma 5.2 the result

follows. �

Remark that a grid is a 2-connected bipartite graph, then corollary 5.2 can be applied.

Corollary 5.3 Given a grid, where only one node has a demand b to be sent to the gateway, then

W = b.

We will see in section 5.4 that above results can also be extended to the case when more than one

node has demand.

5.3.3 Odd Cycles

Now, we study the case when the demanding node v and the gateway s are contained in an odd

cycle.
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Notice that if (v, s) is an edge, then the optimal protocol consists in routing through this edge all

the demand. We assume that there is no edge between v and s.

Let Cn denote a cycle of size n formed by two paths from v to s denoted P and Q. The length of

these paths are p and q respectively. Therefore, n = p + q. We assume that p > q > 1.

Now, we present a protocol for routing the demand through an odd cycle. We will see later that

this solution is in fact optimal.

Lemma 5.3 Let Cn be an odd cycle. If the the node v has a demand b, then the routing can be

done with a cost of at most b 2p
2p−1 .

1,2

3,4

5,
6

(a) Idea for the covering
paths

1,6

1,4,5

4,52,3

2,3,6

(b) Primal solution

Figure 5.3: In fig. 5.3(a), the 3 lines denote the p = 3 paths covering n − 1 = 4 edges each.
The labels (above each non-covered edge) indicate the labels of the rounds used in each path. In
fig. 5.3(b): labels indicate the labels of the rounds used in each edge.

Proof: Notice that an even path can be covered with 2 different rounds. Hence, the idea consists

in covering the cycle with p even paths of size n− 1.

First, for each edge e in P , we cover the edges of Cn \{e} with two rounds Re,1 and Re,2 alternately.

Each one of this rounds has a cost of b 1
2p−1 . Notice that each pair of rounds leaves out a different

edge of P at each time. Therefore, each edge of P is covered by p− 1 paths and each edge of Q is

covered by p paths.

A scheme showing the covering paths (n = 5 and p = 3) is presented in figure 5.3(a).

We will check now that the assignment of rounds gives a feasible solution. Each edge in P is covered

by p−1 rounds and each edge in Q is covered by p rounds. Now, we will check the induced capacity

of each path. Recall that the induced capacity of an edge is the sum of all the costs of rounds

covering this edge. For each edge in P , the induced capacity is b p−1
2p−1 and for an edge in Q is b p

2p−1 .

Therefore, the flow function φ(P ) = b p−1
2p−1 and φ(Q) = b p

2p−1 satisfies the capacity constraints and

b units of demand can be routed from v to s. �

We now use a dual approach to give a lower bound.

Lemma 5.4 Let Cn be an odd cycle. If the node v has a demand b, then the routing need a cost

of at least b 2p
2p−1 .
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1,6

1,4,5

4,52,3

2,3,6

(a) Solution for C5.
W = b 6

5

2
5

3
5

3
5

2
5

2
5

(b) Dual Solution for
C5.

Figure 5.4: Primal and Dual solution for a C5 with one node with a demand of b. In fig. 5.4(a)
labels denote the labels of the rounds covering each edge. In fig. 5.4(b) labels denote the price of
each edge.
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(a) Solution for C7. W =
b 8
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(b) Dual Solution for
C7.

Figure 5.5: Primal and Dual solution for a C7 with one node with demand b.

1,4,5,8,10

2,3,8,10
1,6,7,9

4,5,8,10

2,3,6,7,9

1,4,5,8,102,3,6,7,9

1,4,5,9

2,3,6,7

(a) Solution for C9. W = b 10
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(b) Dual Solution for
C9.

Figure 5.6: Primal and Dual solution for a C9 with one node with demand b.
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Proof: We need to find a feasible dual solution to get a lower bound. According to fact 5.1 a dual

solution consists in a function l over the edges such that each round R satisfies
∑

e∈R l(e) 6 1.

Recall that we denote price the dual value l(e) associated to each edge e. We will construct a dual

solution with an objective value b 2p
2p−1 . Each edge in P will be given a price of 2

2p−1 . Depending

on the parity of Q, we distinguish 2 cases: if q is even, each edge in Q will be given a price of
2p

2p−1
1
q (See figures 5.4(b), 5.6(b) and 5.7(b)); and if q is odd, for the ⌈ q

2⌉ non-adjacent edges in Q

we will use a price of p+1
2p−1

1
⌈ q
2
⌉
, and for the ⌊ q

2⌋ remaining edges we will use a price of p−1
2p−1

1
⌊ q
2
⌋

(See

figure 5.5(b)). Thus, the sum of the prices of the edges in a round is at most 1, which satisfies the

condition of fact 5.1. Moreover, whatever the path chosen (either P or Q), the sum of the prices of

all the edges in the path is 2p
2p−1 . Therefore, the value of the dual solution is b 2p

2p−1 . �

1,6,7,10

4,5,8,9

1,4,5,10

2,3,6,7

1,4,5,8,9 2,3,6,7,10

2,3,8,9

(a) Solution for C7. W = b 10
9
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9

2
9

2
9

2
9

5
9

5
9

2
9

(b) Dual Solution for
C7.

Figure 5.7: Primal and dual solution for a C7.

Using lemmas 5.3 and 5.4 we have found the optimal solution when routing is done over an odd-

length cycle.

Theorem 5.3 Let Cn be an odd cycle. If the node v has a demand b, then the optimal solution is

W = b 2p
2p−1 .

We now consider a 2-connected graph and we are able to provide an upper bound for the routing,

whatever the cycle chosen between the demanding node and the gateway.

Corollary 5.4 The routing of b units from v to the gateway s using a cycle containing v and s

can be done with a cost of at most b6
5 .

Proof: First, note that the cost of routing with either even cycles or a C3 is b. Then, we only

need to show that for any odd cycle Cn with n > 3, the routing can be done with a cost of at most

b6
5 . For a given odd cycle Cn with n > 3, the cost of routing is b 2p

2p−1 by theorem 5.3. As the cost

decreases with p, the worst case is routing with a C5 with p = 3 and q = 2 in which the cost is

W = b6
5 . �

The above corollary guarantees that we can design 6
5 -approximation solutions even when the de-

mand is not concentrated in one node, as we will see in section 5.4.
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Remark that if no even cycle contains the demanding node and the gateway, it does not imply that

the cost of the solution is greater than the demand. In the next section we present some cases in

which routing through an odd cycle with an ear may also attain a cost equal to the demand.

5.3.4 Special Cases

5.3.4.1 Odd cycles with ears

Let X be a path. We define an ear of X as a path whose inner nodes has degree 2 and such that

its end nodes belong to X.

In this section, we consider the case when either P or Q has an ear and the end nodes of the ear

are neither the gateway s nor v.

We denote T the set of edges of the ear. Let t = |T |, and x be the end node of the ear which is

closest to s, and y be the other end node.

In the following, we distinguish two cases depending on whether the end nodes of the ear are joined

by an edge or not.

No edge joining the end nodes of the ear

We consider the case when the end nodes of the ear are not joined by an edge of the cycle.

Lemma 5.5 Let Cn be an odd cycle with an ear, n > 5, containing v and s, where v has a demand

b. If there is no edge between the end nodes of the ear, then the routing can be done with cost

W = b.

Proof: Without loss of generality, we assume that the ear is over P . Let x, y be the end nodes of

the ear. Let Cxy the cycle formed by the ear and the subpath of P between x and y. We suppose

that the two paths between x and y forming Cxy have the same parity. Otherwise, there exists an

even cycle between v and s and the result follows from theorem 5.2. By hypothesis, we suppose

also that Cxy has at least 4 edges.

We will propose a solution using 4 rounds such that each of them has a cost of b
4 . Hence, the

solution proposed attains a cost of b which is optimal by property 5.1.

We cover the edges of the cycle Cn except the edges in Cxy. Each edge of Cn \Cxy is covered by 2

rounds. Let {1, 2} and {3, 4} be the labels for the two rounds. Therefore, each edge of Cn \ Cxy is

covered by the sets {1, 2} and {3, 4} alternately.

In order to cover the edges in Cxy, we consider two cases: (1) the end edges of Cn \ Cxy are both

covered by the same set of rounds or (2) they are covered by two different sets of rounds.
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For the first case, suppose now that the end edges of Cn \ Cxy are covered by the rounds {1, 2}.
Then, as Cxy is an even cycle, we can cover Cxy using 3 and 4 alternately (figure 5.8(a)).

For the second case, suppose that the edge adjacent to x in Cn \ Cxy is covered by the rounds 1

and 2. Then, we cover the two edges of Cxy adjacent to x using the rounds 3 and 4. The remaining

edges in Cxy are covered with one round each using the rounds 1 and 2 (figure 5.8(b)).

Clearly, the solution proposed is feasible, because there exists a flow between v and s with a demand

of b. �

1,21,2

1,2

3,4 3,4

3

4

4

3

(a) C7 with an ear of
size 2

1,2 3,4

3

4

2

1

1

2

3,4 1,2

(b) C7 with an ear of
size 3

Figure 5.8: Routing b units in 2 cases of a C7 with an ear. In both cases, each round has cost b/4,
thus W = b.

End nodes of the ear joined by an edge.

In this case (x, y) corresponds to an edge of the cycle. Depending on the location of the ear, (x, y)

belongs to either P or Q. Moreover, when p > q, the cases for the ear on P or Q are different.

We define also eT
x to be the edge of T which is incident to x and eT

y be the edge incident to y.

Notice also that the length of the ear is odd. We denote T ′ the set of t+1
2 non-adjacent edges in T .

We denote T ′′ the remaining t−1
2 edges in T .

Lemma 5.6 Let Cn be an odd cycle with one ear, n > 5, containing v and s, where v has a demand

b. If there is an edge of Cn that joins the two ends of the ear, then the routing can be done with

cost at most b 2pt
2pt−1 .

Proof: We will define 2p rounds denoted by Ri, i = 1, .., 2p to cover the edges of P and Q in the

same way as in Lemma 5.3, but with a cost of b 1
2pt−1 per edge (See also figure 5.9(a)).

Then, we cover each edge in T ′′ with the rounds Ri, i = 1, .., 2p (See figure 5.9(b))

Now, we will compensate the remaining edges of T . Let e be an edge in T ′′. We use 2 new rounds

Re,1, Re,2 with a cost of b 2p
2pt−1 to cover alternately the edges in P ∪Q∪T \{(x, y), e}. The process

is repeated for all the edges in T ′′ (See figure 5.9(c) and the solution in 5.9(d)).

The total cost is
∑2p

i=1 w(Ri) +
∑

e∈T ′′ (w(Re,1) + w(Re,2)) = b 1
2pt−1 + (t − 1)b 2p

2pt−1 = b 2pt
2pt−1 .

Figure 5.9 shows an example of a solution for a C5 with an ear of 7 edges over P . The rounds
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1,2

3,4
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6

(a) Covering the cycle

1,4,5

1,6

1,2,3,4,5,6

1,2,3,4,5,61,2,3,4,5,6

4,52,3

2,3,6

(b) Using the same 6
rounds in the ear

7,8

9
,1

01
1
,1

2

(c) Covering the ear with new
rounds

1,4,5,7,9,12 2,3,6,8,10,11

2,3,8,10,11 1,6

1,2,3,4,5,6,10,12

8,9,117,9,11

7,9,12 8,10,11

1,2,3,4,5,6,7,121,2,3,4,5,6,8,10

4,5,7,9,12

(d) All the rounds

Figure 5.9: Construction of the Primal Solution for a C5 with an ear of size 7.

labeled by 1 to 6 correspond to Ri, i = 1, .., 6 with a cost of w(Ri) = b 1
41 , and the rounds labeled

7 to 12 correspond to the ones with a cost of b 6
41 each.

In the following, we check that the solution proposed is feasible. To do that, we need to study the

induced capacity of each edge. Recall that the induced capacity of an edge is the sum of the costs

of the rounds covering the edge.

The induced capacity for an edge in P \ {(x, y)} is b
(

p−1
2pt−1 + t−1

2
2p

2pt−1

)

= b pt−1
2pt−1 . The induced

capacity for an edge in Q \ {(x, y)} is b
(

p
2pt−1 + t−1

2
2p

2pt−1

)

= b pt
2pt−1 .

Depending on whether (x, y) (the ear) is on P or Q, its induced capacity is b p−1
2pt−1 or b p

2pt−1

respectively.

Let us check the induced capacities for the edges in T . Each edge of T ′′ is covered by 2p rounds

with a cost of b 1
2pt−1 and t−3

2 = |T ′′|−1 rounds of cost b 2p
2pt−1 . Moreover, each edge in T ′ is covered

by t−1
2 rounds with a cost of b 2p

2pt−1 . Thus, the induced capacity of each edge in T is b (t−1)p
2pt−1 .

The schemes of figure 5.10 summarize the values of the induced capacity of each edge according to

the location of the ear. The induced capacities hence shows that is possible to send a flow of b from

v to the gateway s. Therefore, the solution proposed is feasible. �

Lemma 5.7 Given an odd cycle Cn with one ear, n > 5, containing v and s, where v has a demand

b. If there is an edge of Cn that joins the two ends of the ear, then the routing cost at least b 2pt
2pt−1 .
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b p−1
2pt−1

b
(t−1)p
2pt−1

b pt
2pt−1

b pt−1
2pt−1

b pt−1
2pt−1

(a) Ear over the edges of P

b pt
2pt−1

b p
2pt−1 b pt

2pt−1

b pt−1
2pt−1

b (t−1)p
2pt−1

(b) Ear over the edges of Q.

Figure 5.10: Scheme of induced capacities for the different sections in the cycle.

Proof: The dual solution proposed depends again on both the location of the ear over the cycle

(on P or Q) and the parity of P and Q. In the following we describe the solution according to the

different cases.

• Case 1: Ear over P and p odd (q even). In this case, we assign the prices for the edges

as follows:

2
2pt−1 for e ∈ T

2t
2pt−1 for e ∈ P

p
q

2t
2pt−1 for e ∈ Q

We now need to check that the solution proposed above is feasible. According to fact 5.1, we

need to show that the price of any possible round is less or equal than 1.

First, note that p
q > 1, then p

q
2t

2pt−1 > 2t
2pt−1 > 2

2pt−1 . It means that the order in terms of

price is: the edges in Q, the edges in P and finally the edges in T . We will construct an upper

bound for the price of the rounds using as many edges in Q as possible.

Note also that a round is composed by at most p+q−1
2 edges in P ∪Q. Then, the round with

the highest price is a round with q
2 edges in Q and p−1

2 edges in P . Since that the round

has p−1
2 edges in P , there is always at least one edge in P which is adjacent to T . Then, the

maximum number of edges in T that can be used in the round is t−1
2 .

Thus, the price for a round in this case is upper bounded by:

q

2

p

q

2t

2pt− 1
+

p− 1

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

We conclude that the solution proposed for this case is feasible.

• Case 2: Ear over P and p even (q odd). We distinguish two sets of edges in Q. Let Q′

be the matching of q+1
2 edges in Q and Q′′ be Q \Q′. We assign the prices for each edge as
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follows:

2
2pt−1 for e ∈ T

2t
2pt−1 for e ∈ P

1

( q+1
2 )

(p+1)t
2pt−1 for e ∈ Q′

1

( q−1
2 )

(p−1)t
2pt−1 for e ∈ Q′′

To check the feasibility of this solution, note that 1

( q−1
2 )

(p−1)t
2pt−1 > 1

( q+1
2 )

(p+1)t
2pt−1 > 2t

2pt−1 > 2
2pt−1 .

Thus, the order of edges in terms of price is given by: the edges in Q′′, Q′, P and finally the

edges in T . Note also that a round has at most p+q−1
2 edges in P ∪ Q. Then, in order to

have the rounds with the higher prices, we have 2 possibilities: to use either q+1
2 in Q and

p−2
2 edges in P , or to use q−1

2 edges in Q and p
2 edges in P .

If we use q+1
2 in Q, the highest price is attained using the q+1

2 edges in Q′ and p−2
2 edges in

P . Similar to case 1, according to this assignment, the maximum number of edges that can

be used in T is t−1
2 .

Thus, the highest price attained by a round with q+1
2 edges in Q is:

q + 1

2

1
(

q+1
2

)

(p + 1)t

2pt− 1
+

p− 2

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

If we use q−1
2 in Q, the highest price is attained using the q−1

2 edges in Q′′, p
2 edges in P and

t−1
2 in T .

Thus, the highest price attained by a round with q−1
2 edges in Q is:

q − 1

2

1
(

q−1
2

)

(p− 1)t

2pt− 1
+

p

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

Hence, we conclude that the solution proposed for this case is feasible.

• Case 3: Ear over Q and p odd (q even). In this case, different prices are given to the

end edges of T . We denote dQ(s, x) the distance over Q between s and x. The prices given
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are the following:

2t
2pt−1 for e ∈ P

p
q

2t
2pt−1 for e ∈ Q

2
2pt−1 for e ∈ T \ {eT

x , eT
y }

2
2pt−1 for eT

x , and
(

p
q − 1

)

2t
2pt−1 + 2

2pt−1 for eT
y , if dQ(s, x) is even

2
2pt−1 for eT

y , and
(

p
q − 1

)

2t
2pt−1 + 2

2pt−1 for eT
x , if dQ(s, x) is odd

First, note that the main difference with the solutions for the cases above is that one of the

end edges of T has a different price. This is due to the fact that the price of the path between

s and v crossing through T must be at least 2pt
2pt−1 . In fact, the price assigned in the proposed

solution for this path is:

(q − 1)
p

q

2t

2pt− 1
+ (t− 1)

2

2pt− 1
+

(

p

q
− 1

)

2t

2pt− 1
+

2

2pt− 1
=

2pt

2pt− 1

Let us now suppose that the round does not use any of the two end edges of T . Thus, similarly

to case 1, a round with the highest price is a round that uses q
2 edges in Q, p−1

2 edges in P

and t−1
2 edges in T . As seen also in case 1, this assignment of round attains a price of 1.

Let us now consider the rounds using some of the end edges of T . Note that rounds using

both end edges do not attain the maximum price. In this case, the round loses 1 edge in

Q, but it obtains 1 extra edge in T . However, as the highest price for an edge in T is
(

p
q − 1

)

2t
2pt−1 + 2

2pt−1 and is always less than the price of an edge in Q, this configuration will

not attain the maximum price for a round.

Then, let us consider that the round contains the end edge eT
x and dQ(s, x) is even. It means

that eT
x has price 2

2pt−1 . In this case, eT
x interferes with its 2 incident edges in Q. Therefore,

the round may be composed by at most
dQ(s,x)

2 edges between s and x and
dQ(x,v)

2 edges

between x and v. An example showing this case is presented in figure 5.11(a)

Then, the round uses at most q
2 edges of Q, and uses the two end edges of Q which are incident

to s and v respectively. Thus, we are able to use p−1
2 edges in P .

Hence, this solution uses q
2 edges in Q, p−1

2 edges in P and t−1
2 edges in T with a price of

2
2pt−1 . Therefore, the maximum price attained by this assignment is the same as that of case 1

which is 1.

Let us now check the rounds using the end edge eT
y when dQ(s, x) is even. In this case, the
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(b) Round using eT
y

Figure 5.11: Two types of rounds using a different end edge of T .

edge eT
y has a price of

(

p
q − 1

)

2t
2pt−1 + 2

2pt−1 . Note that there is an odd number of edges

between s and eT
y . Then, the round must use at most

dQ(s,y)−1
2 edges between s and y, and

dQ(y,v)−1
2 edges between y and v. Thus, the round may use at most q

2−1 edges in Q. Moreover,

as we can choose edges in Q which are not adjacent to the end edges in P , the round may

have p+1
2 edges in P . Adding the t−1

2 − 1 edges of T with a price of 2
2pt−1 and eT

y which has

a price of
(

p
q − 1

)

2t
2pt−1 + 2

2pt−1 , the highest price for this assignment is:

(q

2
− 1
) p

q

2t

2pt− 1
+

(

p + 1

2

)

2t

2pt− 1
+

(

t− 1

2
− 1

)

2

2pt− 1
+

(

p

q
− 1

)

2t

2pt− 1
+

2

2pt− 1
= 1

An example of this assignment is presented in figure 5.11(b). Note that the difference between

the price of eT
x and the other edges of T is

(

p
q − 1

)

2t
2pt−1 which is exactly the difference between

an edge in Q and an edge in P .

Let us now check the case dQ(s, x) odd. Notice that, as in case dQ(s, x) even, the prices of

the end edges of T are 2
2pt−1 and

(

p
q − 1

)

2t
2pt−1 + 2

2pt−1 . Hence, the price of a round in case

dQ(s, x) odd is the same price than in case dQ(s, x) even. Therefore, each round in the case

dQ(s, x) odd also satisfy that its total price is less or equal than 1.

We conclude that the dual solution proposed for this case is feasible.
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• Case 4: Ear over Q and p even (q odd). The prices given are the following:

2t
2pt−1 for e ∈ P

1

( q+1
2 )

(p+1)t
2pt−1 for e ∈ Q′

1

( q−1
2 )

(p−1)t
2pt−1 for e ∈ Q′′

2
2pt−1 for e ∈ T \ {eT

x , eT
y }

dQ(s,x)
2

(

p−1
q−1 −

p+1
q+1

)

2t
2pt−1 + 2

2pt−1 for e ∈ eT
x , and

dQ(y,v)
2

(

p−1
q−1 −

p+1
q+1

)

2t
2pt−1 + 2

2pt−1 for e ∈ eT
y , if dQ(s, x) is even

dQ(x,v)
2

(

p−1
q−1 −

p+1
q+1

)

2t
2pt−1 + 2

2pt−1 for e ∈ eT
x , and

dQ(s,y)
2

(

p−1
q−1 −

p+1
q+1

)

2t
2pt−1 + 2

2pt−1 for e ∈ eT
y , if dQ(s, x) is odd

First, note that the two end edges of T have a different price than the rest of the edges. In

the same way that case 3, the idea is that the price of the path form s to v through T must

have a price of at least 2pt
2pt−1 .

Suppose that the ear T is such that dQ(s, x) is even. Then dQ(s, x) + dQ(y, v) = q − 1 and

the sum of the prices of all the edges of T is:

q − 1

2

(

p− 1

q − 1
− p + 1

q + 1

)

2t

2pt− 1
+

4

2pt− 1
+ (t− 2)

2

2pt− 1
=

p + 1

q + 1

2t

2pt− 1

which is the price of (x, y) because of (x, y) ∈ Q′.

Suppose now that the ear is such that dQ(s, x) is odd. Then dQ(x, v) + dQ(s, y) = q + 1 and

the sum of the prices of all the edges in T is:

q + 1

2

(

p− 1

q − 1
− p + 1

q + 1

)

2t

2pt− 1
+

4

2pt− 1
+ (t− 2)

2

2pt− 1
=

p− 1

q − 1

2t

2pt− 1

which is the price of (x, y) when (x, y) ∈ Q′′.

In both cases, the total price of T is equal to the price of (x, y). Hence, the price of the path

from s to v through T is the same price than the path using only the edges of Q.

Let us consider the rounds such that no end edge of T is used. As the edges in Q have a

higher price than the edges in P , there are 2 assignments to attain the maximum price: either

using q+1
2 edges of Q′ and p−2

2 edges of P , or using q−1
2 edges of Q and p

2 edges of P . Note

that in both assignments we are using t−1
2 edges from T .

For the first assignment, the price attained is:
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q + 1

2

1
(

q+1
2

)

(p + 1)t

2pt− 1
+

p− 2

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

and for the second configuration, the price is:

q − 1

2

1
(

q−1
2

)

(p− 1)t

2pt− 1
+

p

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

Note that, in terms of edges used, these assignments behave similarly as case 2.

Let us now consider the rounds using at least one end edge of T . First of all, note that rounds

using both end edges of T will not attain the maximum price. This is because of using the 2

end edges blocks 3 edges of Q of being used. Let us now consider the rounds using only one

end edge of T .

Assume that dQ(s, x) is even and eT
x is used. Since eT

x belongs to some round, its two adjacent

edges in Q cannot be in the round. Hence, the round contains at most
dQ(s,x)

2 edges in Q′

and
dQ(y,v)

2 edges in Q′′. Thus, the round has q−1
2 edges in Q, p

2 edges in P and t−1
2 edges in

T . The highest price for this assignment is:

dQ(s, x)

2

p + 1

q + 1

2t

2pt− 1
+

dQ(y, v)

2

p− 1

q − 1

2t

2pt− 1
+

p

2

2t

2pt− 1

+
dQ(s, x)

2

(

p− 1

q − 1
− p + 1

q + 1

)

2t

2pt− 1
+

2

2pt− 1
+

t− 3

2

2

2pt− 1

As dQ(s, x) + dQ(y, v) = q − 1 the expression above is reduced to:

q − 1

2

p− 1

q − 1

2t

2pt− 1
+

p

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

therefore, the condition is satisfied.

Assume now that dQ(s, x) is even and eT
y is used. The round has at most

dQ(s,x)
2 from Q′′ and

dQ(y,v)
2 from Q′. Thus, the round has q−1

2 edges in Q, p
2 edges in P and t−1

2 edges in T . The

highest price for this assignment is:

dQ(s, x)

2

1
(

q−1
2

)

(p − 1)t

2pt− 1
+

dQ(y, v)

2

1
(

q+1
2

)

(p + 1)t

2pt− 1
+

p

2

2t

2pt− 1

+
dQ(y, v)

2

(

p− 1

q − 1
− p + 1

q + 1

)

2t

2pt− 1
+

2

2pt− 1
+

t− 3

2

2

2pt− 1

As dQ(s, x) + dQ(y, v) = q − 1, the sum above equivalent to:
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q − 1

2

p− 1

q − 1

2t

2pt− 1
+

p

2

2t

2pt− 1
+

t− 1

2

2

2pt− 1
= 1

An example for the case dQ(s, x) even is presented in figure 5.12. In this case the cycle is a

C15, p = 8, q = 7 with an ear over Q with t = 3. Figures 5.12(a) and 5.12(a) show the rounds

with highest price using eT
x and eT

y respectively.

6.75 6.75

6.75
7

7

7

6 6

6

66

6

2.25

6 6

6.75

2.5
2

(a) Round using eT
x

6.75

7

7

7

6 6

6

66

6

2.25

6 6

6.75 6.75

6.75

2
2.5

(b) Round using eT
y

Figure 5.12: Rounds with highest prices using either eT
x or eT

y . Edges eT
x and eT

y correspond to the
edges with labels 2.5 and 2.25 respectively. The cycle is a C15, p = 8, q = 7 with an ear over Q and
t = 3. Solid lines represent the edges of the rounds, and the labels indicate the price of each edge.
By simplicity of notation, the prices per edge are all multiplied by 2pt− 1 = 47.

Let us now check the case dQ(s, x) odd. Let a be a node in Q and let ea be the end edge of the ear

incident to a. The price of ea is assigned
dQ(v,a)

2

(

p−1
q−1 −

p+1
q+1

)

2t
2pt−1 + 2

2pt−1 if dQ(s, a) is odd; and

dQ(s,a)
2

(

p−1
q−1 −

p+1
q+1

)

2t
2pt−1 + 2

2pt−1 if dQ(s, a) is even. Hence the price of ea is independent of the

definition of the nodes x and y. Therefore, a round using ea has the same price whether dQ(s, x)

is odd or even. We conclude that all the rounds satisfy the condition and then, the dual solution

proposed for this case is feasible.

�

We now conclude that the optimal solution of routing the demand b from one node to the gateway

over a cycle with an ear has a cost of 2pt
2pt−1 and we have the following theorem.

Theorem 5.4 Given an odd cycle Cn with one ear, n > 5, containing v and s, where v has a

demand b. If there is an edge of Cn that joins the two ends of the ear, then the optimal routing

solution has a cost of b 2pt
2pt−1 .

As an example, figure 5.13 shows the primal and dual optimal solutions for a C5 with an ear when

t = 3, p = 3, q = 2 and b = 1.

Theorem 5.4 can be considered as a generalization of theorem 5.3. The case of theorem 5.3 in which

the cycle has no ears may be interpreted as an ear of length t = 1 in theorem 5.4.
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with an ear. W = 18
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(b) Dual Solution for
C5 with an ear.

Figure 5.13: Solution for C5 with an ear. w(Ri) = 1
17 , i = {1, .., 6}, w(R7) = w(R8) = 6

17 , W = 18
17

As a remark, there are some configurations in which it is possible to obtain a solution with W = b

in an odd cycle with 2 ears. In figure 5.14 we present two examples.

2,41,2
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(a) C7 with ears over
P and Q.

1,2

3,4 3,4

4

1
2

3 3

2

1,2

1

2,3 4

(b) C7 with 2 ears over
P .

Figure 5.14: Examples of solutions for a C7 with 2 ears. In both examples, W = b.

5.4 Multiple nodes with demands

Now we study the case of general demand, i.e. when the demand is not concentrated over one node.

We denote B =
∑

v b(v) the total demand. Here again any routing with cost B is optimal due to

the fact that the cost of the solution attains the value of the total demand (see property 5.1).

First, we consider the problem of routing the demand of each node through a cycle. In this way,

the results of section 5.3 can be applied directly to design solutions for general demand. If each

demanding node can be routed over some even cycle, then lemma 5.2 guarantees that the optimal

solution with a cost B is attained. Thus, corollaries 5.1, 5.2 and 5.3 state that this is the case for

3-connected graphs, 2-connected bipartite graphs and grids. In general, if every demand can be

routed over a cycle, corollary 5.4 guarantees a 6
5 -approximation.

Recall that we suppose that the paths considered are simple, i.e. they do not have repeated vertices.

Lemma 5.8 Suppose that there exists a path from u to v containing the gateway s. Then there

exists a way of routing a demand of bmin = min{b(u), b(v)} from each node with total cost W =

2bmin.
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Proof: We use two rounds of weight bmin each to cover all the edges of this path alternately. �

We now present a technical lemma.

Lemma 5.9 In a 2-connected graph, for any three nodes u,s,v, there exists a path containing the

3 nodes starting in u and ending in v.

Proof: We construct a new graph G′ which is obtained by adding a new node x and edges (x, v)

and (x, u) to G. It is clear that the graph G′ is also 2-connected, therefore, there exist two node-

disjoint paths between x and s. Since x is joined to G only by the edges (x, v) and (x, u), the result

follows. �

Using lemma 5.9, we have the following upper bound.

Theorem 5.5 Given a 2-connected graph, and V1 and V2 form a partition of the nodes set, then

there exists a solution with a cost at most B + 1
5

∣

∣

∑

v∈V1
b(v)−∑v∈V2

b(v)
∣

∣

Proof: The idea is to route the demand by pairing the nodes. Each pair formed by any node in

V1 and any node in V2. Let {v1, v2} be a pair such that v1 ∈ V1 and v2 ∈ V2. We assume that

b(v1) > b(v2). Lemma 5.9 guarantees that there exists a (simple) path containing s, starting at

v1 and ending at v2. Then we route a demand of b(v2) from both v1 and v2 (b(v2) units from

v1 and b(v2) from v2). Therefore, by lemmas 5.8 and 5.9 a demand of 2b(v2) is routed optimally

with cost 2b(v2). Then, the remaining demand of node v1 is b(v1) − b(v2) and node v2 has no

more demand. The process is repeated until there are no two nodes such that both have non-zero

demand. At this step B −
∣

∣

∑

v∈V1
b(v) −∑v∈V2

b(v)
∣

∣ of demand has been routed optimally with a

cost of B −
∣

∣

∑

v∈V1
b(v) −∑v∈V2

b(v)
∣

∣.

Now, there is one node with a demand of
∣

∣

∑

v∈V1
b(v)−∑v∈V2

b(v)
∣

∣. Corollary 5.4 guarantees that

this demand can be routed through a cycle with a cost of at most 6
5

∣

∣

∑

v∈V1
b(v)−∑v∈V2

b(v)
∣

∣. �

In the above theorem, the quality of the solution depends on the partition chosen. We illustrate

that with an example. Let {8, 7, 5, 4} be the demands of the nodes in the graph. If the partition

is {8, 5} and {7, 4}, the difference between the sum of the demands of each subset is 2. Therefore,

theorem 5.5 guarantees a solution with cost at most 24 + 2
5 . However, if we take the partition

{8, 4} and {7, 5} the total demand of each subset is 12 and therefore, the difference is 0. In this

way, the solution from this partition has a cost of at most 24, which is optimal.

Finding the optimal partition is not easy. In fact the problem is known as Number Partitioning

Problem, which is NP-Hard.

Using the partition {vmax} and V \ {vmax} we have the following corollary.

Corollary 5.5 Given a 2-connected graph G, then there exists a solution with cost at most B +
1
5 |2bmax −B|, with bmax = maxv∈V b(v).
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Notice that, for the case when vmax has more than the half of the total demand, the partition used

is the best one.

5.5 Conclusions

In this chapter we deal with the Round Weighting Problem for gathering instances considering

the primary node interference model.

We present upper bounds by providing feasible routings and show that in some cases the solutions

are also optimal. The method used to prove optimality consists in providing good feasible solutions

for the dual formulation following the ideas in [KMP08].

We first study the case when the demand of each node is routed independently. We discuss ex-

tensively the case of routing through a cycle and show that routing through an even cycle attains

a cost equal to the demand. Therefore it is optimal. However, routing through an odd cycle the

optimal solution gives a higher cost than the demand.

The case when routing through a cycle containing an ear is also considered. Optimal solution is

attained as well here. We remark that solutions with costs equal to the demands may be also

attained with odd cycles including ears.

In this chapter, we have always considered a primary node interference model. It means that

rounds correspond to matchings over the set of edges. An interesting extension consists in using

more general interference models, for example, for the case of distance-2 interference model when

the rounds correspond to induced matchings. It is clear that we need some different techniques

to deal with the general case. Even for routing over a cycle, the problem become much more

complicated.
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Chapter 6

Round Weighting Problem and

Gathering in wireless networks with

symmetrical interference [GPRR08]

6.1 Introduction

In this chapter we address the problem of allocating bandwidth efficiently in a radio network, in such

a way that the traffic demands are satisfied. Due to the sharing property of the radio bandwidth,

one has to schedule radio transmissions in the network in order to avoid concurrent interfering

transmissions. We consider traffic gathering where the nodes of the network have a bandwidth

requirement to send to a sink node called gateway. The problem is to find sets of compatible

communication links in the network, called rounds, such that the node bandwidth requirements are

achieved.

This problem can be seen as a relaxation of the Minimum Time Gathering Problem. In the

Minimum Time Gathering Problem the demand is a discrete quantity of messages and the goal

is to provide a sequence of rounds such that all the messages are collected. In our case, a solution is

no longer a sequence of rounds, but a continuous weight function on the rounds, and the objective

function is to provide enough capacity for a flow to fit the bandwidth requirements.

This problem has been formalized into the Round Weighting Problem (RWP) by [KMP08], that

jointly considers the multi-commodity flow problem and the weighted fractional coloring problem.

The radio network is modeled by a topology graph G, in which each node v is a router of the

network having a bandwidth demand b(v) to send to the sink node s called also gateway. The goal

of the RWP is to assign weights on a set of rounds satisfying the demand and minimizing the total

weight.

The values obtained depend on the interference model. Here we choose a binary interference model
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and for the general case we suppose we are given the set of all the possible rounds. Notice that the

size of R might be exponential in the number of nodes. For precise results we will define the set of

rounds by a rule depending on the distance between the calls.

6.2 Related Work

The routing problem of steady traffic demands in a radio network has been studied extensively in

the literature. In [KMP08] it was proved that if traffic demands are sufficiently steady the problem

can be expressed in an independent form of the interference model as the Round Weighting Problem

(RWP).

In the case of a general transmission graph with an arbitrary traffic pattern the problem is very

difficult to approximate, indeed, to approximate the RWP within n1−ε is NP-Hard [KMP08]. An

important case is the Gathering (or personalized broadcasting): the traffic pattern corresponds then

to a simple flow, i.e. all demands are directed toward a single node called the gateway. Gathering

is easier to approximate since a simple 4–approximation does exist, but the problem remains NP-

Hard. Instances on specific graphs with symmetrical traffic distribution are tractable mainly due

to the local structure of these graphs, we give particular attention to grid graphs.

In [BP05], a similar problem, the Round Scheduling Problem (RSP) was treated. The relation with

the RWP is the following: if one must repeat rounds scheduling many times then the problem

is equivalent to the RWP. The RSP is quite harder to solve than our problem which can be be

considered either as a limited case or relaxation. Not surprisingly we obtain not only simpler

formulae than Bermond and Peters, but they are valid for a larger class of traffic patterns. Note

that, in [BP05] d > 1 and it is not symmetric because they deal with the exact case of gathering

(directed interference).

The work in [GPR08] presents a lower bound for RWP based on the graph coloring problem,

and several experiments in which this lower bound was tight. They present a mixed integer linear

programming model and a branch-and-price algorithm to solve the RWPconsidering mono-routing.

The work presented in [GPRR08] has given optimal bounds to the problem considering grid graphs.

In [GH07], a column generation algorithm is used to avoid dealing with the exponential set of

rounds of the RWP. They present a multi-objective study relating the minimum transmission time

(in number of rounds) and the maximum load, observing that the worst bottleneck was located

around the gateway in the instances of test.

The present chapter extends the work in [GPR08, GPRR08], we present a polynomial algorithm to

solve RWP in special graphs. We have a particular interest in the network graphs where the clique

number represents already the optimal solution of our problem.
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6.3 Problem Statement

Suppose that time is synchronous and divided in time-slots. Each node can either transmit or receive

at the same time-slot but not both simultaneously. We denote a call to a transmission between

two nodes of the graph. Due to the interference (see section 6.3.1) two calls may be performed

simultaneously or not. Therefore we define a round R as a set of pairwise non-interfering calls. In

other words, R is a set of calls which can be done at the same time-slot. Each round is represented

by a set of edges. Let R be the set of all the rounds.

The Round Weighting Problem problem has been formalized in [KMP08] for general demands

b(u, v) from any demanding node u to any destination v. Here we restrict ourselves to the gathering

instances. Therefore, we consider a traffic gathering where the demand b : V → R+ represents the

flow b(v) needed to be sent from v to the gateway g.

Given a graph G = (V,E) and the demand function, the problem consists in providing a weight

w to the rounds. Therefore, the function w will induce a capacity over the each edge e given by

the sum of the weights of the rounds containing the edge e. We denote cw(e) the induced capacity

of the edge e. In this way cw(e) =
∑

R∈R:e∈R w(R). Therefore, a solution w is admissible if there

exists a flow φ such that:

• it satisfies the traffic demand b

(∀v ∈ V )
∑

P∈Pv,g

φ(P ) ≥ b(v),

where Pv,g denotes the set of paths between v and BS.

• and respects the capacity cw induced by w:

(∀e ∈ E)
∑

P∈P:e∈P

φ(P ) ≤ cw(e) =
∑

R∈R:e∈R

w(R).

Then, the Round Weighting Problem may be summarized as follows.

Problem: Round weighting for gathering instances

Input: a graph G = (V,E), a set of possible rounds R ⊂ 2E (whose

size may be exponential), and a flow demand function b :

V → R+.

Solution: A round weight function w defined over R that satisfies the

traffic demand b.

Goal: Minimize the overall weight of w, i.e. W =
∑

R∈R w(R).
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6.3.1 Interference model

We use a model of interference base on the distance of graph and that we call d (symmetrical)

interference model. This model can be considered as a symmetric variant of the interference model

presented in [KMP08].

Notice that if device u calls device v, it is desirable that v has a way to let u know that the transmis-

sion has been successful (acknowledgment or ACK ). Such feedback is performed as a transmission

from v to u. Furthermore, that is the model considered in the protocol 802.11 and is named in

some papers as the 802.11 interference model [Wan09a]. For this reason most applications and

consequently models assume that transmission as well as interference are symmetrical. Therefore,

we also use a symmetrical version of the interference model. In this version, two symmetrical calls

u↔ v and u′ ↔ v′ interfer if a call has one of its end vertex in the interference range of distance d

of some end vertex of the other call. More precisely, the two symmetrical calls (we will also say the

two edges (u, v) and (u′, v′)) interfere if minx∈{u,v},y∈{u′,v′} dG(x, y) < d. Said otherwise two calls

are compatible if there are at least d edges between them. The particular case d = 1 is nothing else

than the primary node interference model or node-exclusive interference model [MSS06], used in

many articles. In that case, a round is a matching. In the case d = 2 we get the so called distance-2

interference model [KMPS04, BKK+09a, Wan09a, WWLS08]. In this case, a round is an induced

matching. The conflict graph in the case d = 1 corresponds to the line graph L(G) of G (The

vertices of L(G) represent the edges of G and two vertices are joined in L(G) if their corresponding

edges intersect). More generally, for any d, the conflict graph is the d-th power of L(G) (The k-th

power of a graph being the graph with two vertices joined if their distance is less than or equal to

k).

6.3.2 Definitions

We will present some definitions that will be useful in future sections. The definitions are the

following:

Definitions related to the edges of G

• G(V,E): graph with nodes in V and edges in E.

• L(G): A graph whose vertices represent the edges of G and two vertices are joined in L(G) if

their corresponding edges intersect.

• d(u, v): distance between u and v, that is the length of the shortest path between u and v

(e.g. the neighbors of g are at distance 1 of g).

• El: set of edges at level l, i.e. edges joining a node at distance l from the gateway to a node

l − 1. More precisely, El = {e = (u, v) ∈ E | d(g, u) = l and d(g, v) = l − 1}. Thus for
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example, E1 are all the edges which are adjacent to the gateway g.

• K0: set of edges in G at level at most ⌈d2⌉ of the gateway g, K0 =
⋃

16l6⌈ d
2
⌉ El.

• VK0 : set of nodes in G at distance at most ⌈d2⌉ of the gateway g.

Definitions related to the cliques

• C(G): conflict graph of G, denoted C(G), is the graph whose vertices represent the edges of

G, two vertices are joined if the corresponding edges (which represent calls) interfere. In the

d-interference model we consider, the conflict graph is the d-th power of the line graph L(G).

• R (Round): set of non-interfering edges. It corresponds to an independent set in C(G).

• call-clique: set of edges pairwise interfering. The corresponding vertices form a clique in

C(G). For example in the d-interference model, K0 is a call-clique.

Definitions related to the flow

• b(v): demand due to node v.

• φ : In what follows, φ will always denote a feasible flow satisfying the demand b(v) defined

by

∑

i∈V|(v,i)∈E

φv(v, i) = b(v),∀v ∈ V

∑

j∈Vg

∑

i∈V |(i,j)∈E

φv(i, j) = b(v),∀v ∈ V

∑

i∈V |(i,j)∈E

φv(i, j) =
∑

k∈V |(j,k)∈E

φv(j, k),∀j, v ∈ V.

• φv(e): flow sourced at node v traversing the edge e.

• φ(e): flow traversing the edge e. φ(e) =
∑

v∈V φv(e).

• R: set of all rounds R.

• Re ⊂ R: set of all the rounds containing the edge e.

• w(R): weight of the round R.

• cw(e): the capacity of the edge e in function of the rounds weight inRe, cw(e) =
∑

R∈Re
w(R) =

∑

R∈R w(R)|R ∩ e|. We will say that the weights w(R) assigned to the rounds R ∈ Re are

admissible for the flow φ if

cw(e) > φ(e) ∀e (6.1)
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• φ(E′):
∑

e∈E′ φ(e). Sum of the flow on a set of edges E′.

• cw(E′):
∑

e∈E′ cw(e) =
∑

e∈E′

∑

R∈Re
w(R) =

∑

R∈R w(R)|R ∩E′|, the capacity of the edges

E′ ⊆ E is a measure derived of the rounds weight covering these edges.

Our objective is to minimize W =
∑

R∈R w(R) on all the admissible weight functions. The minimum

will be denoted Wmin. Now, we will show how to use call-cliques (in particular those centered at

the gateway) to obtain lower bounds.

6.4 Lower Bounds

In this section, we present lower bounds for the problem of RWP. In all the subsections we first

present lower bounds independent of the interference models. Then we give more precise lower

bounds for the d-interference model and for the grid.

6.4.1 Lower Bounds using one call-clique

Recall that a call-clique is a set of edges pairwise interfering. It means that, if two transmissions

occurs in a call-clique, then they cannot be performed simultaneously. Thus, the sum of the

capacities of the edges in a call-clique sets up a lower bound for the RWP as we will see in the

following lemma.

Lemma 6.1 Let K ⊆ E a call-clique. Then cw(K) 6 W .

Proof: We know that cw(K) =
∑

R∈R w(R)|R∩K|. As each round R is a set of independent edges,

R contains at most one edge of K. Then |R∩K| 6 1 and consequently cw(K) 6
∑

R∈R w(R) = W .

�

For F a set of edges, and a path Pv,g between v and g, let LB(Pv,g , F ) denote the number of edges

that Pv,g and F have in common. Therefore, LB(Pv,g, F ) = |Pv,g ∩ F |. We define LB(v, F ) as the

minimum LB(Pv,g , F ) over all the paths Pv,g between v and g.

Lemma 6.2 cw(F ) >
∑

v∈V b(v) LB(v, F ).

Proof: For any flow φ and any node v, φv(F ) > b(v) LB(v, F ). �

The first idea consists in choosing particular sets F . A natural candidate is the set El (of edges at

level l). The nodes outside El, i.e. the nodes at distance to the gateway at least l, must cross the

edges El to reach the gateway. So, if d(v, g) > l, LB(v,El) > 1 and we have the following corollary.

Corollary 6.1 cw(El) >
∑

v;d(v,g)>l b(v).
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We will use the corollary 6.1 to give a lower bound for cw(K0) where we recall that K0 is the set

of edges around the gateway at level at most ⌈d2⌉.

First, we introduce the following definition that will be useful later.

Definition 6.1 S0 =
∑

v∈VK0
d(v, g)b(v) +

⌈

d
2

⌉
∑

v/∈VK0
b(v).

It enables us to get a lower bound on cw(K0) which will be useful in the d-interference model.

Lemma 6.3 cw(K0) > S0.

Proof: As K0 =
⋃

l6⌈ d
2
⌉ El and the levels El for 1 6 l 6 ⌈d2⌉ are pairwise disjoints, then cw(K0) =

∑

l6⌈ d
2
⌉ cw(El) >

∑

l6⌈ d
2
⌉

∑

v;d(v,g)>l b(v) = S0. � Note that the value S0 is independent of the

function w. Therefore,

Proposition 6.1 In the d-interference model Wmin > S0.

In some cases, the lower bound S0 is attained. We will see after that it happens for the grid with

the gateway at the center and unitary traffic for d odd. In some other cases we use lemma 6.2 with

a maximum call-clique K containing K0. For example, for the grid with d odd and the gateway in

the corner, the maximum call-clique is larger than K0 (see figure 6.19) and gives a better bound

than S0 (Theorem 6.2). We will show that the bound is attained for unitary demand. However,

using only one call-clique does not necessary give a tight bound.

6.4.2 Lower Bounds using many call-cliques

We present a result similar to lemma 6.2 but improved for multiple sets of edges. We denote Pv,g

the set of all the paths between v and g.

Lemma 6.4 Given F1, . . . , Fq sets of edges, then

q
∑

i=1

cw(Fi) >
∑

v

b(v) min
Pv,g∈Pv,g

(

q
∑

i=1

LB(Pv,g, Fi)

)

Proof: For any flow φ and any node v,
∑q

i=1 φv(Fi) > b(v)minPv,g

∑q
i=1 LB(Pv,g, Fi). �

Consider the example of a grid with the gateway at the corner and d = 2 depicted in figure 6.1.

We have two maximum call-cliques containing K0: K1 and K2 which also contain the four edges

leaving vertex (1, 1). Furthermore K1 contains the edge e1 = ((1, 0), (2, 0)) and K2 contains the

edge e2 = ((0, 1), (0, 2)). For vertex v∗ = (1, 1) both LB(v∗,K1) = LB(v∗,K2) = 2. For any

vertex v different from (0, 1), (1, 0) and (1, 1) any path Pv,g from v to g must use one edge at
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level 2 either e1 or e2, then LB(v,E2) > 1. That implies that LB(Pv,g,K1) + LB(Pv,g,K2) >

2LB(Pv,g, E1) + LB(Pv,g, E2) > 3. In this way, one of the call-clique will carry at least 3/2 of the

flow of the vertices different from (0, 1), (1, 0) and (1, 1). Using lemma 6.4, we get that

cw(K1) + cw(K2) >
∑

v

b(v) min
Pv,g∈Pv,g

(LB(Pv,g,K1) + LB(Pv,g,K2))

> 2b((0, 1)) + 2b((1, 0)) + 4b((1, 1)) + 3
∑

v/∈{(0,1),(1,0),(1,1)}

b(v)

and so, one of this two call-cliques is greater than 1
2 of this value. Therefore, we have the following

bound and we will see after that this bound is attained.

g = (0, 0)
e1

(a) Call-clique K1.

g = (0, 0)

e2

(b) Call-clique K2.

Figure 6.1: Two maximum call-cliques K1 and K2 for the case d = 2.

Proposition 6.2 For the grid with the gateway in the corner and d = 2

Wmin > b(0, 1) + b(1, 0) + 2b(1, 1) +
3

2

∑

v/∈{(0,1),(1,0),(1,1)}

b(v)

In general we have the following lemma.

Lemma 6.5 Let K1, . . . ,Kq be a family of call-cliques. Then one of the call-cliques K∗ satisfy

cw(K∗) > 1
q

∑

v∈V b(v)minPv,g

∑q
i=1 LB(Pv,g,Ki)

Proof: By lemma 6.4,
∑

i cw(Ki) >
∑

v∈V b(v)minPv,g

∑q
i=1 LB(Pv,g ,Ki) and so one of the call-

cliques, denoted K∗, has value cw(K∗) greater than or equal to the mean. �

Corollary 6.2 Let K1, . . . ,Kq be a family of call-cliques such that each edge of El appears at least

λl times in the call-cliques, then Wmin >
∑

l

∑

v;d(v,g)>l
λl

q b(v).

Proposition 6.3 Let G the grid with the gateway at the center and d = 2k be even. Then

Wmin > S0 +
1

4

∑

v;d(v,g)>k

b(v)
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Proof: Consider the 4 following call-cliques (see figure 6.2 for d = 2). They all contain the edges

of K0. Furthermore, K1 contains the edge ((k + 1, 0), (k, 0)) and the edges at level K + 1 with

positive coordinates: ((k + 1 − i, i), (k − i, i)) and ((k + 1 − i, i), (k + 1 − i, i − 1)) for 1 6 i 6 k.

The call-cliques K2, K3 and K4 are obtained by successive rotation of π
2 the previous call-clique.

In this way the edges in El, 1 6 l 6 k are covered 4 times and the edges in Ek+1 are covered once.

�

g

(a) call-clique K1.

g

(b) call-clique K2.

g

(c) call-clique K3.

g

(d) call-clique K4.

Figure 6.2: Case d even and g in the middle. The 4 call-cliques combined covers Ei, 1 6 i 6 k + 1
for d = 2k. In this scheme, d = 4.

We will see after that this lower bound is attained.

In some cases, we have to use the lemma with call-cliques which are not easy to find and do not

necessary contain the gateway. An example of that is the case of the grid for d = 4 with the gateway

at the corner and the demand concentrated only in one node: the node (3, 2).

A lower bound consists in considering two call-cliques containing Kmax (see Proposition ?? where

it is proven that one of the call-cliques K∗ satisfies cw(K∗) > 5
2b((3, 2))).

A better lower bound for the same example consists in using call-cliques which not necessarily cover

the gateway. The new lower bound uses the call-cliques depicted in figure 6.4. The call-clique K2

(see figure 6.4(b)) is used twice and K1 (see figure 6.4(a)) and K3 (see figure 6.4(c)) once. Consider

a path from (3, 2) to the gateway (0, 0).

We consider different cases according the way the path arrives in g. More precisely, we consider the

last vertex vi at distance i from g used by the path with i ∈ {2 . . . 5}. We indicate in the following
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d = 4

g

(a) call-clique Ka

d = 4

g

(b) call-clique Kb

Figure 6.3: Example of a specific lower bound when the demand is concentrated in one node. In
this example, d = 4 and the demand is concentrated in node (3, 2). A lower bound of 5

2b((3, 2)) is
attained using the two call-cliques Ka and Kb.

Table 6.1: Possible Paths
v5 v4 v3 v2 K1 K2(×2) K3 Total

- (4, 0) (3, 0) - 3 4 - 11
- (3, 1) (3, 0) - 5 3 - 11
- - (2, 1) - 5 3 - 11
- (2, 2) (1, 2) - 5 3 - 11
- (1, 3) (1, 2) (1, 1) 4 3 2 12
- (1, 3) (1, 2) (0, 2) 4 2 3 11
- (0, 4) (0, 3) - 2 2 5 11

(1, 4) (1, 3) (0, 3) - 2 2 5 11
(2, 3) (1, 3) (0, 3) - 3 2 4 11

table the number of edges of K1, K2 (repeated twice) and K3 the path uses.

It is simple to check in figure 6.4(d) that we do not have path from (3, 2) to the gateway (0, 0) that

costs less than 11. Then minP∈P(3,2),g
(LB(P,K1) + 2LB(P,K2) + LB(P,K3)) > 11. Then, one of

the call-clique K∗ satisfy cw(K∗) > 11
4 b((3, 2)).

d = 4

g

(a) call-clique K1

d = 4

g

(b) call-clique K2 (re-
peated 2x)

d = 4

g

(c) call-clique K3.
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(d) Dual Values for K1,
2xK2 and K3.

Figure 6.4: Example with d = 4 and the demand is concentrated in node (3, 2). Four call-cliques
are needed to obtain a tight lower bound of 11

4 b((3, 2)) which is higher than 5
2b((3, 2)).
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6.4.3 Lower Bounds using Critical Edges

Lemma 6.5 is not sufficient in all cases. Consider the example of figure 6.5 with d = 2. We have 5

maximal call-cliques all containing the edges at level 1 plus two consecutive edges at level 2. Then,

applying corollary 6.2 and noting that each edge at level 2 appears exactly in two call-cliques we

get W >
∑

v;d(v,g)>1 b(v) + 2
5

∑

v;d(v,g)>2 b(v).

In the particular case where b(v) = 1 for the 10 vertices of the figure we get a lower bound

W > 10 + 2
5 · 5 = 12.

Figure 6.5(c) shows an integer solution with Wmin = 13 and figure 6.5(b) a fractional solution with

Wmin = 12.5. In fact 12.5 is the exact value. Indeed each round R can contain at most 2 edges

at level 2 and so the best we can do is to transmit at level 2 a flow of value 2w(R). The flow

contribution to W from vertices at level 2 is at least 5
2 and so W > 10 + 2.5 = 12.5.
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Figure 6.5: Example of lower bound calculation. In this case d = 3

This result is not surprising if we consider the conflict graph. Indeed the subgraph of the conflict

graph induced by the edges at level 2 form a cycle of length 5 and a maximal independent set is of

size 2. But, we need 3 colors implying in the integer case a lower bound of 3 and so Winteger > 13.

In the fractional case, it is known that we can use a fractional coloring with 5
2 colors.

For a set of edges F , let us denote by α(F ) the maximum number of independent edges. It

corresponds to the independent (stability) number of the conflict graph generated by F .

Definition 6.2 Let K be a call-clique. An edge e /∈ K is said to be critical for K if K ∪ {e} is a

call-clique.

Lemma 6.6 Let K be a call-clique and F a set of edges all critical for K, then W > cw(K)+ cw(F )
α(F ) .

Proof: As K ∪{e} is a call-clique for any e in F a round can contain at most one edge of K ∪{e}.
Then

W =
∑

R∈R

w(R) =
∑

R;R∩K 6=φ

w(R) +
∑

R;R∩F 6=φ

w(R) (6.2)
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and
∑

R;R∩K 6=φ w(R) > cw(K). But, by definition R contains independent edges, then |R ∩ F | 6
α(F ) and cw(F ) =

∑

R w(R)|R∩F | =∑R;|R∩F |6=φ w(R)|R∩F | 6 α(F )
∑

R;|R∩F |6=φ w(R). Finally,

by (6.2), we have that W > cw(K) + cw(F )
α(F ) . �

By taking K = K0 and F the set of edges at level
⌈

d+1
2

⌉

and noting that any path from a vertex

at distance at least
⌈

d+1
2

⌉

should use an edge of E⌈ d+1
2

⌉, we get the following result.

Corollary 6.3 If all the edges of E⌈ d+1
2

⌉ are critical for K0, then

W > S0 +
1

α
(

E⌈ d+1
2

⌉

)

∑

v;d(v,g)>⌈ d+1
2 ⌉

b(v)

For example, if we apply the corollary 6.3 for the grid with the gateway at the center and d = 2k,

as all the edges of Ek+1 are critical for K0 and the 4 edges ((k + 1, 0), (k, 0)), ((0, k + 1), (0, k)),

((0,−k−1), (0,−k)), ((−k−1, 0), (−k, 0)) are independent, we have a new proof of Proposition 6.3.

6.4.4 Relationship with Duality

In the following, we show that a set of call-cliques may be associated to a dual solution.

The dual formulation of RWP has been studied in [KMP08]. A dual solution for the RWP for

gathering instances can be described with the following property.

Property 6.1 ([KMP08]) The dual problem of round weighting consists of finding a metric m :

E → Q+ onto the edge set maximizing the total distance that the traffic needs to travel (W =
∑

v∈V dm(g, v)b(v)) and such that the maximum length of a round is 1 ((∀R ∈ R) w(R) =
∑

e∈R dm(e) ≤ 1).

Now, we will show that it is possible to construct a feasible dual solution for RWP starting from

the call-cliques.

Let K a set of call-cliques. First, for each edge e in
⋃K we defineKe = {K ∈ K | e is an edge of K}.

Thus, the dual solution proposed m : E → Q+ is such that m(e) = |Ke|
|K| . Let us now check that

m is a feasible dual solution. To check this, we need to know that for any non–interfering set of

edges E′ ⊆ E, the sum
∑

e∈E′ m(e) must be less than (or equal to) 1. In fact, as E′ is a set of

non-interfering edges, the sets {Ke}e∈E′ are pairwise disjoint. Thus,
∑

e∈E′ m(e) =
∑

e∈E′
|Ke|
|K| 6 1.

6.5 Application in grids

In this section1, we apply the lower bound given in section 6.4 to a particular case of the grid.

Notice that the formulas are indeed optimal as we show in subsection 6.5.2. We present lower

1The section Application in grids will be updated for the final version.

116



bounds for any given interference parameter d and a given demand B. In subsection 6.5.2, we give

protocols (upper bound) which are optimal in some cases. To understand what we want to show,

we present several examples of grid graphs with the gateway placed at several places considering

uniform unitary demand. Figures 6.6(e) and 6.6(f) show call-cliques with d = 2 for a grid with

the gateway in the middle. Figures 6.7(c) and 6.7(d) show similar results for the gateway at the

corner. Figures 6.8(a)-6.8(d) show one of the call-cliques for a grid considering d ∈ {3, 4, 5, 6}.
The dotted edges are only to illustrate the routing direction of the demand for some critical nodes.

Figures 6.9(a)- 6.9(d) shows the gateway placed in different parts of the grid.

(a) Clique
1.

(b) Clique
2.

(c) Clique 3. (d) Clique
4.
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Figure 6.6: Looking for the best routing in a grid graph with the gateway in the middle with
uniform demand (d=2).
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Figure 6.10: Hexagonal graphs (d=2) at the center, W = 4B
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An example in hexagonal grids can be seen in figure 6.10.

6.5.1 Gateway in the middle: A lower bound

Now we consider the case when g is placed at a distance at least
⌈

d+1
2

⌉

from the borders of the grid.

For d odd, we only consider a lower bound using the call-clique given by K0. Using proposition 6.1,

we obtain the lower bound
∑

v∈VK0
d(v, g)b(v)+⌈d2 ⌉

∑

v/∈VK0
b(v). The figure 6.11 shows an example

of a clique in this case.

g

Figure 6.11: Clique for d odd with g in the middle. In this scheme, d = 3.

For the case when d is even, we will use 4 cliques to cover the edges of K0 ∪ E d
2
+1. Figure 6.12(a)

shows one of the call-cliques. Note that the set of edges depicted is a call-clique because each edge

is at distance at most d to any other edge. The remaining call-cliques are constructed by rotating

the first one as shown in Figure 6.12(b).

Using these 4 cliques we obtain the lower bound given by property 6.3.

Lower bound formulas for grids

In the following, we consider the case of unitary demand (b(v) = 1,∀v) in a square grid of size

N ×N . In this case, the total demand is N2− 1. We derive formulas only in function of the d that

compute a lower bound for grid graphs. In subsection 6.5.2, we prove that these formulas give the

optimal solution.
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g

(a) One of the 4 call-
cliques.

g

(b) Edges used in the 4 call-
cliques.

Figure 6.12: Case d even and g in the middle. In this scheme, d = 4.

In the following, we consider Ni as the number of nodes at distance i to the gateway, hence Ni = 4i.

Lemma 6.7 Given a grid N × N with the gateway in the middle. Considering unitary demand

and d = 2k − 1 6 N − 2 odd, then Wmin > k(N2 − 1)− 4
6(k + 1)(k)(k + 1).

Proof: By proposition 6.1, Wmin > S0 =
∑

v∈VK0
d(v, g)b(v)+

⌈

d
2

⌉
∑

v/∈VK0
b(v). As b(v) = 1 for all

v, then
∑

v∈VK0
d(v, g)b(v) =

∑

v∈VK0
d(v, g) =

∑

i6k iNi and
⌈

d
2

⌉
∑

v/∈VK0
b(v) = k(B −∑i6k Ni)

where B = N2 − 1. Then we have:

Wmin >
∑

i6k

iNi + k(B −
∑

i6k

Ni)

=
∑

i6k

4i2 + kB − k
∑

i6k

4i

= kB − 4[k
k(k + 1)

2
− k(k + 1)(2k + 1)

6
]

= kB − 4

6
k(k − 1)(k + 1).

�

Lemma 6.8 Given a grid with the gateway in the middle. Considering unitary demand B and

d = 2k even, then Wmin > (k + 1
4)B − k(k+1)(4k−1)

6 .

Proof: As b(v) = 1 for all v, by proposition 6.3, Wmin > S0 + 1
4

∑

v;d(v,g)>k b(v) = S0 + 1
4(B −

∑

i6k Ni). From lemma 6.7, S0 = kB − 4
6k(k − 1)(k + 1) and

Wmin > (k +
1

4
)B − k(k + 1)(4k − 1)

6
.

�
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In section 6.5.2, we will prove that these formulas give the optimal solution.

Method of routing with gateway in the middle

We study the routing of a unique node with flow bv = 1. Figures 6.13 and ?? show different zones

where can be localized the node v considering an even d and odd d respectively. Dependending of

the node position it has a different Wmin. Figure 6.13 shows the zones considering an even d, in this

case we have just the kernel and the zone ZA. The zone ZA is componsed by all nodes that are at

distance of g greater than d+1
2 . Considering a grid big enough, we can always make a unique cycle

using the lower bound, thus Wmin = d+1
2 . Figure 6.14 shows some examples of routing. Notice that

we do not have problems with the border due to the fact that the routing uses a unique cycle.

g

distv,g

LB = d+1
2

d+1
2

Figure 6.13: Scheme of the grid separated by method of routing considering odd d.

6.5.2 Gateway in the middle: An upper bound

In this section, we present a routing strategy providing a valid solution for our problem in a grid.

We consider the case of a grid graph with the gateway in the middle, considering any d and

balanced demand (see definition 6.3). We prove that this upper bound reaches our lower bound for

grid graphs, it means that our solution is optimal. The routing strategy splits the grid in disjoint

regions. Each region has an orientation and a pre-defined sequece of labels. A path crossing a

region has to follow the region orientation and it is covered by a repetition of the labels (sequence)

associated to the region.

We use the coordinate system as in [BP09] to represent a node position, we consider the gateway

g on the coordinate (x, y) = (0, 0). The edges of the routing paths are represented by the pair

of letters (u, v), describing two different vertices and a direction. That is a transmission between

the coordinate of u to the coordinate of v. We define (x, y+) the edge (u, v) defined by u = (x, y)
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Figure 6.14: Example using a unique cycle with odd d. In this example, d = 5.
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and v = (x, y + 1). Also, (x, y−) means the edge (u, v) defined by u = (x, y) and v = (x, y − 1).

The signal can be applied also to x. Before presenting the routing strategy, we need the following

definitions.

Definitions:

• k:
⌈

d+1
2

⌉

. Recall d is the distance of interference. In this way, d = 2k− 1 for d odd and d = 2k

for d even.

• Pi: a set of the edges of G. For our case, we split the grid into disjoint parts Pi.

• CHj: A chain, that is a sequence of labels in increasing order that is allocated to a part.

In grid graphs we need 4 chains: CHA,CHB,CHC ,CHD and one more label e for the cases

where d is even. Each chain has k different labels, for instance CHA = {a1, a2, ..., ak}. We

define CH ′
j the chain in inverse order, thus CH ′

A = {bk, ..., b2, b1}. We use the chains to cover

the edges of the paths, each label is assigned to each edge of the path respecting the order

imposed by the chain. Notice that a round is defined by the set of edges with the same label.

• VI : the set of intermediary vertices in K0 for all paths created by vertices v ∈ Pi. The vertices

(0, k), (k, 0), (0,−k) and (−k, 0) (the white vertices in Figure 6.15(b)).

• ρ: corresponds to a rotation in the plane of π
2 around the gateway node represented by g. A

rotation ρ is the node-to-node mapping ρ((x, y)) = (−y, x). Similarly, ρ2((x, y)) = (−x,−y)

corresponds to a rotation of π, and ρ3((x, y)) = (y,−x) corresponds to a rotation of 3π
2 .

• ρ(e): rotation of an edge e, ρ((u, v)) corresponds to the edge (ρ(u), ρ(v)).

• ECHj
: set of edges e that are supposed to receive a label from CHj in our routing strategy

(see Figure 6.16(a)).

• ρ(ECHj
): rotation of a set ECHj

of edges, ρ(ECHj
) = {ρ(e)|e ∈ ECHj

}.

We partition the grid into five sets of edges: K0, PA, PB , PC and PD (see Figure 6.15(a)). The set

PA is defined as the edges of the grid joining the vertices in {(x, y) | x + y > k, x, y > 0}. We can

define the other sets by rotation, thus the part PB = ρ(PA) and the part PC = ρ(PB) = ρ2(PA).

Finally, the part PD = ρ(PC) = ρ2(PB) = ρ3(PA). The part PA is splitted in three different sub-

parts denoted P 1
i , P 2

i and P 3
i (see Figure 6.15(b)). The following routing strategy is defined in

Figure 6.16(a). The chains assigned for all parts are shown in Figure 6.16(b).

Definition 6.3 (Balanced demand) Each part Pi has the same quantity of flow to send, that

is
∑

v∈Pi
b(v) =

∑

u∈Ph
b(u) for all parts h and i. Into the Kernel we can consider any traffic

because the vertices are routed individually as shown in the Lemma 6.1. An uniform demand

b(v) = 1,∀v ∈ Pi for grid graphs is a specific case of balanced demand because the parts have the

same number of nodes.
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Figure 6.16: The routing strategy.
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Sub-part definition and routing strategy:

• P 1
A: vertices with coordinates (0, y >= k) in PA. Each path using these vertices assumes the

direction (0, y) → (0, y − 1) and has its edges covered by an alternating between the chains

CHA and CH ′
C . From the gateway to the source node in P 1

A, the edges of the path receive

a repetition of this ordered sequence: {a1, a2, ..., ak , ck, ..., c2, c1, a1, a2...}, this sequence is

repeated until reaching the source node in P 1
A.

• P 2
A: vertices with coordinates (x > 0, y >= k) in PA. Each flow on these vertices is routed in

the direction (x, y)→ (x−1, y) alternating between the chains CH ′
B and CHD until reaching

a node in part P 1
A, this node becomes the source node for the part P 1

A (see the routing strategy

for P 1
A). From this node at sub-part P 1

A to the source node in P 2
A, the edges of the path receive

a repetition of this ordered sequence: {bk, ..., b2, b1, d1, ..., dk, bk, ...}, this sequence is repeated

until reaching the source node in P 2
A.

• P 3
A (P 3s

A ⊂ P 3
A): vertices with coordinates (x > 0, 0 < y < k) in PA. Each flow on these

vertices is routed in the direction (x, y)→ (x, y + 1) using only the chain CH ′
C until reaching

a node in part P 2
A, this node becomes the source node for the part P 2

A (see the routing

strategy for P 2
A). From the source node in P 3

A to the node at sub-part P 2
A, the edges of the

path receive this ordered sequence: {cn, ..., c2, c1}. The subset P 3s
A is defined by the vertices

with coordinates (0 < x < k, 0 < y < k).

Now we introduce the following definition which charaterizes the interference-free paths.

Definition 6.4 (Paths d-disjoint γ-labelled) Two paths P and Q are said to be interference

free γ-labelled if we can label the edges with γ colors such that two edges with the same color do not

interfere. In the model with distance of interference d we will say the paths are d-disjoint γ-labelled.

The following lemma shows that it is possible define at each iteration 4 paths d-disjoint γ-labelled.

Each path is completly contained into a different part Pi and takes 1 unit of flow from a vertice

v ∈ Pi to the gateway.

Lemma 6.9 Given a 2-dimensional grid graph G = (V,E) with gateway g placed in the middle.

Our routing strategy does not present neither interfering chains into a same part nor between a part

and the kernel.

Proof: We show for the chain CHA and the others can be obtained by rotation. The kernel uses

the chain CHA between the edges EK0 = {(0, k−)1...(0, 1
−)k} considering d odd. For d even, we

add one more label without problems as shown in Figure 6.16(b).

• P 1
A: The chain CHA is repeated in P 1

A using the edges En
P 1

A

= {(0, 3kn−)1...(0, (2kn + 1)−)k}
(with n ∈ N). As the distance between the two chains d(ui ∈ En, vi ∈ EK0) > d, these two

126



chains do not interfere. The chain CHA is repeated in P 1
A at each interval of k, so we have

no interference because d(ui ∈ En
P 1

A

, vi ∈ En+1
P 1

A

) = 2k > d. So, one chain can be repeated at

each interval of k.

• P 2
B : The chain CHA is also used in P 2

B , it is repeated at each interval of k. The closest part

to the kernel uses the edges in EP 2
B

= {(−k, 2k−)1...(−k, (k + 1)−)k}, thus d(ui ∈ EP 2
B
, vi ∈

EK0) = 2k > d.

• P 3
C : The chain CHA is used once in P 3

C , notice that P 1
C and P 3

C are mutually exclusive in

a path. The closest part to the kernel is defined by the edges EP 3
C

= {(−k,−1−)1, (−(k −
1),−2−)2, ..., (−1,−k−)k}. Any edge u ∈ EP 3

C
has distance d(ui ∈ EP 3

C
, vi ∈ EK0) = 2k > d.

• P 2
D: The chain CHA is used in P 2

D. The chain CHA is repeated in P 2
D at each interval of k. The

closest part to the kernel is EP 2
D

= {(k,−k+)...(k,−1+)}, thus d(ui ∈ EP 2
D
, vi ∈ EK0) > d.

�

Lemma 6.10 Given a 2-dimensional grid graph G with gateway g placed in the middle. Our

routing strategy does not present interfering chains between opposite parts, that is between PA and

PC , or PB and PD.

Proof: Any pair of edges ((xa, ya) ∈ PA,(xc, yc) ∈ PC) does not interfere, the same happens for

the edges from PB and PD by rotation. It is because these pairs of parts has the kernel (diameter

d) separating them. �

Lemma 6.11 Given a 2-dimensional grid graph G = (V,E) with gateway g placed in the middle.

Our routing strategy does not present interfering chains.

Proof: By lemma 6.9 the chains does not interfere to the chains of the kernel. Now, we list all

possible combinations of sub-parts using the chain CHA, and we prove the sub-parts also do not

interfere. The same arguments can be applied to other chains by rotation (the chains have the

same configuration, see figure 6.16(b)).

• P 1
A X P 2

B : The chain CHA is repeated in P 1
A starting by the edges EP 1

A
= {(0, 3k−)1...(0, (2k+

1)−)k}. In P 2
B , the closest part defined parallel to P 1

A (the distance is maintened between

the labels of the chain) is defined by the edges EP 2
B

= {(−k, 2k−)1...(−k, (k + 1)−)k}. As

the distance between the two chains d(ui ∈ EP 1
A
, vi ∈ EP 2

B
) > d and it is maintened for the

sequence of repetitions of the chains, these two sub-parts do not interfere.

• P 1
A X P 3

C : Independent by the Lemma 6.10.

• P 1
A X P 1

C : Independent by the Lemma 6.10.
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• P 1
A X P 2

D: The chain CHA is repeated in P 1
A starting by the edges EP 1

A
= {(0, 3k−)1...(0, (2k+

1)−)k}. In P 2
B , the closest part to P 1

A is defined by the edges EP 2
D

= {(k,−k+)...(k,−1+)}.
As the distance between the two chains d(ui ∈ EP 1

A
, vi ∈ EP 2

D
) > d, these two chains do not

interfere. As the other edges in P 2
D are yet farther from the part P 1

A, consequently these two

sub-parts do not interfere.

• P 2
B X P 3

C : As the part P 3
C goes far away from part P 2

B using the chain CHA after an inactive

edge; and the part P 2
B arrives in P 1

B using the chains CHC (|CHC | = k) followed by CHA.

There is no interference, it is like a continuation of P 2
B from one side to the other (repetitions

at each intervel of k).

• P 2
B X P 1

C : The same that P 1
A X P 2

D.

• P 2
B X P 2

D: Independent by the Lemma 6.10.

• P 3
C X P 1

C : There is no interference by Lemma 6.9.

• P 3
C X P 2

D: The chain CHA is repeated in P 2
D starting by the edges EP 2

D
= {(k,−k+)...(k,−1+)}

and in P 3
C , the closest part is defined by the edges EP 3

C
= {(−k,−1−)1, (−(k−1),−2−)2, ..., (−1,−k−)k}.

The distance between the edge i in P 2
D and the edges in Ei

P 3
C

is d(ui ∈ Ei
P 3

C

, vi ∈ EP 2
D
) > d.

• P 1
C X P 2

D: The same that P 1
A X P 2

B .

�

The following theorem proves that the flows coming from the parts can be routed with W =

4
∑

v∈PA
b(v)(⌈d2⌉+ 1

4((d + 1) mod 2)).

Theorem 6.1 Given a 2-dimensional grid graph G with gateway g placed in the middle. Given

four vertices v from different parts. We can route 1 unit from each v to the gateway with routing

iteration W = 4
∑

v∈PA
b(v)(⌈d2⌉+ 1

4((d + 1) mod 2)).

Proof: By the Lemmas 6.9 and 6.11, the proposed routing does not use more chains than these

ones already used by the kernel. Thus, the interval W is the same proposed by the lower bound

for vertices v /∈ VK0 , that is
∑

v/∈VK0
b(v)(⌈d2⌉+ 1

4((d + 1) mod 2)) by the Theorem ??. As we have

balanced parts,
∑

v/∈VK0
b(v) = 4

∑

v∈PA
b(v). �

The following corollary states that the lower bound of the Lemma 6.1 is tight when the demand is

balanced.

Corollary 6.4 Wmin =
∑

v∈VK0
d(v, g)b(v) + (

⌈

d
2

⌉

+ 1
4((d + 1) mod 2))

∑

v/∈VK0
b(v).

Corollary 6.5 We can route using integer flow and mono-routing with balanced parts. The bal-

anced parts guarantees that we have always 4 paths for all iterations (routing 4 vertices), so the

demand is not splitted.
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6.5.3 Gateway in the corner: A lower bound

We use a notation based on coordinates but for readibility of the figures we have put the gateway

labelled (0, 0) in the top left corner. So we use (x, y) instead of (x,−y) the vertical axis being

labeled with positive integers.

6.5.3.1 Case d odd

In this section, we study the case when d is odd. Let d be as d = 2k − 1.

Notice that, when the gateway is placed at the corner, we can construct call-cliques bigger than

K0. In fact, the maximum call-clique Kmax containing K0 is strictly bigger than K0 for d > 3. In

this way, we will use call-cliques bigger than K0 and we will show that the lower bounds performed

are tight.

We define Kmax as the call-clique composed by the edges delimited by the vertices VK0 ∪Sod where

Sod = {v | d(v, g) 6 2k and d(v, v∗) 6 k} and v∗ denotes the node (k, k). An example of Kmax for

d = 9 is depicted in figure 6.19.

Lemma 6.12 For the grid with the gateway at the corner and d = 2k − 1, then

LB(v,Kmax) >

{

k if v /∈ Sod ∪K0

min{d(v, g); 3k − d(v, g); 2k − d(v, v∗)} if v ∈ Sod ∪K0

where Int(Sod) is defined as {v | d(v, g) 6 2k − 1 and d(v, v∗) 6 k − 1}.

Proof: If v ∈ VK0 any path from v to g uses d(v, g) edges in K0 (and so in Kmax). Note that, in

that case, 2k − d(v, v∗) = d(v, g) as d(v∗, g) = 2k. Otherwise, any path has to use k edges in K0

giving the lower bound for v /∈ Sod. If v ∈ Sod any path from v to g will use k edges in K0 plus

certain edges in Sod. The number of edges used in Sod is either d(v, g)−k needed to attain a vertex

of K0; or 2k− d(v, g) to attain the diagonal bordering Sod composed by the vertices at distance 2k

from g (x + y = 2k) ; or k − d(v, v∗) to attain the diagonals bordering Sod below (y = x + k) or

above (x = y + k). �

Theorem 6.2 For the grid with the gateway at the corner and d = 2k − 1,

Wmin >
∑

v

b(v) LB(v,Kmax)

Proof: W > cw(Kmax) > φ(Kmax) >
∑

v φv(Kmax) >
∑

v b(v) LB(v,Kmax) �

Using Theorem 6.2 we can derive an explicit formula for the lower bound when the demand is

uniform.
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Proposition 6.4 For the grid with N × N nodes (N > k +
⌈

k
2

⌉

) with the gateway at the corner

and d = 2k − 1, if b(v) = 1 for all v, then

W > kB +
k − 2

6

⌊

k

2

⌋(⌊

k

2

⌋

− 5

)

where B = N2 − 1

Proof: We have to count
∑

v LB(v,Kmax). For all the vertices not in VK0∪Int(Sod), LB(v,Kmax) =

k (Recall that Int(Sod) is defined as {v | d(v, g) 6 2k − 1 and d(v, v∗) 6 k − 1}). For the vertices

in VK0, LB(v,Kmax) = d(v, g) 6 k and for v ∈ Int(Sod),LB(v,Kmax) > k. In K0 we have i + 1

vertices at distance i from g giving a difference compared to k of k− i, so for the vertices of K0 we

have a total loss of Ak =
∑k−1

i=1 (i + 1)(k − i) = (k−1)k(k+4)
6 .

The vertices (x, y) in Sod give an excess for those at distance i > 0 from one of the 4 diagonals

delimiting Sod namely x + y = k; x + y = 2k; x = y + k; y = x + k. We distinguish two cases

depending on the parity of k. For the case even k = 2λ, the number of vertices in Sod with an

excess of i (that is a value k + i) is 3k− 4i for 1 6 i 6 λ− 1, and λ + 1 for i = λ. For the case odd

k = 2λ + 1, they are in number 3k − 4i for 1 6 i 6 λ.

All together they give an excess Bk. For the case k = 2λ, Bk =
∑λ−1

i=1 i(3k − 4i) + λ(λ + 1) =
k
6 (5λ2 + 1). For the case k = 2λ + 1, Bk =

∑λ
i=1 i(3k − 4i) = k

6 (5λ(λ + 1)).

Finally, we get Bk − Ak in order to obtain the total excess. For the case k = 2λ, Bk − Ak =
k
6 (λ− 1)(λ− 5). For the case k = 2λ + 1, Bk −Ak = k

6λ(λ− 5). Then, in both cases Bk −Ak can

be written as k−2
6

⌊

k
2

⌋ (⌊

k
2

⌋

− 5
)

. �

6.5.3.2 Case d even.

For the case when d is even we consider two cliques as shown in figure 6.20. The first clique

corresponds to the solid edges and the dashed edges at the top. The second clique corresponds to

the solid edges and the dashed edges at the bottom. We obtain the following lower bound.

∑

v∈VK0
d(v, g)b(v)

+
∑

v∈Sev

(

d + 1

2
+ min

{

d−d(v,g)+1, d(v,g)− d+1
2

, d+1
2

−d(v∗ev ,v)+1
}

)

b(v)

+d+1
2

∑

v/∈VK0
∪Sev

b(v)

with Sev = {v ∈ V | ⌈d2⌉+ 1 6 d(v, g) 6 d and d(v, v∗ev) 6 ⌈d2⌉}.
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6.5.4 Gateway in the corner: An upper bound

We start introducing the notion of the width of a cycle.

Definition 6.5 (Width of a Cycle. First version) Given a 2-dimensional grid G. Let C be

an cycle in the grid and we define dC the distance over the cycle C. We define Sd the set of

pairs (P,Q) of induced paths of C such that dC(P,Q) > d. The width of a cycle is defined as

min(P,Q)∈Sd
dG(P,Q).

Lemma 6.13 Given a 2-dimensional grid G with nodes in {0, a}×{0, b}, with a > b. Let v a node

such that v /∈ {1, d− 1} × {1, d − 1} with d > 1. If G satisfies one of the following conditions:

• b > 2d and a > 3d.

• b = 2d− 1 and a > 5d.

• b = 2d− 1 and a > 3d, for d odd.

• b = 2d− 1 and a > 3d, for d even and a 6= k(d + 1) + 4, for any k > 1.

Then, a cycle of length multiple of d + 1 can be done going through g = (0, 0) and v and such that

their width is at least d.

Proof: We distinguish 2 cases depending on whether or not 2a + 2b is multiple of d + 1.

• Case 1: 2a + 2b is multiple of d + 1. First, let us check the case when 2a + 2b is multiple

of d + 1. We distinguish 3 zones in the grid: ZNE = {d, a} × {0, d− 1}, ZSE = {d, a} × {d, b}
and ZSW = {0, d− 1} × {d, b}. (The notation follows the idea of the cardinal directions with

the gateway placed in the corner at North-West.)

To define a cycle over the grid, we will use the following notation. We note (x1, y1)−−(x2, y2),

with either x1 = x2 or y1 = y2, as the edges in the shortest path between (x1, y1) and (x2, y2).

Then, we note a cycle over the grid, for example, (0, 0) −−(x, 0) −−(x, y) −−(a, y)−−(a, b) −
−(0, b)−−(0, 0) as the cycle composed by the paths (0, 0)−−(x, 0), (x, 0)−−(x, y), etc. Note that

the notation works because there is always one repeated coordinate between 2 consecutive

nodes.

For a node v = (x, y) ∈ ZNE we design the cycle (0, 0) −−(x, 0) −−(x, y) −−(a, y) −−(a, b) −
−(0, b) −−(0, 0). For a node v = (x, y) ∈ ZSE we design the cycle (0, 0) −−(a, 0) −−(a, y) −
−(x, y) −−(x, b) −−(0, b) −−(0, 0). For a node v = (x, y) ∈ ZSW we design the cycle (0, 0) −
−(a, 0) −−(a, b) −−(x, b) −−(x, y) −−(0, y) −−(0, 0). All of these cycles have the same length

than the cycle (0, 0)−−(a, 0)−−(a, b)−−(0, b)−−(0, 0). The length is 2a+2b which is multiple

of d + 1. Moreover, as a > 3d and b > 2d− 1, all the cycles have width at least d.
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Note that it is not possible to construct a cycle between g and any node in ZI = {1, d− 1} ×
{1, d − 1} with width greater or equal than d.

Finally, note that the nodes in {0} × {0, d − 1} and in {0, d − 1} × {0} are covered by all

the cycles presented above. Then, except ZI , all the nodes are covered by a cycle of length

multiple of d + 1 and width at least d.

• Case 2: 2a+2b is not multiple of d+1. Let a1 = max{a′ | a′ < a, 2a′+2b multiple of d + 1}.
The nodes in {0, a1} × {0, b} \ ZI can be covered as presented in Case 1. We define the re-

maining nodes as Z ′ = {a1 + 1, a} × {0, b}.

First, we cover the nodes in Z ′ which are in the border of the grid G. These nodes are

Z ′
ext = {a1 + 1, a} × {0} ∪ {a} × {0, b} ∪ {a1 + 1, a} × {b}. For these nodes we will present a

cycle based on a prolongation of the cycle (0, 0)−−(0, a)−−(a, b)−−(0, b)−−(0, 0). Second, we

cover the remaining nodes of Z ′, defined as Z ′
int = Z ′ \Z ′

ext = {a1 + 1, a− 1}×{1, b− 1}. We

will show that a slight modification over the cycle for Z ′
ext works also for the nodes in Z ′

int.

– Covering Z ′
ext. Now we will present a prolongation of the cycle C = (0, 0) −−(0, a) −

−(a, b)−−(0, b)−−(0, 0) to cover the nodes in Z ′ which are in the border of the grid. Let

us define a2 = min{a′ | a′ > a, 2a′ + 2b multiple of d + 1}. To obtain a cycle of length

multiple of d + 1, we need to extend the cycle C with 2(a2 − a) more edges, satisfying

the constraint of width. Note that a2 − a1 = d + 1 for d even, and d+1
2 for d odd. Then,

a2 − a 6 d for d even, and a2 − a 6 d−1
2 for d odd.

If b > 2d, we propose the cycle C1 = (0, 0) −−(a, 0) −−(a, b) −−(2d, b) −−(2d, b − (a2 −
a))−−(d, b− (a2−a))−−(d, b)−−(0, b)−−(0, 0). As b > 2d, then b− (a2−a) > d satisfying

the desired width. Moreover, the cycle has length multiple d + 1.

If b = 2d−1 and a2−a < d, we will use the same cycle presented above. But, if b = 2d−1

and a2− a = d we don’t have enough space to use the same cycle. If this is the case, the

above cycle does not satisfy the constraint of width, because b − (a2 − a) = d − 1 < d.

Then, we propose the cycle C2 = (0, 0)−−(a, 0)−−(a, b)−−(4d, b)−−(4d, b− 1)−−(3d, b−
1)−−(3d, b)−−(2d, b)−−(2d, b− (d− 1))−−(d, b− (d− 1))−−(d, b)−−(0, b)−−(0, 0). This

cycle satisfies the width constraint and the desired length also.

With this technique, the length of the cycles can be extended in 2(⌈a−d
2d ⌉(b− d)). Thus,

in general, a and b must satisfy that

⌈

a− d

2d

⌉

(b− d) > a2 − a,

for a2 − a 6 d for d even, and a2 − a 6 d−1
2 for d odd. Note that the case a2 − a = d

occurs only when d is even and a can be written as k(d + 1) + 4, for some k > 1. In this

case, the inequality is satisfied for a and b such that either b = 2d − 1 and a > 5d or

b > 2d and a > 3d.
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– Covering Z ′
int. Now, we will check that a slight modification over the above cycles

can cover all the nodes in Z ′
int. First, we will split Z ′

int in two parts: Z ′
intN = {a1 +

1, a − 1} × {1, ⌊ b
2⌋} and Z ′

intS = {a1 + 1, a − 1} × {⌈ b
2⌉, b}. To cover a node v = (x, y)

in Z ′
intN , we will modify the cycle C1 and C2 as follows: Instead of using the paths

(0, 0)−−(a, 0)−−(a, b), we will use (0, 0)−−(x, 0)−−(x, y)−−(a, y)−−(a, b). We will note

the new cycles as C1
int and C2

int respectively. An example of this cycle is presented in

figure 6.21. The length of the cycles have not changed. Now, we need to verify that the

width is still greater or equal than d. To do that, for the cycle C1
int, we need to check that

|(2d, b−(a2−a))−(x, y)| > d. And for C2
int, we need to check that |(4d, b−1)−(x, y)| > d.

For C1
int, as a > 3d, for any (x, y) ∈ Z ′

intN ,

∣

∣

∣

(

2d, b− (a2 − a)
)

−
(

x, y
)∣

∣

∣ >

∣

∣

∣

(

2d, b− (a2 − a)
)

−
(

x, y
)∣

∣

∣

>

∣

∣

∣

∣

(

2d, b− (a2 − a)
)

−
(

a1 + 1,

⌊

b

2

⌋

)

∣

∣

∣

∣

>

∣

∣

∣

∣

(

a− d, b− (a2 − a)
)

−
(

a1 + 1,

⌊

b

2

⌋

)

∣

∣

∣

∣

Now, as b > 2d− 1, we know that b− (a2 − a) > ⌊ b
2⌋. Moreover a1 + 1 > a− d, then

∣

∣

∣

∣

(

a− d, b− (a2 − a)
)

−
(

a1 + 1,

⌊

b

2

⌋

)

∣

∣

∣

∣

= b−
⌊

b

2

⌋

+ d + 1− (a2 − a1)

> b

Now for C2
int, we now that a > 5d, then |(4d, b−1)−(x, y)| > |(4d, b−1)−(a1 +1, ⌊ b

2⌋)| >
|(a− d, b− (a2 − a))− (a1 + 1, ⌊ b

2⌋). The result follows as seen before.

For the nodes in Z ′
intS , we will use the reflections of the cycles on the horizontal axis.

After solved these 2 cases, we conclude that all the nodes in Z ′ are covered by a cycle of width

at least d.

�

Lemma 6.14 Given an instance of the RWP where the graph G and the gateway g is placed at

the corner in the coordinates (0, 0). Let v the only node in G with a positive demand b > 0. If

there exists a cycle going through g and v of length multiple of d+1 and width at least d, then there

exists a solution for the RWP in d+1
2 b.

Proof: As the length of the cycle is a multiple of d + 1, it can be covered with d + 1 rounds

alternately. Moreover, the width of the cycle being at least d assures that there is no interference

between edges of a same round. A cost of 1
2b will be given to each round. It assures that all the

demand can be sent to the gateway. Thus, the cost of the solution is d+1
2 b. �
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Theorem 6.3 Given an instance of the RWP, where the graph G is a 2-dimensional grid and the

gateway g is placed at the corner in (0, 0). Each node v 6= g has a demand b(v) and the size of the

grid G satisfies one of the conditions of lemma 6.13. Then, there exists a solution for the instance

of RWP with cost

d + 1

2

∑

v/∈{1,d−1}×{1,d−1}

b(v) +
∑

v∈{1,d−1}×{1,d−1}

d(v, g)b(v)

Proof: The idea is to route the demands of each node independently. It means that, for each

node, we will use different rounds. For each node in v ∈ {1, d − 1} × {1, d − 1} we use a route

corresponding to the one of the shortest paths between v and g. Each edge in the chosen shortest

path, will be one different round with cost b(v). Then, the cost for routing the demand of v is

d(v, g)b(v). For the remaining nodes v /∈ {1, d − 1} × {1, d − 1}, lemma 6.13 guarantees that there

exists a cycle of length multiple of d + 1 and width at least d between g and v. We can route their

demands independently using lemma 6.14. Then, we obtain a cost of d+1
2 b(v) per node. �

6.5.4.1 An upper bound for uniform demand

We start with the following remark.

Remark 6.1 In order to attain the lower bound given in 6.5.3, there are some nodes of which

demand cannot be routed independently. Then, its demand must be routed together (sharing rounds)

with the demand of some other nodes.

We present a solution with takes into account these nodes in order to attain the lower bound

in 6.5.3.

In the following, we will suppose that the demand is uniform, it means that b(v) = c > 0 for all

v 6= g. We will consider c = 1, however the following routing can be directly applied for any c > 0.

We define the individual lower bound of a node v, denoted by lb(v), as the lower bound given

in 6.5.3 considering the demand as b(v) = 1 and b(u) = 0 for all u 6= v. In other words, lb(v) is the

contribution of v to the lower bound given in 6.5.3.

We will suppose that the grid is large enough to construct the routings presented below.

We will show a way of routing the demand which attains the lower bound given in 6.5.3. We will

route the demand by different methods depending on the position in the grid. In figure 6.22, we

can see a scheme of how the nodes are grouped according to the method of routing proposed.

For the case where a node is routed independently, the idea is to obtain a routing such that the

total weight of the rounds would be equal to the individual lower bound of this node. But, as seen

in remark 6.1, there are zones of the grid whose demand cannot be routed independently. In this
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case, the idea is to route a group of nodes in such a way that the sum of their individual lower

bounds would be equal to the total weight of the rounds involved.

We will define 1odd(d) or simply 1odd as the function with value 1 when d is odd and 0 when d is

even. In the same way, we define 1even the function which is 1 when d is even and 0 if d is odd.

Let us define the set of nodes ZSP as the nodes v such that d(v, g) = lb(v). Note that ZSP

corresponds to {v = (x, y) ∈ V | x, y 6
⌈

d
2

⌉

and d(v, g) 6 ⌊3(d+1odd)
4 ⌋}. For a node v in ZSP such

that x 6 y we will route its demand by the path v −−(0, y)−−g. Inversely, if y < x we will use the

path v −−(x, 0) −−g. In both cases, each path have d(v, g) edges, with d(v, g) 6 d. Then, for any

node v in ZSP we use a path covered by d(v, g) rounds with weight b(v) = 1 each. Then, the total

weight for routing each node v in ZSP is d(v, g) = lb(v).

Moreover, it is possible to move the demand due to the nodes in ZD sharing the same rounds used

to route the demand of ZSP. An scheme of that is presented in figure 6.23. We can see that the

rounds needed to route the nodes (0, i),(i, 0) and (⌈d2⌉, j), (j, ⌈d2⌉) with i 6 ⌈d2⌉ and j 6 ⌊d4⌋ are

enough to move the all demand due to the zone ZD. In this way, the deplaced demand is moved to

nodes located out of the zone {1, d − 1} × {1, d − 1}. We will see after that each unit of relocated

demand can be routed with cost d+1
2 . Thus, each node v of ZD is routed using a weight of lb(v).

The nodes in ZC are the nodes v in {0, v∗(d)} × {0, v∗(d)} such that lb(v) > d(v, g). Then, ZC

corresponds to {v = (x, y) ∈ V | x, y 6 ⌈d2⌉ and d(v, g) > ⌊3(d+1odd)
4 ⌋}. In this zone, nodes satisfy

that lb(v) = d(v, v∗(d)) + d+1
2 . The routing will be done in two parts. The first part is to move

the demand from the node v to the v∗(d) with cost d(v, v∗(d)). The second part is to move the

demand from v∗(d) to the gateway with cost d+1
2 . For the first part, we will route the demand via

a shortest path between v and v∗(d). We will use d(v, v∗(d)) rounds, therefore it costs d(v, v∗(d)).

For the second part, as the demand is already in ZE, we will route the normal routing of ZE which

attains a cost of d+1
2 as we will see later.

The nodes in ZB correspond to the nodes in {v = (x, y) | d(v, g) 6 d with x > ⌈d2⌉ and y >

⌊d+2
4 ⌋} ∪ {v = (x, y) | d(v, g) 6 d with y > ⌈d2⌉ and x > ⌊d+2

4 ⌋}. Note that, for any node v in

ZB , the lb(v) is determined by d+1
2 + l + 1even = ⌊d+2

2 ⌋ + l, with l the distance between v and

the zone ZD. We will route the nodes by pairs: each node of ZB will be routed together with one

node of ZExt. Let us suppose that v = (x, y) is such that x > y. The path to do that is shown

in figure 6.27(a). Note that the node chosen in ZExt must be a node that does not interfere with

the current path (For example, any node in ZExt placed in the upper border of the grid). Now, we

will route the node obtained by swapping the coordinates of v, i.e, the node (y, x). This node will

be also routed together with a node in ZExt. We will use a path as shown in figure 6.27(b). Now,

we can see that it is possible to reuse some rounds of the path that routes v = (x, y). In fact, the

reused rounds are the l + 1even rounds needed to move the demand out of the zone ZB . Now, in

total, 2(d+1+ l+1even) rounds have been used in these two paths there is been routed the demand

due to 4 nodes. Two of these nodes, the nodes in ZExt, have a lb of d+1
2 . The two nodes in ZB have

a lb of d+1
2 + l + 1even each. Therefore, the group of 4 nodes attains a cost equivalent to the sum
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of their 4 lb.

The nodes in ZA correspond to the nodes in {v = (x, y) | d(v∗, v) 6 ⌊d2⌋+1even and x > ⌈d2⌉ and y 6

⌊d+2
4 ⌋} ∪ {v = (x, y) | d(v∗, v) 6 ⌊d2⌋ + 1even and y > ⌈d2⌉ and x 6 ⌊d+2

4 ⌋} Each node (x, y) in ZA

with x > y will be routed together with the node (y, d + 1odd + y − x), also in ZA. Note that

lb(x, y) = d + 1odd + y − x and lb(y, d + 1odd + y − x) = x. The path used is constructed in the

same way that the path shown in figure 6.26. To route the demand through the path, d + 1odd + y

rounds are needed which is exactly lb(x, y) + lb(y, d + 1odd + y − x).

The nodes in ZE are the nodes contained in the square delimited by the nodes v∗ and (d−1, d−1).

Each node will be routed using 2 cycles following the idea depicted in figure 6.29. Each cycle routes

half of the demand and it shares ⌊d+1
2 ⌋ rounds with the second cycle. The total number of rounds

used is 2(d + 1) and each round has a capacity of 1/4. Then, the weight needed for routing the

demand of each node v in ZE is d+1
2 = lb(v).

The remaining nodes v with non-zero demand are all placed outside the zone {1, d−1}×{1, d−1}.
Applying lemma 6.13, each node can be routed independently with cost d+1

2 which is the value of

lb(v).

As the sum of lb(v) over all the nodes in the grid attains the lower bound given in 6.5.3, we conclude

the result.
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Figure 6.18: Cost to gather one unit of flow from each position to the center

g = (0, 0)

v∗
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(0, k)

(k, 0)

Figure 6.19: Call-clique Kmax for d odd with g at the corner. In this scheme, d = 9. The call-clique
K0 consists in all the wide edges.
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g = (0, 0)

v∗

l

d
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(k, 0)

(0, k)

Figure 6.20: Two overlapped cliques for d even with g at the corner. In this scheme, d = 8.

g = (0, 0) a1 a2a

(a, b)(0, b) (d, b) (2d, b)

(2d, b − (a2 − a))(d, b − (a2 − a))

(x, y)

Figure 6.21: Example of the cycle C1
int.
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Figure 6.22: Scheme of the grid separated by method of routing.
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(a) Routing the demand in node
(1, 5)
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(b) Routing the demand in node
(0, 5)
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(c) Routing the demand in node
(0, 1)

Figure 6.23: Example of moving the demand in ZD using the routing of ZB . In this example, d = 9.
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Figure 6.24: Example for ZC with d odd. In this example, the demand.
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Figure 6.25: Example for ZC with d even. In this example, the demand...
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Figure 6.26: Example for ZA with d odd. In this example, the demand. The even case is similar.
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Figure 6.27: Example for ZB with d odd. In this example, the demand...
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Figure 6.28: Lower bound per node in uniform demand case. The black nodes indicate the nodes
whose lower bound correspond to their distance to the gateway. In this scheme, d = 15.
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Figure 6.29: Example of routing with 2 cycles with rounds of weight 1/4 for v = (d− 1, d− 1). The
weight needed to route the demand is d+1

2 b(v).
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6.6 Conclusion and perspectives

In this work we have dealt with the Round Weighting Problem for gathering instances consid-

ering a symmetric variant of the binary interference model defined in [KMP08].

In the first part, we present methods to obtain lower bounds for general topologies using cliques of

calls.

In the second part, we apply the lower bounds for the case of the grid. Moreover, we present

solutions when the gateway is placed either at the center or at the corner. These solutions are

optimal for uniform demands. For general demands, we have determined the zones of the grid

where the demand is crucial for the cost of the solution.

We have shown that, in general, using a clique of calls around the gateway gives good lower bounds.

However, in some cases these lower bounds do not attain the optimal solution. Indeed, for some

cases of non-uniform demand, better lower bounds are obtained considering also cliques of calls

which are not around the gateway.
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Appendix A

Asymptotic Congestion in Wireless

Ad-Hoc and Sensor Networks

A.1 Introduction

Wireless ad-hoc and sensor networks have gained much interest as inexpensive, energy-efficient, and

miniaturized wireless devices are beginning to mature and take hold commercially. Wireless ad-hoc

and sensor networks can be rapidly deployed as they do not require much existing infrastructure.

Because of that, they are expected to find applications in many different settings, such as home

appliance, disaster recovery, inventory tracking, battlefield surveillance, etc.

Congestion on this type of network is crucial as not only causes packet loss, and increases queueing

delay, but also leads to unnecessary energy consumption, which causes lifetime reduction of the

network. In wireless ad-hoc and sensor networks, extending the lifetime is important since all

nodes contribute to collect the environment data and the early death of a node may lead to an

incomplete monitoring. In a wireless ad-hoc and sensor network, two types of congestion can occur

: node-level congestion, which is caused by buffer overflow in the node, or link-level congestion,

when wireless channels are shared by several nodes and collisions occur when multiple active nodes

try to seize the channel at the same time.

We will work on link-level congestion on randomly deployed static wireless ad-hoc and sensor

networks. Wireless ad-hoc and sensor networks consist of nodes which share a common commu-

nication medium. On these networks, the signals intended for a receiver can cause interference at

other receivers. The nodes on these networks cooperate in routing each other’s data packets and

communicate with each other over a wireless channel without any centralized control.

A wireless ad-hoc and sensor network can be seen as a graph G with a finite sets of nodes, and

links connecting pairs of nodes (its ends). We consider the boolean model of connectivity, i.e., two

nodes are connected if the distance between them is inferior to a certain threshold (called range of
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connectivity), otherwise they are disconnected.

A path P in a graph G is a sequence x0, l1, x1, . . . , lk, xk where each xi is a node, each li is an link,

and the ends of link li are the nodes xi−1 and xi. The length of the path P is k, i.e., the number

of links on the path P . The network is connected if each node is connected by means of a path to

every other node in the network.

On this setting, Gupta and Kumar [GK98] derived the critical power at which a node in the

network needs to transmit in order to ensure that the network is connected with probability one as

the number of nodes in the network goes to infinity.

The main theorem of that paper is the following:

Theorem A.1 (Gupta-Kumar, [GK98]) If n nodes are randomly located, uniformly i.i.d., in a

disc of unit area and each node transmits at a power level so as to cover an area of πr2(n) = log n+γn

n ,

then the resulting network is asymptotically connected with probability one as n→ +∞ if and only

if γn → +∞.

On the rest of this chapter we will assume that the network is connected, i.e., the range of connec-

tivity is greater than the threshold given by Gupta-Kumar’s Theorem.

Our goal is to provide for different randomly deployed wireless ad-hoc and sensor network topologies,

the congestion of the network. In this chapter we relate the notion of congestion to the number

of paths of length k and the spectral radius of the generated graph. Using tools of random graph

theory and random matrix theory we are able to determine the number of paths of length k there

is on the network with k large enough and to relate this quantity to the congestion of the network.

A.2 Number of Paths of Length k and Congestion on the Network

In the following section, we analyze the relationship between the number of paths of length k in

a wireless ad-hoc and sensor network and the link-level congestion over this network. In order to

obtain this relationship we need to define some concepts of spectral graph theory (see [Chu97]) and

analyze the asymptotic behavior of the number of paths of length k.

The adjacency matrix of a graph G, denoted A, is the matrix with rows and columns labelled

by graph vertices, defined as

Aij =

{

1 if i and j are connected by an link,

0 otherwise.

The spectral radius of a graph G, denoted λA, is the size of the largest eigenvalue of the
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adjacency matrix of the graph that can be written as

λA = sup
x∈Rd\{0}

〈x,Ax〉
〈x, x〉 .

Let A denote the adjacency matrix of a graph G. Then (Ak)ij is the number of paths of length k

connecting the i-th and j-th vertices (proof by induction).

If we denote ~1 the vector with all its components equal to 1s, then

~1∗Ak~1 =
∑

i,j

Ak
ij

is equal to the number of paths of length k on the graph G.

The adjacency matrix is symmetric, then by spectral decomposition we have A =
∑

λivi where

vi is the eigenvector of A associated with the eigenvalue λi. Remember that as A is a symmetric

matrix, then the eigenvectors of A associated with distinct eigenvalues are orthogonal.

The next theorem shows the importance of the spectral radius of a graph G.

Theorem A.2 (Perron-Frobenius, [HJ90]) Let A be an irreducible matrix with non-negative

entries and spectral radius λA. Then

1. λA > 0,

2. λA is an eigenvalue of A,

3. There is a unique eigenvector vA (up to a scale factor) with non-negative entries such that

AvA = λAvA,

4. λA is an algebraically simple eigenvalue of A.

From this theorem, the following result holds:

(~1∗Ak~1)1/k =
(

∑

aiv
∗
i A

k
∑

ajvj

)1/k

=
(

∑

aiv
∗
i

∑

ajA
kvj

)1/k

=
(

∑

aiv
∗
i

∑

ajλ
k
j vj

)1/k

=
(

∑

|ai|2λk
i

)1/k
.

This implies

lim
k→+∞

(~1∗Ak~1)1/k = λA.
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From this result we obtain that the number of paths of length k in G is approximately λk
A, for k

large enough.

Definition A.1 (Congestion Number) Given a graph G we define the congestion number

as the inverse of the spectral radius of the graph λ−1
A .

The intuitive explanation to this definition is that while more paths of a fixed length we have

in order to send information, we can split the information on these paths and coordinate it to

arrive with the same number of hops at the receiver. This has the advantage of equalizing source-

destination delays of packets that belong to the same class, which allows one to minimize the

amount of packets that come out of sequence. This is desirable since in data transfers, out of order

packets are misinterpreted to be lost which results not only in retransmissions but also in drop of

systems throughput.

The following proposition give us another relationship between the spectral radius and on this case

the degree of the nodes. The degree of a node in a graph is the number of links that connects to

the node.

Proposition A.1 ([Lov07]) Let dmin denote the minimum degree of G, let d̄ be the average degree,

and let dmax be the maximum degree of G. For every graph G,

max{d̄,
√

dmax} ≤ λA ≤ dmax.

A.2.1 Discussion

A fundamental question about any network is whether or not it is κ-connected, i.e., for each pair

of different nodes there exists at least κ link-disjoint paths in the graph connecting them of a fixed

length that allow them to split their information and to send it through different paths. Additional

requirements can be imposed, for instance the links can have small congestion.

We are conscious that the measure of congestion considered on this work has the limitation that the

number of paths of fixed length are not necessarily link disjoint which would be an reasonable ad-

ditional requirement. In that sense, a better measure would consider the possibility of splitting the

information on independent paths without collision. However, for tractability reasons we consider

this measure which is a good approximation and we can obtain explicit results.

A.3 Analysis Tools

In randomly deployed wireless ad-hoc and sensor networks the placement of the nodes and the links,

which depend on the range of connectivity, are random. In order to derive the relation between

congestion and spectral radius of a graph and to determine the spectral radius for different graphs,
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we use tools from random graph theory and random matrix theory. In the asymptotic case, it

enables us to have a tractable expression of the number of paths of a fixed length. Similar tools

have been used on [GK98] and [CL06] to analyze wireless ad-hoc and sensor networks.

A.3.1 Random Graphs

In this section we introduce some basic notions of random graphs (see [Pen03]).

Given n nodes, x1, . . . , xn, in Rd with d = 2 or 3, we denote by G(n, r(n)) the graph with set of

nodes {x1, . . . , xn} and with links connecting all those nodes xi, xj, that satisfy ‖xi − xj‖ < r(n)

where r(n) is the range of transmission and ‖·‖ is some norm in Rd. We shall call G(n, r(n)) a

geometric graph.

When the nodes are independent and identically distributed on D with a specific probability density

function, the geometric graph G(n, r(n)) is called a geometric random graph.

In the following, the domain on which nodes are deployed is the d-dimensional cubeD = [−1/2, 1/2]d

where d = 2 or 3.

On this domain each node is deployed with uniform distribution, i.e.,

fU (x) :=

{

1 if x ∈ [−1/2, 1/2]d ,

0 otherwise.

The most familiar random graph model, initiated by P. Erdös and A. Rényi [Erd59, ER59], consists

of a graph with set of nodes {x1, . . . , xn}, obtained by including some of the links of the complete

graph, each link being included independently with probability p. The graph derived by the latter

scheme is called a Bernoulli random graph and is denoted G(n, p).

Bernoulli random graphs (also called Erdös-Renyi random graphs) have been intensively studied

and many of their properties are by now well understood; see Bollobás [Bol01] as a reference.

Bernoulli random graphs have the property of independence between the connectivity of different

links, while for Geometric random graphs, if node xi is close to node xj, and node xj is close to

node xk, then xi will be fairly close to xk. In wireless ad-hoc and sensor networks, this property is

more realistic than the independence of links as in the Bernoulli random graphs.

Examples of Bernoulli random graphs G(n, p) for different p’s and of Geometric random graphs

G(n, r) for different r’s can be found in figures A.1 and A.2, respectively.

From the figures A.3(a) and A.3(b) done by simulation, we see that the convergence of the k-th

root of the numbers of paths of length k converges very fast to the spectral radius with respect to k

on these two settings.
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(a) Bernoulli random graph G(n, p)
with n = 20 and p = 0.01
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(b) Bernoulli random graph G(n, p)
with n = 20 and p = 0.08
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(c) Bernoulli random graph G(n, p)
with n = 20 and p = 0.8

Figure A.1: Bernoulli random graphs
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(a) Geometric random graph G(n, r)
with n = 20 and r = 1/6
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(b) Geometric random graph G(n, r)
with n = 20 and r = 1/3
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(c) Geometric random graph G(n, r)
with r = 2/3

Figure A.2: Geometric random graphs
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(a) In a Geometric random graph.
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(b) In a Bernoulli random graph.

Figure A.3: Convergence of the k-th root of the number of paths of length k (depicted as a dashed
curve) to the spectral radius of the graph λA (solid curve) with respect to k.
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A.3.2 Random Matrix Theory

The main application of random matrix theory lies on the derivation of asymptotic results for large

random matrices. In many practical cases, the eigenvalue distribution of large random hermitian

matrices converges to a definite probability distribution, called empirical distribution or density of

states. In particular, we can also find the value or bounds of the largest or smallest eigenvalues of

large random hermitian matrices.

In this work we will use random matrix theory to derive the spectral radius of a Geometric random

graph.

Definition A.2 An Euclidean random matrix is an n × n matrix, A, whose entries are a

function of the positions of n random points in a compact set D of Rd.

More precisely, if n nodes, x1, . . . , xn, are located randomly, uniformly i.i.d., in a square of unit

area D and the matrix A is defined as

A := (F (xi − xj))16i6j6n

where F is a measurable mapping from Rd to C. Then A is an Euclidean random matrix.

We consider the boolean model of connectivity, i.e., two nodes are connected if the distance between

them is inferior to a certain threshold and otherwise they are disconnected. Therefore, if n nodes

are located randomly, uniformly i.i.d., in a square of unit area and each node transmits at a power

in order to cover an area of r(n), then the adjacency matrix of this random graph is given by

Aij = 1{‖xi−xj‖6r(n)}

where

1{‖xi−xj‖6r(n)} =

{

1 if ‖xi − xj‖ 6 r(n)

0 otherwise.

We would like to determine for this adjacency matrix the maximum eigenvalue or spectral radius

and relate it to the congestion on the network.

In order to determine the congestion number, we explicit recent results of Bordenave on Geometric

random graphs. Following the paper of Bordenave [Bor08], we assume that the discrete Fourier

transform of F is defined for all k ∈ Zd where

F̂ (k) =

∫

D
F (x)e−2πik·xdx
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We assume that almost everywhere (a.e.) and at 0, the Fourier series of F exists and

F (x) =
∑

k∈Zd

F̂ (k)e2πik·x

A sufficient condition for the existence of the Fourier series of F (a.e.) is that

∑

k∈Zd

|F̂ (k)| < +∞

and F to be continuous at zero.

Let’s define An = A/n and

µn =
n
∑

i=1

δλi(n)/n

where {λi(n)}16i6n is the set of eigenvalues of A and δ is the Dirac function. Notice that

{λi(n)/n}16i6n is the set of eigenvalues of An.

Let’s define the measure

µ =
∑

k∈Z

δF̂ (k)

The following theorem gives us the convergence of the empirical distribution or density of states to

a non-random distribution characterized by the Fourier transform of the function F .

Theorem A.3 (Bordenave, [Bor08]) In the previous setting

lim
n→+∞

µn(K) = µ(K) a.e.

for all Borel sets K with µ(∂K) = 0 and 0 /∈ K̄.

The following corollary gives us a formula to compute the spectral radius of a graph.

Corollary A.1 ([Bor08]) The convergence of the spectral radius of An, almost surely, is given by

lim
n→+∞

max
16i6n

|λi(n)|
n

= max
k∈Zd
|F̂ (k)|.

Having this corollary in mind we can compute for different norms the spectral radius of a graph.
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The following norms will be considered:

‖x‖∞ := max{|x1|, . . . , |xn|} (Infinity norm), (A.1)

‖x‖p :=

(

n
∑

i=1

|xi|p
)1/p

(p-norm) ∀p > 1, (A.2)

‖x‖1 :=
n
∑

i=1

|xi| (Manhattan norm). (A.3)

Note that with the infinity norm case we obtain a closed form expression given by

F (x) = 1{max16i6d|xi|6r}(x),

for which its discrete Fourier transform writes as

F̂ (k) = rd
d
∏

i=1

sin(2πkir)

2πkir

where k = (k1, . . . , kd) ∈ Z.

Then for the infinity norm the spectral radius is given by rd.

The figures A.5(a) and A.5(b) give us the asymptotic convergence of the spectral radius of the

adjacency matrix to the maximum of the Fourier transform over the d-dimensional integer lattice

with respect to the number of nodes on the network.
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(a) In a Geometric random graph.
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(b) In a Bernoulli random graph.

Figure A.4: Convergence of the k-th root of the number of paths of length k (depicted as a dashed
curve) to the estimation of the spectral radius (solid curve) given by Bordenave’s Theorem and
Füredi-Komlós’ Theorem, respectively, with respect to k.

There is a similar result on the spectral radius of a Bernoulli random graph A that we put for

completeness.
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Theorem A.4 (Füredi-Komlós, [FK81]) Let aij , i > j, be independent (not necessarily identi-

cally distributed) random variables bounded with a common bound K. Assume that for i > j, the

aij have a common expectation µ and variance σ2, further that E(aii) = ν. Define aij for i < j by

aij = aji (the numbers K, µ, σ2, ν will be kept fixed as n will tend to infinity).

If µ > 0 then the distribution of the largest eigenvalue of the random symmetric matrix A = (aij)

can be approximated in order 1/
√

n by a normal distribution of expectation

(n− 1)µ + ν + σ2/µ

and variance 2σ2.

The result of this theorem stems from the analysis of the largest eigenvalue of non-zero mean

random matrices with independent entries.

From this theorem in our case the constants are K = 1, µ = p, ν = 0 and σ2 = p(1 − p) and then

the expected spectral radius of a Bernoulli random graph is (n− 1)p + (1− p).
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(a) In a Geometric random graph.
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Figure A.5: Convergence of the largest eigenvalue (dashed curve) to the asymptotic approximation
(solid curve) given by Bordenave’s Theorem and Füredi-Komlós’ Theorem, respectively.

A.4 Conclusions and Future Work

In this contribution, we have provided a model to deal with congestion of randomly deployed

wireless nodes. For various cases of random graphs (Bernoulli random graphs and Geometric

random graphs), we have provided, in the case of large networks, the congestion number which is

linked to the number of connected paths of a given length. Quite remarkably, the mean congestion

number can be explicitly derived using asymptotic results of random matrix theory and the results

holds even for a not so large number of nodes. Further studies will focus on providing central limit

theorems on the congestion number in order to have a better assessment of the quality of service
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in the network. Other realistic models (beside the boolean model for connectivity) will also also

studied in combination with other random distribution of the nodes.
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Télécommunications (AlgoTel’08), May 2008.

[GR06a] L. Gargano and A. A. Rescigno. Optimally fast data gathering in sensor networks. In

Rastislav Kralovic and Pawel Urzyczyn, editors, MFCS, volume 4162 of Lecture Notes

in Computer Science, pages 399–411. Springer, 2006.

[GR06b] L. Gargano and A. A. Rescigno. Optimally fast data gathering in sensor networks. In

Rastislav Kralovic and Pawel Urzyczyn, editors, MFCS, volume 4162 of Lecture Notes

in Computer Science, pages 399–411. Springer, 2006.

[GR09] L. Gargano and A. A. Rescigno. Collision-free path coloring with application

to minimum-delay gathering in sensor networks. Discrete Applied Mathematics,

157(8):1858 – 1872, 2009.

[HJ90] R. Horn and C. Johnson. Matrix analysis. Cambridge University Press, Cambridge,

1990. Corrected reprint of the 1985 original.

[HKP+05] J. Hromkovic, R. Klasing, A. Pelc, P. Ruzicka, and W. Unger. Dissemination of

Information in Communication Networks: Part I. Broadcasting, Gossiping, Leader

Election, and Fault-Tolerance. Springer Monograph. Springer-Verlag, 2005.

[JPPQ03] K. Jain, J. Padhye, V.N. Padmanabhan, and L. Qiu. Impact of interference on multi-

hop wireless network performance. In MobiCom’03, pages 66–80, 2003.

[KLNP05] R. Klasing, Z. Lotker, A. Navarra, and S. Pérennes. From balls and bins to points and
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Collecte d’Information dans les Réseaux Radio

Résumé: Cette thèse concerne l’étude de l’algorithmique et de la complexité des communications

dans les réseaux radio. En particulier, nous nous sommes intéressés au problème de rassembler

les informations des sommets d’un réseau radio en un noeud central. Ce problème est motivé

par une question de France Telecom (Orange Labs) “comment amener Internet dans les villages”.

Les sommets représentent les maisons des villages qui communiquent entre elles par radio, le but

étant d’atteindre une passerelle connectée à Internet par une liaison satellite. Le même problème se

rencontre dans les réseaux de senseurs où il s’agit de collecter les informations des senseurs dans une

station de base. Une particularité des réseaux radio est que la distance de transmission est limitée

et que les transmissions interfèrent entre elles (phénomènes d’interférences). Nous modélisons ces

contraintes en disant que deux sommets (équipements radio) peuvent communiquer s’ils sont à

distance au plus dT et qu’un noeud interfère avec un autre si leur distance est au plus dI . Les

distances sont considérées dans un graphe représentant le réseau. Une étape de communication

consistera donc en un ensemble de transmissions compatibles (n’interférant pas). Notre objectif

est de trouver le nombre minimum d’étapes nécessaires pour réaliser un tel rassemblement et de

concevoir des algorithmes réalisant ce minimum. Pour des topologies particulières comme le chemin

et la grille, nous avons établi des résultats optimaux ou quasi optimaux. Nous avons aussi considéré

le cas systolique (ou continu) où on veut maximiser le debit offert à chaque noeud.

Data Gathering in Radio Networks

Abstract: This thesis concerns the study of the algorithmic and the complexity of the communi-

cations in radio networks. In particular, we were interested in the problem of gathering information

from the nodes of a radio network in a central node. This problem is motivated by a question of

France Telecom (Orange Labs) “How to bring Internet in villages”. Nodes represent the houses of

the villages which communicate between them by radio, the goal being to reach a gateway con-

nected to Internet by a satellite link. The same problem can be found in sensor networks where

the question is to collect data from sensors to a base station. A peculiarity of radio networks is

that the transmission distance is limited and that the transmissions interfere between them (in-

terference phenomena). We model these constraints by saying that two nodes (radio devices) can

communicate if they are at distance at most dT and a node interferes with another one if their

distance is at most dI . The distances are considered in a graph representing the network. Thus,

a communication step will consist in a compatible (non interfering) set of transmissions. Our goal

is to find the minimum number of steps needed to achieve such a gathering and design algorithms

achieving this minimum. For special topologies such as the path and the grid, we have proposed

optimal or near optimal solutions. We also considered the systolic (or continuous) case where we

want to maximize the throughput (bandwidth) offered to each node.
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