
HAL Id: tel-00505980
https://theses.hal.science/tel-00505980

Submitted on 26 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hyperelliptic Cryptosystems – Efficiency and
Subexponential Attacks

Andreas Enge

To cite this version:
Andreas Enge. Hyperelliptic Cryptosystems – Efficiency and Subexponential Attacks. Mathematics
[math]. Universität Augsburg, 2000. English. �NNT : �. �tel-00505980�

https://theses.hal.science/tel-00505980
https://hal.archives-ouvertes.fr

HYPERELLIPTIC
CRYPTOSYSTEMS

Efficiency and
Subexponential Attacks

Andreas Enge

HYPERELLIPTIC
CRYPTOSYSTEMS

Efficiency and
Subexponential Attacks

Dissertation

von

Andreas Enge

eingereicht am

Institut für Mathematik der

Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Augsburg im

August 2000

Erster Berichterstatter: Prof. Dr. Dieter Jungnickel
Zweiter Berichterstatter: Prof. Dr. Gerhard Frey
Tag der mündlichen Prüfung: 8. Dezember 2000

Copyright c© Andreas Enge 2000
All rights reserved
Typeset using LATEX
Printed in Germany by Libri Books on Demand
ISBN 3-8311-1868-X

Meiner Familie

in Liebe gewidmet

Contents

Preface 1

1 Public key cryptography and discrete logarithms 5

1.1 Public key cryptography in groups . 5

1.2 Discrete logarithms . 7

1.2.1 Brute force algorithm . 7

1.2.2 Pohlig–Hellman attack . 8

1.2.3 Shanks’s baby step giant step algorithm 9

1.2.4 Pollard’s ρ- and λ-algorithms . 9

1.2.5 Cryptographic consequences . 13

1.3 Subexponentiality . 13

2 Algebraic curves and function fields 17

2.1 Algebraic curves . 18

2.1.1 Affine plane curves . 18

2.1.2 Projective plane curves . 18

2.1.3 Curves over perfect fields . 19

2.2 Function fields . 20

2.2.1 Definition of function fields . 20

2.2.2 Discrete valuations . 20

2.2.3 Field of constants . 22

2.2.4 Residue class field . 23

2.2.5 Decomposition law . 23

i

ii CONTENTS

2.2.6 Number fields . 24

2.3 Divisors and Jacobians . 24

2.3.1 Divisors . 24

2.3.2 Riemann–Roch Theorem . 25

2.3.3 Finiteness of the Jacobian . 26

2.4 Ideal classes and regulator . 27

2.4.1 Ideal class groups . 27

2.4.2 Regulator . 28

2.4.3 Ideal class number versus regulator 29

2.5 Weil’s theorem . 30

2.6 Cyclic extensions . 31

2.6.1 Kummer extensions . 32

2.6.2 Artin–Schreier extensions . 33

3 Hyperelliptic curves 37

3.1 Normal forms . 38

3.1.1 Definitions . 38

3.1.2 Characteristic different from 2 . 39

3.1.3 Characteristic 2 . 41

3.2 Ideal (class) groups . 45

3.2.1 Imaginary and real quadratic representations 46

3.2.2 Decomposition of prime ideals . 46

3.2.3 Principal divisors . 49

3.2.4 Semireduced divisors . 50

3.2.5 Reduced divisors . 55

3.3 Arithmetic . 57

3.3.1 The extended Euclidean algorithm 57

3.3.2 Composition . 58

3.3.3 Reduction . 59

CONTENTS iii

4 Efficiency of hyperelliptic cryptosystems 65

4.1 Cryptographic setting . 65

4.2 Probability distribution . 66

4.3 Average complexity of the Euclidean algorithm 67

4.4 Some more probabilities . 73

4.5 Average number of field operations . 75

4.6 Average bit complexity . 79

5 Smoothness 83

5.1 Arithmetical semigroups and formations 84

5.2 Prime divisor theorem . 88

5.3 The subexponential function . 91

5.4 Smoothness in arithmetical semigroups . 92

5.5 Smoothness in class groups . 95

6 Subexponential algorithms for groups with unknown structure 103

6.1 Parameters . 104

6.1.1 Generating property . 104

6.1.2 Maximal exponent . 107

6.1.3 Two-parametric problems . 107

6.2 Algorithm . 108

6.2.1 Finding the group structure . 109

6.2.2 Computing discrete logarithms . 110

6.3 Analysis . 110

6.3.1 Finding a relation . 110

6.3.2 Linear algebra . 112

6.3.3 Success probability . 113

6.3.4 Running time . 114

6.3.5 Subexponentiality . 115

6.4 Previous algorithms . 117

6.5 Group structure . 119

6.6 Implementation . 119

iv CONTENTS

7 Subexponential algorithms for groups with known order 123

7.1 Algorithm . 124

7.2 Linear algebra . 125

7.3 Analysis . 127

7.3.1 Success probability . 127

7.3.2 Running time . 128

7.3.3 Subexponentiality . 130

7.4 Cyclic subgroups . 133

7.4.1 Perturbing with elements of the complement 133

7.4.2 Using a basis for G . 134

7.5 Implementation . 135

Bibliography 137

Index 147

Preface

During the past decades, cryptography has left the realm of the military and secret
services and is on its way to becoming a tool routinely used by the general public. There
are two reasons for these changes.

On the one hand, the increasing dependence of our economy on electronic means of
communication and the growing acceptance of the Internet for carrying out commercial
transactions and exchanging private information creates new demands for the protection
of electronic data. The recent hacker attacks on Internet based companies and the com-
prehensive spying network “Echelon” installed by the anglosaxon countries over Europe
demonstrate the threat the new information technologies constitute for our economic
prosperity and for the civil rights. In fact, it is easily possible to scan and even modify
electronic messages on a large scale basis.

The only effective countermeasure is to routinely encrypt all electronic transactions.
When using conventional, symmetric cryptosystems, the two communicating parties have
to agree on a common secret key beforehand, so that this type of cryptography is perfectly
suited for the needs of hierarchically structured organisations with sufficient means of
distributing secret keys. The general demand for data protection, however, cannot be
met by symmetric cryptography, since a network like the Internet is an only loosely
organised community of up to hundreds of millions of participants, who moreover can
easily fake their identities and thus cannot trust one another too much. On the other
hand, public key or asymmetric cryptography, discovered in the late seventies, offers a
solution to the problems occurring precisely in heterogenous networks.

Public key cryptography emerged from an amazing synthesis of engineering, computer
science and branches of mathematics which were so far counted among the “purest” ones,
namely number theory and algebraic geometry. The first such systems were based on
the perceived difficulty of factoring large numbers and computing discrete logarithms
in large finite fields. In complexity theory, a problem is usually considered “hard” if
only exponential algorithms are known to solve it. It turned out, however, that the
two problems mentioned above can be solved in subexponential time, so that key sizes
of about 1000 bits are needed to produce secure systems. An attractive alternative is

1

2 PREFACE

provided by cryptosystems based on the difficulty of computing discrete logarithms in
algebraic groups, the state of the art being elliptic curve cryptosystems. Since no general
subexponential attacks are known for elliptic curve cryptosystems, they require key sizes
of only about 160 bits. A natural extension of this concept is to consider Jacobians of
more general curves over finite fields, for instance of hyperelliptic curves. Surprisingly
enough, it was soon conjectured that hyperelliptic cryptosystems of higher genus are
less secure than elliptic ones since they are probably prone to subexponential attacks.
Another possible generalisation, cryptosystems based on class groups of number fields,
turned out to be vulnerable by subexponential algorithms as well.

In this book, we treat two main topics. First, we examine hyperelliptic cryptosys-
tems, providing a detailed analysis of the arithmetic in hyperelliptic Jacobians. Second,
we study subexponential algorithms for computing discrete logarithms in finite abelian
groups, which compromise the security of the corresponding public key cryptosystems.
In fact, the existence of subexponential algorithms for apparently very different groups
leads to the intuition that these groups are linked by some common structural properties.
We develop a general framework for subexponential algorithms, which indeed covers all
examples treated in the literature, and hopefully serves to devise algorithms for further
groups in the future. The two topics come together in the description of a discrete
logarithm algorithm in hyperelliptic Jacobians, for which we present the first proofs of
subexponential running times.

In the first chapter, we give a short introduction to the concepts of public key cryptog-
raphy to motivate the study of discrete logarithm algorithms and to demonstrate the
power of subexponential attacks.

The second and third chapters deal with algebraic curves and their Jacobians and espe-
cially with hyperelliptic curves. In the cryptographic community, there is a certain awe of
algebraic curve cryptosystems because of the depth of the underlying mathematical con-
cepts. In the spirit of [Eng99], which has been used successfully to teach undergraduate
courses on elliptic curve cryptography, we provide an introduction which is as elementary
and self-contained as possible. To this purpose, the presentation is based on the analogy
between number fields and function fields of algebraic curves, and thus ultimately on the
theory of Dedekind rings. While due to space restrictions the chapter on general curves
has to rely heavily on references to the literature, we develop the theory of hyperelliptic
curves in great detail, providing proofs for all assertions. Hyperelliptic curves over fields
of even characteristic, which have received less attention in the literature, but which turn
out to be especially attractive for implementations, are treated with equal care. We pro-
vide a complete algorithmic characterisation of these curves and their real and imaginary
quadratic models and show how to realise their arithmetic, hereby generalising several
algorithms which have previously been formulated for odd characteristic only.

The existence of several algorithms for realising the arithmetic and the fact that the secu-
rity of hyperelliptic cryptosystems is determined by two parameters lead to the question
which algorithms and which curves to choose to achieve the most efficient arithmetic for

PREFACE 3

a given security level, a question which is addressed in Chapter 4. The basis of the anal-
ysis is the exact average complexity of a fundamental algorithm, namely the Euclidean
algorithm on polynomials over finite fields.

The general framework for subexponential discrete logarithm algorithms is the topic of
Chapter 5. We derive the structure a group must have so that the algorithms based
on collecting relations may be formulated for the group, and verify that the classical
examples and the new case of hyperelliptic curves fit into this context. The proofs of
subexponentiality require that a certain smoothness assumption be fulfilled. We show
that this is the case for hyperelliptic curves of large genus, hereby providing the first proof
of such a theorem for class groups which does not rely on any unproven assumption. The
generic model of Section 5.1 has been found together with Pierrick Gaudry and the results
of Section 5.5 are joint work with Andreas Stein.

The last two chapters present two algorithms for computing discrete logarithms in the
general context; for both of them, we rigorously prove a subexponential complexity. For
hyperelliptic curves, the subexponentiality can only be obtained if their genus is “large”,
and the dependence of the running time on the genus can be quantified explicitly. The
first algorithm applies without any further knowledge on the group; as a byproduct, it
usually solves the fundamental task of computing the elementary divisors of the group
and its canonic representation as a product of cyclic subgroups.

The second algorithm, which has been developed in collaboration with Pierrick Gaudry,
is much faster. It applies to cyclic groups of known order, which are precisely the groups
used in cryptography, and has basically the same complexity for all examples fitting
into the general framework. For finite fields, we recover the running time of the fastest
algorithms described in the literature; for class groups of imaginary quadratic number
fields, we obtain a considerably faster algorithm than the previously known best one.
Furthermore, the analysis shows that discrete logarithms can be computed in Jacobians
of hyperelliptic curves of large genus as fast as in finite fields if only algorithms with a
proven complexity are taken into account. Thus, hyperelliptic cryptosystems are even
less secure than suspected so far. Moreover, the new algorithm can be implemented with
only minor modifications, contradicting the observation made until now that subexpo-
nential algorithms either have a rigorously proven complexity, but are not implementable
efficiently; or can be easily implemented, but have an only conjectured subexponential
complexity.

4 PREFACE

Acknowledgements

I am grateful to Dieter Jungnickel, who marvellously supervised my research during the
past years; I could always count on his help and advice when I needed it. I thank him
and Reinhard Schertz for supporting me in finding the necessary funding for my work.
In particular, my research was supported by a grant of the University of Augsburg

It was a special pleasure to spend several months at the Centre for Applied Cryptographic
Research of the University of Waterloo, where I discovered most of the topics treated in
this book and found many of the results. I thank Scott Vanstone and Alfred Menezes for
the invitations and the funding of my stays and for fruitful discussions, which directed
me in my research.

Special thanks are due to Pierrick Gaudry and Andreas Stein; working with them was a
rewarding and an instructive experience.

I am grateful to my family and my friends, whose love and friendship gave me the force
for this endeavour.

Chapter 1

Public key cryptography and
discrete logarithms

The importance of public key cryptography for encrypting electronic transactions over
a network like the Internet has already been pointed out in the preface. Maybe even
more important for electronic commerce are digital signatures, which prevent a message
from being altered during the transmission and allow to uniquely identify its sender.
By their very nature, digital signatures cannot be realised in conventional symmetric
cryptosystems, but only by asymmetric cryptography.

This introductory chapter gives a short overview of public key cryptography based on
the discrete logarithm problem in cyclic groups and of possible attacks. “Conventional”
such cryptosystems utilise the multiplicative group of finite fields, but the existence of
subexponential attacks in this setting has led to the invention of cryptosystems based
on algebraic groups. While the material of this chapter is fairly standard, it has been
included to make the book self-contained and to provide motivation for the following
chapters.

1.1 Public key cryptography in groups

To convey the flavour of public key cryptography, we describe one encryption and one
signature scheme. Further examples can be found in [MOV97], Chapters 8 and 11.

Assume that an additively written group G and an element α of G of known finite
order N are given. The first public key protocols described in the literature used the
multiplicative group of finite prime fields; the generalisation to arbitrary groups, however,
is straightforward.

5

6 CHAPTER 1. CRYPTOGRAPHY AND DISCRETE LOGARITHMS

Suppose that two persons, Kevin and Laura, wish to interact securely. Kevin chooses a
random integer k ∈ {0, . . . , N − 1} as his secret key, computes kα and makes this group
element known as his public key. Similarly, Laura chooses a secret key l ∈ {0, . . . , N −1}
and publishes lα.

When Kevin wants to encrypt a message so that only Laura can decipher it, he chooses
a further random number r ∈ {0, . . . , N − 1} and sends rα to Laura. Now both Laura
and Kevin share rlα as their common secret: Laura computes rlα = l(rα) from the
knowledge of rα and her secret key l, Kevin computes rlα = r(lα) from the knowledge
of r and Laura’s public key lα. So far, the procedure is known as Diffie–Hellman key
exchange, with a slight modification due to ElGamal ([DH76, ElG85]). To send a message
to Laura, Kevin may encode it as an element m ∈ G and send m+ rlα; Laura subtracts
rlα and recovers the original message. As at most N distinct messages may be encoded
by elements of G, the original message usually has to be broken up into blocks, each
of which is encrypted using a different random number r. This procedure is not very
efficient; moreover, depending on the group, it is often not clear how to encode messages.
(The last difficulty arises, for instance, in groups based on algebraic curves.) Thus, it is
common to use a hybrid scheme by extracting a bit sequence from rlα and using it as
the key for a conventional, symmetric encryption algorithm.

To sign a message, Kevin has to somehow prove his knowledge of his private key k
(without actually revealing the key itself) to identify himself as the sender; and he has to
link this information to the message to prevent its alteration. A possible implementation
of this general idea is given by ElGamal’s signature scheme ([ElG85]). To cope with
encoding difficulties, we transfer the problem into the integers. So we assume that the
message to be signed is an integer m ∈ {0, . . . , N − 1} (which may, for instance, be
obtained from the original message by applying a hash function). Moreover, we assume
the existence of a bijection g : G → {0, . . . , N − 1}. (Such a bijection is not always
easy to obtain, especially for groups associated with algebraic curves. In practice, it is
sufficient to use a low degree map, for which only few elements of G map to the same
value.) Kevin then chooses a random integer r ∈ {0, . . . , N − 1} which is coprime to N ,
computes β = rα and solves the congruence

m ≡ kg(β) + rs (mod N).

Since r and N are coprime, there is a unique solution s ∈ {0, . . . , N − 1}. The pair (β, s)
constitutes the signature for m and is sent to Laura along with m.

Laura may check the validity of the signature as follows. She computes mα and (kg(β)+
rs)α = g(β)(kα) + sβ from the knowledge of β and s and Kevin’s public key kα. If the
two values agree, she accepts the signature as valid.

1.2. DISCRETE LOGARITHMS 7

1.2 Discrete logarithms

Clearly, the security of the encryption and signature schemes of the previous section
depends on the difficulty of the discrete logarithm problem in G. Given β = rα, we call r
the discrete logarithm of β to the base α, denoted by r = logα β; it is determined uniquely
modulo the order N of α. (The notion of “logarithm” is derived from multiplicatively
written groups; however, we prefer additive notation, which is more common for algebraic
groups.) Someone who is able to compute Kevin’s private key k from his public key kα
by solving a discrete logarithm problem is henceforth able to decipher all encrypted
messages sent to Kevin and to forge his signature.

Unfortunately, there might be simpler attacks. During a Diffie–Hellman key exchange
as described in Section 1.1, an eavesdropper overhears rα. He already knows lα, and to
crack the system he must compute rlα. This problem is known as the Diffie–Hellman
problem. As no algorithm is known to solve it without computing discrete logarithms, it
is generally believed that the Diffie–Hellman problem and the discrete logarithm problem
are equivalent. Polynomial time equivalence has indeed been shown for some classes of
groups in [MW99].

Since all computations actually take place in the subgroup generated by α, we may
assume that G is cyclic of cardinality N .

Clearly, the difficulty of the discrete logarithm problem depends on the group G. If G
were infinite, for instance, then a bisection technique would probably yield an efficient
algorithm: As there are only finitely many bit strings of a given length, the length
of a binary representation of lα would somehow have to correlate with the size of l.
This approach is no more available for finite groups, which makes the discrete logarithm
problem more difficult in general.

Still, the problem may be easy for particular representations of the abstract cyclic group
with N elements. For G = Z/NZ, it is possible to compute α−1 by the extended
Euclidean algorithm and to derive l = (lα)α−1 in polynomial time. During the remainder
of this section, we give a brief survey of algorithms for solving the discrete logarithm
problem in arbitrary finite cyclic groups fitting into the following model: Group elements
are encoded by unique bit strings, which allows to compare elements obtained in different
ways and to sort a subset of G. The group operations (addition, inversion) are executed
by an oracle, which on input of an element returns its inverse or of two elements returns
their sum.

To fix the notation, let β = lα be the element for which the discrete logarithm l is sought.

1.2.1 Brute force algorithm

The simplest algorithm for computing discrete logarithms is the brute force attack. One
may check each possible solution l ∈ {0, . . . , N − 1} if it is the correct discrete logarithm

8 CHAPTER 1. CRYPTOGRAPHY AND DISCRETE LOGARITHMS

by computing lα and comparing with β. Similar approaches are often used to crack
conventional, symmetric cryptosystems which do not offer enough structure for more
efficient algorithms. It is easily possible to distribute the range of elements to be tested
over a computer network. Since there is almost no overhead in communication involved,
the speed-up achievable by this type of parallelisation is roughly proportional to the
number of participating machines.

Of course, the exact complexity of the algorithm depends on the concrete problem; in any
case, the expected number of group operations is in Ω(N). Instances with a key length
of 56 bits, i.e. 256 possibilities to test, are solved routinely, sometimes in only a few
hours by specialised hardware ([McN99]). Hence, cryptosystems with the once popular
key length of 64 bits are also considered insecure; a lower bound generally deemed secure
for the next few years is 80 bits, the next generation of symmetric cryptosystems will
have key lengths of at least 128 bits ([NIS97]). A first consequence for discrete logarithm
cryptosystems is that the group order should not be less than 280.

1.2.2 Pohlig–Hellman attack

A simple application of the Chinese Remainder Theorem allows to break the discrete
logarithm problem in G into a number of such problems in its Sylow subgroups. More-
over, a lifting argument shows that it is in fact sufficient to compute logarithms in the
subgroups of G of prime order. The following algorithm has been described in [PH78].

Write the factorisation of N as

N =
r∏

i=1

pνi
i .

The Chinese Remainder Theorem allows to reconstruct l if it is known modulo all the pνi
i .

To compute l mod pν , an inductive lifting argument can be used. Assume that l mod pe

is known (in the beginning, e = 0), and write l = (l2p+ l1)p
e+ l0 with l0 ∈ {0, . . . , pe−1}

known and l1 ∈ {0, . . . , p−1} and l2 unknown. The correct value of l1, i.e. of l mod pe+1,
is computed as follows. Let γ = N

p be a generator of the subgroup of order p of G. Then

N

pe+1
(β − l0α) =

N

pe+1
(l2p+ l1)p

eα = (l2p+ l1)γ = l1γ,

and

l1 = logγ

(
N

pe+1
(β − l0α)

)
.

Consequently, the security of a discrete logarithm cryptosystem does not depend so much
on N , but rather on its largest prime factor. To resist the combination of a Pohlig–
Hellman attack and a brute force attack, the largest prime factor of N must be at least
as large as 280. Since the arithmetic efficiency of the group law and the amount of data

1.2. DISCRETE LOGARITHMS 9

to be transmitted depend on N , one is interested in keeping N as small as possible. Thus
by the discussion above, N should be prime or “almost prime” in the sense that it is the
product of a large prime and some rather small cofactor.

1.2.3 Shanks’s baby step giant step algorithm

Besides the brute force algorithm of complexity in Θ(N) group operations, there are

several algorithms of complexity Θ
(√

N
)

which compute discrete logarithms in arbi-

trary groups. One of them is due to Shanks [Sha71]; it is deterministic, but its space

requirement is also in Θ
(√

N
)
and it is not parallelisable in an efficient way. The basic

idea is that looking up an element in an ordered set takes only logarithmic time, so
that it is possible to test a large number of candidates for the discrete logarithm quasi
simultaneously.

Let L =
⌈√

N
⌉
. Compute the list of baby steps (iα, i) for i = {0, . . . , L} and sort it by

the first component. Compute Lα and the giant steps β − jLα for j ∈ {0, . . . , L} and
look up the computed elements in the baby step list. If one of them is found and equals
iα, then l = jL+ i. The algorithm is guaranteed to succeed since any l ∈ {0, . . . , N − 1}
has such a representation.

Strictly speaking, the algorithm requires Θ(N) additions and Θ(N logN) comparisons of
group elements; since comparisons are usually much faster than additions, the effort for
executing them is commonly omitted in the literature and Shanks’s algorithm is referred
to as a “square root algorithm”.

1.2.4 Pollard’s ρ- and λ-algorithms

In [Pol78], Pollard suggests two probabilistic algorithms for computing discrete loga-
rithms which require practically no storage space. They exploit the concept of a random
walk. Starting with a random group element x0 = a0α+ b0β, the ρ algorithm constructs
recursively sequences (xi)i≥0, (ai)i≥0 and (bi)i≥0 by

xi+1 =

 αxi
βxi
2xi

ai+1 =

 ai + 1
ai
2ai

bi+1 =

 bi
bi + 1
2bi

(1.1)

Notice that the invariant xi = aiα + biβ holds if xi+1, ai+1 and bi+1 are always chosen
from the same line. As soon as a collision xi = xj occurs, the relation

l(bj − bi)α = (bj − bi)β = (ai − aj)α

implies
l(bj − bi) ≡ ai − aj (mod N).

10 CHAPTER 1. CRYPTOGRAPHY AND DISCRETE LOGARITHMS

If N is a large prime, then this equation determines l with an overwhelming probability.

It remains to explain how the line in (1.1) is chosen. It is desirable that xi+1 depends
uniquely on xi, since otherwise the sequence (xi)i≥0 is simply a random sequence of
elements of G, which would have to be stored completely to detect a collision. Pollard
illustrates his algorithms by a kangaroo jumping from one location xi to the next one
xi+1, and the length of its leap is uniquely determined by the state of the ground in the
place xi. In practice, to preserve a maximal randomness, one partitions G “randomly”
into three sets of roughly equal size G = T1∪̇T2∪̇T3 and selects xi+1 from line j if xi ∈ Tj ;
the partition is usually obtained by applying a hash function to xi.

Since G is finite, the sequence (xi)i≥0 becomes ultimately periodic, i.e. the kangaroo
crosses its own path, which can be pictured by the ρ shaped Figure 1.1.

xµ−1

x0

x1

xµ

xµ+1xµ+λ−1

Figure 1.1: Pollard’s ρ

Pollard suggests a cycle finding strategy due to Floyd (see [Knu81], Exercise 3.1.6), which
consists of computing yi = (xi, ai, bi, x2i, a2i, b2i) until xi = x2i. This corresponds to
observing two kangaroos, an old and a young one, which both start in x0. But whenever
the old kangaroo makes one jump, the young one jumps twice. The scheme requires to
store only the positions of the two kangaroos, i.e. one tuple yi, at a time at the expense

1.2. DISCRETE LOGARITHMS 11

of having to apply the iterating function thrice to move from yi to yi+1. If µ denotes the
length of the preperiod and λ the length of the period as sketched in Figure 1.1, then a
collision xi = x2i occurs as soon as i ≥ µ and λ|i.
Assuming that the iterating function xi 7→ xi+1 is a random element of the NN maps
from G to G, it is possible to show that the expected value of i for which the first collision
is detected is

π2

12

√
π

2
N ≈ 1.03

√
N.

Extensive experiments showed that Pollard’s iterating function requires on average a
constant percentage more steps; however, differently chosen functions yield the predicted
complexity ([Tes01].

Pollard’s second algorithm is particularly useful if the discrete logarithm is known to
lie in some range [l1, l2] of length L = l2 − l1 � N ; it then needs an expected number
of O(

√
L) group operations. Let S = {s1, . . . , sk} be a small set of some rather small

positive integers and G = T1∪̇ . . . ∪̇Tk a (random) partition of G into k sets of roughly
equal size; in one example, Pollard uses S = {1, 4, 16, 64}. We consider the path of a
tame kangaroo, which starts its jumps at some known place x0 = a0α, for instance,
x0 = l1α, and construct the sequences (xi)i≥0 and (ai)i≥0 by

xi+1 = xi + sjαj and ai+1 = ai + sj for xi ∈ Tj .

After some number m+1 of steps, the tame kangaroo passes the limit l2, i.e., am+1 > l2,
and we dig a hole in the place xm to put up a kangaroo trap. A second, wild kangaroo
starts in the location x′0 = β = lα with unknown index l; we let a′0 = 0 and compute
sequences (x′i)i≥0 and (a′i)i≥0 by the same rules as for the tame kangaroo. If in some
place, the wild kangaroo steps in the footprints of the tame one, i.e., xi = x′j for some
i ≤ m, then it will follow the exact same path and end up in the trap, i.e., x′m′ = xm
for some m′. Then the paths of the two kangaroos can be pictured by the λ shaped
Figure 1.2, and the discrete logarithm can be computed via

l + a′m′ ≡ am (mod N).

If on the contrary the wild kangaroo passes the index l2, which is the case for a′m′ > l2
for some m′, then it has avoided the trap, and the algorithm must be restarted from the
beginning.

It is observed in [OW99] that a combination of the ρ- and the λ-method is easily paral-
lelisable. Consider a troop of wild kangaroos (or fleas, if you do not live in Australia and
believe in the German proverb saying that nothing is more difficult to keep under control
than a bag of fleas). Each of them starts at a random location x0 = a0α+b0β and jumps
around according to the rules of the ρ-method or some variation of it. Beforehand, a set
D ⊆ G of distinguished points is fixed, which must have the only property that they are
easily recognisable, for instance because their binary representation begins by a chain of

12 CHAPTER 1. CRYPTOGRAPHY AND DISCRETE LOGARITHMS

xm = x′
m′

xi = x′
j

x0 x′
0

Figure 1.2: Pollard’s λ

zeroes. In the distinguished points, biologists have set up observation equipment. As
soon as a kangaroo reaches such a point, i.e. xi ∈ D, it is spotted and ai and bi are
recorded. If a second wild kangaroo reaches the same point, i.e. x′j = a′jα + b′jβ = xi,
then

l(b′j − bi) ≡ ai − a′j (mod N),

and l is likely to be found. Each participant in the quest for l can keep their own troop
of kangaroos, but the set of distinguished points reached has to be reported to a central
server, which searches its internal database of sent in points for a collision. Observe
that from the moment where two kangaroos have reached the same point, they march
in unison, and the collision is detected as soon as they arrive at the next distinguished
point. So the maximal time for which a collision may be pending is the maximal distance
between two distinguished points, which can be kept small by choosing a large proportion
of such points. On the other hand, the administrative overhead, i.e. the network traffic
and the effort for handling the database at the central server, grows with the number
of distinguished points. A reasonable choice of this parameter results in an algorithm
the running time of which decreases roughly linearly with the number of participating
computers.

The approach has been used successfully to compute discrete logarithms on an elliptic
curve with approximately 2108 elements in an effort distributed over the Internet ([INR00,
Har01]).

1.3. SUBEXPONENTIALITY 13

1.2.5 Cryptographic consequences

The conclusion to draw from the algorithms described above is that the order of a group
must have a large prime factor, say of size about 2160, so that the discrete logarithm
problem in the group has a chance of being sufficiently hard for a user to trust a cryp-
tosystem built on top of it. Notice that this condition is only necessary as is nicely
illustrated by the easy discrete logarithm problem in Z/NZ mentioned in the introduc-
tion to Section 1.2. In an abstract setting, it is also sufficient: Shoup showed that if the
group operations are performed by an oracle so that no additional structural properties
can be exploited, the algorithms above are optimal; precisely, any discrete logarithm al-
gorithm has a complexity in Ω

(√
p
)
group operations, where p is the largest prime factor

of N ([Sho97], see also [Nec94]). However, all concrete groups carry additional structure,
so that this result is mainly of theoretical interest. Indeed, there is no proven meaningful
lower bound for the complexity of any class of discrete logarithm problems.

The following section shows that a more efficient, subexponential algorithm is available
for the multiplicative groups of finite fields, and Chapters 5 to 7 are devoted to derive a
similar algorithm for further groups.

1.3 Subexponentiality

If G is the multiplicative group of a finite prime field Fp = Z/pZ, particularly efficient
algorithms are available for computing discrete logarithms. They use additional features
of this special representation, namely the unique decomposition of numbers into primes
and the additive structure of Z/pZ. Their running time is subexponential, i.e. bounded
above by

LN (α, c) := ec(logN)α(log logN)1−α

,

the subexponential function with respect to the input size logN of the problem and pa-
rameters α ∈ (0; 1) and c > 0. For α = 0, the subexponential function is in fact the
polynomial (logN)c in the input size; for α = 1, it is the exponential function (ec)logN .
So the smaller α, the more “tamely” the function behaves. Usually, subexponential algo-
rithms with a proven running time have α = 1

2 , so we abridge LN (1/2, c) by LN (c). (For
finite fields, there are further algorithms with a conjectured running time of LN (1/3, c),
the number and the function field sieve .) See Figure 1.3 for the graphs in logarithmic
scale of some subexponential and polynomial functions.

As a large portion of this book is devoted to developing a general framework for subex-
ponential discrete logarithm algorithms, we only sketch a simple version for finite fields
in this place. It will provide us with the intuition for the requirements in the general
setting, which we ultimately apply to Jacobian groups of algebraic curves.

Suppose that α is a generator of the multiplicative group (Z/pZ)×, the elements of
which are represented by their smallest positive residues modulo p, i.e. by integers in

14 CHAPTER 1. CRYPTOGRAPHY AND DISCRETE LOGARITHMS

0

10

20

30

40

50

60

70

80

90

100

100 200 300 400 500 600 700 800 900 1000
ldN

log
(
LN

(
1/2,

√
2
))

log(LN (1/3, 2))

log
(
(logN)3

)

Figure 1.3: Subexponential and polynomial functions

{1, . . . , p− 1}. Let β = αl, where l is the sought discrete logarithm. We fix a smoothness
bound S ∈ N and construct the factor base PS = {p1, . . . , pn} consisting of all prime
numbers pi with ld pi ≤ S.

In a first step, we compute the discrete logarithms of the elements of the factor base as
follows. We construct “linear combinations” (in multiplicative notation)

∏n
i=1 p

ai
i and

reduce modulo p. (This is where the additive structure of Z/pZ comes in, as reduction
modulo p amounts to repetitive subtraction of p.) If the resulting number is S–smooth,
i.e. can be expressed as another linear combination

∏n
i=1 p

bi
i , then we have obtained a

relation of the form
∏n

i=1 p
ci
i = 1, where ci = bi − ai and very probably not all of the

ci equal zero. It follows that
∑n

i=1 ci logα pi = 0. If enough such relations have been
gathered, some linear algebra reveals the logα pi.

In a second step, β is expressed in terms of the factor base elements by a very similar
procedure. Compute β

∏n
i=1 p

ai
i for random ai and reduce modulo p until the resulting

number is S–smooth and can be expressed as
∏n

i=1 p
bi
i . Then β =

∏n
i=1 p

ci
i with ci =

bi − ai, so that logα β =
∑n

i=1 ci logα pi, and all the quantities in this sum are known.

Obviously, S has to be chosen according to two restrictions. First, it must not be too
large. Precisely, it must be small enough so that PS is of subexponential size and thus can
be constructed in subexponential time. If the ai are sufficiently random and uniformly
distributed over a suitable range, then the linear combinations of factor base elements

1.3. SUBEXPONENTIALITY 15

represent random group elements, approximately according to a uniform distribution. So
secondly, S has to be large enough so that one out of a subexponential number of group
elements is S–smooth, and a relation can be obtained in subexponential time.

In finite prime fields, S can be chosen satisfying these two requirements, and an overall
subexponential running time is obtained. (Precise formulations of algorithms and running
time analyses follow in Chapters 6 and 7, which also deal with more general finite fields.)

Due to the applicability of subexponential algorithms, finite fields must be even larger
than discussed in the previous section to provide secure cryptosystems. Currently, fields
with N ≈ 21000 are estimated as secure as “general” groups with N ≈ 2130 (cf. [LV00]),
where by “general” we understand that only the algorithms of Section 1.2 apply.

The only general groups in this sense known and manageable at present are derived from
algebraic curves, namely Jacobians of elliptic and hyperelliptic curves over finite fields.
Until recently, they were believed to be as secure as general groups. For elliptic curves,
this assumption has not been refuted (yet?) except for some easily avoided special cases
([MOV93, FR94, SA98, Sem98, Sma99]). Certain instance (of large genus) of hyperelliptic
curves, however, were soon suspected to be attackable by subexponential algorithms
([ADH94]). The main part of this book is devoted to developing a general framework for
subexponential discrete logarithm algorithms, see Chapters 6 and 7. Besides showing that
all groups for which subexponential attacks are known can be treated in this context,
we verify that also large genus hyperelliptic Jacobians are covered. By the analysis
of Chapter 5, we present the first proof of subexponentiality for a discrete logarithm
algorithm in hyperelliptic Jacobians over finite fields.

Chapter 2

Algebraic curves and function
fields

We have seen in the previous chapter that public key cryptosystems may be constructed
on top of any finite abelian group, provided that the discrete logarithm problem in the
group is hard. Our aim in this chapter is to show that such groups may be derived
from algebraic curves over finite fields, especially from so-called elliptic and hyperelliptic
curves.

There are basically two different, but intertwining approaches to algebraic curves, the
geometric and the field theoretic one. At first sight, the geometric point of view seems
more intuitive, as it adopts concepts known from differential geometry over the real and
complex numbers and generalises them to curves over arbitrary fields. Basically, all
occurring functions are required to be rational instead of differentiable. In cryptography,
elliptic curves are usually studied geometrically and their group law is given by rational
functions.

The field theoretic approach was initiated by Dedekind and Weber in [DW82], who ex-
amined the rational functions on a curve rather than the curve itself. Its main attraction
is the fact that function fields are close analogues of number fields, both being quotient
fields of Dedekind rings. Thus, many number theoretic results carry over directly. Inter-
estingly enough, the major open problem in number theory, the validity of the Riemann
hypothesis, was proved in the function field setting by Weil (see Section 2.5). For a unified
treatment see, for instance, [Eic63, Art67]. While the group associated with an elliptic
curve is the curve itself, this is no more the case for hyperelliptic curves; instead, the
group is a higher dimensional variety. It turns out, however, that it is described more
easily as a structure derived from the function field of the curve than as a geometric
object. Thus, our presentation will be more field theoretic.

17

18 CHAPTER 2. CURVES AND FUNCTION FIELDS

For a thorough introduction to algebraic curves, see [Ful69], in which the geometric point
of view is emphasised, or [Che51, Eic63, Sti93], in which the function field approach is
adopted.

2.1 Algebraic curves

2.1.1 Affine plane curves

Let K be a field. During this and the next section we assume that K is algebraically
closed, a restriction which will be relaxed later. An affine plane curve over K is an
irreducible polynomial C ∈ K[X,Y]\K[X]. A point P = (x, y) ∈ K × K lies on C if
C(P) = C(x, y) = 0. Since no confusion is likely to occur, we refer to either the defining
polynomial or the set of points lying on the curve as “the curve C”. The irreducibility
of C ensures that it is not the union of several curves, like Y 2 −X2 is the union of the
two lines Y −X and Y +X.

To a curve C we associate its coordinate ringK[C] = K[X,Y]/(C). The elements ofK[C]
may be interpreted as polynomial functions from C to K; for algebraically closed K, it
can be deduced from the irreducibility of C that K[C] is exactly the ring of polynomial
functions from C to K.

The field of fractions K(C) of K[C] is called the function field of C. It consists of the
rational functions from C to K. As K(C) is the smallest field containing K[X] (and
thus K(X)) and K[X][Y]/(C), it is actually the finite algebraic extension K(X)[Y]/(C)
of K(X).

A point on C is called singular if the partial derivatives ∂C
∂X and ∂C

∂Y vanish simultane-
ously in the point, non-singular otherwise. Curves without singular points are called
non-singular or smooth; such curves are of special interest since the points on them cor-
respond to discrete valuations of their function field, which ultimately allows to trade
the geometric for the field theoretic point of view, see Section 2.2.

2.1.2 Projective plane curves

It turns out that the function field of a smooth curve has more valuations than the curve
has points. To obtain a perfect correspondence, we have to add further points to the
curve by switching to its projective closure.

The projective plane P2(K) is the set of lines K(x, y, z) = {λ(x, y, z) : λ ∈ K} through
the origin with (x, y, z) ∈ K3\{(0, 0, 0)} in three dimensional space. We denote the
projective point K(x, y, z) by (x : y : z). Two sorts of points can be distinguished: If
P = (x : y : z) with z 6= 0, then P = (xz : y

z : 1); it is called finite and corresponds to the
point (xz ,

y
z) of the affine plane A2(K) = K ×K. If z = 0, then P is called an infinite

2.1. ALGEBRAIC CURVES 19

point. Thus, the projective plane can be seen as the disjoint union of an affine plane and
points at infinity (which, in turn, form a projective line).

A projective plane curve over K is defined as an irreducible homogeneous polynomial
C∗ ∈ K[X,Y, Z] which involves all three variables. A point P = (x : y : z) lies on C∗ if
C∗(P) = C∗(x, y, z) = 0; the homogeneity of C∗ ensures that C∗ vanishes either in all
representatives of P or in none of them.

If C∗ is a projective curve, then its dehomogenisation C = C∗(X,Y, 1) with respect to
Z is an affine curve (unless C ∈ K[X], which is a degenerate case we may exclude).
Conversely, if C is an affine curve, then C∗ = ZdegCC

(
X
Z ,

Y
Z

)
is a projective curve, the

projective closure of C. Points (x, y) on C correspond to finite points (x : y : 1) on C∗. It
is possible to associate a coordinate ring and a function field to C∗ in a natural way, and
it turns out that they are isomorphic to the corresponding structures of C. (For further
details, see [Ful69], Chapter 4, or [Eng99], Chapter 2.)

A point on the projective closure C∗ of an affine curve C is singular if the partial deriva-
tives of C∗ with respect to X, Y and Z vanish simultaneously in the point. For finite
points, this definition is equivalent with singularity on C. If C∗ does not contain any
singular point, then it is called non-singular or smooth. The points on a smooth pro-
jective curves are indeed in a one-to-one correspondence with the discrete valuations of
its function field. We briefly note that for a given curve C there is a smooth projective
curve X such that K(C) ' K(X). However, X will not be plane in general, but a one-
dimensional subvariety in a higher dimensional space (see [Ful69], Chapter 7). Curves
with isomorphic function fields are called birationally equivalent, cf. [Ful69], Section 2.6.

From now on, when we write down an affine equation C, it will often be silently under-
stood that it stands for its projective closure or even its smooth projective model. As
we mainly take the field theoretic approach, this will not pose any problems. But before
introducing function fields in more detail, we have to cover the case of ground fields K
which are not algebraically closed.

2.1.3 Curves over perfect fields

We assume from now on that K is a perfect field, i.e. that any finite algebraic extension
of K is separable. Fields of characteristic zero are always perfect. If the characteristic
of K is a prime p, the field is perfect if and only if for any x ∈ K there is a p-th root of
x in K. For instance, finite fields Fq = Fpm are perfect since xq/p = xp

m−1

is a p-th root
of x. For a perfect field K, the algebraic closure K is Galois over K.

Let C be a plane affine curve defined over K, that is, an irreducible polynomial in
K[X,Y]\K[X]. (We restrict the presentation to affine curves, but of course exactly the
same argumentation holds for projective curves.) Then C can be regarded as a curve
over any extension field of K unless it becomes reduced. So we require now and in the
remainder of this text that the curve be absolutely irreducible, i.e. irreducible in K[X,Y].

20 CHAPTER 2. CURVES AND FUNCTION FIELDS

The function field K(C) associated with C/K is defined as above as the field of fractions
of its coordinate ringK[C] = K[X,Y]/(C), i.e. as K(X)[Y]/(C).

If σ ∈ GalK/K is an element of the Galois group of K/K, then it acts in the obvious way

on points P = (x, y) of C/K by Pσ = (xσ, yσ). Hereby, points on C are transformed
into each other since Cσ = C and C(Pσ) = Cσ(Pσ) = (C(P))σ. The points fixed by
all elements of the Galois group are exactly the K-rational points of C, i.e. those with
coordinates in K. In general, any point P on C/K is in fact defined over a finite Galois
extension K0/K, so that the orbit GalK/K(P) = GalK0/K(P) is finite. Such an orbit
is usually referred to as a closed point, which is justified by the fact that on a smooth
projective curve the orbits are in a one-to-one correspondence with the discrete valuations
of its function field and thus play the role of ordinary points in the algebraically closed
setting. The degree of a closed point is its cardinality.

If K = Fq is finite, then GalK/K is topologically generated by the Frobenius automor-

phism σ : K → K, x 7→ xq; any finite extension K0/K is Galois, and its Galois group is
the cyclic group generated by σ|K0 .

2.2 Function fields

In the previous sections, function fields occurred as the fields of rational functions on
algebraic curves (whence they got their name). In this section, we provide an independent
definition and show how the new concept is related to the geometric point of view.

2.2.1 Definition of function fields

Let K be a perfect field. A function field F/K (in one variable) is a finite algebraic
extension of the rational function field K(X). Note that K(X) is not perfect any more,
so that F/K(X) need not be separable. However, it is always possible to choose an
element X ∈ F such that F/K(X) is a simple separable extension K(X)[Y]/(C) (see
[Sti93], Proposition III.9.2). Here, C ∈ K(X)[Y] is an irreducible polynomial, and after
multiplying with the least common denominator of its coefficients we may assume that
C ∈ K[X,Y]. This shows that F is indeed the function field of the plane curve C in the
sense of the previous sections. However, C is only defined up to birational equivalence.

2.2.2 Discrete valuations

To relate the points on C with the structure of F , we need the essentially equivalent
notions of discrete valuations and discrete valuation rings.

A discrete valuation of a function field F/K is a map v : F → Z ∪ {∞} satisfying

2.2. FUNCTION FIELDS 21

1) v(z) = 0 for z ∈ K×, v(x) = ∞ ⇔ x = 0

2) v(xy) = v(x) + v(y)

3) v(x+ y) ≥ min{v(x), v(y)} (triangle inequality)

for all x, y ∈ F .

It can be shown that a discrete valuation satisfies

v(x+ y) = min{v(x), v(y)}

for x, y ∈ F with v(x) 6= v(y) (strict triangle inequality, see [Sti93], Lemma I.1.10).
Property 2) implies that v(F×) is an ideal of Z, i.e. of the form mZ with m ∈ Z.
Excluding the trivial case m = 0 we may replace v by 1

mv and assume that m = 1.

A discrete valuation ring of a function field F/K is a local ring O which is not a field, which
contains K, whose field of fractions is F and whose maximal ideal P is principal. Clearly,
discrete valuation rings and their maximal ideals are in a one-to-one correspondence:
Each discrete valuation ring O has exactly one maximal ideal P; conversely, O is the ring
of multipliers of P, i.e., O = {z ∈ F : zP ⊆ P}. On the other hand, a discrete valuation
ring O with maximal ideal P defines a discrete valuation by vP(x) = max{ν : x ∈ Pν}
and vP(xy) = v(x)− v(y) for x, y ∈ O. Conversely, to a discrete valuation v corresponds

the discrete valuation ring O = {z ∈ F : v(z) ≥ 0} with maximal ideal P = {z ∈ F :
v(z) > 0}. A generator of P is an element t ∈ F with v(t) = 1; it is called a uniformising
or local parameter for v.

The above considerations show that the notions of discrete valuations, discrete valuation
rings and maximal ideals of discrete valuation rings are basically interchangeable. Indeed,
the term “place” is used in the literature to designate one of the above according to the
author’s likings (cf. [Sch31, Eic63, Sti93]). From the next section on, we will often use
the additional term “prime divisor”.

If K is algebraically closed and C a projective curve defined over K, then each non-
singular point P on C defines a valuation of its function field F . Indeed, it can be
verified that the set {z ∈ F : z(P) = 0} of functions with zeroP is the maximal ideal of
a valuation ring, so that the above mentioned correspondence gives rise to a valuation
vP of F satisfying

vP (z) > 0 for z ∈ F with z(P) = 0

and

vP (z) < 0 for z ∈ F with
1

z
(P) = 0,

i.e. for a function z which is not defined at P or of which P is a pole ([Ful69], Section 3.2).
The valuation can be made explicit by determining a local parameter t for P and writing
a function z as z = tν z1

z2
with z1, z2 ∈ F of which P is neither a zero nor a pole and

22 CHAPTER 2. CURVES AND FUNCTION FIELDS

ν ∈ Z. Then vP (z) = ν. Conversely, if C is smooth, then each valuation of F arises in
this way ([Ful69], Section 7.1). If K is not algebraically closed, then the valuations of F
are in a one-to-one correspondence with the closed points of C (see Section 2.1.3).

Examples.

1) Let K be algebraically closed, and consider the rational function field K(X). It
is the function field of the projective line Y . As the Y –coordinate of any point
on the line is zero, it may be omitted, and the points on the line are given by
(x : 1) with x ∈ K and ∞ = (1 : 0). The finite point (x : 1) corresponds to the
valuation vx with local parameter X − x: For r ∈ K(X), write r = (X − x)ν f

g

with ν ∈ Z, f , g ∈ K[X] such that f(x), g(x) 6= 0. Then vx(r) = ν. The infinite
point corresponds to the degree valuation v∞ with local parameter 1

x , such that

v∞(r) = −deg r = deg g− deg f for r = f
g , f , g ∈ K[X]. (In later sections, we will

often identify the infinite valuation v∞ with the infinite point ∞ to simplify the
notation.)

2) Now let K = Fq be finite. The K–rational points on the projective line are again
given by (x : 1) with x ∈ K and ∞. Further closed points are sets {(x0 :

1), . . . , (xk−1 : 1)} with xi = xq
i

0 , and x0 lies in Fqk , but in no subfield of Fqk .
Then p =

∏k−1
i=0 (X − xi) is the minimal polynomial of x0 over K and induces the

valuation vp with local parameter p, i.e. vp(r) = ν if r = pν f
g with ν ∈ Z and f ,

g ∈ K[X] such that p - f, g.

�

2.2.3 Field of constants

Let v be a valuation of F/K. By definition, v vanishes on the constants in K. Fur-
thermore, v vanishes on the algebraic closure K ∩ F of K in F : Let z ∈ F be algebraic
over K, and assume v(z) < 0. (If v(z) > 0, consider 1

z instead, since v(1z) = −v(z).)
There is a monic equation

∑n
i=0 xiz

i = 0 with xi ∈ K and xn = 1 satisfied by z. As
v(xiz

i) = iv(z) < jv(z) = v(xjz
j) for i > j and xi, xj 6= 0, the strict triangle inequality

implies v
(∑n

i=0 xiz
i
)
= nv(z), a contradiction to v(0) = ∞.

So from a valuation theoretic point of view, K ∩F cannot be distinguished from K, and
K ∩F is called the (exact) constant field of K. (It can be shown that for z ∈ F\K there
is a valuation v with v(z) 6= 0, which justifies the additional “exact”.) The constant field
is a finite and, since K is assumed to be perfect, a separable extension of the field of
definition K.

If F = K(C) is the function field of a plane curve C, then K is the field of constants
of F if and only if C is absolutely irreducible (see [Sti93], Proposition III.6.6). In the
remainder of this chapter, we assume this case.

2.2. FUNCTION FIELDS 23

2.2.4 Residue class field

Let O be a discrete valuation ring of F/K with maximal ideal P. The image FP = O/P
of the reduction map O → FP, x 7→ x + P, is called the residue class field of P. By
the characterisation of the constant field of F we have that K ⊆ FP, and in fact FP is
a finite extension of K ([Sti93], Proposition I.1.14); its degree is denoted by degP and
called the degree of P. If K is algebraically closed, then degP = 1; otherwise, if C is
a smooth model for F , the degree of P is the same as the degree of the closed point
corresponding to P defined in Section 2.1.3 ([Sti93], Theorem III.6.3 (c)).

2.2.5 Decomposition law

The valuations of the rational function field K(X) are well known from the example in
Section 2.2.2. Any function field is a finite extension of K(X), so it is of interest to
examine the behaviour of valuations in finite extensions of function fields. The following
results are not specific to function fields; they hold in any Dedekind ring. For proofs, see
[Sti93], Section III.1.

Let F ′/K be a finite extension of F/K with the same constant field K, and let vp
be a valuation of F with discrete valuation ring Op and maximal ideal p. Then there
are finitely many discrete valuation rings of F ′ containing Op; their maximal ideals
P1, . . . ,Pr satisfy Pi ∩F = p. The Pi are called the extensions of p or the prime ideals
above p. If t is a local parameter for vp, then vPi(t) is a positive integer ei, called the
ramification index of Pi/p. Letting OP =

∩r
i=1 OPi , the integral closure of Op in F ′

([Sti93], Corollary III.3.5), the ideals Pi ∩ OP satisfy pOP =
∏r

i=1(Pi ∩ OP)ei , whence
it is common to write Pi|p. The residue class field FPi is a finite extension of Fp; the
degree fi = [FPi : Fp] is called the inertia degree of Pi/p.

Extensions Pi/p are called ramified if ei > 1, unramified otherwise. The prime divisor p
is called ramified if some of its extensions is. Similarly, Pi is called inert if fi > 1, and
p is called inert if some of its extensions is. A prime divisor p which is neither ramified
nor inert is called completely splitting.

The most important fact of this section is the decomposition law

r∑
i=1

eifi = [F ′ : F].

If F ′ : F is Galois, then its Galois group acts transitively on the prime divisors above p.
Consequently, ei = e and fi = f are independent of i, and the decomposition law has
the simpler form

ref = [F ′ : F].

24 CHAPTER 2. CURVES AND FUNCTION FIELDS

2.2.6 Number fields

Number fields are of interest in our context as they provide further examples of groups
to which the algorithms of Chapters 6 and 7 may be applied. In fact, certain number
fields have been suggested for use in cryptography ([BW88]).

A number field is a finite algebraic extension F of the rational numbers Q. Number and
function fields are both fields of fractions of Dedekind rings; so it suffices to provide a
dictionary between structures in number and function fields to see that the theory of
function fields developed so far carries over to number fields.

The ring of integers Z corresponds to the ring of polynomials K[X], its field of fractions
Q to the rational function field K(X). The integers carry a valuation theory analogous to
K[X]. Each prime number p defines a discrete valuation vp via vp(r) = ν if r = pν f

g ∈ Q

with ν ∈ Z, f , g ∈ Z and p - fg. Let Op =
{

f
g : p - g

}
, then the residue class field of vp is

Op/p ' Z/pZ. Denoting by OP the integral closure of Op in F , we have pOP =
∏r

i=1 P
ei
i

with ideals Pi of OP, and fi is defined by fi = [OP/Pi : Z/pZ]. Then the decomposition
law [F : Q] =

∑r
i=1 eifi holds.

In number fields, it is common to replace this local theory by a global one: Let O be
the integral closure of Z =

∩
vp valuation of Q

Op in F ; then pO =
∏r

i=1(Pi ∩ O)ei , and

OP/Pi ' O/(Pi ∩ O). We examine the corresponding situation for function fields, in
whichK[X] =

∩
vp 6=v∞ valuation of K(X)

Op, more closely in Section 2.4, where we also briefly

discuss the analogue of the infinite valuations in the number field case.

2.3 Divisors and Jacobians

The classical group associated with a number field is its class group, a finite abelian
group defined as the quotient of the fractional ideals of the number field by the principal
ideals. In this section, we define the class group of a function field and show that it is a
finite abelian group if the constant field is finite.

2.3.1 Divisors

Let F/K be a function field. Its group of divisors is the free abelian group over its
discrete valuations,

Div(F/K) =
{∑

mPP : almost all mP equal zero
}
,

where the sum is taken over all maximal ideals P of discrete valuation rings of F . For
function fields it is common to use additive notation; however, the divisor group is the

2.3. DIVISORS AND JACOBIANS 25

exact analogue of the multiplicatively written group of fractional ideals of a number field.
The degree of a divisor D =

∑
mPP is

degD =
∑

mP degP.

As the maximal ideals P are the irreducible components of a divisor, we call them prime
divisors.

To an element z ∈ F , we may associate its principal divisor

div(z) =
∑

vP(z)P,

its zero divisor
div0(z) =

∑
P:vP(z)>0

vP(z)P

and its pole divisor

div∞(z) =
∑

P:vP(z)<0

−vP(z)P.

It turns out that div0(z) and div∞(z) are indeed divisors, i.e. that any function has
only finitely many zeroes and poles. Moreover, counting multiplicities appropriately, a
function has as many zeroes as poles; precisely,

deg(div0(z)) = deg(div∞(z)) = [F : K(z)]

([Sti93], Theorem I.4.11). Thus, the group of principal divisors Prin(F/K) is a subgroup
of the group Div0(F/K) of divisors of degree zero. The quotient group

J(F/K) = Div0(F/K)/Prin(F/K)

is called the divisor class group or Jacobian of F/K. We write D ∼ D′ if D and D′

are two degree zero divisors of the same class. (Sometimes, the divisor class group is
defined as Div(F/K)/Prin(F/K). This does not constitute a major difference since
Div(F/K)/Prin(F/K) ' J(F/Q)× Z.)

2.3.2 Riemann–Roch Theorem

For a divisor D ∈ Div(F/K) let L(D) denote the subset of F consisting of the functions
z with div(z) ≥ −D, where the comparison of divisors is componentwise. From the
definition of a discrete valuation follows that L(D) is a vector space over K; moreover, its
dimension l(D) is finite ([Ful69], Section 8.2; [Sti93], Proposition I.4.9). The Riemann–
Roch Theorem relates l(D) and degD. In fact, for our purposes Riemann’s weaker
theorem is sufficient; it states that there is a constant g such that

l(D) ≥ degD + 1− g

26 CHAPTER 2. CURVES AND FUNCTION FIELDS

for all D ∈ Div(F/K). The smallest such g is a non-negative integer, called the genus of
F/K ([Ful69], Section 8.3; [Sti93], Theorem I.4.17). For instance, the rational function
field K(X)/K has genus zero ([Ful69], Section 8.3; [Sti93], Example I.4.18).

For the sake of completeness, we also quote the Riemann–Roch Theorem, which provides
the exact difference between l(D) and degD+1− g. The main assertion of the theorem
is that there exists a divisor W of degree 2g − 2 (called a canonical divisor) such that

l(D) = degD + 1− g + l(W −D)

for all D ∈ Div(F/K) ([Ful69], Section 8.6; [Sti93], Theorem I.5.15). The proof of the
Riemann–Roch Theorem is considerably more technical than that of Riemann’s theorem,
requiring the notion of a differential of a function field.

2.3.3 Finiteness of the Jacobian

Assume that K = Fq is a finite field; we wish to verify that J = J(F/K) is a finite group.
Let g be the genus of F/K. As a matter of fact, J is a g–dimensional algebraic variety,
which implies its finiteness. But the variety structure of J is too complicated for large g
to be of use in computations since J is embedded in some very high dimensional space.
(However, in the case of elliptic curves, i.e. for g = 1, the Jacobian is isomorphic to the
curve itself, and it is efficient to compute the group law by algebraic formulae.)

Instead, our reasoning follows the definition of the Jacobian as a quotient group of the
degree zero part of the divisor group. Let D1 be a fixed divisor of degree 1, which
exists by a theorem of Schmidt’s ([Sch31], § 8; [Sti93], Corollary V.1.11). (Anyway,
we will restrict ourselves to curves with a prime divisor of degree 1 in later sections.)
We proceed by showing that any divisor class contains a divisor of the special form
D′ − gD1 with an effective or positive divisor D′, i.e. a divisor D′ ≥ 0. Let D be a
degree zero divisor. By Riemann’s theorem, l(D + gD1) ≥ 1. Choose z ∈ L(D + gD1)
and let D′ = D + gD1 + div(z), so that D ∼ D′ − gD1. By definition of L, we have
div(z) ≥ −D − gD1 so that D′ ≥ 0. Necessarily, the degree of D′ is g, so that D′

is composed of prime divisors of degree at most g. Since such prime divisors extend
valuations of K(X) induced by irreducible polynomials of degree at most g and each
such valuation has only finitely many extensions (see Section 2.2.5), there are only finitely
many possibilities for D′, and J(F/K) is finite. The divisor class number of F is denoted
by h = |J(F/K)|. Section 2.5 deals with a closer estimate for h than the one which could
be obtained by the reasoning above.

2.4. IDEAL CLASSES AND REGULATOR 27

2.4 Ideal classes and regulator

2.4.1 Ideal class groups

It has been mentioned above that divisor class groups of function fields F/K are closely
related to ideal class groups of number fields. In fact, the analogy falls short, as divisors
in function fields do not correspond to ideals in some ring: A prime divisor P is the
maximal ideal of some discrete valuation ring, and different prime divisors are ideals of
different rings. To be able to develop an ideal theory, we have to designate a ring in F .
Remember that the corresponding ring in the number field case is the integral closure
of Z in the number field. Assume that F/K = K(C) is the function field of some affine
plane curve C. Then the analogue of Z is K[X], and we may consider the ring O as the
integral closure of K[X] in K(C). Since K[X] is the intersection of all valuation rings Op

of K(X) corresponding to finite valuations (i.e. valuations different from ∞), the ring
O is the intersection of all valuation rings OP of F/K extending some finite valuation of
K(X) ([Sti93], Theorem III.2.6). Its field of fractions is F .

The finite valuations of F/K (i.e. the valuations not extending ∞) are in a one-to-one
correspondence with the prime ideals of O. Precisely, the maximal ideal P of a finite
valuation of F/K corresponds to the prime ideal P ∩ O of O. Recall the notion of a
Dedekind ring, which is an integral domain in which all (fractional) ideals can be written
as a unique product of prime ideals (with possibly negative multiplicities). For instance,
the principal ideal domain K[X] is a Dedekind ring. Thus, O is the integral closure
of a Dedekind ring in a finite algebraic extension, namely K(C), whence it inherits the
Dedekind property. Consequently, a fractional ideal a of O admits a unique decomposition
into a product of prime ideals a =

∏
P-∞(P∩O)νP , and the group of fractional ideals of

O is in fact the free, multiplicatively written abelian group over the prime ideals P ∩ O.
We associate to the ideal a the divisor div(a) =

∑
P-∞ νPP. (The distinction between an

ideal and its divisor may seem awkward at first, but it has several advantages. We need
the multiplicative notation in later sections when dealing with concrete representations of
ideals, for which addition is already defined differently. However, by reverting completely
to multiplicative notation, we would lose the analogy to the divisor group; moreover, as
the ideals P lie in different domains, we would always have to take care to write “P∩O”,
which in turn would constitute an unpleasant notational overhead.)

A fractional ideal of O is integral if and only if its divisor is positive; so a divisor in
Div(F/K) belongs to an integral ideal of O if and only if its is positive and does not
contain an infinite prime divisor.

Let I(O) be the group of divisors of fractional ideals of O, i.e. the free abelian group
over the finite valuations of F/K. To an element z ∈ F can be associated the divisor of
its principal ideal

∑
P-∞ vP(z)(P ∩ O). If Prin(O) denotes the subgroup of I(O) formed

by the divisors of principal ideals, then the ideal class group of O is the abelian group
H(O) = I(O)/Prin(O).

28 CHAPTER 2. CURVES AND FUNCTION FIELDS

Thus by examining O, we lose exactly the information on the infinite valuations of F/K.
So O describes the valuation theory of the affine part of the curve C. Note that the dis-
tinction between “finite” and “infinite” valuations of F/K is not intrinsic to the function
field; it arises only when we fix a specific affine model C for F . For instance, deho-
mogenising the projective closure of C with respect to a different projective line than Z
(which corresponds to regarding F as a finite algebraic extension of K(X ′) for X ′ ∈ F
different from X) results in a different ring O.

2.4.2 Regulator

Assume again that F/K is the function field of some affine curve C and that O is the
integral closure of K[X] in F . Let ∞1, . . . ,∞r be the distinct extensions of ∞ in F , so
that the pole divisor of X is div∞(X) =

∑r
i=1 ∞

ei
i , and denote by Div∞(O) the set of

divisors composed of only infinite prime divisors, i.e., Div∞(O) = Z∞1 + · · ·+Z∞r. Let
Div0∞(O) be the degree zero part of Div∞(O), and consider the projection map

πO : Div0(F/K) → I(O),
∑
P

mPP 7→
∑
P-∞

mPP.

Suppose that Div∞(O) contains a divisor D1 of degree 1, which is the case if and
only if the greatest common divisor of the inertia degrees of the ∞i is 1. (In practice,
we will assume that there is some infinite prime divisor which is not inert, so this is no
serious restriction.) Since the preimage of

∑
P-∞mPP under πO contains

∑
P-∞mPP−(∑

P-∞mP degP
)
D1, the map πO is surjective and induces the short exact sequence

0 → Div0∞(O) → Div0(F/K)
πO→ I(O) → 0.

Restricting to principal divisors and ideals, we obtain the exact sequence

0 → Div0∞(O) ∩ Prin(F/K) → Prin(F/K)
πO→ Prin(O) → 0,

from which we deduce the exact sequence

0 → Div0∞(O)/Div0∞(O) ∩ Prin(F/K) → J(F/K) → H(O) → 0

by taking quotients. Thus, the divisor class group J = J(F/K) is isomorphic to the
product of the ideal class group H(O) and Div0∞(O)/Div0∞(O)∩Prin(F/K). In particular,
for K a finite field, the finiteness of J implies that the ideal class number |H(O)| and the
regulator R(O) = |Div0∞(O)/Div0∞(O) ∩ Prin(F/K)| of O are finite.

The regulator has a natural interpretation in terms of the units O× of O. Note that

O× = {ε ∈ F : vP(ε) = 0 for all P -∞}.

2.4. IDEAL CLASSES AND REGULATOR 29

Thus,
Div0∞(O) ∩ Prin(F/K) = div(O×) = {div(ε) : ε ∈ O×}.

Assume now that at least one infinite prime divisor is not inert, say deg∞r = 1. Then it
is easy to show that the group Div0∞(O) is a free Z–module of rank r − 1, since Zr−1 →
Div0∞(O), (m1, . . . ,mr−1) 7→

∑r−1
i=1 mi∞i −

(∑r−1
i=1 mi deg∞i

)
∞r is an isomorphism.

Div0∞ ∩Prin(F/K) is a submodule of Div0∞ of finite index. By the Elementary Divisor
Theorem, there are a basis (D1, . . . , Dr−1) of Div0∞(O) and unique positive integers
d1| . . . |dr−1 such that (d1D1, . . . , dr−1Dr−1) is a basis of Div0∞(O)∩Prin(F/K). Choose
εi such that div(εi) = diDi; then R(O) = d1 · · · dr−1 and {ε1, . . . , εr−1} is a set of
fundamental units of O, i.e., O× = K× × 〈ε1〉 × · · · × 〈εr−1〉.
We note that the situation is similar to that in number fields F , in which the embeddings
σ : F → C provide the analogue of the infinite valuations. (More precisely, |σ(·)| defines
an absolute value on F which extends the usual absolute value | · | on Q, and the function
log |σ(·)| : F → R ∪ {∞} replaces the infinite valuation. The situation is complicated by
the fact that |σ(·)| is archimedian, whence it does not correspond to a discrete valuation.)

2.4.3 Ideal class number versus regulator

We have shown in Section 2.4.2 that the Jacobian J of a function field F in which at
least one infinite prime divisor is not inert over a finite field K can be seen as the product
of two groups, the ideal class group, which describes the affine part of J , and the group
Div0∞(O)/Div0∞(O) ∩ Prin(F/K), which describes the part of J “at infinity” and which
is of size R.

As seen in Chapter 1, the group J is only suited for use in cryptography if the class
number h = |J | has a large prime factor. Since it is simpler to compute in H(O) than in
J , one usually substitutes H(O) for J . If the regulator R is small, then the large prime
factor of h will also occur in |H(O)| since

h = |H(O)|R.

Thus, one does not lose any security when switching to H(O) in this case. An especially
favourable situation arises when ∞ is completely ramified in F , so that r = 1 and R = 1
in the notation of Section 2.4.2. Then H(O) is in fact isomorphic to J .

On the other hand, when R is large, the ideal class number |H(O)| will usually be small,
so H(O) does not allow to build secure cryptosystems. From a geometric point of view,
one might argue that one has simply chosen an inappropriate affine model of the function
field. Indeed, it is often possible to select the line at infinity differently, so that the new
ideal class group “captures” the large prime factor of h. However, it may be necessary to
additionally extend the field of constants, i.e. to switch to FK ′/K ′ with a finite algebraic
extension K ′/K, to ensure that an infinite prime divisor is not inert (cf. the discussions
in Sections 3.1.1 and 3.2.1).

30 CHAPTER 2. CURVES AND FUNCTION FIELDS

2.5 Weil’s theorem

One of the conclusions of Chapter 1 was that a group must be sufficiently large to provide
secure cryptosystems. So it is of interest to derive bounds which estimate the order of
magnitude of a Jacobian of given genus g over a finite field K = Fq with q elements.
Most results of this section are given without proof, see [Sti93], Chapter V, for further
details.

In a first step, the numbers of divisors of different degrees are coded into one object, the
zeta function of F/K. If Ak denotes the number of positive divisors of F/K of degree k,
then the zeta function of F/K is given by

Z(t) =
∞∑
k=0

Akt
k.

(It may be regarded as a formal power series in characteristic zero or a power series over
C since it converges for |t| < 1

q .)

Example. Let F = K(X) be rational. Note that then h = 1: K[X] is a principal ideal
domain, so that its ideal class number is 1. Furthermore, there is exactly one infinite
prime divisor, namely ∞, which is of degree 1, so that R = 1. As h is the product of the
ideal class number and the regulator (see Section 2.4.3), the claim follows.

To estimate Ak, letD be a positive divisor of degree k in which∞ occurs with multiplicity
l ∈ {0, . . . , k}. Then D − k∞ is of degree zero and thus a principal divisor div(z) for
some z ∈ F×. Since the finite part of div(z) is positive and of degree k − l, the function
z is in fact a polynomial of degree k− l. The only elements of F with divisor zero are the
constants, so z is defined up to multiplication by elements of K× and may be assumed
to be monic. So there are qk−l possibilities for D with the above properties. Summing

up for l = 0, . . . , k, we have shown that Ak = qk+1−1
q−1 . Thus,

Z(t) =
∞∑
k=0

qk+1 − 1

q − 1
tk =

1

q − 1

(
q

∞∑
k=0

(qt)k −
∞∑
k=0

tk

)

=
1

q − 1

(
q

1− qt
− 1

1− t

)
=

1

(1− t)(1− qt)
.

�

In general, one counts the number of positive divisors in each class separately. The
calculations are similar, since by a result of Schmidt’s ([Sch31], § 8; [Sti93], Corol-
lary V.1.11) a function field over a finite field contains a prime divisor of degree 1,
which may play the role of ∞. It turns out that Z(t) is a rational function in Q(t)
with denominator (1 − t)(1 − qt); its numerator is called the L–polynomial of F/K

2.6. CYCLIC EXTENSIONS 31

and denoted by L(t). The L–polynomial is of degree 2g, and its value at the place 1
equals h. Furthermore, the number A1 of prime divisors of degree 1, i.e. of points on
the smooth projective model, can be derived from the coefficient of the linear term
of L(t): From L(t) = (1 − t)(1 − qt)

∑∞
k=0Akt

k we deduce that this coefficient is
A1 − (q + 1)A0 = A1 − (q + 1).

Since L(0) = Z(0) = A0 = 1, the L–polynomial can be written as L(t) =
∏2g

i=1(1− αit),
where the αi are its reciprocal roots. Weil was able to prove the analogue of the Riemann
hypothesis in this case, which states that |αi| =

√
q ([Wei48]). A simpler proof is due

to Bombieri ([Bom74]), and the case of genus 1 was solved by Hasse in [Has33, Has34];
this is why the theorem is also known as “Hasse–Weil Theorem”. From the properties of
the L–polynomial mentioned above we immediately deduce bounds on the class number
h and on the number A1 of points on a smooth projective curve of genus g over Fq:

h = L(1) =

2g∏
i=1

|1− αi|,

so that
(
√
q − 1)2g ≤ h ≤ (

√
q + 1)2g.

|A1 − (q + 1)| = |coefficient of the linear term of L(t)|

=

∣∣∣∣∣
2g∑
i=1

αi

∣∣∣∣∣ ≤
2g∑
i=1

|αi| = 2g
√
q

For the cryptographic applications it is sufficient to keep in mind that the size of the
Jacobian of a curve of genus g over the field with q elements is about qg. If a desired level
of security, i.e. an approximate size of qg, is fixed, one may select curves of higher genus
and at the same time lower the field size, or vice versa. The question which combination
of parameters yields the fastest arithmetic for hyperelliptic curves will be addressed in
Chapter 4.

2.6 Cyclic extensions

The only concrete example of a function field presented so far, the rational function
field, has a trivial Jacobian group, and is clearly not of interest in the cryptographic
context. Any other function field is a finite extension of the rational function field. In
this section, we examine more closely the simplest extensions, namely the cyclic ones.
A cyclic extension of a field is defined as a Galois extension with cyclic Galois group.
If its degree is prime and the ground field contains sufficiently many roots of unity, it
is necessarily of Kummer or Artin–Schreier type. Cyclic extensions of a function field

32 CHAPTER 2. CURVES AND FUNCTION FIELDS

over a perfect field were studied by Hasse in [Has35], who generalised the quadratic case
examined by Artin in [Art24a, Art24b]. The theory developed by Hasse is valid for any
relative cyclic extension of function fields; however, we restrict the presentation to “cyclic
coverings of the projective line”, i.e. cyclic extensions of the rational function field, which
are of primary interest to us.

Let K be a perfect field of characteristic q a prime or zero, and n the desired degree of
the extension.

2.6.1 Kummer extensions

Assume that q is zero or does not divide n, and that K contains the n-th roots of unity.
(If K is the finite field Fr, this means that n|r − 1.) Any cyclic extension of K(X) of
degree n is the function field of a curve of the form

C = Y n − u

with u ∈ K(X), and conversely, any such curve generates a cyclic extension of K(X).
(Strictly speaking, C is not a curve in the sense of Section 2.1, as u need not be a
polynomial. However, the field theoretic approach remains unchanged, and so does the
geometry, unless we try to speak of points whose X–coordinates are poles of u. In any
case, it is possible to multiply such a polynomial C ∈ K(X)[Y] by the least common
denominator of its coefficients to obtain a curve in the strict sense. This may, however,
introduce singularities. We treat the necessary transformations for hyperelliptic curves
in Sections 3.1.2 and 3.1.3.) The irreducibility of C translates into the condition that
u 6= ud0 for any divisor d of n, d > 1 and u0 ∈ K(X). Furthermore, C is assumed to be
absolutely irreducible, which means that u 6= aud0 for any d|n, d > 1, u0 ∈ K(X) and
a ∈ K.

In what follows, let y by the image of Y in K(C). The Galois group of K(C)/K(X) is
realised by the substitutions y 7→ yζν for a fixed primitive n-th root of unity ζ ∈ K and
ν ∈ {0, . . . , n− 1}.
Any other generating element of K(C)/K(X) with a minimal polynomial of the form
above is given by yau0 with a ∈ Z, gcd(a, n) = 1 and u0 ∈ K(X)×. Its minimal
polynomial is

Y n − uaun0 .

Applying such substitutions with a = 1 it is possible to eliminate the denominator of u
and any occurrence of an n-th power of an irreducible polynomial in the numerator. Thus
we may assume that u =

∏r
i=1 p

νi
i with irreducible polynomials pi and νi ∈ {1, . . . , n−1}.

Let pi denote the prime divisor of K(X)/K with local parameter pi. Then as a divisor
of K(X)/K,

div(u) =
r∑

i=1

νipi −

(
r∑

i=1

νi deg pi

)
∞.

2.6. CYCLIC EXTENSIONS 33

Our aim is now to describe the decomposition of prime divisors of K(X) in K(C). Proofs
for the case n = 2 will be given in Section 3.2.2. Denote by p 6= ∞ a prime divisor of
K(X) with local parameter p, by ν the power to which it occurs in div(u), by e and f its
ramification index and inertia degree, and by K(X)p = K[X]/(p) its residue class field.
By the results of Section 2.2.5 on Galois extensions, e and f are well-defined divisors of
n, and the number of extensions of p is n

ef . Let d = gcd(ν, n) with d = n for ν = 0.

Then e = n
d , i.e., p is ramified if and only if it occurs in div(u). Its inertia degree is the

smallest exponent f |d such that the polynomial Y n −uef (mod p) has a root in K(X)p.

The decomposition of ∞ is obtained in the same way. Replacing the generating element

y of K(C)/K(X) by y′ = Xi

y for a suitable value of i ≥ 0 and u by u′ = Xni

u , we obtain

v∞(u′) = −deg u′ ∈ {0, . . . , n− 1}. Then e = n
gcd(n,v∞(u′) , and ∞ is ramified if and only

if v∞(u′) 6= 0, i.e., n -
∑r

i=1 νi deg pi. The inertia degree of ∞ is the smallest exponent
f such that the polynomial Y n − (u′)ef (mod ∞) has a root in K∞, which means that
there is an element z ∈ K(X) of non-positive degree such that deg(zn − (u′)ef) < 0.

The genus of K(C) in the case of an absolutely irreducible curve C is

n

2

∑
p ramified

(
1− 1

e

)
deg p− (n− 1).

2.6.2 Artin–Schreier extensions

If the characteristic q is a prime dividing n, then any polynomial of the form Y n − u is
inseparable and thus not Galois. The general form of a cyclic extension of degree q was
discovered by Artin and Schreier. Extensions of degree a power of q can be constructed as
towers of Artin–Schreier extensions ([AS27] covers the cases of degree q and q2). Finally,
for general n, a cyclic extension is composed of an Artin–Schreier tower of degree qν with
qν‖n and a Kummer extension of degree n

qν . We restrict ourselves to the description of
a simple Artin–Schreier extension.

Any cyclic extension of K(X) of degree q is the function field of a curve of the form

C = Y q − Y − u

with u ∈ K(X), and conversely any such curve generates a cyclic extension of K(X).
(This “curve” is not a curve in the strict sense; cf. the discussion in Section 2.6.1.) The
irreducibility of C translates into the condition that u 6= uq0 − u0 for any u0 ∈ K(X).
Furthermore, C is assumed to be absolutely irreducible, which means that u 6= a+(uq0−
u0) for any u0 ∈ K(X) and a ∈ K.

Denote again by y the image of Y in K(C). The Galois group of K(C)/K(X) is realised
by the substitutions y 7→ y + ν for ν ∈ {0, . . . , q − 1}.

34 CHAPTER 2. CURVES AND FUNCTION FIELDS

Any other generating element of K(C)/K(X) with a minimal polynomial of the form
above is given by ay+ u0 with a ∈ Z, gcd(a, q) = 1 and u0 ∈ K. Its minimal polynomial
is

Y q − Y − (au+ (uq0 − u0)).

(Notice the analogy to Kummer extensions: The multiplicative structures occurring for
Kummer extensions correspond to additive structures now.) Let the pole divisor of u as
an element of K(X)/K be

div∞(u) =
r∑

i=1

µipi.

(It is possible that one of the pi equals ∞.) Then after applying substitutions as men-
tioned above, i.e. switching to a different generating element of K(C)/K(X), one may
assume that the pole divisor of u is

div∞(u) =

r∑
i=1

νipi

with νi = µi if q - µi; 0 ≤ νi < µi and q - νi otherwise.
To see this, write down the partial fraction decomposition

u =

r∑
i=1

ui + r0

with r0 ∈ K,

ui =

νi∑
j=1

rij

pji
, rij ∈ K[X] of degree less than deg pi,

if pi is finite with local parameter pi;

ui =

νi∑
j=1

rijX
j , rij ∈ K, if pi = ∞.

Assume that 0 < νi = qν0 for some i with finite pi. The field K is perfect, and so is
the residue class field K(X)pi , so that there is a polynomial u0 of degree less than deg pi

with ri,νi = uq0 in K(X)pi , i.e., pi|ri,νi − uq0. We may then replace u by u−
(

uq
0

p
νi
i

− u0

p
ν0
i

)
,

which reduces νi by at least 1 and does not affect uj for j 6= i. Similarly, if 0 < νi =
qν0 for pi = ∞, then we may choose u0 ∈ K such that ri,νi = uq0 and replace u by
u− (uq0X

νi − u0X
ν0). The process is repeated until u has the desired properties.

Thus, let the pole divisor of u be

r∑
i=1

νipi with νi > 0 and q - νi.

2.6. CYCLIC EXTENSIONS 35

Any prime divisor p not occurring in this sum is unramified in K(C)/K(X); its inertia
degree is 1 or q (i.e., it is completely splitting or has a unique inert extension) depending
on whether Y q − Y − u (mod p) has a root in the residue class field K(X)p of p or not.
If p occurs in the pole divisor of u, then it is totally ramified, i.e., its ramification index
is e = q.

If the curve is absolutely irreducible (i.e. the modified u is not constant), its genus is

q − 1

2

r∑
i=1

(νi + 1) deg pi − (q − 1).

Chapter 3

Hyperelliptic curves

The first type of algebraic groups suggested in the literature for use in cryptography were
those formed by elliptic curves over finite fields ([Mil86, Kob87]). They are implementable
in an efficient way and constitute the state of the art in public key cryptography. Their
attraction basically results from the fact that the discrete logarithm problem on elliptic
curves is resistant against subexponential attacks as described in Section 1.3. Noticing
that an elliptic curve group is precisely the Jacobian of a hyperelliptic curve of genus 1,
it is natural to investigate Jacobians of higher genus hyperelliptic curves as a possible
replacement ([Kob89]). To allow an effective implementation, the abstract concepts of
the previous chapter have to be filled with algorithmic life. In this spirit, we develop the
arithmetical theory of hyperelliptic curves in this chapter.

There are different definitions of hyperelliptic curves in the literature. In algebraic ge-
ometry, it is common to define them by abstract properties of their function fields; on
the other hand, the cryptographic community usually assumes a more operational point
of view and defines them by concrete curve equations. Starting from the abstract defi-
nition, we investigate the resulting models of hyperelliptic curves in Section 3.1. To the
best of my knowledge, this is the first attempt to provide an exhaustive classification of
hyperelliptic curves and their imaginary or real quadratic models in even characteristic.
If an imaginary quadratic model is chosen, then the Jacobian of a hyperelliptic curve can
be represented by its ideal class group. In Section 3.2 we develop a unique representation
for the ideal classes by pairs of univariate polynomials with certain properties. Finally
in Section 3.3 we show how to realise the arithmetic of a hyperelliptic Jacobian in terms
of these representations. Among others, we generalise algorithms which were previously
described in odd or zero characteristic only to arbitrary curves. An average case analysis
and a comparison of the different algorithms is the topic of Chapter 4.

37

38 CHAPTER 3. HYPERELLIPTIC CURVES

3.1 Normal forms

3.1.1 Definitions

In algebraic geometry, a hyperelliptic function field is commonly defined as a quadratic
extension of positive genus of a function field of genus zero ([Che51, Poo96]; there is an
equivalent, but more complicated definition via differentials). The condition that the
genus be positive excludes, among others, the trivial case of a quadratic constant field
extension. Some authors go even further and require that the genus be at least 2. Since
the theory to be developed in this chapter applies without changes to curves of genus 1,
i.e. elliptic curves, this is merely a question of terminology. We shall include the case of
genus 1 and treat elliptic as special hyperelliptic curves.

Stichtenoth gives basically the same definition, but requires that the ground field be ratio-
nal ([Sti93], Definition VI.2.1). Since a function field of genus zero is rational if and only
if it has a divisor of degree 1 ([Sti93], Proposition I.6.3), Chevalley’s and Stichtenoth’s
definitions agree for fields with a degree 1 divisor, for instance, for K algebraically closed
or finite (see [Sch31], § 8, or [Sti93], Corollary V.1.11). Being chiefly interested in curves
over finite fields, we may use Stichtenoth’s definition without losing generality.

Definition 3.1 A hyperelliptic function field is a quadratic extension of positive genus
of a rational function field.

An extension F/K(X) of degree 2 is automatically cyclic, so that we may apply the
results on Kummer and Artin–Schreier extensions of Section 2.6. For a prime divisor
p of K(X), let r denote the number of its extensions in F , f its inertia degree and e
its ramification index. By the decomposition law of Section 2.2.5, we have efr = 2.
Consequently, p may be either (totally) ramified for e = 2, (completely) splitting for
r = 2 or inert for f = 2.

If all prime divisors of degree 1 of K(X) are inert, then the corresponding curve has
no rational point, i.e. no point with coefficients in K. In the following we ignore this
degenerate case, arguing that it results from viewing the function field over a “wrong”
constant field: The curve has points defined over a quadratic extension K1/K, so that
switching to the function field FK1/K1 resolves the degeneracy.

Then for the sake of simplicity, we may assume that the infinite prime divisor ∞ of
K(X) is not inert. Otherwise we may choose a non-inert prime divisor p of degree 1
with local parameter p. The pole divisor of 1

p has the form P1 + P2 (with P1 = P2

for p ramified). Thus, [F : K(1p)] = deg(div∞(1p)) = 2 (see Section 2.3.1), and F is a

hyperelliptic extension of K(1p) in which the infinite prime divisor is not inert. On the
geometric side, this different choice of the infinite prime divisor corresponds to a different
affine model of the same projective curve (cf. the discussion of Section 2.4.2).

3.1. NORMAL FORMS 39

Definition 3.2 A hyperelliptic curve is a non-singular affine curve C ∈ K[X,Y] whose
function field K(C) is hyperelliptic over K(X) and in which the infinite prime divisor of
K(X) is ramified or splitting. In the first case, the curve is called imaginary quadratic,
in the second case, real quadratic.

As explained in Section 2.4.2, the unit rank of O = K[X,Y]/(C) is zero for an imaginary
quadratic and 1 for a real quadratic hyperelliptic curve C in analogy to the case of
imaginary and real quadratic number fields, which explains the terminology.

To use hyperelliptic curves in cryptography, it is important to make the arithmetic of
their Jacobians effective. So in the cryptographic community, it is common to leave the
abstract point of view and to define hyperelliptic curves explicitly by polynomials of
certain types.

In odd characteristic, they were first examined by Artin, and it is well-known that a
hyperelliptic curve of genus g admits an affine model of the form

Y 2 − u

with u ∈ K[X] monic of degree 2g+1 resp. 2g+2; in the first case, the curve is imaginary
quadratic, in the second case, real quadratic ([Art24a, Art24b]; see also [Can87, SSW96]).

Hyperelliptic curves in even characteristic are less well understood. To allow a unified
treatment of any characteristic, Koblitz examines (imaginary quadratic) curves of genus
g of the form

Y 2 + vY − u

with v ∈ K[X] of degree at most g and u ∈ K[X] monic of degree 2g + 1 ([Kob89]).
An excellent elementary introduction to curves of this type, which does not require any
number theoretic knowledge, is given in [MWZ98]. Zuccherato develops a theory of real
quadratic curves in even characteristic, but does not provide a complete characterisa-
tion of real and imaginary quadratic curves in terms of the curve equations ([Zuc97a],
Chapter 4).

Applying the theory of Kummer and Artin–Schreier extensions, we take the abstract
Definition 3.1 as a starting point to derive explicit equations for hyperelliptic curves
in the following two sections. We show that depending on the characteristic of the
ground field and the ramification behaviour of the infinite prime divisor, a hyperelliptic
function field can be represented by hyperelliptic curves in certain normal forms. Given
a hyperelliptic curve, we show how to transform it into one of the normal forms and thus
provide an algorithmic characterisation of imaginary and real quadratic curves.

3.1.2 Characteristic different from 2

Let K have characteristic zero or an odd prime and F/K be a hyperelliptic function
field. Then by the results of Section 2.6.1, F is the function field of a curve of the form
C = Y 2 − u with a square-free polynomial u ∈ K[X]. Let y be the image of Y in F .

40 CHAPTER 3. HYPERELLIPTIC CURVES

Assume first that the degree of u is odd. If the leading coefficient a ∈ K of u is not 1, we
may rewrite u as a polynomial u′ in X ′ = X

a with leading coefficient adeg u+1 and switch

to the generating element y′ = y
a(deg u+1)/2 of F/K with minimal polynomial Y 2− u′

adeg u+1

over K(X ′). So u can be assumed to be monic. The infinite prime divisor is ramified,
and the genus of F is

g =
∑

p|u, p irreducible

1

2
deg p+

1

2
deg∞− (2− 1) =

1

2
(deg u− 1),

so u is of degree 2g + 1.

Now let deg u be even. According to Section 2.6.1, the infinite prime divisor is not
ramified. It is splitting if and only if there is an element z ∈ K(X) of non-positive degree

such that deg
(
z2 − Xdeg u

u

)
< 0. This is only the case if the leading coefficient of u is a

square in K; then z may be chosen as a square root of this coefficient. Replacing y by
y
z , the polynomial u is replaced by a monic polynomial. The genus of F is then

g =
∑

p|u, p irreducible

1

2
deg p− (2− 1) =

1

2
(deg u− 2),

so u is of degree 2g + 2.

Theorem 3.3 In odd or zero characteristic, any curve of the form

C = Y 2 − u

with u ∈ K[X] monic and square-free of degree at least 3 is hyperelliptic. If deg u = 2g+1
is odd, then C is imaginary quadratic of genus g; if deg u = 2g + 2 is even, then C is
real quadratic of genus g. Conversely, any hyperelliptic function field over K allows an
affine model of this type.

Proof: It remains to show that a curve of the given form has no affine singularity. Assume
that P = (x, y) ∈ K × K is a singular point on C, i.e. a point for which C, ∂C

∂X and
∂C
∂Y vanish simultaneously. Then ∂C

∂Y (x, y) = 2y implies y = 0, so that C(x, y) = −u(x)
and x is a zero of u. On the other hand, ∂C

∂X = − ∂u
∂X implies ∂u

∂X (x) = 0, so that x is a
multiple root of u, which contradicts that u is square-free. �

Theorem 3.4 Let K be finite of odd characteristic. Given a non-singular affine curve
C ∈ K[X,Y] which is monic and quadratic in Y , it can be decided in deterministic
polynomial time whether the curve is hyperelliptic, and if so, whether it is imaginary or
real quadratic.

3.1. NORMAL FORMS 41

Proof: Let

C = Y 2 + vY − u

with u, v ∈ K[X] and let y be the image of Y in K(C). Then switching to the generating
element y′ = y + v

2 of K(C)/K(X) amounts to completing the square in C, and the
minimal polynomial of y′ over K(X) is given by

C ′ = Y 2 − u′ with u′ = u+
v2

4
.

Let u′ = u′′u2 with u′′ square-free. Then y′′ = y′

u generatesK(C)/K(X), and its minimal
polynomial is

C ′′ = Y 2 − u′′

(cf. Section 2.6.1). If deg u′′ ≥ 3 is odd, then C is hyperelliptic and imaginary quadratic.
If deg u′′ ≥ 4 is even and the leading coefficient of u′′ is a square in K, then C is
hyperelliptic and real quadratic. Otherwise, C is not hyperelliptic.

The finiteness of K is only needed to ensure that the polynomial arithmetic and the test
for being a square can be carried out in polynomial time. �

3.1.3 Characteristic 2

Let K have even characteristic and F/K be a hyperelliptic function field. Then F is
generated over K(X) by an element y with minimal polynomial in the Artin–Schreier
form Y 2 + Y + w of Section 2.6.2 with w ∈ K(X) such that all irreducible polynomials
in the denominator of w occur to an odd power and w is either of odd positive or of
non-positive degree.

To turn the minimal polynomial into a curve equation, we have to get rid of the denom-
inator of w. Notice that if w = r

s with r, s ∈ K[X], we might consider the generating
element ys with minimal polynomial Y 2 + sY + sr. However, this may introduce unnec-
essary singularities because any multiple root x of s leads to the singular point (x, 0).
To avoid these singularities, we split off the square part of the denominator of w and
write w = r

s2t with s, t ∈ K[X] monic, r ∈ K[X], gcd(r, st) = 1 and t square-free. The
generating element yst of F/K(X) has the minimal polynomial

C = Y 2 + stY + rt = Y 2 + vY + u.

Since the prime divisors in the denominator of w occur to an odd power, any irreducible
polynomial p dividing s also divides t, i.e., t is the square-free part of st. Hence, any
irreducible polynomial dividing v divides u to the first power.

42 CHAPTER 3. HYPERELLIPTIC CURVES

Concerning the ramification of the infinite prime divisor, consider first the case that w
is of odd positive degree, i.e., deg r > 2 deg s+deg t and deg r+deg t is odd. Then ∞ is
ramified, and the genus of F/K is

g =
1

2

 ∑
p|s2t, p irreducible

(vp(s
2t) + 1) deg p+ (degw + 1) deg∞

− 1

=
1

2
(deg(s2t) + deg t+ deg r − deg(s2t)− 1) =

1

2
(deg(rt− 1))

=
1

2
(deg u− 1).

Thus, deg u = 2g + 1 and deg v = 1
2 deg(s

2t2) ≤
⌊
1
2 deg(rt)

⌋
=
⌊
1
2 deg u

⌋
= g.

Now, let degw ≤ 0. Then ∞ is unramified, and the genus of F/K is

g =
1

2

∑
p|s2t, p irreducible

(vp(s
2t) + 1) deg p− 1 = deg(st)− 1 = deg v − 1.

Thus, deg v = g + 1 and deg u = deg(rt) ≤ deg(s2t2) = 2g + 2 since degw ≤ 0. More
precisely,∞ is splitting if and only if there is an element z ∈ K(X) with z = 0 or deg z ≤ 0
such that z2 + z +w = 0 or deg(z2 + z +w) < 0. If degw < 0, i.e., deg u < 2g + 2, then
z = 0 is such an element; if degw = 0, i.e., deg u = 2g + 2, such an element exists if and
only if the leading coefficient of r, which equals the leading coefficient of u, is z2 + z for
some z ∈ K.

Theorem 3.5 Let charK = 2. Consider curves of the form

C = Y 2 + vY + u

with u, v ∈ K[X], v monic and any irreducible polynomial dividing v is a simple divisor
of u. If g ≥ 1, deg u = 2g + 1 and deg v ≤

⌊
1
2 deg u

⌋
= g, then C is an imaginary

quadratic hyperelliptic curve. If g ≥ 1, deg v = g + 1 and deg u < 2 deg v = 2g + 2, or
deg u = 2g + 2 and the leading coefficient of u equals z2 + z for some element z ∈ K,
then C is a real quadratic hyperelliptic curve. Conversely, any hyperelliptic function field
over K has an affine model of this type.

Proof: Again the only point which remains to be verified is the non-singularity of C.
Assume that P = (x, y) ∈ K ×K is a singular point on C. Since ∂C

∂Y = v, x is a root of
v. Let p be the irreducible polynomial of x over K, so that p divides v and p is a simple
divisor of u. From the curve equation we deduce that 0 = y2 + v(x)y + u(x) = y2, so
y = 0. The vanishing of ∂C

∂X = ∂v
∂X Y + ∂u

∂X in (x, y) implies that ∂u
∂X (x) = 0, so x is a

multiple root of u, a contradiction. �

3.1. NORMAL FORMS 43

If in the situation of Theorem 3.5 deg u = 2g + 1, a is the leading coefficient of u and
y is the image of Y in K(C), then we may rewrite u and v as polynomials u′ and v′

in X ′ = X
a as in Section 3.1.2. The leading coefficient of u′ is then adeg u+1, and the

minimal polynomial of y′ = y
a(deg u+1)/2 over K(X ′) is of the form

C ′′ = Y 2 +
v′

a(deg u+1)/2
− u′

adeg u+1
= Y 2 + v′′ − u′′

with u′′ monic. This shows that any imaginary quadratic curve can be transformed into
the model chosen by Koblitz in [Kob89]. However, the condition that v is monic is lost
during the transformation.

The rather strong property that any hyperelliptic function field in even characteristic has
an affine model in which each irreducible factor of v is a simple divisor of u as well as
Hasse’s article [Has35] have passed unperceived by the cryptographic community. It is an
interesting open question whether this property can be used to speed up the arithmetic
of the Jacobian.

Theorem 3.6 Let K be finite of even characteristic. Given a non-singular affine curve
C ∈ K[X,Y] which is monic and quadratic in Y , it can be decided in probabilistic poly-
nomial time whether the curve is hyperelliptic, and if so, whether it is imaginary or real
quadratic.

Proof: Let C = Y 2 + vY + u with u, v ∈ K[X] and let y be the image of Y in K(C).
Switching to the generating element y′ = y

v of K(C)/K(X) brings C into the Artin–
Schreier form

C ′ = Y 2 + Y + u′ with u′ =
u

v2
.

Section 2.6.2 shows how to transform the curve equation into the form C ′′ = Y 2 +
Y + u′′ such that the irreducible polynomials in the denominator of u′′ occur to an
odd multiplicity, and the degree of u′′ is either positive and odd or non-positive. This
step is of probabilistic polynomial complexity; besides computing the partial fraction
decomposition of u′ it involves taking square roots in certain residue class fields which
are extensions of K of degree bounded by deg v. Notice that the root of an element
x ∈ F2m can be computed in polynomial time as x2

m−1

.

The discussion of the beginning of this section shows how to obtain one of the normal
forms of Theorem 3.5. To answer the question, one might then have to solve a general
quadratic equation in K, which can be done in deterministic polynomial time by solving
a system of linear equations over F2 (see also the discussion below). �

The previous result complements the discussion of [Zuc97a]. Zuccherato examines only
hyperelliptic curves C = Y 2 + vY + u with u and v monic and gives the necessary
condition for such a curve to be real quadratic that deg v ≥ 1 ([Zuc97a] and [Zuc97b]

44 CHAPTER 3. HYPERELLIPTIC CURVES

contain the typographical error deg v > 1). He states that C is real quadratic if and only
if it has a root y ∈ K((1

X)), the set of Laurent series in 1
X with coefficients in K, which

is the completion of K(X) with respect to the infinite valuation. This condition can also
be checked algorithmically by solving a recurrent sequence of quadratic equations over
K.

Example. In [Zuc97a], p. 32, Zuccherato claims that

C = Y 2 + (X + 1)Y + (X6 +X2 +X + 1)

is a real quadratic hyperelliptic curve over F2. Letting y =
∑N

i=−∞ ciX
i be a hypothetical

root of C in F2((1
X)), one finds N = 3 and the quadratic equations

c23 + 1 = 0

c22 + c3 = 0

c2 + c3 = 0

c21 + c1 + c2 + 1 = 0

c0 + c1 + 1 = 0

c20 + c−1 + c0 + 1 = 0

c−2i + c−2i+1 = 0 for i ≥ 1

c2−i + c−2i−1 + c−2i = 0 for i ≥ 1.

The first equations have two distinct solutions for (c3, c2, c1, c0, c−1), namely (1, 1, 0, 1, 1)
and (1, 1, 1, 0, 1); the following equations are in fact linear in the variables with smallest
index they contain and can thus be solved recursively (in fact, over F2 any quadratic
equation is linear since c2i = ci). �

In general when searching a root y =
∑N

i=−∞ ciX
i of C = Y 2 + vY + u in K((1

X)), one

obtains N = max
(
deg v,

⌊
1
2 deg u

⌋)
and first has to solve a system of quadratic equations

in the variables cN , . . . , c− deg v. If this is not possible, then C is not real quadratic (it
may be imaginary quadratic or not hyperelliptic in the sense of Definition 3.2 at all).
Otherwise, for any i < −deg v there is a unique equation among the remaining ones
in which all occurring variables cj satisfy j ≥ i and ci occurs linearly; thus, the set of
infinitely many equations has a solution which can be found recursively.

Notice that the system of quadratic equations in cN , . . . , c− deg v is of a special type since
it does not involve mixed terms cicj , so that it can be solved in polynomial time. Rewrite

ci =
∑t

j=1 cijej for a fixed basis {e1, . . . , et} of K = F2t over F2 with new variables cij
taking values in F2. Then each quadratic equation of the type

c2r +
∑
i

aici + b = 0

3.2. IDEAL (CLASS) GROUPS 45

over F2t with ai =
∑t

j=1 aijej ∈ F2t and b =
∑t

j=1 bjej ∈ F2t can be written as

t∑
j=1

c2rje
2
j +

∑
i

t∑
j, k=1

aijcikejek +
t∑

j=1

bjej = 0.

Taking into account that c2rj = crj since crj ∈ F2, expressing ejek as a linear combination
of the basis elements e1, . . . , et and equating coefficients, we obtain a set of t linear
equations over F2. Likewise, any linear equation over F2t translates into t linear equations
over F2. Thus, we obtain a linear system over F2 with t times as many variables and
equations as before, which can be solved in polynomial time.

The previous discussion shows that Zuccherato’s algorithm for recognising real quadratic
curves is of polynomial time. However, it does not distinguish between imaginary qua-
dratic curves and curves for which the infinite prime divisor is inert. Even worse in the
cryptographic context is that it does not allow to determine the genus of the curve, which
by the results of Section 2.5 is an important security parameter for any cryptosystem
based on its Jacobian.

Example. We apply the technique of the proof of Theorem 3.6 to the same curve
C = Y 2 + vY + u over F2 with v = X + 1 and u = X6 +X2 +X + 1 as above. Then

u′ =
u

v2
=
X5 +X4 +X3 +X2 + 1

X + 1
= X4 +X2 +

1

X + 1
.

By the discussion of Section 2.6.2 we may replace u′ by

u′′ = u′ + (X2 +X)2 =
1

X + 1
=

r

s2t

with r = s = 1 and t = X + 1. Then the normal form of C is given by

C ′′ = Y 2 + (X + 1)Y + (X + 1).

A trivial extension of Theorem 3.5 shows that C ′′ is of genus zero, so that K(C) is
not hyperelliptic, but in fact rational. Indeed, if y is the image of Y in K(C ′′), then
K(C) = K(C ′′) = K(X, y) = K(y) since

X =
y2

y + 1
− 1 ∈ K(y).

�

3.2 Ideal (class) groups

During this section, we assume that the hyperelliptic function field is represented by a
hyperelliptic curve in the normal form C = Y 2 + vY − u with u, v ∈ K[X] satisfying the

46 CHAPTER 3. HYPERELLIPTIC CURVES

properties derived in Sections 3.1.2 and 3.1.3, that y is the image of Y in K(C) and that
O is the integral closure of K[X] in K(C). Also recall the projection map of Section 2.4.2:

πO : Div0(K(C)/K) → I(O),
∑

mPP 7→
∑
P-∞

mPP.

3.2.1 Imaginary and real quadratic representations

As emphasised several times already, the arithmetic of a Jacobian is particularly simple
if it can be realised by the ideal class group of an affine curve. This is indeed the case
for imaginary quadratic hyperelliptic curves.

Proposition 3.7 If C is an imaginary quadratic hyperelliptic curve, then its Jacobian
J(K(C)/K) is isomorphic to the ideal class group H(O).

Proof: See Section 2.4.3. �

It is sometimes possible to convert a real into an imaginary quadratic representation by a
procedure similar to that described in Section 3.1.1, which was used to make the infinite
prime divisor ramified or splitting. Assume that there is a finite ramified prime divisor p
of K(X) of degree 1 with local parameter p = X − x, corresponding to a point (x, y) on
C. Then the pole divisor of 1

p is div∞(1p) = div0(p) = 2p, so that [K(C) : K(1p)] = 2. So

K(C) is a hyperelliptic function field over K(1p), and in this representation, the infinite
prime divisor is ramified.

If the smallest degree of a ramified prime divisor is d > 1, then the local parameter of
such a prime divisor splits completely over an extension of K of degree d and corresponds
to d points on the curve defined over this extension, whence it is possible to obtain the
ramification of the infinite prime divisor after a constant field extension of degree d. Let
C be real quadratic of genus g. From the discussion of Sections 2.6.1 and 2.6.2 follows
that the local parameters of ramified prime divisors are either irreducible factors of a
polynomial u of degree 2g+2 in odd or zero characteristic, or of a polynomial v of degree
g + 1 in even characteristic. Thus, d|2g + 2 resp. d|g + 1.

3.2.2 Decomposition of prime ideals

In Sections 3.1.2 and 3.1.3 we have already seen how to determine the splitting behaviour
of a rational prime divisor, and the discussion of Section 2.4.1 shows that the prime ideals
of K[X] have the same splitting behaviour in O. For later algorithms, we need concrete
generators of the prime ideals of O above a given prime ideal of K[X]. The problem is
solved by Kummer’s theorem, which is applicable if certain integral bases are known.

3.2. IDEAL (CLASS) GROUPS 47

Proposition 3.8 Let p be a finite rational prime divisor with local parameter p ∈ K[X],
Op its valuation ring and Op the integral closure of Op in K(C). Then {1, y} is a local
integral power basis for K(C) at p, i.e., Op = Op + yOp. Furthermore, O = K[C] =
K[X,Y]/(C).

For the proof of the proposition, it is useful to consider the trace and the norm function
of the Galois extension K(C)/K(X).

Definition 3.9 The hyperelliptic involution or conjugation · is the unique non-trivial
automorphism of K(C)/K(X); it assigns to y the second root y = −y − v of C and
satisfies z = z for z ∈ K(C). The trace and norm functions of K(C)/K(X) are defined
by

TrK(C)/K(X)(z) = z + z ∈ K(X) and NK(C)/K(X)(z) = zz ∈ K(X)

for z ∈ K(C).

Proof of Proposition 3.8: Clearly, {1, y} is a basis of K(C)/K(X) contained in Op.
Conversely, let ay + b with a, b ∈ K(X) be an element of Op. We have to show that a,
b ∈ Op. Since ay + b is integral over Op, its minimal polynomial

Y 2 − TrK(C)/K(X)(ay + b)Y +NK(C)/K(X)(ay + b)

has coefficients in Op. Hereby,

TrK(C)/K(X)(ay + b) = −av + 2b

and
NK(C)/K(X)(ay + b) = −a2u− abv + b2.

Assume first that the characteristic of K is odd or zero. Then v = 0 and u is square-free,
and −av + 2b ∈ Op implies b ∈ Op. This in turn induces a2u ∈ Op, i.e. 0 ≤ vp(a

2u) =
2vp(a) + vp(u) ≤ 2vp(a) + 1. As vp takes only integral values, vp(a) ≥ 0 and a ∈ Op.

Let now charK = 2, so that av ∈ Op. If vp(v) = 0, then a ∈ Op and b2 + avb ∈ Op. If
vp(b) < 0, then vp(b

2) < vp(b) ≤ vp(avb), so that vp(b
2 + avb) = 2vp(b) < 0 by the strict

triangle inequality, a contradiction. If vp(v) > 0, then vp(u) = 1 by the properties of the
normal form of C (see Section 3.1.3). Then

vp(a
2u) = 2vp(a) + 1;

vp(b
2) = 2vp(b);

vp(abv) ≥ vp(a) + vp(b) + 1.

If vp(a) ≥ vp(b), then the unique minimum of these three values is 2vp(b). Since
NK(C)/K(X)(ay + b) ∈ Op, the strict triangle inequality implies vp(b) ≥ 0, and then

48 CHAPTER 3. HYPERELLIPTIC CURVES

vp(a) ≥ vp(b) ≥ 0. A similar reasoning applies in the remaining case, so that indeed a,
b ∈ Op.

Thus, Op = Op + yOp. From Op =
∩

P|p Op and O =
∩

P-∞ OP we deduce

O =
∩

p6=∞

Op =

 ∩
p6=∞

Op

+ y

 ∩
p6=∞

Op


= K[X] + yK[X] = K[X, y] = K[X,Y]/(C).

�

The knowledge of the local integral power basis {1, y} at p allows to apply Kummer’s
theorem ([Sti93], Theorem III.3.7) and to deduce the prime ideals above (p) from the
decomposition of the minimal polynomial of y modulo p as follows.

Proposition 3.10 (Kummer’s theorem for hyperelliptic curves) Let p be a dis-
crete valuation of K(X) with local parameter p, and consider the roots of

Y 2 + vY − u (mod p)

in the residue class field K(X)p = K[X]/(p).

• If there is no root, then p is inert, and the only extension P of p satisfies pO = P∩O.

• If there is a double root b+ (p), then p is ramified, and the unique extension P of
p satisfies pO = (P∩O)2 with P∩O = (p, y− b) = pO+(y− b)O. This case occurs
if and only if p divides the discriminant v2 + 4u of the curve.

• If there are two distinct roots b + (p) and b′ + (p) = −b − v + (p), then p is
splitting, and the extensions P1 and P2 of p satisfy pO = (P1 ∩ O)(P2 ∩ O) with
P1 ∩ O = (p, y − b) and P2 ∩ O = (p, y − b′).

In particular, any prime ideal of O is generated by at most two elements.

The hyperelliptic involution can be extended in a natural way to ideals and divisors.

Definition and proposition 3.11 Let p be a finite prime divisor of K(X) and P an
extension of p in K(C). If p is inert or ramified, let its conjugate P be P again. If p is
splitting, let P be the other extension of p. For a prime ideal P∩O of O its conjugate is
P ∩ O. This conjugation is extended additively to I(O) and multiplicatively to the group
of fractional ideals of O.

Then P = P, and vP(z) = vP(z) for any z ∈ K(C).

3.2. IDEAL (CLASS) GROUPS 49

Proof: That P = P is obvious. By Kummer’s theorem, any prime ideal is generated by
two elements; moreover, if P ∩O = (r, s), then P ∩O = (r, s). This proves the assertion
of the proposition for z ∈ O, and the general result follows since K(C) is the field of
fractions of O. (In fact, it also holds for the infinite prime divisors, but we only need it
for finite ones.) �

3.2.3 Principal divisors

It will turn out in Section 3.2.4 that any ideal of O is generated by two elements a ∈ K[X]
and c(y − b) with b, c ∈ K[X]. If an ideal is principal, then its divisor can be derived
from the divisor of its generator via the equation

div(zO) = πO(div z) for any z ∈ K(C).

Furthermore, the divisor of a finally generated ideal can be deduced from the divisors of
its generators.

Definition and proposition 3.12 The greatest common divisor of two elements of
Div(K(C)/K) is defined by

gcd
(∑

mPP,
∑

nPP
)
=
∑

min(mP, nP)P.

For r, s ∈ O,

div(rO+ sO) = gcd(πO(div r), πO(div s)) = πO(gcd(div r,div s)).

This definition and proposition can be extended to the case of several divisors resp. gen-
erators by induction.

Proof: The assertion follows immediately from the decomposability of ideals of O into a
unique product of prime ideals and the observation that∏

(P ∩ O)mP = {r ∈ O : vP(r) ≥ mP for all P} ,

see Section 2.2.2. �

So it is sufficient to determine the principal divisors of elements of the special form above
in order to compute the divisor of an ideal and thus its decomposition into prime ideals.

Proposition 3.13 Let a, b ∈ K[X]. For a prime divisor p of K(X) let P denote an
extension in K(C).

50 CHAPTER 3. HYPERELLIPTIC CURVES

• If a =
∏
pνp with p ∈ K[X] irreducible, νp ≥ 0 and p the prime divisor with local

parameter p, then

div(aO) =
∑

p inert

νpP+
∑

p ramified

2νpP+
∑

p splitting

(νpP+ νpP).

• If NK(C)/K(X)(y − b) = b2 + bv− u =
∏
pνp with p ∈ K[X] irreducible, νp ≥ 0 and

p the prime divisor with local parameter p, then νp > 0 implies that p is not inert
and that b+(p) is a root of Y 2+vY −u (mod p). If p is ramified, then νp ∈ {0, 1}.
Let P be such that P ∩ O = (p, y − b). Then

div((y − b)O) =
∑

νpP.

Proof: The first assertion is trivial. For the second assertion, note that b2 + bv − u =
(y − b)(y − b), so that

div((b2 + bv − u)O) = div((y − b)O) + div((y − b)O)

= div((y − b)O) + div((y − b)O)

by Proposition 3.11. Let p be a finite prime divisor with local parameter p. The previous
equation shows that if νp = 0, then no extension of p occurs in div((y − b)O). By
Kummer’s theorem 3.10 this is, for instance, the case if p is inert, since otherwise b+(p)
would be a root of Y 2 + vY − u (mod p). If p is splitting and νp ≥ 1, then Kummer’s
theorem shows that P with P ∩ O = (p, y − b) is an extension of p, and the second
extension is P. Thus, vP(y−b) ≥ 1. If vP(y−b) = vP(y − b) = vP(−y−b−v) ≥ 1, then
the triangle inequality would imply vP(−v) = vP((y− b)+ (−y− b− v)) ≥ 1, so that p|v
and p would be ramified, a contradiction. So vP(y− b) = 0. The equation above implies
vP(y− b) + vP(y− b) = νp, so that vP(y− b) = νp. If p is ramified and νp ≥ 1, then p is
a divisor of v and a simple divisor of u (remember that C was supposed to be in one of
the normal forms of Sections 3.1.2 and 3.1.3). Thus, p|b and the strict triangle inequality
yields νp = 1. The extension of p is P with P ∩ O = (p, y − b), and the equation above
yields vP(y − b) + vP(y − b) = 2vP(y − b) = 2νp. �

3.2.4 Semireduced divisors

As a first step towards finding unique representatives for the ideal classes, we examine
how to canonically represent ideals.

Theorem 3.14 Any integral ideal of O admits a unique representation as (d)(a, y − b)
with a, b, d ∈ K[X], d, a monic, deg b < deg a and

a|NK(C)/K(X)(y − b) = b2 + bv − u.

3.2. IDEAL (CLASS) GROUPS 51

From Proposition 3.10, the theorem holds for the prime ideals of O. Since any integral
ideal is the (uniquely determined) product of finitely many prime ideals, the existence
is shown by verifying that the product of two ideals of the given form is in the same
form again. We give a constructive proof, which will provide the basis for the arithmetic
in hyperelliptic Jacobians. For this proof the concept of the norm of an ideal plays an
important role.

Proposition and definition 3.15 Let a be an integral ideal of O and a its conjugate.
Then aa is a principal ideal which is generated by an element a ∈ K[X]. The ideal

N(a) = aa ∩K[X] = aK[X]

is called the norm of a.

Proof: If a = P ∩ O is a prime ideal, where P is a prime divisor of K(C) extending a
prime divisor p of K(X) with local parameter p, then the assertion follows from Propo-
sition 3.10: If P is inert, then N(a) = p2K[X], otherwise N(a) = pK[X]. Since any
integral ideal is a product of prime ideals, this already proves the more general result.

�

Lemma 3.16 If a = (a, y − b) with a, b ∈ K[X] and a|b2 + bv − u, then N(a) = a; if
b = (d) with d ∈ K[X], then N(b) = d2.

Proof: Let c = b2+bv−u
a . We claim that gcd(a, 2b+ v, c) = 1. Otherwise, let p ∈ K[X] be

a common irreducible divisor. If the characteristic of K is different from 2, then v = 0
and p|b, so that p2|b2 − ac = u, contradicting the assumption that C is in the normal
form of Section 3.1.2. If the characteristic of K is 2, then p|v implies that it is a simple
divisor of u since C is in the normal form of Section 3.1.3. Thus, p|ac+ bv + u = b2, so
p|b and p2|ac+ b2 + bv = u, a contradiction. Now,

aa = (a, y − b)(a, y − b)

= (a2, a(y − b), a(y − b), ac)

= (a)(a, (y − b) + (y − b), y − b, c)

= (a)(a,−2b− v, c, y − b)

= (a)(gcd(a,−2b− v, c), y − b)

= (a)

The assertion on b follows trivially from Kummer’s theorem 3.10. �

Proof of Theorem 3.14: Let a1 = (a1, y−b1) and a2 = (a2, y−b2) with ai, bi ∈ K[X] and
ai|b2i+biv−u. With the remarks above, it is sufficient to show that a = a1a2 = (d)(a, y−b)

52 CHAPTER 3. HYPERELLIPTIC CURVES

with a|b2+bv−u to prove the existence of the desired representation for any integral ideal;
clearly, it is then possible to multiply a and d by suitable constants inK× ⊆ O× to obtain
that they are monic, and to add a suitable multiple of a to b to obtain deg b < deg a.

Let ci =
b2i+biv−u

ai
. Then

a = (a1, y − b1)(a2, y − b2)

= (a1a2, a1y − a1b2, a2y − a2b1, (b1 + b2 + v)y − (b1b2 + u)) (3.1)

since

(y − b1)(y − b2) = y2 − (b1 + b2)y + b1b2 = −vy + u− (b1 + b2)y + b1b2.

Write
d = gcd(a1, a2, b1 + b2 + v) = u1a1 + u2a2 + u3(b1 + b2 + v)

with u1, u2, u3 ∈ K[X]; such a representation can be effectively computed by the ex-
tended Euclidean algorithm, see Algorithm 3.24. Let

b =
u1a1b2 + u2a2b1 + u3(b1b2 + u)

d

=
u1a1b2 + (d− u1a1 − u3(b1 + b2 + v))b1 + u3(b1b2 + u)

d

= b1 +
a1
d
(u1(b2 − b1)− u3c1)

= b2 +
a2
d
(u2(b1 − b2)− u3c2)

∈ K[X].

Then

d(y − b) = u1a1(y − b1) + u2a2(y − b2) + u3((b1 + b2 + v)y − (b1b2 + u)) ∈ a.

Subtracting suitable multiples of d(y− b) from the generators of a in (3.1) which involve
y yields

a = (a1a2, a1(b− b2), a2(b− b1), (b1 + b2 + v)b− (b1b2 + u), d(y − b))

=
(a1a2

d
d,
a1a2
d

(u2(b1 − b2)− u3c2),
a1a2
d

(u1(b2 − b1)− u3c1),

a1a2
d

(u1c2 + u2c1), d(y − b)
)

from the formulae for b above and

(b1 + b2 + v)b

=
(u1a1b1 + u2a2b2)(b1 + b2 + v) + (d− u1a1 − u2a2)(b1b2 + u)

d

=
a1a2
d

(u1c2 + u2c2) + (b1b2 + u).

3.2. IDEAL (CLASS) GROUPS 53

With the help of a symbolic algebra programme and using the relations b2i = aici−biv+u,
it is not difficult to compute that

NK(C)/K(X)(y − b) = b2 + bv − u

=
a1a2
d

(
(u1u2(b1 + b2) + u3(u1c2 + u2c1))v

+u23c1c2 + (u1a1 + 2u3b1)u1c2 + (u2a2 + 2u3b2)u2c1

+2u1u2(b1b2 − u)
)

∈ (d−1)a

is divisible by a1a2

d2 .

Letting

t = gcd

(
d, u2(b1 − b2)− u3c2, u1(b2 − b1)− u3c1,

u1c2 + u2c1,
(b2 + bv − u)d2

a1a2

)
,

we obtain
a = (d)

(a1a2
d2

t, y − b
)

with a1a2

d2 |b2 + bv − u. By definition, the ideal norm is multiplicative; thus, Lemma 3.16
implies

a1a2tK[X] = d2
a1a2
d2

= N(a) = N(a1)N(a2) = a1a2K[X],

and t = 1. Letting a = a1a2

d provides the desired representation of a.

Concerning the uniqueness, observe that O = K[X] + yK[X] by Proposition 3.8. So

a = (d)(a, y − b) = d(aO+ (y − b)O)

= daK[X] + dayK[X] + d(y − b)K[X] + d(−(b+ v)y + u)K[X].

Thus if ry + s ∈ a with r, s ∈ K[X], then d|r. Since dy − db ∈ a, we deduce that
d = gcd{r : ry+s ∈ a} is uniquely defined by a. Also, a is unique since N(a) = d2aK[X].

The uniqueness of b is a simple consequence of the following result, which describes the
decomposition of div(aO+ (y − b)O) into prime divisors. �

Corollary 3.17 Let a, b ∈ K[X] such that a|NK(C)/K(X)(y − b) = b2 + bv − u. If a =∏
pνp with p ∈ K[X] irreducible, νp ≥ 0 and p the prime divisor with local parameter p,

then νp > 0 implies that p is not inert and that b+(p) is a root of Y 2+vY −u (mod p). If
p is ramified, then νp ∈ {0, 1}. Let P be the prime divisor of K(C) with P∩O = (p, y−b).
Then div((a, y − b)O) =

∑
νpP. Furthermore, deg(div((a, y − b)O)) = deg a.

54 CHAPTER 3. HYPERELLIPTIC CURVES

Proof: The assertion follows immediately from Propositions 3.13 and 3.12. �

Proof of the uniqueness in Theorem 3.14: The uniqueness of a and d has already been
shown. The previous corollary shows that b is uniquely defined modulo the product of
all prime divisors of a. Now the condition a|b2 + bv − u determines b modulo a. �

Recall from Section 2.4.1 that a divisor in Div(K(C)/K) is the divisor of an integral ideal
if and only if it is positive and does not contain any infinite prime divisor. If (d)(a, y−b) is
an integral ideal of O, then one may split off the principal part (d) and obtain a “simpler”
ideal whose divisor is in the same ideal class. The following proposition characterises the
divisors of ideals of the form (a, y − b).

Proposition and definition 3.18 Let a be an integral ideal of O and D =
∑
νPP its

divisor. The following assertions are equivalent:

1) a is not divisible by an integral ideal of K[X], i.e., (p−1)a is not integral for any
(irreducible) polynomial p ∈ K[X].

2) D − πO(div(p)) = D − div0(p) 6≥ 0 for any (irreducible) polynomial p ∈ K[X].

3) If P is inert, then νP = 0; if P is ramified, then νP ∈ {0; 1}; if P is splitting, then
νP = 0 or νP = 0.

4) a = (a, y − b) for a, b ∈ K[X], a monic, deg b < deg a and a|b2 + bv − u.

If these assertions are satisfied, then D = div((a, y − b)O) is called semireduced and
denoted by div(a, b) for the sake of simplicity.

Proof: The equivalence of 1) and 2) is clear by the definition of the divisor of an ideal;
the equivalence of 2) and 3) follows from the decomposition law 3.10. By Theorem 3.14,
1) implies 4), and by Proposition 3.13, 4) implies 3). �

Proposition 3.19 Any ideal class contains a (not necessarily unique) semireduced di-
visor.

Proof: We first show that any ideal class contains the divisor of an integral ideal. If a is
a fractional ideal, the prime divisor P occurs with negative multiplicity in div(a) and P
extends the prime divisor of K(X) with local parameter p, then it suffices to multiply a
by a suitable power of the principal ideal (p) to ensure that P occurs with non-negative
multiplicity.

Such an integral ideal can be represented as (d)(a, y− b) by Theorem 3.14, and div(a, b)
is a semireduced divisor in the same ideal class as div(a). �

3.2. IDEAL (CLASS) GROUPS 55

Proposition 3.20 If D = div(a, b) is a semireduced divisor, then D = div(a,−b −
v mod a) is semireduced and lies in the opposite ideal class. Precisely, D + D is the
divisor of an ideal (d) with d ∈ K[X].

Proof: That D is semireduced is clear from the third of the equivalent properties of
Proposition 3.18. The divisor D corresponds to the ideal (a, y − b), so D corresponds to

(a, y − b) = (a, y − b) = (a,−y − v − b)

= (a, y − (−b− v)) = (a, y − (−b− v mod a)),

whence D = div(a,−b − v mod a). For a divisor p of K(X), let p denote its local
parameter. Write D =

∑
p not inert νpPp, where Pp is a suitable extension of p. Then

D +D =
∑

p not inert

νp(Pp +Pp) =
∑

p not inert

νp div(pO) = div

 ∏
p not inert

pνpO

 .

�

3.2.5 Reduced divisors

While any ideal class contains a semireduced divisor, there may be several of them in a
given class. An additional size restriction resolves this ambiguity at least in the imaginary
quadratic case.

Definition and proposition 3.21 Let g be the genus of K(C)/K. A semireduced di-
visor is called reduced if its degree is at most g. Any ideal class contains a reduced
representative.

Proof: Let ∞1 be an infinite prime divisor of K(C), which by Definition 3.2 is ramified
or splitting. For div(a) ∈ I(O), let D = div(a)− deg(div(a))∞1 ∈ Div0(K(C)/K), such
that πO(D) = div(a). From the discussion of Section 2.3.3 we know that there is a
positive divisor D′ of degree g such that D′−g∞1 and D are in the same divisor class. It
follows from the exact sequence in Section 2.4.2 that πO(D

′) and πO(D) are in the same
ideal class; furthermore, deg(πO(D

′)) ≤ degD′ = g. (It is possible that deg(πO(D
′)) < g,

precisely if D′ contains an infinite prime divisor.) If πO(D
′) is not semireduced, then by

Theorem 3.14 it is possible to remove the zero divisor of a polynomial in K[X] to turn
it into a semireduced divisor, while further reducing its degree. �

For imaginary quadratic curves, the reduced representative is in fact unique. Riemann’s
theorem of Section 2.3.2 provides a lower bound on the dimension of the vector spaces
L(D), which was used in the previous proof to derive the existence of a reduced divisor
in each class. To show the uniqueness, we consequently need an upper bound on the
dimensions.

56 CHAPTER 3. HYPERELLIPTIC CURVES

Proposition 3.22 If g is the genus of a function field F/K and D a divisor with 0 ≤
degD ≤ 2g, then

l(D) ≤
⌊
degD

2

⌋
+ 1.

Proof: The case degD ≤ 2g − 2 is known as Clifford’s theorem, see [Ful69], Section 8.6,
or [Sti93], Theorem I.6.11. For degD = 2g − 1 or degD = 2g − 2, the Riemann–
Roch Theorem yields equality, since a canonical divisor W satisfies degW = 2g − 2, so
deg(W −D) < 0 and l(W −D) = 0. �

Theorem 3.23 If C is imaginary quadratic, then any ideal class contains a unique
reduced divisor.

Proof: Let D1 and D2 be reduced divisors in the same ideal class, i.e., D1 − D2 is the
divisor of some principal ideal. By Proposition 3.20, there is a polynomial d ∈ K[X]
such that D1 − D2 = D1 + D2 − div(dO), and D1 + D2 is the divisor of a principal
fractional ideal bO for some b ∈ K(C). Since ∞1 is the only extension of ∞, this implies
div b = D1 + D2 − (degD1 + degD2)∞1 ≥ −2g∞1, where g is the genus of the curve.
Thus, b ∈ L(2g∞1). By Proposition 3.22, l(2g∞1) = g + 1; from div∞(X) = 2∞1 we
deduce that the linearly independent elements 1, X, . . . ,Xg are contained in L(2g∞1),
whence they form a basis and b ∈ K[X]. Thus,

D1 = D2 − div(dO) + div(bO) = D2 − div(d′O) + div(b′O)

for b′ = b
gcd(b,d) and d′ = d

gcd(b,d) . Since b′ and d′ are coprime, this shows that D2 −
div(dO) is positive, and the fact that D2 is semireduced implies div(d′O) = 0. Similarly,
div(b′O) = 0, and D1 = D2. �

Remark. For the proof it is crucial that the infinite prime divisor is totally ramified, so
that a principal ideal determines a unique principal divisor of degree zero. Furthermore,
it is crucial that the extension degree n = [K(C) : K(X)] equals 2; otherwise, deg∞(X) =
n∞1, and the powers of X contained in L(2g∞1) are 1, X, . . . ,Xb2g/nc, which are less
than g + 1.

Remark. The divisors div(a, b) and div(λa, b) are the same for any λ ∈ K×. We
henceforth drop the assumption that a is monic; when adding reduced divisors, this saves
an inversion and up to g multiplications in K and makes the arithmetic more efficient.
As a drawback, this normalisation step has to be carried out now to check two reduced
divisors for equality. Since a comparison occurs less frequently in cryptography than an
addition, it is nevertheless worthwhile to work with these non-unique representatives.
Also, b is only defined up to adding multiples of a. However, keeping the degree of b as
low as possible makes the arithmetic more efficient.

3.3. ARITHMETIC 57

3.3 Arithmetic

In this section we describe algorithms to realise the group law in the Jacobian of an
imaginary quadratic hyperelliptic curve, assuming the notation of Section 3.2. Further-
more, let g denote the genus of K(C)/K. The Jacobian is isomorphic to the ideal class
group, and we have seen in Section 3.2.5 that each ideal class is represented by a unique
reduced divisor. This situation is completely analogous to the case of the class group
of an imaginary quadratic number field, which was studied comprehensively by Gauß
in his “Disquisitiones arithmeticae” [Gau01], cast in terms of “binary quadratic forms”.
As in these number fields, the algorithms for adding two ideal classes proceed in two
steps. First, the reduced representatives D1 and D2 are composed to yield a semireduced
divisor in the ideal class of D1 + D2. This step basically consists of multiplying the
corresponding ideals and splitting off the obvious principal factor, as already seen in the
proof of Theorem 3.14. Second, this semireduced divisor is reduced, which step is less
obvious. Observe that the proof of Theorem 3.23, which shows that any ideal class is
uniquely represented by a reduced divisor, is based on the Riemann–Roch Theorem and
is not constructive. So the reduction algorithms can be interpreted as effective versions
of the Riemann–Roch Theorem for hyperelliptic curves. We describe the analogue of the
classic reduction algorithm due to Gauß and generalise two further algorithms, which go
back to Cantor and Lagrange and which have previously been described for odd or zero
characteristic only.

The complete algorithm, consisting of the composition and a reduction step, has been
described in [Can87] and is therefore known as “Cantor’s algorithm”.

3.3.1 The extended Euclidean algorithm

Several of the algorithms needed for realising the arithmetic of hyperelliptic Jacobians
rely on the knowledge of greatest common divisors of polynomials, which can be computed
using the Euclidean algorithm. To fix the notation for the remainder of this chapter, we
recall the algorithm on two polynomials.

Algorithm 3.24 (Extended Euclidean algorithm) Let r0, r1 ∈ K[X] with deg r1 ≤
deg r0.

1) Set u0 = 1, u1 = 0, v0 = 0 and v1 = 1.

2) Compute
rk−1 = qkrk + rk+1 with deg rk+1 < deg rk

for k = 1, . . . , t and

uk+1 = uk−1 − qkuk and vk+1 = vk−1 − qkvk

for k = 1, . . . , t− 1, where t is the smallest index such that rt+1 = 0.

58 CHAPTER 3. HYPERELLIPTIC CURVES

3) Set u = ut and v = vt. Then

gcd(r0, r1) = rt = ur0 + vr1.

The correctness of the algorithm follows easily from the observations that gcd(rk−1, rk) =
gcd(rk, rk+1) for k = 1, . . . , t and that rk = ukr0 + vkr1 during the loop in Step 2). We
note the following relations on the degrees of the involved polynomials:

deg qk = deg rk−1 − deg rk for k ≥ 1, (3.2)

deg uk = deg r1 − deg rk−1 for k ≥ 2, (3.3)

deg vk = deg r0 − deg rk−1 for k ≥ 2. (3.4)

Thus, deg u < deg r1 and deg v < deg r0.

Some text books describe a variant of the algorithm, in which v0, . . . , vt−1 are not com-
puted and v is derived in the end from the other polynomials as v = vt = rt−r0ut

r1
.

However, this variant requires more operations in K.

If the greatest common divisor of more than two polynomials f1, . . . , fn is sought, then
the Euclidean algorithm can be applied recursively. Suppose that

f = gcd(f1, . . . , fn−1) = u1f1 + · · ·+ un−1fn−1

is already known. Another application of the Euclidean algorithm yields

gcd(f, fn) = uf + vfn,

so that

gcd(f1, . . . , fn) = gcd(f, fn) = (uu1)f1 + · · ·+ (uun−1)fn−1 + vfn.

Sometimes, only one of the multiplier u resp. v is needed, so that the converse sequence
of the vk resp. the uk need not be computed. We refer to the corresponding algorithm
as the half-extended Euclidean algorithm.

3.3.2 Composition

Composition of general binary quadratic forms has been described first by Gauß in
[Gau01]; the special case of forms of the same discriminant, which in our setting cor-
respond to reduced divisors of the same curve, is treated in Article 242.

Let D1 = div(a1, b1) and D2 = div(a2, b2) be reduced. We have already seen in the proof
of Theorem 3.14 how to multiply the ideals corresponding to D1 and D2; the result is
an ideal (d)(a, y− b) corresponding to D1 +D2. Then clearly div(a, b) is a divisor in the

3.3. ARITHMETIC 59

same ideal class as D1+D2. (This shows that the algorithm remains valid even if D1 and
D2 are not reduced, but only semireduced, which is, however, of no practical interest.)
During the proof of Theorem 3.14, several formulae for b were given; in practice, one
should use a formula which requires as few polynomial multiplications as possible. To
collect the results on hyperelliptic arithmetic in one place, we summarise the algorithm
again.

Algorithm 3.25 (Composition) Let div(a1, b1) and div(a2, b2) be two (semi-)reduced
divisors. The following steps determine a semireduced divisor div(a, b) in the same ideal
class as div(a1, b1) + div(a2, b2).

Compute the greatest common divisor

d = gcd(a1, a2, b1 + b2 + v) = u1a1 + u2a2 + u3(b1 + b2 + v)

together with a representation by the extended Euclidean Algorithm 3.24. Let

a =
a1a2
d2

and

b = b1 +
u1a1(b2 − b1)− u3(b

2
1 + b1v − u)

d
mod a.

3.3.3 Reduction

The divisor computed by the composition algorithm will usually not be reduced; in the
worst case, it has degree 2g, namely for deg a1 = deg a2 = g and gcd(a1, a2, b1+b2+v) = 1.
In fact, this is also the typical case, see Section 4.5. In the reduction phase, the obtained
divisor is replaced by a divisor in the same ideal class of degree at most g.

The most classic reduction algorithm is also due to Gauß for binary quadratic forms
([Gau01], Article 171). The case of hyperelliptic curves over finite fields of odd charac-
teristic was treated by Artin ([Art24a], § 10).

Algorithm 3.26 (Gauß reduction) Let D = div(a0, b0) be a semireduced divisor. Re-
peat the following steps for k = 1, . . . , t, where t ≥ 0 is the smallest index such that
deg at ≤ g:

ak =
b2k−1 + bk−1v − u

ak−1

bk = −bk−1 − v mod ak.

Then the process comes to an end since deg ak ≤ deg ak−1 − 2 for deg ak−1 ≥ g + 2 and
deg ak ≤ g for deg ak−1 = g + 1. The divisor div(at, bt) is the reduced representative of
div(a0, b0).

60 CHAPTER 3. HYPERELLIPTIC CURVES

Proof: For k ≥ 1, let a = ak−1, b = bk−1 and c = b2+bv−u
a , so that

ac = NK(C)/K(X)(y − b) = (y − b)(y − b).

Thus, div(ac, b) and div(c, b) are semireduced, and Corollary 3.17 implies that

div((y − b)O) = gcd(div((b2 + bv − u)O),div((y − b)O))

= gcd(div(acO),div((y − b)O))

= div(ac, b)

= div(a, b) + div(c, b).

Since (y − b)O is a principal ideal, div(c, b) is a divisor in the opposite ideal class of
div(a, b), and Proposition 3.20 implies that div(c, b) = div(c,−b − v) = div(ak, bk) is in
the same ideal class as div(a, b).

The assertion on the degree follows from the observation that

deg(b2 + bv − u) ≤ max{2 deg b, deg b+ g, 2g + 1}
≤ max{2 deg a− 2, 2g + 1}.

�

Gauß reduction amounts to replacing div(a, b) by the equivalent divisor

div((y − b)O)− div(a, b),

which usually has a degree smaller by 2 (see Section 4.5). Cantor observed that it is
possible to use an appropriate divisor div((dy−c)O) in the place of div((y−b)O), so that
usually only one reduction step is needed ([Can87]). We describe his concept generalised
to arbitrary characteristic.

Intuitively, c and d should be chosen such that c
d ≡ b (mod a), so that div((dy − c)O) ≡

div(dO) + div((y − b)O) (mod div(aO)). Since div(a, b) = gcd(div(aO),div((y − b)O),
taking the greatest common divisor with div(aO) will eliminate div(dO), unless a and d
are not coprime.

Algorithm 3.27 (Cantor reduction) Let div(a, b) be a semireduced divisor. Suppose
that there are polynomials c, d and λ such that c = λa + db, deg c ≤ deg a+g

2 , deg d ≤
deg a−g−1

2 and gcd(λ, d) = 1. Let s = gcd(c, d) = gcd(a, d), a′ = a
s , c

′ = c
s and d′ = d

s .
Let furthermore

a =
c′

2
+ c′d′v − d′

2
u

a′
,

d such that d′d ≡ 1 (mod a) and

b = −dc′ − v mod a.

Then div
(
a, b
)
+div(s, b mod s), which can be computed using the composition algorithm

of Section 3.3.2, is the reduced representative in the ideal class of div(a, b).

3.3. ARITHMETIC 61

Proof: Notice first that gcd(λ, d) = 1 implies gcd(d′, a) = 1, so that d with the desired
property exists. We closely follow the argumentation in [Can87].

The equation a = sa′ implies div(a, b) = div(s, b mod s) + div(a′, b), and

div(a′, b) = gcd(div(a′O),div((y − b)O))

= gcd(div(a′O),div((d′y − d′b)O))

since a′ and d′ are coprime

= gcd(div(a′O),div((d′y − c′)O))

since c′ ≡ d′b (mod a′)

= D.

By Proposition 3.20, D is in the same ideal class as div((d′y − c′)O)−D, and mimicking
the argumentation in the correctness proof of Gauß reduction it is not difficult to show
that the latter divisor equals

gcd(div(aO),div((d′(−y − v)− c′)O))

= gcd
(
div(aO),div

((
dd′(−y − v)− dc′

)
O
))

since a and d are coprime

= gcd
(
div(aO),div

((
−y − v − dc′

)
O
))

because dd′ ≡ 1 (mod a)

= div
(
a,−dc′ − v

)
.

This shows that div(a, b) + div(s, b mod s) lies in the same ideal class as div(a, b). To
verify that it is reduced, notice that by Algorithm 3.25 its degree is

deg a+ deg s

≤ max{2 deg c′,deg c′ + deg d′ + g, 2 deg d′ + 2g + 1} − deg a′ + deg s

≤ max{deg a+ g,deg a+ g − 1

2
,deg a+ g} − deg a

= g.

�

The computation of d = (d′)−1 (mod a) requires to determine the greatest common
divisor of d′ and a by the extended Euclidean Algorithm 3.24. In practice, a different
arrangement allows to compute s and d simultaneously by only one application of the
Euclidean algorithm. In the sequel, when speaking of “Cantor reduction”, we shall mean
this more efficient version.

Algorithm 3.28 (Improved Cantor reduction) In the situation of Algorithm 3.28,
let

ã =
c2 + cdv − u

a
.

62 CHAPTER 3. HYPERELLIPTIC CURVES

Determine s = gcd(ã, d) = rã+ d̃d. If deg s ≥ 1, let a = ã
s , c

′ = c
s and d = d̃; otherwise,

let a = ã, c′ = c and d = s−1d̃. Let

b = −dc′ − v mod ã,

so that div(a, b) is equivalent to the reduced divisor

div
(
a, b
)
+ div(s, b mod s).

Unfortunately, c and d with the imposed degree bounds need not exist. Observe that c
is a multiple of the greatest common divisor of a and b, and if deg(gcd(a, b)) > deg a+g

2 ,
then no c can keep the intended bound. In this case, it would seem optimal to choose
c = gcd(a, b) and to compute more than one reduction step. But even then the reduction
process may fail; in fact, it may even increase the degree of the divisor, as illustrated by
the following, fairly general example.

Example. Suppose that u =
∏g−1

i=1 (X−xi)u1 with distinct xi ∈ K for i = 1, . . . , g−1, so

that Pi = (xi, 0) lies on C for i = 1, . . . g − 1. Let a1 =
∏g−1

i=1 (X − xi) and Q = (xQ, yQ)
and R = (xR, yR) be two further points on C with coordinates in K, x1, . . . , xg−1,
xQ and xR all distinct from each other, yQ 6= 0, yR 6= 0 and

yQ

a1(xQ) 6= yR

a1(xR) . Let

a = a1(X − xQ)(X − xR) and b = a1l, where l is the unique linear polynomial such that
l(xQ) =

yQ

a1(xQ) and l(xR) =
yR

a1(xR) . Then

g−1∑
i=1

Pi +Q+R = div(a, b)

is semireduced of degree g + 1. The choice for c with lowest possible degree is

c = gcd(a, b) = a1 = λa+ db

with uniquely determined λ ∈ K× and d ∈ K[X] linear. If s = gcd(a1, d) = 1, then

a =
a1 + dv − d2u1

(X − xQ)(X − xR)
,

where deg(d2u1) = g+4, deg(a1+dv) ≤ g+1 and hence deg(div(a, b)) = deg a = g+2 >
deg a. Otherwise, the degree of div(a, b) is smaller by deg s = 1, but this is compensated
by the addition of div(s, b mod s). �

In case of failure, which is extremely unlikely as shown by the analysis of Section 4.5, one
must choose another reduction algorithm. To check whether polynomials c and d with
the desired degrees do exist and to compute them in this case, one can use the extended
Euclidean algorithm 3.24 applied to a and b. With the notation of Section 3.3.1, if there

3.3. ARITHMETIC 63

is no index t′ ≤ t such that deg rt′ ≤ deg a+g
2 , then no suitable polynomials c and d exist.

Otherwise, let t′ be the smallest such index. Then c = rt′ , λ = ut′ and d = vt′ are
suitable choices: Equation (3.4) implies that

deg d = deg a− deg rt′−1 ≤ deg a−
(
deg a+ g

2
+

1

2

)
=

deg a− g − 1

2
.

Furthermore, during the execution of the Euclidean algorithm, uk and vk are always
coprime, so that the additional constraint gcd(λ, d) = 1 is also met. (Even if this were
not the case, dividing c, λ and d by gcd(λ, d) would establish this condition while lowering
the degrees of c and d even further.)

The most costly steps in the Gauß reduction procedure are the computations of the ak,
each involving one multiplication and one division of rather high degree polynomials. In
the original reduction algorithm each step is independent of the previous one. However,
as soon as one reduction step has been carried out, the formula for ak can be rewritten
using information from the previous step. The following algorithm has been suggested
for hyperelliptic curves over a field of odd characteristic by Paulus and Stein in [PS98],
who attribute the explicit formulae in the setting of a quadratic number field to Tenner.
The main idea can be traced back to Lagrange ([Gra73], Théoreme II and Corollaire 1).
Again we provide a generalised version for arbitrary characteristic.

Algorithm 3.29 (Lagrange reduction) Let D = div(a0, b0) be a semireduced divisor.
Repeat the following steps for k = 1, . . . , t, where t ≥ 0 is the smallest index such that
deg at ≤ g:

a1 =
b20 + b0v − u

a0
−b0 − v = q1a1 + b1 with deg b1 < deg a1

For k ≥ 2:

ak = ak−2 + qk−1(bk−2 − bk−1)

−bk−1 − v = qkak + bk with deg bk < deg ak.

Then the process comes to an end, and the divisor div(at, bt) is the reduced representative
of div(a0, b0).

Proof: We show that the sequence of divisors generated by the algorithm is exactly the
same as in the Gauß reduction process. To this purpose it is sufficient to show that

ak =
b2k−1 + bk−1v − u

ak−1
,

64 CHAPTER 3. HYPERELLIPTIC CURVES

which implies that also bk is the same polynomial as in the usual Gauß reduction. We
proceed by induction on k, the assertion being obviously true for k = 1. Hence let k ≥ 2.

akak−1 = ak−2ak−1 + qk−1ak−1(bk−2 − bk−1)

= b2k−2 + bk−2v − u− (bk−2 + bk−1 + v)(bk−2 − bk−1)

by the induction hypothesis and the construction of qk−1

= b2k−1 + bk−1v − u,

which proves the assertion. �

Notice that except for the first step the computation of ak needs only one polynomial
multiplication and no polynomial division, and that qk is a by-product of the computation
of bk.

Chapter 4

Efficiency of hyperelliptic
cryptosystems

Hyperelliptic curves over finite fields are characterised by two parameters, their genus
g and the size q of their constant field. When choosing a hyperelliptic curve for use
in cryptography, a natural criterion — besides adequate security — is the efficiency of
the underlying arithmetic. While the running time of algorithms is usually measured
by providing upper bounds for the worst case, this approach does not allow to compare
different algorithms as long as the bounds are not tight. Therefore, in this chapter we
derive explicitly the average number of operations needed for carrying out the arithmetic
in hyperelliptic Jacobians of varying genus and size of the constant field.

Since the extended Euclidean algorithm on polynomials is a building block of several
algorithms of Section 3.3, we provide an average case analysis of the Euclidean algorithm
on the way.

4.1 Cryptographic setting

Our aim is to compare hyperelliptic cryptosystems in which the genus g and the size
q of the constant field vary, but which offer the same level of security. Hereby, we
assume that the Jacobian is realised by the ideal class group of an imaginary quadratic
hyperelliptic curve as in Section 3.3. We have seen in Section 1.2 that the main parameter
determining the security of a public key cryptosystem based on discrete logarithms is the
cardinality of the underlying group; for Jacobians of curves over finite fields, Weil’s
theorem of Section 2.5 implies that their cardinality is about qg. Thus, we fix a desired
level of security L = el and consider curves for which qg ≈ L or equivalently q log q ≈ l.

65

66 CHAPTER 4. EFFICIENCY

(According to the discussion in Section 1.2, L ≈ 1050 or l ≈ 115 is generally considered
adequate.) A given security level can be reached for smaller values of g at the expense
of larger values of q, and vice versa. For larger genus, the algorithms require to handle
polynomials of larger degree, which in turn results in more operations in the constant
field; on the other hand, any single field operation in a larger constant field becomes
more demanding. So it is a priori unclear which is the optimal choice of parameters.

During the analysis we neglect the additional constraint that the class number has a large
prime factor so that the cryptosystem is not vulnerable by the Pohlig–Hellman attack;
its fulfillment depends on the concrete curve and not only on g and q, so that a generic
analysis seems impossible. An important consequence of the subexponential algorithms
in Chapters 6 and 7 is that g cannot be too large in relation to q to preserve the security
of the system. We may thus assume that g is sufficiently small so that it is not worthwhile
to realise the polynomial arithmetic by fast Fourier transform techniques.

4.2 Probability distribution

To obtain average case results, we need the probability distributions of the objects under
consideration, in our case of the polynomials a and b defining elements div(a, b) of the
Jacobians. As the analysis will reveal, a uniform distribution over the polynomials of
some fixed degree is most desirable, since then further intermediate results of the Eu-
clidean algorithm are also uniformly distributed. For a fixed curve, most of the pairs
of polynomials (a, b) do not define a divisor, so clearly a uniform distribution is only
achievable if we also let the curve vary. Even then we do not obtain an exact uniform
distribution, but we provide a heuristic argument that the deviation is sufficiently small.

Heuristic 4.1 Let the hyperelliptic curve C of fixed genus g be chosen randomly ac-
cording to a uniform distribution on the defining pairs of suitable polynomials (v, u). If
div(a, b) is a uniformly selected element of J(H), then we may assume that a varies
uniformly over all polynomials of degree g and b over all polynomials of degree g − 1.
Likewise, if div(a1, b1) and div(a2, b2) are two uniformly selected elements of J(H), then
we may assume that a1 and a2 vary uniformly and independently over all polynomials of
degree g and b1 and b2 over all polynomials of degree g − 1.

Justification: We examine only the case of two divisors because all arguments hold
and slightly simplify if only one divisor is considered. We suppose that hyperelliptic
curves are given by the normal forms of Theorems 3.3 and 3.5 and make two further
simplifying assumptions, which account for the heuristic not being a theorem: First, in
odd characteristic we assume that any two polynomials v = 0 and u monic of degree
2g+1 define a hyperelliptic curve, not taking into account that a negligible proportion of
these curves is singular. Hence there are q2g+1 curves altogether. In even characteristic,

4.3. AVERAGE COMPLEXITY OF THE EUCLIDEAN ALGORITHM 67

we assume that any two polynomials v monic of degree at most g and u of degree 2g+1
such that the square-free part t of v divides u define a hyperelliptic curve, not taking
into account that some of these curves are singular and that others violate the condition
of Theorem 3.5 that any irreducible factor of v is a simple factor of u. So for any given
v, there are (q− 1)q2g+1−deg t possible values of u. Second, we assume that all Jacobians
have cardinality qg (cf. Section 2.5), so that (q− 1)qg pairs of polynomials (a, b) define a
Jacobian element because we do not require a to be monic, cf. the remark in Section 3.2.5.

To avoid unnecessary repetitions, we present only the even characteristic case, which is
clearly more intricate.

Let (a1, b1, a2, b2) be a random quadruple of polynomials such that deg b1 < deg a1 ≤ g
and deg b2 < deg a2 ≤ g. Let for the moment v be fixed with square-free part t. Since
two random polynomials are coprime with probability 1− 1/q (see Lemma 4.6) and we
take g to be small and thus q to be large, we may assume that

gcd(a1, a2) = gcd(a1, t) = gcd(a2, t) = 1,

i.e., that lcm(a1, a2, t) = a1a2t. Then there are (q− 1)q2g+1−deg t−deg a1−deg a2 curves ad-
mitting div(a1, b1) and div(a2, b2) simultaneously as elements of their Jacobians. Namely
these curves correspond to the solutions u of degree 2g+1 of the equations u ≡ b21 + b1v
(mod a1), u ≡ b22 + b2v (mod a2) and u ≡ 0 (mod t), which by the Chinese Remainder
Theorem translate into a single equation modulo a1a2t. Hence the probability of selecting
a curve with given v containing both of the divisors on their Jacobians is q− deg a1−deg a2 ,
which is in fact independent of v. Once such a curve is fixed, the conditional probability

of choosing (a1, b1, a2, b2) is given by
(

1
(q−1)qg

)2
. Thus, the quadruple occurs with a

total probability of q−2g−deg a1−deg a2(q − 1)−2.

Then all the quadruples of polynomials with deg a1 = deg a2 = g have the same proba-
bility of q−4g(q− 1)−2. Hence, the event deg a1 = deg a2 = g and deg b1 = deg b2 = g− 1
occurs with probability

(q − 1)4q4g−2

(q − 1)2q4g
=

(
1− 1

q

)2

,

which is very close to 1. �

4.3 Average complexity of the Euclidean algorithm

The composition step of Section 3.3.2 and the Cantor reduction of Section 3.3.3 rely
on the extended Euclidean algorithm 3.24, or to be more precise on its half-extended
version, since one of the multipliers is not needed. Consequently we have to analyse
the average complexity of the Euclidean algorithm for polynomials over finite fields. We

68 CHAPTER 4. EFFICIENCY

hereby concentrate on the case of two polynomials, since Lemma 4.6 shows that these
are usually coprime and hence no further computations involving a third polynomial are
needed.

While there is an abundant literature on the Euclidean algorithm on integers (see [Knu81],
Section 4.5.3 and the references therein), I am aware of only a few articles dealing with
its average complexity when applied to polynomials: Arnold and John Knopfmacher
analyse the average number of polynomial divisions in [KK88], while Ma and von zur
Gathen present the average number of field operations for different variants of the al-
gorithm over F2[X] in [MG90]. In [Ma87], Chapter 3, Ma gives a more comprehensive
account of the Euclidean algorithm over any finite field, including the average complexity.
However, neither of them treats the computation of the multipliers. Ma uses a rather
intricate counting argument, which appears to be difficult to generalise to the extended
algorithm. Instead we prefer to explicitly compute the probability distributions of the
random variables involved, hereby presenting alternative proofs for some of Ma’s results.

Throughout this section we assume that we are given two polynomials r0 and r1 over a
finite field Fq of fixed degrees d0 ≥ d1 ≥ 1, respectively, and that these input data are
uniformly distributed over all polynomials of degrees d0 and d1. A run of the extended
Euclidean algorithm 3.24 creates sequences (r0, . . . , rt), (u0, . . . , ut) and (v0, . . . , vt) of
elements of Fq[X], where t and the rk, uk and vk are random variables. Denote the
random variable deg rk by dk with the convention dk = −∞ for k > t. By a slight abuse
of notation, we let dt denote the degree of the last non-zero remainder and dt−1 the
degree of the next to last one.

We are interested in the average number of arithmetic operations in Fq needed for carrying
out the algorithm; since additions and subtractions are essentially for free, we restrict our
attention to the number of multiplications and inversions in Fq. The following theorem
states the main result of this section:

Theorem 4.2 Let r0 and r1 be uniformly distributed over the polynomials over Fq of
degrees d0 ≥ d1 ≥ 1, respectively. Denote by Em(d0, d1) and Ei(d0, d1) the expected
number of multiplications and inversions in Fq performed by the non-extended Euclidean
algorithm, and by Eu(d0, d1) and Ev(d0, d1) the expected number of additional multipli-
cations needed to compute the multipliers u and v, respectively. Then all these quantities
are polynomials in 1/q; more precisely,

Em(d0, d1)(q − 1)2qd1

= (d0d1 + d0 + d1 − 1) qd1+2 −
(
2d0d1 +

1
2d

2
1 + 2d0 +

7
2d1 − 3

)
qd1+1

+
(
d0d1 + d21 + d0 + 3d1 − 2

)
qd1 −

(
1
2d

2
1 +

1
2d1 − 1

)
qd1−1

+q2 − 2q

Ei(d0, d1) = d1 −
d1 − 1

q

4.3. AVERAGE COMPLEXITY OF THE EUCLIDEAN ALGORITHM 69

Eu(d0, d1)(q − 1)2qd1

=
(
d21 − d1 − 2

)
qd1+2 −

(
5
2d

2
1 +

5
2d1 − 10

)
qd1+1 +

(
2d21 + 5d1 − 2

)
qd1

−
(
1
2d

2
1 +

3
2d1
)
qd1−1 +

(
1
2d

2
1 +

3
2d1
)
q3 −

(
2d21 + 5d1 − 2

)
q2

+
(
5
2d

2
1 +

5
2d1 − 10

)
q − (d21 − d1 − 2)

Ev(d0, d1)(q − 1)2qd1

= (2d0 − d1)(d1 − 1)qd1+2 −
(
5d0d1 − 5

2d
2
1 − 2d0 +

9
2d1 − 7

)
qd1+1

+
(
4d0d1 − 2d21 + 5d1 − 1

)
qd1 −

(
d0d1 − 1

2d
2
1 +

3
2d1
)
qd1−1

+
(
d0d1 − 3

2d
2
1 + 2d0 − 7

2d1
)
q2 − (2d0d1 − 3d21 + 2d0 − 2d1 + 7)q

+
(
d0d1 − 3

2d
2
1 +

3
2d1 + 1

)
To prove the theorem, we certainly need to know the arithmetic complexity of the basic
polynomial operations. Let f1 and f2 be polynomials of degree n1 ≥ n2, respectively.
Assuming conventional polynomial arithmetic as explained in Section 4.1, the number of
field multiplications needed to compute f1f2 depends on the number of non-zero coeffi-
cients of f1 and f2. However, observing that the number of non-zero non-leading coeffi-
cients of a random polynomial of degree n over Fq is Binomial(n, 1−1/q)–distributed, we
suppose that all polynomials involved have no zero coefficients, which biases the results
only negligibly since q is large. Then multiplying f1 and f2 takes (n1 + 1)(n2 + 1) field
multiplications, and a polynomial division with remainder of f1 by f2 takes one inversion
for the leading coefficient of f2 and (n2 + 1)(n1 − n2 + 1) multiplications. (This differs
from Ma’s assumption of needing n2(n1−n2+1) multiplications and n1−n2+1 divisions
([Ma87], Fact 3.3). Taking into account that divisions are more costly in a finite field
than multiplications and observing that all divisions are actually by the leading coeffi-
cient of f2, it is more efficient to invert this coefficient once and for all and to replace the
divisions by multiplications.)

Noticing that the final division by rt can be omitted if dt = 0, we see that the non-
extended Euclidean algorithm requires∑

k=1,...,t : dk 6=0

(dk + 1)(dk−1 − dk + 1)

multiplications and |{k = 1, . . . , t : dk 6= 0}| inversions. The computation of the uk
needs additional

t∑
k=4

(dk−2 − dk−1 + 1)(d1 − dk−2 + 1)

and the computation of the vk

t∑
k=3

(dk−2 − dk−1 + 1)(d0 − dk−2 + 1)

70 CHAPTER 4. EFFICIENCY

multiplications. Notice that u2 = 1, u3 = −q2 and v2 = −q1 are given for free, and that
the degrees of the qk, uk and vk can be expressed in terms of the dk by (3.2) to (3.4).

Then the expected numbers of field operations are given by

Em(d0, d1) = (d1 + 1)(d0 − d1 + 1) +

∞∑
µ=1

P (d2 = µ)(µ+ 1)(d1 − µ+ 1)

+
∞∑
k=3

∞∑
µ=0

∞∑
ν=1

P (dk−1 = µ ∧ dk = ν)(ν + 1)(µ− ν + 1) (4.1)

Ei(d0, d1) =
∞∑
τ=1

τP (t = τ)− P (deg gcd(d0, d1)) = 0) (4.2)

Eu(d0, d1) =
∞∑
k=4

∞∑
µ=0

∞∑
ν=0

P (dk−2 = µ ∧ dk−1 = ν ∧ dk 6= −∞) (4.3)

(µ− ν + 1)(d1 − µ+ 1)

Ev(d0, d1) =
∞∑
k=3

∞∑
µ=0

∞∑
ν=0

P (dk−2 = µ ∧ dk−1 = ν ∧ dk 6= −∞) (4.4)

(µ− ν + 1)(d0 − µ+ 1)

The condition “dk 6= ∞” in the expressions for Eu and Ev assures that the summation
stops with k = t instead of k = t+ 1.

Now, to prove Theorem 4.2, it is sufficient to determine the various probabilities occurring
in the above formulae. The key observation is the following lemma:

Lemma 4.3 Let f1 ∈ Fq[X] be uniformly distributed over the polynomials of degree α1,
f2 ∈ Fq[X] be fixed of degree α2 ≤ α1 and r the remainder and s the quotient of f1
divided by f2. Then r is uniformly distributed over the polynomials of degree less than
α2 and s is uniformly distributed over the polynomials of degree α1 − α2. Moreover, the
distributions of r and s are independent. In the context of the Euclidean algorithm it
follows for µ > ν ≥ 0 that

P (dk = ν|dk−1 = µ) =
polynomials of degree ν

polynomials of degree less than µ

= (q − 1)qν−µ,

P (dk = −∞|dk−1 = µ) = q−µ.

Proof: Note that for fixed f2 the map f1 7→ r is an epimorphism of the additive group of
polynomials of degree α1 onto the additive group of polynomials of degree less than α2.
Since any preimage under a group epimorphism has the same cardinality, this proves the

4.3. AVERAGE COMPLEXITY OF THE EUCLIDEAN ALGORITHM 71

assertion on r. More precisely, the pair of remainder and quotient polynomials (r, s) with
deg r < α2 and deg s = α1 − α2 is obtained from exactly the polynomial f1 = sf2 + r,
so that it occurs with probability 1

(q−1)qα1
independently of r and s. This shows the

assertion on s and also proves the independence of the two probability distributions. �

These conditional probabilities can be used to determine the total probability of dk
admitting specific values:

Lemma 4.4

P (dk = −∞) =

 1
qd1

k−2∑
j=0

(
d1

j

)
(q − 1)j for 2 ≤ k ≤ d1 + 1

1 for k ≥ d1 + 2

P (dk = ν) =

 (q−1)k−1

qd1
qν
(
d1−ν−1

k−2

) for 2 ≤ k ≤ d1 + 1,
0 ≤ ν ≤ d1 − k + 1

0 otherwise

Proof: Observe first that dk ≤ dk−1 − 1 implies dk ≤ d1 − k + 1 for k ≥ 2; this proves
the trivial parts of the assertion. We now restrict ourselves to the interesting cases and
proceed by induction for 2 ≤ k ≤ d1, noting that the assertions for k = 2 follow directly
from Lemma 4.3.

P (dk+1 = −∞)

=
d1−k+1∑
µ=0

P (dk = µ)P (dk+1 = −∞|dk = µ) + P (dk = −∞)

=
d1−k+1∑
µ=0

(q−1)k−1

qd1
qµ
(
d1−µ−1

k−2

)
1
qµ + 1

qd1

k−2∑
j=0

(
d1

j

)
(q − 1)j

by the induction hypothesis and Lemma 4.3

= (q−1)k−1

qd1

d1−1∑
µ=k−2

(
µ

k − 2

)
︸ ︷︷ ︸

=(d1
k−1)

+ 1
qd1

k−2∑
j=0

(
d1

j

)
(q − 1)j

72 CHAPTER 4. EFFICIENCY

Let now 0 ≤ ν ≤ d1 − k.

P (dk+1 = ν) =

d1−k+1∑
µ=ν+1

P (dk = µ)P (dk+1 = ν|dk = µ)

=
d1−k+1∑
µ=ν+1

(q − 1)k−1

qd1
qµ
(
d1 − µ− 1

k − 2

)
(q − 1)qν

qµ

=
(q − 1)k

qd1
qν

d1−ν−2∑
µ=k−2

(
µ

k − 2

)

=
(q − 1)k

qd1
qν
(
d1 − ν − 1

k − 1

)
�

The probability distribution of t has already been determined by Ma ([Ma87], Lemma
3.11); we give a simple proof in our setting:

Lemma 4.5

P (t = k) =

{ (
d1

k−1

) (q−1)k−1

qd1
for 1 ≤ k ≤ d1 + 1

0 otherwise

Proof: From the remark at the beginning of the proof of Lemma 4.4 it is clear that
t ≤ d1 + 1. Hence, let 1 ≤ k ≤ d1 + 1. Then

P (t = k) = P (dk−1 6= −∞)P (dk = −∞|dk−1 6= −∞)

=
∞∑

µ=0

P (dk−1 = µ)P (dk = −∞|dk−1 = µ),

and substituting the results of Lemmata 4.3 and 4.4 into this formula yields the desired
expression. �

Proof of of Theorem 4.2: Lemmata 4.3 and 4.4 allow us to compute the joint probability
distribution of sequences of remainder degrees; for instance,

P (dk−2 = µ ∧ dk−1 = ν ∧ dk 6= ∞)

= P (dk−2 = µ)P (dk−1 = ν|dk−2 = µ)(1− P (dk = −∞|dk−1 = ν)).

Substituting the results of the lemmata into (4.1) to (4.4) yields the desired formulae
after some tedious calculations with a symbolic algebra programme. Note then that the
numerator of Em has a double zero in 1, so it is divisible by (q−1)2. Comparing degrees

4.4. SOME MORE PROBABILITIES 73

of the numerator and denominator shows that Em is indeed a polynomial in 1/q. Similar
reasonings apply to Eu and Ev, and Ei is trivially a polynomial in 1/q. �

Lemma 4.3 shows that with probability 1− 1
q , we have dk = dk−1 − 1 for 1 ≤ dk−1 ≤ d1.

Hence the leading coefficients of Em, Ei, E
u and Ev could alternatively be determined

by examining this typical case.

While it is well known that the asymptotic worst-case complexity of the (extended)
Euclidean algorithm is quadratic for the number of multiplications and linear for the
number of inversions, Theorem 4.2 shows that this still holds in the average case and for
small degree polynomials.

4.4 Some more probabilities

For the composition step of Section 3.3.2 we have to carry out further computations with
the greatest common divisor and the multipliers, so that the probability distributions
of their respective degrees are of interest. Recall from Section 3.3.1 that dt denotes the
degree of the greatest common divisor and that the multiplier degrees are related to dt−1

by (3.3) and (3.4).

Lemma 4.6

P (dt−1 = µ ∧ dt = ν) =



1

qd1
for µ = d0 and ν = d1

q − 1

qd1
for µ = d1 and 0 ≤ ν < d1

(q − 1)2

qµ+1
for 1 ≤ µ < d1 and 0 ≤ ν < µ

0 otherwise

P (dt−1 = µ) =



1

qd1
for µ = d0

d1
q − 1

qd1
for µ = d1

µ
(q − 1)2

qµ+1
for 1 ≤ µ < d1

0 otherwise

P (dt = ν) =


1

qd1
for ν = d1

q − 1

qν+1
for 0 ≤ ν < d1

0 otherwise

74 CHAPTER 4. EFFICIENCY

Proof: Observing that

P (dt−1 = µ ∧ dt = ν)

=
∞∑
k=1

P (dk−1 = µ)P (dk = ν|dk−1 = µ)P (dk+1 = −∞|dk = ν),

P (dt−1 = µ) =
∞∑
ν=0

P (dt−1 = µ ∧ dt = ν) and

P (dt = ν) =

∞∑
µ=0

P (dt−1 = µ ∧ dt = ν),

this is an easy consequence of Lemmata 4.3 and 4.4. �

The result for dt has already been proved by Ma and von zur Gathen ([MG90], Propo-
sition 2.5). Letting ν = 0, the lemma shows that two random polynomials are coprime
with probability 1− 1/q.

A further result is needed to analyse Cantor’s reduction algorithm of Section 3.3.3; the
reduction involves the computation of gcd(rk, vk), and these two polynomials are not
independently distributed, so that the previous lemma cannot be applied. However, it is
possible to give an estimate of the probability that rk and vk are coprime.

Lemma 4.7 Let k ≥ 2 and dk−1 > 0. Then

P (rk and vk coprime) ≥ 1− d0 − 1

q
.

Proof: Observe first that vk and vk−1 are coprime for k ≥ 1. The assertion trivially
follows for k = 1 from v1 = 1 and can be proved by induction for k ≥ 2, since the
formula for vk+1 in Algorithm 3.24 implies that gcd(vk+1, vk) = gcd(vk, vk−1).

Let π be an irreducible divisor of rk. Then π also divides

vk = vk−2 − qk−1vk−1

if and only if π is a common divisor of vk−1 and vk−2, which is impossible by the
observation above, or if π does not divide vk−1 and qk−1 ≡ v−1

k−1vk−2 (mod π). By
Lemma 4.3, qk−1 is uniformly distributed over a space of non-constant polynomials of
fixed degree, and this distribution is independent of rk and thus of π. So the probability
that qk−1 satisfies the congruence is at most 1

q . Since rk has no more than dk ≤ d0 − 1
distinct irreducible factors, the assertion follows immediately. �

4.5. AVERAGE NUMBER OF FIELD OPERATIONS 75

4.5 Average number of field operations

In this section we determine the average number of field multiplications and inversions
performed during the different algorithms of Sections 3.3.2 and 3.3.3. We give correct
asymptotic formulae for q → ∞, i.e., we do not take into account events that have
probability in 1

qO(1).

We have to distinguish several cases. In odd characteristic we assume v = 0, while
in even characteristic we have v 6= 0 and the exact complexities depend on deg v; a
complete description would comprise the cases v = 1, deg v = g, deg v = g − 1 and
1 ≤ deg v ≤ g− 2. In order to keep the presentation concise we concentrate on two cases
especially attractive for implementation, namely the curves with v = 1 and the curves
with deg v = 1, i.e. v = X.

Concerning the polynomial arithmetic, it should be noted that squaring a polynomial is
more efficient than multiplying two distinct polynomials. In characteristic 2, squaring a
polynomial of degree n takes n+ 1 squarings in the underlying field since(

n∑
i=0

aiX
i

)2

=

n∑
i=0

a2iX
2i.

Assuming that the field arithmetic is implemented using normal bases, these squarings
are essentially for free, hence we do not count them (see [Jun93], Section 3.3). In odd
characteristic, we can write(

n∑
i=0

aiX
i

)2

=

n∑
i=0

a2iX
2i +

n∑
i=0

i−1∑
j=0

(aiaj + aiaj)X
i+j

and need (n+ 1) + 1
2n(n+ 1) = 1

2 (n+ 1)(n+ 2) field multiplications.

All complexities given are quadratic or cubic polynomials in g with fixed leading coef-
ficient, but the other coefficients may vary according to the arrangement of the com-
putations. Exchanging two multiplications, for instance, may already have an impact.
Since all proofs are very alike, we present only one proof in detail and proceed to simply
outline the order of the computations in the subsequent theorems, leaving the details to
the reader. While much care has been taken to find the optimal arrangements of com-
putations, it is possible that sometimes better ones exist. We denote the characteristic
of K = Fq by p.

According to Section 4.2, we assume that the composition algorithm is applied to uni-
formly distributed polynomials a1, a2, b1 and b2 of degrees g, g, g − 1 and g − 1, respec-
tively. As for the explicit formulae known for elliptic curves, we have to distinguish the
cases that a divisor is doubled or that two distinct divisors are added.

76 CHAPTER 4. EFFICIENCY

Theorem 4.8 On average, two distinct reduced divisors can be composed with

• 8g2 + 5g − 2 + 1
qO(g2) multiplications and g + 2 + 1

qO(g) inversions for p odd;

• 7g2 + 7g − 1 + 1
qO(g2) multiplications and g + 1 + 1

qO(g) inversions for p = 2,

v ∈ {1, X}.

On average, a reduced divisor can be composed with itself with

• 7g2 + 7g − 1 + 1
qO(g2) multiplications and g + 1 + 1

qO(g) inversions for p odd;

• 4g + 2 multiplications and one inversion for p = 2, v = 1;

• 4g2 + 5g + 2 multiplications and two inversions for p = 2, v = X.

Proof: Assume the notation of Algorithm 3.25. We first analyse the composition step for
distinct divisors and assume that p 6= 2. The average number of multiplications during
the computation of gcd(a1, a2) and u1 is in 2g2 + g− 3+ 1

qO(g2), the average number of

inversions is in g+ 1
qO(g) by Theorem 4.2. The greatest common divisor has, by Lemma

4.6, degree zero with probability 1− 1
q . We can thus assume this case, since otherwise we

apply the Euclidean algorithm a second time and all further computations are covered
by the “ 1

qO(g2)” and “1
qO(g)” terms. So we suppose u3 = 0. Moreover, Lemma 4.6

shows that deg u1 = g − 1 is most likely. Compute d−1 and then a = ((d−1)2a1)a2 with
1+(g+1)+(g+1)2 multiplications and b1+((d−1u1)(b2−b1))a1 with g+g2+(2g−1)(g+1)
multiplications. Since the result is most likely of degree 3g − 2 and a of degree 2g, the
reduction modulo a needs additional (2g + 1)(g − 1) multiplications and one inversion,
which proves the desired result.

The same reasoning applies to the case p = 2, but a different approach is preferable.
Compute d = gcd(a2, b1 + b2 + v), d−1 and u3 with expected 2g2 − 4 + 1

qO(g2) mul-

tiplications and g + 1
qO(g) inversions, and a = ((d−1)2a1)a2 with (g + 1) + (g + 1)2

multiplications. Reduce u modulo a to obtain ũ by 2(2g + 1) multiplications and one
inversion. Compute b̃ = b21 + b1v for free since squaring and multiplying by v ∈ {1, X}
are free, then b1 + (d−1u3)(b̃+ ũ) with g + 2g2 multiplications, noticing that the degree
of u3 is most likely g − 1 by Lemma 4.6 and the degree of b̃ + ũ most likely 2g − 1 by
Lemma 4.3. The final reduction modulo a needs again (2g + 1)(g − 1) multiplications,
but this time no inversion since the inverted leading coefficient of a is still known from
the reduction of u. This approach needs fewer multiplications as soon as g ≥ 3. For
g = 2, it saves one inversion at the expense of two multiplications, which is usually faster
(see the references in Section 4.6).

The same approach of computing gcd(a1, 2b1 + v) must be taken for doubling a point,
which results in the other complexities given. Notice that a should be computed as

4.5. AVERAGE NUMBER OF FIELD OPERATIONS 77

(d−1a1)
2. For p = 2 and v = X, the values of d and u3 are trivial to determine; the given

complexity is then valid for the most probable case deg d = 0, the case d = X needs even
fewer operations. If p = 2 and v = 1, then we even have d = u3 = 1, which implies a
further simplification. �

In order to apply the results of Section 4.3 and in accordance with Section 4.2 we assume
that the composition algorithm has yielded a random semireduced divisor div(a, b) of
degree 2g, so that a and b are approximately uniformly distributed over all polynomials
of degree 2g and 2g − 1, respectively.

Theorem 4.9 On average, Gauß reduction can be executed with

• 7
4g

3 + 33
8 g

2 + 1
4g +

1
qO(g4) multiplications and 1

2g + 1 + 1
qO(g2) inversions for p

odd, g even;

• 7
4g

3 + 39
8 g

2 + 9
4g+

17
8 + 1

qO(g4) multiplications and 1
2g+

3
2 +

1
qO(g2) inversions for

p odd, g odd;

• 7
6g

3+3g2− 1
6g+

1
qO(g4) multiplications and 1

2g+1+ 1
qO(g2) inversions for p = 2,

v ∈ {1, X}, g even;

• 7
6g

3 + 7
2g

2 + 4
3g + 2 + 1

qO(g4) multiplications and 1
2g +

3
2 + 1

qO(g2) inversions for

p = 2, v ∈ {1, X}, g odd.

Proof: Assuming the notation of Algorithm 3.26, Lemma 4.3 shows that with probability
in 1− 1

qO(g) we have t =
⌈
g
2

⌉
, deg ak = 2(g− k) and deg bk = 2(g− k)− 1 for k < t and

deg at = g. Now some simple computations reveal the results above. �

If g = 2, then in the Cantor reduction step we have c = b and d = 1, so that it equals
Gauß reduction. Also, Lagrange reduction differs from Gauß reduction only if g ≥ 3, so
that henceforth we assume g ≥ 3.

Theorem 4.10 If g ≥ 3, Cantor reduction is successful with probability at least 1− 1
qg+1 .

On average, it can then be executed with

• 11g2 + 3g − 8 + 1
qO(g3) multiplications and g + 1+ 1

qO(g2) inversions for p odd, g
even;

• 11g2 + 7g − 4 + 1
qO(g3) multiplications and g + 2+ 1

qO(g2) inversions for p odd, g
odd;

• 21
2 g

2 + g − 9 + 1
qO(g3) multiplications and g + 1 + 1

qO(g2) inversions for p = 2,

v ∈ {1, X}, g even;

78 CHAPTER 4. EFFICIENCY

• 21
2 g

2 + 6g − 9
2 + 1

qO(g3) multiplications and g + 2 + 1
qO(g2) inversions for p = 2,

v ∈ {1, X}, g odd.

Proof: Assume the notation of Algorithm 3.28. Cantor reduction is successful at least
when deg(gcd(a, b)) ≤ g, which by Lemma 4.6 happens with probability 1− 1

qg+1 . In this
case, applying the extended Euclidean algorithm 3.24 to a and b without computing the
uk and stopping as soon as the desired degree is reached yields c and d and requires

t′∑
k=2

(dk−1 + 1)(dk−2 − dk−1 + 1) +

t′∑
k=3

(dk−2 − dk−1 + 1)(d0 − dk−2 + 1)

multiplications and t′ − 1 inversions, where by Lemma 4.3 the probability that all dk =
2g − k and t′ =

⌈
g
2

⌉
is in 1− 1

qO(g). Compute ã and apply the half-extended Euclidean

algorithm to ã, which is usually of degree g, and d, which is usually of degree
⌈
g
2

⌉
− 1,

to compute the greatest common divisor s and d̃. By Lemma 4.7 we most probably have
deg s = 0, so that a = ã and it is sufficient to compute b = (−v − d(c mod a) mod a to
obtain the reduced divisor div(a, b). �

Theorem 4.11 If g ≥ 3, then on average Lagrange reduction can be executed with

• 9g2− 5+ 1
qO(g3) multiplications and 1

2g+1+ 1
qO(g2) inversions for p odd, g even;

• 9g2 + g − 2 + 1
qO(g3) multiplications and 1

2g +
3
2 + 1

qO(g2) inversions for p odd, g
odd;

• 7g2 − g − 5 + 1
qO(g3) multiplications and 1

2g + 1 + 1
qO(g2) inversions for p = 2,

v ∈ {1, X}, g even;

• 7g2 − 2 + 1
qO(g3) multiplications and 1

2g +
3
2 + 1

qO(g2) inversions for p = 2, v ∈
{1, X}, g odd.

Proof: The analysis is straightforward since by Lemma 4.3 we have t =
⌈
g
2

⌉
, deg ak =

2(g − k), deg bk = 2(g − k) − 1 and deg qk = 1 for k ≤
⌊
g
2

⌋
with total probability in

1 − 1
qO(g). If g is odd, then deg at = g and deg qt = 0 with overwhelming probability.

�

To estimate the number of field operations required for a full addition step we have to
choose between the three reduction procedures. Comparison of the numbers in Theo-
rems 4.9 to 4.11 yields the following result.

Theorem 4.12 For large q, Lagrange reduction is the fastest reduction procedure.

4.6. AVERAGE BIT COMPLEXITY 79

We can now use the results of Theorems 4.8, 4.9 and 4.11 to determine the number of
field operations needed in the different cases.

Theorem 4.13 On average, two distinct divisors can be added with the following num-
bers of field operations:

multiplications inversions
p 6= 2, g even 17g2 + 5g − 7 + 1

qO(g3) 3
2g + 3 + 1

qO(g2)

p 6= 2, g odd 17g2 + 6g − 4 + 1
qO(g3) 3

2g +
7
2 + 1

qO(g2)

p = 2, g even 14g2 + 6g − 6 + 1
qO(g3) 3

2g + 2 + 1
qO(g2)

p = 2, g odd 14g2 + 7g − 3 + 1
qO(g3) 3

2g +
5
2 + 1

qO(g2)

On average, a divisor can be doubled with the following numbers of field operations:

multiplications inversions
p 6= 2, g even 16g2 + 7g − 6 + 1

qO(g3) 3
2g + 2 + 1

qO(g2)

p 6= 2, g odd 16g2 + 8g − 3 + 1
qO(g3) 3

2g +
5
2 + 1

qO(g2)

p = 2, v = 1, g even 7g2 + 3g − 3 + 1
qO(g3) 1

2g + 2 + 1
qO(g2)

p = 2, v = 1, g odd 7g2 + 4g + 1
qO(g3) 1

2g +
5
2 + 1

qO(g2)

p = 2, v = X, g even 11g2 + 4g − 3 + 1
qO(g3) 1

2g + 3 + 1
qO(g2)

p = 2, v = X, g odd 11g2 + 5g + 1
qO(g3) 1

2g +
7
2 + 1

qO(g2)

Conclusion 4.14 For large q, the arithmetic in hyperelliptic Jacobians of genus at least
2 is faster in even characteristic with v ∈ {1, X} than in odd characteristic. The number
of field multiplications and inversions strictly increases with the genus.

4.6 Average bit complexity

While Theorem 4.13 shows that the number of field operations increases strictly as the
genus grows, the cryptographic setting described in Section 4.1 implies that at the same
time the field size decreases because log q = l

g for some constant security parameter l.
Hence the field operations may become more efficient, and the bit complexity of adding
divisors depends very much on the implementation of the field arithmetic. We examine
three basic situations in which the complexity of field operations is constant or grows
with log q or log2 q.

Throughout this section we assume that l is “sufficiently large” and g “not too large”
compared to l, so that the terms “ 1

qO(g4)” etc. in the complexities can be neglected.

80 CHAPTER 4. EFFICIENCY

As justified in Section 4.1, this condition is fulfilled in practice. To assure mathematical
rigour, we may assume that g ≤ lε for some constant ε < 1. Then

1

q
O(g4) =

g4

el/g
O(1) ⊆ l4ε

(e1−ε)l
O(1) ⊆ o(1) for l → ∞,

and the following discussion yields asymptotic results for l → ∞.

If the finite field is so small that its elements can be represented in single registers and
the field operations can be performed with single precision, then they take constant time,
and the assertion of Theorem 4.13 directly carries over to the bit complexity.

In custom-designed hardware for finite field arithmetic the complexity of the field oper-
ations usually grows with log q. Thus, assume that a multiplication needs time m log q
and an inversion i log q. As we get technical problems when comparing the arithmetics
for genus g and g + 1, one being even and one odd, and a too fine-grained analysis is
not even meaningful in our rather coarse model, we restrict our comparison to either
odd or even genus, i.e. remain within one row of the tables in Theorem 4.13. Then, an
operation in the Jacobian can be executed in an average time of

(αg2 + βg − γ)m log q + (δg + η)i log q= l

((
αg + β − γ

g

)
m+

(
δ +

η

g

)
i

)
for some non-negative constants α, β, γ, δ, η. The derivative of this expression with
respect to g is positive whenever

i

m
<

4α+ γ

η
≤ αg2 + γ

η
.

Plugging in the actual values of Theorem 4.13 shows that this is the case for i/m ≤ 11,
which is fulfilled in practice (cf. [Ber68], Chapters 2.3 and 2.4). Hence in this situation
the arithmetic in hyperelliptic Jacobians becomes slower as the genus grows.

In a generic software implementation, the field operations usually take time proportional
to log2 q, say a multiplication needsm log2 q and an inversion i log2 q. Then the operations
in the Jacobians take time

l2m

(
α+

βg − γ

g2

)
for the field multiplications and

l2i
δg + η

g2

for the inversions. Thus the effort for field inversions is strictly decreasing. Also, with the
constants set forth in Theorem 4.13, the effort for multiplications is strictly decreasing
except for the step between g = 2 and g = 4 in odd characteristic. This conclusion,
however, has to be approached with care, as it is based on the non-leading coefficients

4.6. AVERAGE BIT COMPLEXITY 81

β and γ, which are bound to change already when two multiplications are interchanged.
Anyway, the relative speed-up obtainable from the multiplications is very limited. Con-
sidering, for instance, the doubling step for p = 2, v = 1 and g even, we observe that the
total effort for multiplications varies between 7.75ml2 (for g = 2) and 7ml2 (for g → ∞).
The effect is even less pronounced in the other cases with a higher value of α.

How advantageous it is with respect to the inversions to increase the genus depends on
the ratio i/m. The larger this ratio is, the more one can profit from a higher genus. In
any case, the hyperbolic shape of the complexity curve results in fast dropping marginal
profits.

This discussion shows that given a desired security level, i.e. an appropriate group size,
hyperelliptic cryptosystems should preferably be implemented in characteristic 2. If the
complexity of the field operations is constant or grows with log q, then the smallest
possible genus fitting the system requirements should be chosen. If the complexity of the
field operations grows with log2 q, a higher genus, to be determined by computational
experiments, might be recommendable. For instance, the smallest genus such that the
field elements fit into one machine word could be a good choice; from then on, the
efficiency would drop again.

In any case, due to optimised formulae available for adding points on elliptic curves,
hyperelliptic arithmetic based on the generic algorithms of Section 3.3 is less efficient
than elliptic curve arithmetic. It might be worthwhile to investigate explicit formulae
for the addition law in low-genus hyperelliptic Jacobians. Spallek, for instance, reports
such an implementation of genus 2 curves which is slower than elliptic curve arithmetic
by a factor of only 2.5 for qg ≈ 1040 ([Spa94], p. 31). Further experimental results can
be found in [Kri97].

Chapter 5

Smoothness

Our goal in this and the following chapters is to develop a general theory for subexponen-
tial discrete logarithm algorithms and to apply this theory to class groups, especially of
hyperelliptic curves. The general approach is motivated by the fact that subexponential
algorithms for computing discrete logarithms are scattered in the literature and described
over and over again in different settings. The algorithms to be developed in Chapters 6
and 7 provide a framework which is as independent of the concrete group as possible. It
covers all examples known from the literature and is successfully applied to hyperelliptic
Jacobians, for which we provide the first algorithm with a fully proved subexponential
running time. It is hoped that this framework allows a concise presentation of subexpo-
nential algorithms yet to be discovered in further groups, in the sense that it alleviates
the burden of proving those parts of the algorithms which remain unchanged and that
only the details relating to the particular group have to be filled in.

Taking the example of a finite prime field Fp = Z/pZ of Section 1.3 as a starting point, we
note that the algorithm relies on the fact that first each element of Fp, when represented
by a natural integer, is composed of building blocks, i.e, it is the product of prime
elements, and second, it is so in a non-unique way: From a relation of the form∏

pµi

i ≡
∏

pνi
i (mod p)

we deduce a relation ∑
(µi − νi) log pi = 0

of discrete logarithms. In Section 5.1 we develop a general model for this particular
behaviour. This model allows to formulate the algorithms of Chapters 6 and 7 in a ter-
minology independent of the concrete group. However, the algorithms are probabilistic,
and their success probability — and thus ultimately their running time — depend on

83

84 CHAPTER 5. SMOOTHNESS

an additional smoothness assumption, as also mentioned in Section 1.3. Basically, the
assumption is that a sufficiently large proportion of the group elements is smooth, i.e.
composed of small building blocks. Whether the smoothness assumption indeed holds
depends on the concrete group, and its verification is precisely the part which must be
filled in for each group separately. So with the general framework of Chapters 6 and 7,
the proof of subexponentiality of the discrete logarithm algorithm for a particular group
boils down to verifying the validity of a smoothness result in the group.

The subsequent sections of this chapter deal with the smoothness assumption in the case
of hyperelliptic curves. We obtain the first such result for function fields.

5.1 Arithmetical semigroups and formations

Decomposability of elements into building blocks can be modelled by a free abelian
monoid M, written additively, over a countable set P, whose elements are called primes.
To lay the grounds for the smoothness concept, we need a notion of size which is com-
patible with the structure of M. Thus, let

deg :M→ R+

be a homomorphism of monoids, which to each element of M associates its size. As M is
free over the set of primes, any such homomorphism is given by assigning a non-negative
size to each prime and extending additively. In all practical examples, the size function
has a natural interpretation; in particular, the size deg(m) of an element m ∈ M is
usually closely related to its bit size in a computer representation in the sense that the
latter is in Θ(deg(m)). The setting above was introduced by Knopfmacher in [Kno75];
he calls M an additive arithmetical semigroup.

So far, the decomposition of an element into a sum of primes is unique, but as mentioned
in the introduction to this chapter, we need some ambiguity to deduce the logarithms
of the prime elements. Assume that there is an equivalence relation ∼ on M which is
compatible with its composition law such that M/ ∼ is a finite abelian group. Then
M/ ∼ is called an arithmetical formation in [Kno75], and we assume that the group G
in which discrete logarithms are sought has this structure.

Knopfmacher was mainly interested in generalisations of the prime number theorem and
asymptotic number theoretic results to this more general situation, i.e. in counting
problems. Since we need to work with and compute in concrete arithmetical formations,
we require that they meet further restrictions, which basically ensure that the arithmetic
is of polynomial complexity.

Let N be the order of G. In general, one would expect that the elements of G are
represented by O(logN) bits and measure algorithmic complexities as functions of N .
It is, however, possible to construct groups whose elements are naturally represented

5.1. ARITHMETICAL SEMIGROUPS AND FORMATIONS 85

by bit strings of length in O(logN ′) for some value N ′ considerably larger than N .
For instance, Jacobian groups of hyperelliptic curves of genus g over F2 are given by
Θ(logN ′) bits for N ′ = 2g, whereas the only previously known lower bound on N in this
case is the Hasse–Weil bound (

√
2 − 1)g ≤ 1. While this situation results in a waste of

bandwidth for cryptographic applications and is thus unlikely to occur, for preserving as
much generality as possible we henceforth denote by logN ′ the input size of the problem
and measure all complexities by functions in logN ′. It turns out that factors polynomial
in logN ′ do not affect the subexponential running time. Hence to simplify the analysis
we follow [GG99] and for some positive function f of N ′ denote by O∼(f) the class of
functions which are in O(f) up to a factor bounded by some power of logN ′. Formally,

O∼(f) =

∞∪
k=0

O(f(N ′) logkN ′).

To ensure that on the other handN ′ is not much smaller thanN , we requireN ∈ O∼(N ′).

To be able to write down group elements, we demand that each element of G has a
canonic representative in M of bit size in O∼(1). Thus, the elements of G inherit the
decomposability into a sum of primes from their canonic representatives, and we interpret
deg(g) as the size of the canonic representative of g ∈ G. (At first sight, this reintroduces
the unique decomposability of an element of G into prime elements. Observe, however,
that if m ≡ m1 +m2 (mod ∼), then the sum of the decompositions of m1 and m2 is
a further decomposition of the element m of G.) Furthermore, the arithmetic in G, i.e.
addition, negation and test for equality, must be performed by manipulating the canonic
representatives in time polynomial in logN ′. In addition, we require that deg(p) ≥ 1
for p ∈ P and that deg(g) ∈ O∼(1) for any g ∈ G, so that the number of primes in
the decomposition of a group element, counting multiplicities, is also bounded above by
O∼(1).

For a smoothness bound S ∈ N denote by PS the set of primes of size at most S and
by nS the cardinality of PS . An element of G is called S–smooth if its decomposition
involves only primes of PS . As the size of the elements of G is in O∼(1), a distinction
into smooth and non-smooth elements arises only for S ∈ O∼(1), which we henceforth
assume. For technical reasons we need log nS ∈ O∼(1). From an algorithmic point of
view, we require that PS can be constructed in O∼(n2S). (If n′S denotes the number of
elements of the monoid M of size at most S, then we often have O∼(nS) = O∼(n′S). The
quadratic complexity of the construction of PS can then be achieved by enumerating
all elements of M of size not exceeding S and trial division by the smaller elements. In
imaginary quadratic number and function fields, PS is constructed in a different way, see
the examples below.) Furthermore, we suppose that the elements of G can be tested for
S–smoothness and, if possible, be decomposed into a sum of primes from PS in O∼(nS),
which usually amounts to trial division by the elements of PS . In all cases considered
below, the smoothness test and the decomposition are even in O∼(

√
nS) or O

∼(1), which
results in better running times.

86 CHAPTER 5. SMOOTHNESS

The most efficient smoothness test available for integers to date, which is subexponential
in log n′S , is non-deterministic and not completely reliable in the sense that it may not
recognise a smooth element. Thus, we extend our model as follows: The smoothness
test rejects all non-smooth elements; it recognises a smooth element up to a certain error
probability, which may depend on the element tested, but does not exceed 1/2.

It should be noted that we could work with a more general, but less intuitive definition
of decomposability into a sum of primes without involving the quotient of a free abelian
monoid and of smoothness without involving the notion of size. In fact, the set of
primes could be assumed to be either the finite set P = {1, . . . , k} or P = N, and the
decomposition into a sum of primes could be seen as some map from G to the free abelian
monoid over P, i.e. to the sequences (νi)i∈P with νi ∈ N0 and almost all νi equal zero.
Then, for a finite set PS ⊆ P, an element would be called PS–smooth if νi = 0 for i 6∈ PS .

However, all examples considered in the literature are covered by the more intuitive
concept, and I feel that stripping off more meaning than necessary does rather obscure
the matter.

Examples.

1) Finite prime fields G = F×p
G can be represented as (N, ·)/ ∼, where m1 ∼ m2 if and only if p|m1 −m2, and P

is the set of natural prime numbers. The size of an element is given by its logarithm
to the base 2, deg(m) = ldm, and N ′ = N = p− 1.

2) Finite fields G = F×
2k

of characteristic 2

G can be represented as (F2[X]\{0}, ·)/ ∼, where f1 ∼ f2 if and only if f |f1 − f2
for some fixed irreducible polynomial f of degree k in F2[X], and P is the set of
irreducible polynomials over F2. The size of an element is given by its usual degree
and N ′ = N = 2k − 1.

3) Finite fields G = F×
pk , p prime

G can be represented by the polynomials of degree less than k over Fp. Denote
by Fp[X]′ the set of monic polynomials over Fp. Noticing that any polynomial
is the unique product of its leading coefficient and a monic polynomial, G can
be represented as (N, ·) × (Fp[X]′, ·)/ ∼, where (m1, f1) ∼ (m2, f2) if and only if
p|m1−m2 and f |f1−f2 for some fixed irreducible polynomial f of degree k over Fp.
The set of primes P is given by the union of the set of natural primes and the set of
monic irreducible polynomials over Fp, each embedded into the cartesian product.
The size of an element is deg(m1, f1) = ldm1+deg f1 and N ′ = N = pk−1. Notice
that these definitions are compatible with Examples 1) and 2).

4) Jacobians of imaginary quadratic hyperelliptic curves

5.1. ARITHMETICAL SEMIGROUPS AND FORMATIONS 87

The Jacobian G of an imaginary quadratic hyperelliptic curve C is isomorphic to
M/ ∼, where M is the free abelian monoid over the set P of finite prime divisors of
K(C) and ∼ is the equivalence relation induced by the divisors of principal ideals
of O = K[X,Y]/(C), see Proposition 3.7. The size of a divisor of M is given by its
degree.

Since inert prime ideals belong to principal ideals, we may in fact remove them
from P. Thus, PS consists of all prime divisors of K(C) extending finite ramified
and splitting prime divisors of K(X) whose local parameters are of degree at most
S. It can be constructed by enumerating all irreducible polynomials of K[X] of
degree at most S in time O∼(q2S) and determining their respective extensions by
Kummer’s theorem 3.10 in polynomial time. Notice that O∼(qS) = O∼(nS) by
Theorem 5.2.

The elements of G are represented by reduced divisors div(a, b), which satisfy
deg(div(a, b)) = deg a ≤ g, see Section 3.2.5. So the input size of the problem
is O(logN ′) for N ′ = qg, for which the assumption N ∈ O∼(N ′) holds indeed:

Proposition 5.1 In a hyperelliptic curve of genus g over Fq, the ideal class number
N satisfies

N ≤ (2g + 1)qg.

Proof: For q a prime, the result is due to Artin ([Art24b], §24, Formula (8)). His
arguments are easily extended to the general case replacing the Artin character by
the general quadratic character. �

A reduced divisor div(a, b) is S–smooth if and only if all irreducible factors of a
are of degree at most S; its decomposition into prime divisors is obtained from the
factorisation of a as explained in Corollary 3.17. So the smoothness test and the
decomposition are reduced to the analogous problems over the univariate polyno-
mials. For K = Fq a finite field, these can be solved by probabilistic algorithms in
expected time polynomial in log q and S.

5) Ideal class groups of imaginary quadratic number fields

Let K = Q(
√
D) be an imaginary quadratic number field of discriminant D < 0

and O its ring of integers. The class group G of K is defined as M/ ∼, where M is
the set of integral ideals of O (a free abelian monoid over the set P of prime ideals),
and ∼ is induced by the principal ideals.

Let y = D+
√
D

2 with minimal polynomial Y 2 −DY + D2−D
4 . Then y generates an

integral power basis, i.e., O = Z+ Zy (cf. Proposition 3.8). Since the unit rank of
O is zero, it is possible to develop a theory exactly analogous to those of imaginary
quadratic hyperelliptic curves (cf. Section 2.4.2). In particular, any ideal class
has a unique reduced representative (a, y − b) with a, b ∈ Z, −a+D

2 < b ≤ a+D
2 ,

88 CHAPTER 5. SMOOTHNESS

a|b2 − Db + D2−D
4 , a2 ≤ b2 − Db + D2−D

4 and b > D
2 if a2 = b2 − Db + D2−D

4 .
(This definition of reducedness may look unfamiliar. It is more common to consider

ideals of the form
(
a,

√
D−b′

2

)
with b′ ≡ D (mod 2) and a|(b′)2 −D, which can be

summarised as 4a|(b′)2 − D. Letting c = (b′)2−D
4a , an ideal is called reduced if

−a < b′ ≤ a ≤ c and b > 0 if a = c. From
√
D−b′

2 = y − b for b = b′+D
2 it is easily

seen that the two definitions of reducedness coincide). These conditions imply

a <
√

D
3 , which is the analogue of deg a ≤ g for reduced hyperelliptic divisors.

The arithmetic of the ideal class group can be realised by polynomial time algo-
rithms as in Section 3.3. The norm of an integral ideal of O is a certain principal
ideal of Z (cf. Proposition 3.15); to simplify the notation, it is common to define
the norm of an ideal as the unique positive generator of this ideal of Z, so that the

norm of (d)(a, y − b) with a|b2 −Db+ D2−D
4 is d2|a|. Then we can define the size

of an ideal as the dual logarithm of its norm. Thus PS consists of all prime ideals
extending splitting or ramified rational primes not larger than 2S and of all prime
ideals extending inert rational primes not larger than

√
2S . Again, we let N ′ = N .

Then these rational primes can be enumerated in O∼ (22S), which equals O∼(n2S)
under the generalised Riemann hypothesis. The set PS can then be constructed
with the help of Kummer’s theorem 3.10 for number fields: For a rational prime

p, find the roots of Y 2 −DY + D2−D
4 (mod p). If there is no root, then p is inert

and pO is a principal prime ideal. If there is the double root b + (p), then p is
ramified and (p, y − b) is the unique extension of p. If there are two roots b + (p)
and b′ + (p) = D − b+ (p), then p is splitting and (p, y − b) and (p, y − b′) are the
extensions of p.

The decomposition of a reduced ideal a = (a, y− b) into prime ideals is completely
analogous to Corollary 3.17. Let p be a prime dividing a with multiplicity ν ≥ 0. If
ν = 0, then no prime ideal extending p occurs in the decomposition of a. Otherwise,
p is not inert, and (p, y− b) is an extension of p which occurs with multiplicity ν in
the decomposition of a. If p is splitting, then the conjugate extension (p, y − b) =
(p, y − (D − b)) does not occur in a, if p is ramified, then in fact ν = 1. So as for
hyperelliptic Jacobians, inert prime ideals need not be included into P after all.

�

5.2 Prime divisor theorem

In the remainder of this chapter, we derive a smoothness result for semireduced divisors
of an (imaginary or real quadratic) hyperelliptic curve C over a finite field Fq and survey

5.2. PRIME DIVISOR THEOREM 89

corresponding results in already known cases. The question how many semireduced di-
visors of given degree are smooth is basically combinatorial: Given a set of components
(finite prime divisors) of small size, how many objects (divisors) of given size can be
composed from them with respect to certain additional constraints (semireducedness)?
To answer the question, a crucial point is clearly the knowledge of the number of com-
ponents. In the context of hyperelliptic Jacobians, we are interested in the number of
finite splitting or ramified prime divisors of given degrees, which by the discussion of Sec-
tions 2.1.3 and 2.2.2 are closely related to the number of points on C with coordinates
in extension fields of Fq.

For k ∈ N0, let π+(k), π0(k) and π−(k) denote the number of irreducible polynomials of
degree k which are local parameters of splitting, ramified resp. inert prime divisors of
K(X), π(k) = π+(k) + π0(k) + π−(k) the number of irreducible polynomials of degree

k and Π+(k) =
∑k

i=1 π+(k). Let P be a finite prime divisor of K(C) of degree k which
extends a prime divisor p of K(X) with local parameter p. By definition of the degree
(see Sections 2.1.3 and 2.2.4), P corresponds to k points on C with coordinates in the
algebraic closure of Fq. If P is ramified or splitting, then p and thus p are of degree k.

Let x0, . . . , xk−1 with xi = xq
i

0 be the distinct roots of p in Fqk and let P∩O = (p, y− b).
Then the points corresponding to P are the (xi, b(xi)) with coordinates in Fqk , but no
subfield of Fqk . If P is inert, then k is even and p and thus p are of degree k/2. Let

x0, . . . , xk/2−1 with xi = xq
i

0 be the roots of p in Fqk/2 . Since p is inert, by Kummer’s
theorem 3.10 the polynomial Y 2 + vY − u (mod p) does not have a root in K[X], so
Y 2 + v(xi)Y − u(xi) does not have a root in Fqk/2 , but two distinct roots in Fqk . Thus,
P corresponds to k points with X–coordinates in Fqk/2 and Y –coordinates in Fqk , but in
no subfield. To simplify the notation, let π−(k) = 0 for k half-integral, but not integral.
Taking into account that each splitting prime divisor of K(X) extends to two prime
divisors of K(C) and each ramified prime divisor of K(X) to only one, the preceding
discussion shows that the number of finite points on C with coordinates in an extension
field Fqk , but no smaller extension field, is given by

k(2π+(k) + π0(k) + π−(k/2)).

In addition, there are η infinite points defined over Fq on the smooth projective model
of C, corresponding to the infinite valuations of K(C), with η = 1 for an imaginary and
η = 2 for a real quadratic curve. (The curve itself has only one infinite point. However,
it is not smooth for g ≥ 2, so that we cannot apply Weil’s theorem directly.) Hence the
total number of points Nk on the smooth projective model of C with coordinates in Fqk
is given by

Nk =
∑
i|k

i(2π+(i) + π0(i) + π−(i/2)) + η. (5.1)

On the other hand, Weil’s theorem provides a close approximation of this number; by

90 CHAPTER 5. SMOOTHNESS

the results of Section 2.5,

qk − 2gqk/2 + 1 ≤ Nk ≤ qg + 2gqk/2 + 1.

We obtain the following result, which is the analogue of the prime number theorem in Z.

Theorem 5.2 (Prime Divisor Theorem) The number of monic irreducible polyno-
mials of degree at most k which are local parameters of splitting prime divisors of K(X)
is given by

Π+(k) ≥
1

2k

(
qk − 2(g + 1)(qk/2 + 1)

)
.

If 0 < ε ≤ 1
4 and k ≥ 1

ε logq(2g + 6 +
√
2), then furthermore

1

2k

(
qk − qk(

1
2+ε)

)
≤ π+(k) ≤

1

2k

(
qk + qk(

1
2+ε)

)
.

Proof: Weil’s theorem and (5.1) imply

qk − 2gqk/2 −
∞∑
i=1

iπ0(i)−
∑
i|k

iπ−

(
i

2

)
− 1 ≤

∑
i|k

2iπ+(i) ≤ qk + 2gqk/2.

As
∑∞

i=1 iπ0(i) is the summed up degree of all ramified prime divisors and a prime divisor
is ramified if and only if it divides the discriminant v2 + 4u of C (cf. Proposition 3.10),
which by Theorems 3.3 and 3.5 has degree 2g + 1 for an imaginary and 2g + 2 for a real
quadratic curve, we have

∑∞
i=1 iπ0(i) ≤ 2(g + 1). If k is odd, then

∑
i|k iπ−

(
i
2

)
is zero,

otherwise it is ∑
i| k2

2iπ−(i) ≤ 2
∑
i| k2

iπ(i) = 2qk/2.

This shows that

qk − 2(g + 1)(qk/2 + 1) ≤
∑
i|k

2iπ+(i) ≤ qk + 2gqk/2. (5.2)

Taking into account that

Π+(k) =
k∑

i=1

π+(i) ≥
1

2k

∑
i|k

2iπ+(i),

the first assertion is proved.

Letting f(k) =
∑

i|k 2iπ+(i), Möbius inversion implies

2kπ+(k) =
∑
i|k

µ(k/i)f(i),

5.3. THE SUBEXPONENTIAL FUNCTION 91

where the Möbius function µ takes values in {0,±1} and µ(1) = 1. Hence for k ≥
1
ε logq(2g + 6 +

√
2) we have

2kπ+(k) ≥ f(k)−
bk/2c∑
i=1

f(i)

≥ qk − (2g + 2)qk/2 − (2g + 2)−
bk/2c∑
i=1

(qi + 2gqi/2) by (5.2)

≥ qk − (2g + 2)qk/2 − q

q − 1
(qk/2 − 1)− 2

−2g

√
q

√
q − 1

(qk/4 − 1)− 2g

≥ qk − (2g + 4)qk/2 − 2g(2 +
√
2)qk/4 since q ≥ 2

≥ qk − (2g + 4)qk/2 − (2 +
√
2)qk/2

since 2g ≤ 2g + 6 +
√
2 ≤ qkε ≤ qk/4

≥ qk − qk(
1
2+ε)

The upper bound for π+(k) is derived in a similar way. �

5.3 The subexponential function

The concept of subexponentiality has already been introduced in Section 1.3. Since the
smoothness theorems of the following sections involve the subexponential function, it is
helpful to have a closer look at this function first.

Recall that the subexponential function with respect to parameters α ∈ (0; 1), c > 0 and
the input size logN ′ is defined by

LN ′(α, c) = ec(logN ′)α(log logN ′)1−α

.

In all situations we will encounter, we have α = 1/2, so that we write LN ′(c) for
LN ′(1/2, c). The definition of L implies the following simple relations:

LN ′(c1)LN ′(c2) = LN ′(c1 + c2),

LN ′(c)k = LN ′(kc1),

LN ′(c1) + LN ′(c2) ∈ Θ(LN ′(max(c1, c2))).

Denote by o(1) the set of real valued functions tending to zero as N ′ → ∞. Then
functions in O∼(1) or O(LN ′(α, c)) for α < 1/2 are contained in LN ′(o(1)), and LN ′k(c) ∈
LN ′(

√
kc+ o(1)).

92 CHAPTER 5. SMOOTHNESS

During the algorithms of the following chapters it will often be the case that operations
of polynomial complexity, e.g. group operations, are repeated a subexponential number
of times; say, an operation of complexity in O(logkN ′) is repeated L(ρ) times for some
k ∈ N and ρ > 0. Then, the discussion above implies that all these operations together
are performed in a time of LN ′(ρ+ o(1)). It is common practice to add the term “o(1)”,
which allows to abstract from any polynomial time overhead.

We mention a few simple rules for computing with o(1); since 1 + o(1) is the set of
functions tending to 1 for N ′ → ∞, we have

c(1 + o(1)) = c+ o(1) for any c ∈ R,
α(N ′) + o(1) ⊆ α(N ′)(1 + o(1)) if α(N ′) is bounded away from zero,

log(1 + o(1)) = o(1).

The key step of the discrete logarithm algorithms of Chapters 6 and 7 is the test of a
random group element for smoothness. The desired smoothness results are of the form:
“One out of a subexponential number of group elements is smooth”, which implies that
the test has to be repeated an expected subexponential number of times until a smooth
element is found. Evidently, the ratio of smooth elements increases with the smoothness
bound S, so that this part of the algorithm becomes faster for larger S. On the other
hand, the construction of PS (and a linear algebra step to be explained later) must also
be carried out in subexponential time. So PS may only be of subexponential size, and
S must not be too large. Only if these two contradicting requirements are met, the
complete algorithm will be of subexponential complexity.

5.4 Smoothness in arithmetical semigroups

Sometimes, the smoothness assumption in an arithmetical formation reduces to the same
assumption in the underlying arithmetical semigroup. This is the case if the elements of
the formation are represented by exactly those elements of the semigroup not exceeding
a certain size, without taking further restrictions into account. For instance, F×p is

represented by exactly those rational integers whose size is less than ld p and F×2m by
exactly those binary polynomials whose degree is less than m. Class groups of imaginary
quadratic number fields or hyperelliptic curves, however, do not fall into this category
since only the (semi-)reduced fraction of the small elements of the semigroup represents
the formation.

Smoothness results in arithmetical semigroups are obtained more easily. Since the small
prime elements can be composed arbitrarily to form smooth objects, it is basically suf-
ficient to know the number of prime elements of any given size. Then the theory of
generating functions and analytic means (see [Ten90, Ten95]) can be employed to derive
the smoothness assertions.

5.4. SMOOTHNESS IN ARITHMETICAL SEMIGROUPS 93

For arithmetical semigroups in which the size function is discrete as in the case of poly-
nomials, Knopfmacher introduces Axiom A# in [Kno79], Chapter 1. It states that the
number of objects of size k is in

cqk +O(qαk)) for some q > 1, c > 0 and 0 ≤ α < 1.

(This allows to deduce an abstract analogue of the Prime Divisor Theorem 5.2 on the
number of prime elements of given size when this size tends to infinity, see [IMW91]). In
this context, Manstavičius has obtained very general results in [Man92b, Man92a]. The
special cases of univariate polynomials over finite fields ([Car87, AD93, BP98, PGF98])
and divisors in algebraic function fields ([Heß99], Chapter 4) have received considerable
attention in the literature.

The situation is slightly different if the size is not discrete, for instance in (N, ·), which
was the first example considered in the literature. However, an analytic approach yields
similar results in this case ([Hen85, Hil86, HT86]).

In this section, we collect some smoothness results available for arithmetical semigroups
and of interest in the cryptographic context. Let N ′ be as above, N the cardinality of
the group and NS the number of S–smooth elements in the group, where S is chosen
such that the cardinality of PS is subexponential in logN ′. Unless stated otherwise, all
asymptotic results, involving the term “o(1)”, are to be understood for N ′ → ∞.

Consider first the case of finite prime fields G = F×p , in which N ′ = N = p− 1. Clearly,

nS = |PS | ≤ 2S ; more precisely, nS ∼ 2S

S log 2 asymptotically for S → ∞ by the ordinary

prime number theorem. Thus, letting S = dld(LN (ρ))e for some positive constant ρ we
obtain nS ∈ LN (ρ + o(1)). The number NS is the number of integers between 1 and
N without prime factors larger than 2S , commonly denoted by ψ(N, 2S). A theorem of
Pomerance’s provides the desired smoothness result ([Pom87], Lemma 3.1):

Theorem 5.3 If G = F×p and S = dld(LN (ρ))e for some ρ > 0, then

N

NS
=

N

ψ(N, 2S)
∈ LN

(
1

2ρ
+ o(1)

)
.

To treat more general finite fields F×
pk with N ′ = N = pk − 1, let Np(i, S) denote

the number of S–smooth monic polynomials over Fp of degree i, i.e. the number of
polynomials each irreducible factor of which is of degree at most S. If p = 2, then NS =∑k−1

i=0 N2(i, S), and the biggest contribution to this sum comes from N2(k−1, S), so that

it is sufficient to consider only this term. In general, NS = ψ(p − 1, 2S)
∑k−1

i=0 Np(i, S),
which is larger than, but close to ψ(p − 1, 2S)Np(k − 1, S). Theorem 2.1 of [BP98]
estimates Np(k − 1, S) asymptotically:

94 CHAPTER 5. SMOOTHNESS

Theorem 5.4 Let q be a prime power such that qS ≥ i log2 i and u = i
S . Then

Nq(i, S) ∈
qi

uu(1+o(1))

for S, u→ ∞.

According to Example 3) of Section 5.1, PS contains the monic irreducible polynomials
over Fp of degree up to S and — if p ≥ 3 — further integers. The number of polynomials
in PS is within a logarithmic factor of pS (since the number of all monic polynomials
of degree up to S is pS − 1 and the number of irreducible polynomials of degree S is

in pS

S + O(pS/2) by the “Prime Polynomial Theorem” 3.25 in [LN97]), so we let S =
dlogp(LN (ρ))e for some ρ > 0. (Rounding up S may increase the size of PS by a factor
of p, so that it may become larger than subexponential. Conditions preventing this
undesired behaviour are discussed in Section 7.3.3.)

Theorem 5.5 If G = F×
pk and S = dlogp(LN (ρ))e for some ρ > 0, then

N

NS
<

p

ψ(p− 1, 2S)

pk−1

Np(k − 1, S)
,

and
pk−1

Np(k − 1, S)
∈ LN

(
1

2ρ
+ o(1)

)
for k

log p → ∞.

Proof: The first assertion has already been explained above. Notice that Theorem 5.4
applies, since pS ≥ LN (ρ) is at least subexponential in log(pk − 1), so that it eventually

becomes larger than any polynomial in k − 1. Thus, pk−1

Np(k−1,S) ∈ uu(1+o(1)) for u =
k−1
S = k

S
k−1
k ∈ k

S (1 + o(1)). (Throughout the remainder of this proof, o(1) denotes the

set of functions tending to zero for k
log p → ∞.) Notice that N ∈ pk(1 + o(1)), so that

logN log logN ∈ k log p log(k log p)(1 + o(1)) by the rules for computing with o(1) of
Section 5.3. So

S ≥ logp(LN (ρ))

∈ logp

(
eρ(1+o(1))

√
k log p log(k log p)

)
= ρ

√
k log(k log p)

log p
(1 + o(1)).

5.5. SMOOTHNESS IN CLASS GROUPS 95

On the other hand,

S < logp(LN (ρ)) + 1

∈ ρ

√
k log(k log p)

log p

1 + o(1) +
1√

k log(k log p)
log p

 ,

and the condition k
log p → ∞ implies that

S ∈

√
k log(k log p)

log p
(1 + o(1)).

(Less technically spoken, the condition implies that the rounding of S has no effect
asymptotically.) Hence,

u ∈ k

S
(1 + o(1)) =

1

ρ

√
k log(k log p)

log p
(1 + o(1)),

u log u ∈ 1

ρ

√
k log(k log p)

log p
(1 + o(1))(

1

2
(log(k log p)− log log(k log p))− log ρ+ o(1)

)
=

1

2ρ

√
k log p log(k log p)(1 + o(1))

=
1

2ρ

√
logN log logN(1 + o(1)) and

uu(1+o(1)) = eu log u(1+o(1)) = LN

(
1

2ρ
+ o(1)

)
�

5.5 Smoothness in class groups

For (semi-)reduced ideals in quadratic number or function fields the situation is more
complicated than in arithmetical semigroups because the components cannot be joined
freely any more. In semireduced divisors of hyperelliptic Jacobians, for instance, a ram-
ified prime divisor must not appear more than once, and the splitting prime divisors
come in pairs and at most one prime divisor of each pair is allowed to occur. I am aware
of only one article dealing with smoothness in class groups. Seysen has examined the
density of smooth reduced ideals in imaginary quadratic number fields and obtained the
following result.

96 CHAPTER 5. SMOOTHNESS

Theorem 5.6 Let K be an imaginary quadratic number field of discriminant D. Denote
by N the ideal class number of K, let S = dlogLN (ρ)e for some constant ρ > 0, and
let NS be the number of S–smooth reduced ideals. If the generalised Riemann hypothesis
holds, then there is a function β(D) in o(1) for D → ∞ such that

N

NS
≤ L

(
1

2ρ
+ β(D)

)
.

Proof: Due to a theorem of Siegel’s, log |D| ∈ (2 + o(1)) logN ([Sie36]), so that LN (ρ+

o(1)) = L|D|

(
1√
2
ρ+ o(1)

)
. Then Proposition 4.4 of [Sey87] shows that under the gen-

eralised Riemann hypothesis, N
NS

is bounded above by some function in

L|D|

(√
2

4ρ
+ o(1)

)
= LN

(
1

2ρ
+ o(1)

)
.

�

Our aim for the remainder of this section is to determine the number N(n, S) of S–
smooth semireduced divisors of K(C) of degree n, where C is an imaginary or real
quadratic hyperelliptic curve. Ultimately, we are interested in N(g, S), which counts the
biggest portion of all S–smooth reduced divisors. We hereby restrict our attention to
divisors composed of only splitting prime divisors; since the number of ramified prime
divisors is bounded by 2g+2, it is negligible asymptotically. To the best of my knowledge,
our results are the first ones concerning reduced divisors in function fields.

The following proofs are purely combinatorial and do not rely on the theory of generating
functions. The employed techniques might also be used to develop more elementary
proofs for the classical cases, e.g. for finite fields.

The first result is inspired by Theorem 2.2 of [BP98]; it is weaker than the subsequent
main theorem, but can be used to simplify its proof.

Theorem 5.7 Let max
{
8 logq

(
2g + 6 +

√
2
)
, 2 logq

((
6 + 10

3

√
2
)
n
)}

+ 2 ≤ S and u =
n
S . Then

N(n, S) ≥ qn

2ndue
.

Proof: Assume first that S ≤ n. Since the Prime Divisor Theorem 5.2 shows that the
number of splitting prime divisors grows exponentially with their degree, we restrict
ourselves to counting a set of special semireduced divisors containing only prime divisors
of rather large degree, hoping to cover the biggest part of all semireduced divisors. To
ensure a large degree for all its prime divisors, a divisor should have as few of them as
possible, and for an S–smooth divisor of degree n this means due prime divisors. We

5.5. SMOOTHNESS IN CLASS GROUPS 97

distribute the degrees of these prime divisors as evenly as possible. Thus, let S0 =
⌊

n
due

⌋
,

S1 = S0 + 1, r1 = n − dueS0 and r0 = due − r1, and let Ñ(n, S) be the number of
semireduced divisors containing r0 distinct splitting prime divisors of degree S0 and r1
distinct splitting prime divisors of degree S1. As S0r0 + S1r1 = n, these divisors are of
degree n, and as S0 ≤ n

due ≤ S, they are S–smooth unless S0 = S and S1 = S + 1. In

this case, however, due divides n and r1 = 0, so that they are S–smooth nevertheless.

Thus, N(n, S) ≥ Ñ(n, S). To estimate the latter number, notice that there are
(
π+(Si)

ri

)
possibilities for choosing ri splitting prime polynomials of degree Si and that each prime
polynomial leaves the choice of one out of two prime divisors. So the following relations
hold:

Ñ(n, S) = 2r0
(
π+(S0)

r0

)
2r1
(
π+(S1)

r1

)
≥ 2r0+r1

(π+(S0)− (r0 − 1))r0

r0!

(π+(S1)− (r1 − 1))r1

r1!

≥
√
2
r0+r1−2

rr00 r
r1
1

2r0+r1

(
qS0 − q

3
4S0 − 2S0(r0 − 1)

)r0
(2S0)r0(

qS1 − q
3
4S1 − 2S1(r1 − 1)

)r1
(2S1)r1

by r! ≤ rr
√
2
r−1 for r ≥ 0 and by Theorem 5.2 with ε =

1

4

≥
√
2
r0+r1−2

ndue

(
qS0 − q

3
4S0 − 2n

)r0 (
qS1 − q

3
4S1 − 2n

)r1
Theorem 5.2 is applicable because S1 > S0 > n

n
S+1 − 1 ≥ 1

2S − 1. Notice now that

S0 ≥ 4 logq(2g + 6 +
√
2) ≥ 4 logq(8 +

√
2) implies q

1
4S0 ≥ 8 +

√
2 and q

3
4S0 ≤ qS0

8+
√
2
.

Similarly, q
3
4S1 ≤ qS1

8+
√
2
. Furthermore, letting c = 1 − 1

8+
√
2
− 1√

2
, we deduce that

2n ≤ cqS0 ≤ cqS1 as soon as S satisfies the second lower bound. Hence,

Ñ(n, S) ≥
√
2
r0+r1

2ndue
qS0r0

√
2
r0

qS1r1

√
2
r1 =

qn

2ndue
.

Finally, if S > n, then

N(n, S) = N(n, n) ≥ qn

2n
=

qn

2ndue
.

�

Theorem 5.7 is not yet sufficient to prove the subexponentiality result needed for the
discrete logarithm algorithms. In fact, we need a bound for N(n, S) of about qn

uu , so that
we have to improve the bound of the theorem above by a factor of about Su.

98 CHAPTER 5. SMOOTHNESS

When S is of the order of logn, the desired result can be derived easily from Theorem 5.7.

Corollary 5.8 Suppose that under the conditions of Theorem 5.7, we have furthermore
S ≤ k log n for some constant k > 0. Then

N(n, S) ≥ qn

uu((1+
1
u)(1+

log(k log n)
log u)+ log 2

u log u)
∈ qn

uu(1+o(1))
for u→ ∞.

Proof: In this special case, the denominator of the formula in Theorem 5.7 satisfies

2ndue = 2Sdueudue ≤ 2(k log n)u+1uu+1 = uu((1+
1
u)(1+

log(k log n)
log u)+ log 2

u log u).

The asymptotic result follows because n→ ∞ as u→ ∞ and log log n
log u ≤ log log n

logn−log(k logn) →
0 (n→ ∞) �

For larger S, we need to follow a different approach, since n and u differ considerably.
Still, we have to assume that S is not too large compared to n; precisely, we require
S ≤ n1−ε for some ε ∈ (0; 1). As hyperelliptic function fields are the function field
analogue of quadratic number fields, it can be expected that results and techniques
concerning smooth ideals in quadratic number fields carry over to our problem. Indeed,
this is the case. The following theorem and its proof are inspired by Theorem 5.2 in
[Sey87]. We can use Theorem 5.7 above to simplify the proof.

Theorem 5.9 If there is a constant ε ∈ (0; 1) such that S, n and u = n
S satisfy

max

{
16 logq(2g + 6 +

√
2) + 4, 4 logq

((
6 +

10

3

√
2

)
n

)
+ 4, log n

}
≤ S ≤ n1−ε, n ≥ 29 and

4

ε
u log u ≥ 1,

then

N(n, S) ≥ qn

u
u

(
1+

log log u+2+log 4
ε

log u + 3
εu

) ∈ qn

uu(1+o(1))
for u→ ∞.

Proof: For Theorem 5.7, we counted all divisors with due prime divisors all of which had
degree S0 or S0 + 1. To verify that the number of smooth divisors is in fact larger, we
must allow more flexibility in the size of the components. Thus, we consider divisors
containing buc prime divisors whose degrees vary within a certain factor of S. To reach
the total degree n, we pad by prime divisors of smaller degree.

Precisely, let S − 1 ≥ w :=
⌊(

1− 1
log n

)
S
⌋
≥
(
1− 1

log n − 1
S

)
S ≥ S

2 for S ≥ 5 and

n ≥ 29. Let S be a set of prime divisors containing exactly one divisor above each

5.5. SMOOTHNESS IN CLASS GROUPS 99

splitting prime polynomial p with w + 1 ≤ deg p ≤ S. We consider divisors of the form
D = D1 + D2, where D1 contains exactly buc (not necessarily distinct) prime divisors
from S and D2 is semireduced and w–smooth of degree n−degD1. From the construction
of S it follows that D1 is semireduced and S–smooth and that D1 and D2 share no prime
divisor. Furthermore, degD = n, so that N(n, S) is bounded below by the number of
such divisors D. Let I be the set of possible divisors D1. Then the above discussion
implies

N(n, S) ≥
∑
D1∈I

N(n− degD1, w).

From w ≥ S
2 and the restrictions imposed on S we see that Theorem 5.7 applies to the

situation, so that

N(n− degD1, w) ≥
qn−degD1

2(n− degD1)
dn−deg D1

w e
.

The logarithm of the denominator is bounded above by

(
n− degD1

w
+ 2

)
log n ≤

(n
w

− (u− 1) + 2
)
log n

≤

((
1

1− 1
logn − 1

S

− 1

)
u+ 3

)
log n

≤ 2

log n− 2
u+ 3 log n since S ≥ log n

≤ 2u+
3

ε
log u since log n ≥ 3 and nε ≤ u

Hence,

N(n, S) ≥ qn

uu(
2

log u+ 3
εu)

∑
D1∈I

q− degD1 .

100 CHAPTER 5. SMOOTHNESS

The last sum can be computed using the Prime Divisor Theorem. Let S = {P1, . . . ,Pl}.∑
D1∈I

q− degD1 =
∑

ai≥0, a1+···+al=buc

q−a1 degP1−···−ak degPl

≥

(∑l
i=1 q

− degPi

)buc
buc!

since by multiplying out

(
k∑

i=1

q− degPi

)buc

each term of

the previous sum is obtained at most buc! times

≥ u−buc

 S∑
j=w+1

π+(j)q
−j

buc

≥ u−buc

 S∑
j=w+1

1

2j

(
1− 1

qj(
1
2−

1
8)

)buc

by Theorem 5.2 with ε =
1

8

≥ u−buc

1

4

S∑
j=w+1

1

j

buc

since q
3
8 (w+1) ≥ 2

3
2 > 2

≥ u−buc
(
S − w

4S

)buc

≥ (4u log n)−buc

≥
(
4

ε
u log u

)−buc

≥
(
u1+

log log u+log 4
ε

log u

)−u

This achieves the proof of the theorem. �

The smoothness result needed for the algorithms of Chapters 6 and 7 is that one out of
a subexponential number of reduced divisors is smooth, so we are interested in the case
n = g. The subexponential function is written with respect to N ′ = qg. Since PS is of
size O(qS), which must be subexponential, we let

S =
⌈
logq Lqg (ρ)

⌉
=

⌈
ρ

√
g log(g log q)

log q

⌉
with a constant ρ > 0. (In fact, rounding up the value for S may make PS of exponential
size. Conditions preventing this situation are discussed in Section 6.1.3.)

5.5. SMOOTHNESS IN CLASS GROUPS 101

Our aim is to use Corollary 5.8 and Theorem 5.9 to obtain asymptotic results for g → ∞.
Notice that either the conditions of the corollary or of the theorem are fulfilled for any
ε ∈ (0; 1

2) and g large enough. Since u→ ∞ as g → ∞, we have

N(g, S) ≥ qg

uu(1+α(g))

with α(g) → 0 for g → ∞. In our special situation,

u =
g

S
≤ 1

ρ

√
g log q

log(g log q)
≤ 1

ρ

√
g log q

and hence

log u ≤ 1

2
log(g log q)− log ρ,

and the logarithm of the denominator of N(g, S) is given by

(1 + α(g))u log u ≤ 1

2ρ
(1 + α(g))

(
1− 2 log ρ

log(g log q)

)√
(g log q) log(g log q)

∈
(

1

2ρ
+ o(1)

)√
(g log q) log(g log q).

This proves the following result:

Theorem 5.10 Let S = dlogq L(ρ)e for a constant ρ > 0. Then there is a function β(g)
in o(1) for g → ∞ such that

N(g, S) ≥ Lqg

(
− 1

2ρ
− β(g)

)
qg.

Chapter 6

Subexponential algorithms for
groups with unknown structure

By definition, a discrete logarithm problem is always solved in a finite cyclic group with
known generator. Two basic situations can be distinguished. In this chapter, we develop
an algorithm for the case that the cardinality of the group is unknown, in the next
chapter we describe a faster algorithm exploiting the knowledge of the group order. In
the cryptographic context, the first situation is unlikely to occur, since the group order is
needed to realise signature schemes and to check resistance against the Pohlig–Hellman
attack. Nevertheless, all published algorithms for class groups with a (sometimes only
conjectured) subexponential running time solve the discrete logarithm problem in the
first setting. This is justified by observing that the algorithms solve a more fundamental
problem: A byproduct of the computations is the order of the generating element, i.e.
the cardinality of the group.

More generally yet, the discrete logarithm problem is usually embedded into a larger
group; for instance, Jacobians of hyperelliptic curves are not cyclic in general, so that the
base element of the logarithm cannot generate the full group and the discrete logarithm
problem has to be solved in a cyclic subgroup. The smoothness results of the previous
chapter, however, are only proved for the full group. In practice, this is no serious
restriction. As there is no apparent relation between smoothness and membership in a
subgroup, one usually assumes that the distribution of smooth elements is the same in
the group and its subgroups and arrives at so-called “heuristic algorithms”, the running
times of which are only conjectured to be subexponential. It is an interesting open
question whether smoothness results can be transferred from the full group to (certain)
subgroups; compare, for instance, the result of class field theory stating that the density
of prime ideals is the same in each class of certain class groups. The discussion in [Kno75],
Chapter 9, might be a good starting point for further research.

103

104 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

Meanwhile, being interested only in algorithms the running times of which we can prove,
we instead have to work with the complete group. Then in fact our discrete logarithm
algorithm attempts to solve the fundamental problem of computing the group structure,
i.e. the decomposition of the group into a product of cyclic groups G = 〈α1〉 · · · 〈αr〉 with
αi of known order ei. If the orders ei meet the further restrictions ei ≥ 2 and ei|ei+1, then
by the Elementary Divisor Theorem they are unique, and the algorithm has determined
important invariants of the group. However, the algorithm may fail in computing the
group structure; indeed, if no further information is available, it determines a series of
possible group structures until the candidate structure is compatible with the discrete
logarithm problem. After describing and analysing the algorithm, we briefly discuss how
the correct group structure can be derived from additional information in Section 6.5.

The first discrete logarithm algorithm for hyperelliptic Jacobians with a conjectured
subexponential running time, which motivated this research, is due to Adleman, DeMar-
rais and Huang ([ADH94]). It follows a slightly different approach than the one described
here. In Section 6.4, we show how to formulate the algorithm in our general framework
and discuss why it is unlikely that a subexponential running time can be proved with
our means.

Since the multiplicative groups of finite fields are cyclic and of known order, the only
examples presented in this chapter are class groups of imaginary quadratic number or
function fields.

To fix the notation for the remainder of this chapter, let G = M/ ∼ be an additively
written arithmetical formation of unknown cardinality N and g1 and g2 two elements of
G such that g2 = lg1 for l ∈ N0. The discrete logarithm of g2 to the base g1 is defined
modulo the order of g1, so logg1(g2) = l mod ord(g1). Since this order is unknown, we
seek some integer l′ such that g2 = l′g1. As explained in Section 5.1, we measure the
algorithmic complexity with respect to the parameter N ′ = N for imaginary quadratic
number fields and N ′ = qg for Jacobians of hyperelliptic curves of genus g over the field
Fq.

6.1 Parameters

6.1.1 Generating property

Having to work with the full group and not only with the subgroup generated by g1, we
must impose a further restriction on the factor base, i.e. the set PS . (The term “factor
base” stems from the multiplicative setting in a finite field. Since our main focus are class
groups in function fields, we prefer additive notation, but keep the naming conventions.)
Recall from Section 5.1 that PS consists of the nS prime elements of M of size at most
S, that deg p ≥ 1 for p ∈ PS and that the size of each element of G is in O∼(1). Let

d = max{deg g : g ∈ G},

6.1. PARAMETERS 105

so that the number of primes in a decomposition of any element of G, counting multi-
plicities, is bounded by d ∈ O∼(1).

All group elements considered during the algorithm are derived as linear combinations
of g1, g2 and the elements of PS . To be able to determine the group structure of G, we
thus require that PS generates G.

Examples.

1) Ideal class groups of imaginary quadratic number fields

Corollary 6.2 of [Sch82] shows that under the generalised Riemann hypothesis,
the ideal class group of an imaginary quadratic number field of discriminant D
is generated by the splitting prime ideals of norm in O(log2 |D|), i.e. of size
in O(log log |D|), with effectively computable constants. Since log |D| ∈ (2 +
o(1)) logN ([Sie36]) and nS ∈ O(2S), this implies that a factor base of polyno-
mial size would in fact suffice to obtain the generating property. Allowing a factor
base of subexponential size, we may thus assume that it generates the class group.
The proof of the result in [Sch82] is based on the observation that under the gen-
eralised Riemann hypothesis, any non-principal character of the group of ideals
admits a non-trivial value for a prime ideal of small norm (cf. [LMO79], Corol-
lary 1.3; [Bac90], Theorem 4). We renounce at providing details; an analogous
reasoning is developed for function fields below.

2) Jacobians and ideal class groups of curves over finite fields

In [MST99] it is shown that the ideal class group of a real quadratic hyperelliptic
curve over a finite field of odd characteristic is generated by prime divisors of small
degree. The proof is based on the generalised Riemann hypothesis for function
fields, i.e. on Weil’s theorem of Section 2.5, and carries over to Jacobians and ideal
class groups of arbitrary curves over any finite field.

Recall the theory of group characters. A character of a finite abelian group is a
homomorphism from the group into the multiplicative group of the complex roots
of unity; the trivial character, assigning 1 to each element, is called principal. The
group of characters of G is denoted by Ĝ. The subgroups of G are in a one-to-one
correspondence with the subgroups of Ĝ via the map which to a subgroup U of
G associates the subgroup of characters which become principal when restricted
to U ([Hal76], Theorem 13.2.3). We cite from [MST99], Corollary 1, slightly
reformulated:

Theorem 6.1 Let C be a curve of genus g over K = Fq and χ a character of finite
order of Div(K(C)/K) which is not principal when restricted to Div0(K(C)/K).

Then there is a prime divisor P of K(C) of degree at most
⌈
2 log(4g−2)

log q

⌉
such that

χ(P) 6= 1.

106 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

Theorem 6.2 In the situation of Theorem 6.1, let D1 be a divisor of degree 1,
which exists since K is finite. Then J(K(C)/K) is generated by the degree zero
divisors of the form P − (degP)D1, where P varies over the prime divisors of
degree at most

⌈
2 logq(4g − 2)

⌉
. Letting O denote the integral closure of K(X) in

K(C) and assuming as always that there is a divisor of degree 1 composed of only
infinite prime divisors, the ideal class group H(O) is generated by the finite prime
divisors of degree at most

⌈
2 logq(4g − 2)

⌉
.

Proof: Let U be the subgroup of J(K(C)/K) generated by the degree zero divisors
of the theorem. To show that U = J(K(C)/K) we have to verify that any non-
principal character χ of J(K(C)/K) remains non-principal when restricted to U .
The map

π : Div(K(C)/K) → J(K(C)/K),

D 7→ D − (degD)D1 + Prin(K(C)/K),

is an epimorphism, so that χ induces a character χ′ of Div(K(C)/K) of finite order
via

χ′(D) = χ(π(D)).

In fact, the restriction of π to Div0(K(C)/K) is already surjective, and the non-
principality of χ implies that of the restriction of χ′ to Div0(K(C)/K). Thus, by
Theorem 6.1, there is a prime divisor P of degree at most

⌈
2 logq(4g − 2)

⌉
such

that 1 6= χ′(P) = χ(P− (degP)D1 +Prin(K(C)/K), and χ is not principal on U .

If furthermore D1 consists of only infinite prime divisors, i.e., D1 ∈ Div∞(O) in
the notation of Section 2.4.2, then the map

ψ : J(K(C)/K) → H(O),∑
P-∞

νPP+
∑
P|∞

νPP+ Prin(K(C)/K) 7→
∑
P-∞

νPP+ Prin(O),

is an epimorphism, and H(O) is generated by{
ψ (P− (degP)D1 + Prin(K(C)/K)) : P prime divisor,

degP ≤
⌈
2 logq(4g − 2)

⌉ }
=

{
P+ Prin(O) : P finite prime divisor,degP ≤

⌈
2 logq(4g − 2)

⌉}
�

Notice that in the hyperelliptic case, any inert prime divisor is principal (cf. Kum-
mer’s Theorem 3.10), so that the ideal class group is in fact generated by the finite
splitting and ramified prime divisors matching the degree bound.

�

6.1. PARAMETERS 107

6.1.2 Maximal exponent

A second important parameter concerning the generation of G is the maximal “exponent”
E such that each element of the group can be expressed as a linear combination of primes
in PS with coefficients in the range {0, . . . , E − 1}. If N were known, then one could
clearly choose E = N . Unfortunately, to date there is no polynomial time algorithm
computing the size of a hyperelliptic Jacobian; notice that Pila’s deterministic algorithm
[Pil90], often referred to as “polynomial”, is so only for fixed genus. The same is true for
the algorithm described by Huang and Ierardi in [HI98]. Instead, one can work with an
upper bound N on N , which, to keep the running time bounds during the computation
of a linear combination, should satisfy logN ∈ O∼(1).

For imaginary quadratic number fields of discriminant D, an approximation N of the
class number h such that h ≤ N < 2h can be computed in time polynomial in log |D|,
assuming the validity of the generalised Riemann hypothesis. The algorithm is based on
the class number formula

h =

√
|D|
π

∏
p prime

1

1− χ(p)
p

for D < −4 with the quadratic character χ(p) =
(
D
p

)
. It can be shown that under

the generalised Riemann hypothesis the desired approximation is obtained by truncating
the infinite product after a polynomial number of factors ([McC89], p. 468; [Sch82],
Theorem 6.3).

A similar approach should be possible for hyperelliptic Jacobians (cf. Section 6.5). How-
ever, the simpler bound N ≤ N = (2g + 1)qg of Proposition 5.1 is available without
further computation.

To simplify the analysis of the algorithm, we let

E = 5N + d,

where N ≥ max{N,N ′} and logN ∈ O∼(1).

6.1.3 Two-parametric problems

In a hyperelliptic Jacobian of genus g over a finite field Fq the input size logN ′ with
N ′ = qg depends on the two parameters g and q. Ideally, a discrete logarithm algorithm
would have a subexponential running time for N ′ → ∞, regardless of how the growth
of N ′ is distributed on q and g; in particular, the case g = 1 and q → ∞ would provide
a subexponential algorithm for elliptic curves. Unfortunately, the subexponentiality can
only be proved under further restrictions. The Prime Divisor Theorem 5.2 implies that
the size nS of PS is in Ω

(
1
S q

S
)
∩O

(
qS
)
; since S ∈ O∼(1), qS is the order of magnitude

of nS up to negligible factors. Clearly, a necessary condition for subexponentiality is that

108 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

nS and thus qS are subexponential in g log q. The problem is that we have to round up
the value assigned to S, so that for S =

⌈
logq LN (ρ)

⌉
the value qS can be (almost) as big

as qlogq L(ρ)+1 = qL(ρ). Hence we must assume that q is subexponential in g log q, and
since q is exponential in log q, this can only happen for rather large g. (The necessity
of this condition can also be derived from the observation that PS contains at least the
prime divisors of degree 1.) The following theorem shows that a sufficient condition for
the subexponentiality of nS is the existence of a constant ϑ > 0 such that all problem
instances under consideration satisfy g ≥ ϑ log q.

Theorem 6.3 If g ≥ ϑ log q and S =
⌈
logq Lqg (ρ)

⌉
, then q ≤ Lqg

(
1√
ϑ

)
, and

nS ≤ 2Lqg

(
ρ+

1√
ϑ

)
∈ Lqg

(
ρ+

1√
ϑ
+ o(1)

)
.

Proof: We compute

q = elog q = e
1√
ϑ

√
ϑ(log q)2 ≤ e

1√
ϑ

√
g log q ≤ Lqg

(
1√
ϑ

)
.

Since each prime divisor of size at most S corresponds to a monic polynomial of degree at
most S and conversely each such polynomial corresponds to at most two prime divisors,
we have

nS ≤ 2qS ≤ 2qLqg (ρ) ≤ 2Lqg

(
1√
ϑ

)
Lqg (ρ) = 2Lqg

(
ρ+

1√
ϑ

)
.

�

A similar problem occurs for general finite fields Fpk , and it can be solved in a similar
manner, cf. Section 7.3.3.

6.2 Algorithm

The algorithm proceeds in two stages. First, a possible group structure is determined,
second, individual discrete logarithm problems are tried to be solved. If the second step
is not successful, then there has been a mistake in the first one, and the algorithm must
be started all over again. However, we shall show in Section 6.3.3 that the probability
of failure is negligibly low. Notice that the algorithm should not be implemented as
described, since the description is optimised to simplify the proof of the running time,
not implementational efficiency. See Section 6.6 for a few thoughts on practicability.

6.2. ALGORITHM 109

6.2.1 Finding the group structure

Assume that the factor base PS = {P1, . . . ,Pn} with n = nS generates the group and
let the exponent E be as in Section 6.1.2. Then the group homomorphism

Zn → G, (e1, . . . , en) 7→ e1P1 + . . . enPn,

is surjective, and if Γ is its kernel, then

Zn/Γ ' G.

As |G| = N is finite, Γ is a full lattice of determinant N , the elements of which are
called relations. During the first stage of the algorithm, we try to determine a basis for
Γ. Starting with the empty matrix A, by a randomised procedure described below we
alternately create a new relation and add it as a new column to A. In the case where
N is known it is then easy to determine whether the columns of A generate Γ. Since
we do not wish to make this assumption, we have to generate a rather large number of
relations, pretend that they generate Γ and try to solve the discrete logarithm problem.
If we do not succeed, we did not determine the correct group structure and start again
with the first phase. (Beware that even if we solve the discrete logarithm problem, our
computed group structure need not be correct.) In the case that the columns of A do
generate Γ, the structure of G is closely related to a special transform of A; recall the
following definitions (see [Coh93], Section 2.4):

Definition and proposition 6.4 Let A = (aij) be an integral n×m-matrix of rank n.

1) A is in column echelon form if its first m − n columns are zero and its last n
columns form an upper triangular matrix.

2) A is in Hermite normal form if it is in column echelon form and ai,i+m−n > 0
for i = 1, . . . , n and 0 ≤ ai,j+m−n < ai,i+m−n for i = 1, . . . , n, j = i + 1, . . . , n.
There is a unique matrix B ∈ Zn×m in Hermite normal form such that B = AT
for a unimodular matrix T ∈ Zm×m. Hence the columns of B and A span the same
lattice, and the essential part of B, i.e. its non-zero columns, forms a canonical
basis for this lattice.

3) Suppose that B ∈ Zn×n is the essential part of the Hermite normal form of A. Then
there is a unimodular matrix S ∈ Zn×n such that ∆ = SB is a diagonal matrix
with diagonal entries d1| · · · |dn; ∆ is called the Smith normal form or elementary
divisor form of A, and d1, . . . , dn are the uniquely determined elementary divisors
of A.

To obtain the relations, we follow ideas first presented by McCurley in [McC89]. Basically
we compute random linear combinations of prime elements and try to express their
canonical representatives as another linear combination of prime elements.

The following algorithm succeeds with a high probability in finding the group structure:

110 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

Algorithm 6.5

1) Let A be the empty matrix. Choose a smoothness bound S and construct the factor
base PS = {P1, . . . ,Pn}.

2) Find 20n relations as follows: Repeatedly select a random vector e = (e1, . . . , en) ∈
{0, . . . E − 1}n and compute the canonic representative of e1P1 + · · ·+ enPn until
it “factors” over PS as r1P1 + · · · + rnPn. Then (r1 − e1, . . . rn − en)

T ∈ Γ; add
this column to A.

3) Compute the rank of A. If A does not have full rank, then go to Step 2).

4) Otherwise construct 40n ldE new relations by the procedure described under Step 2).

5) Compute the elementary divisor form of A.

6.2.2 Computing discrete logarithms

To relate g1 and g2 with the primes in PS , we have to find S–smooth elements g̃1 ∼ g1
and g̃2 ∼ g2 in M. To do so, we again choose random vectors e ∈ {0, . . . E − 1}n until
g1 +

∑n
i=1 eiPi decomposes as

∑n
i=1 riPi, and let g̃1 =

∑n
i=1(ri − ei)Pi; an analogous

procedure yields g̃2.

Assume that the algorithm of Section 6.2.1 has yielded a basis for Γ and that B ∈ Zn×n

is the essential part of its Hermite normal form and ∆ = SB its elementary divisor form
with diagonal entries d1| · · · |dn. Denote by c(j) the coefficient vector of g̃j with respect
to P1, . . . ,Pn. Then g2 − lg1 = 0 in G implies g̃2 − lg̃1 ∼ 0 in M. Since the columns of
B generate Γ, we know that c(2) − lc(1) ∈ ImB, or equivalently Sc(2) − lSc(1) ∈ Im∆.

Letting Sc(j) = a(j) =
(
a
(j)
1 , . . . , a

(j)
n

)T
, this is equivalent to

a
(2)
i ≡ la

(1)
i (mod di) for i = 1, . . . , n,

from which l can be determined modulo dn, which is the exponent of the group.

If the algorithm of Section 6.2.1 did not succeed in finding a basis of Γ, but only of a
sublattice, then the above congruences may or may not have a solution. In the first case
the solution is the correct discrete logarithm, otherwise we declare failure and start the
whole group structure determination again.

6.3 Analysis

6.3.1 Finding a relation

The crucial part of Algorithm 6.5 is the creation of relations in Steps 2) and 4). If the
randomly generated linear combinations of primes in PS were uniformly distributed over

6.3. ANALYSIS 111

the elements of G, then the probability of finding a relation would be NS

N . In this section
we show that the derivation from the uniform distribution is sufficiently small, using
techniques inspired by those in [Buc90] and [Ste96]. In a first step we determine how
many exponent vectors e yield a fixed relation c.

Lemma 6.6 Let c ∈ Γ. Then the number of vectors e ∈ {0, . . . , E − 1}n which yield
the relation c equals the number of S-smooth elements

∑r
i=1 riPi such that r − c ∈

{0, . . . E − 1}n.

Proof: It follows from the description of the relation generating process in Step 2) of
Algorithm 6.5 that e creates the relation c if and only if e+ c is the coefficient vector of
an S–smooth element. �

Since the coefficients in the decomposition of a group element are contained in the set
{0, . . . , d}, the lemma allows to make a more precise assertion for relations contained in
the cubes W− = {d+ 1− E, . . . , 0}n and W+ = {1− E, . . . , d}n.

Corollary 6.7

1) Let c ∈ Γ ∩W−. Then there are exactly NS choices for e ∈ {0, . . . , E − 1}n which
yield the relation c.

2) Let c ∈ Γ ∩W+. Then there are at most NS exponent vectors e ∈ {0, . . . , E − 1}n
which yield the relation c.

3) Let c ∈ Γ\W+. Then there is no exponent vector e ∈ {0, . . . , E − 1}n which yields
the relation c.

The corollary implies that a uniform choice of e ∈ {0, . . . , E − 1}n yields a relation with
probability between

|Γ ∩W−|NS

En
and

|Γ ∩W+|NS

En
,

and we have to estimate the cardinalities of intersections between a lattice and a cube.
This can be done using a theorem due to Lenstra ([Len88], Lemma 4.1), which we cite
in a slightly different phrasing:

Theorem 6.8 Let Γ′ ⊆ Zn be a full lattice of determinant D and W ′ an axes parallel
cube with integral vertices and side length w − 1. Then

1

D

(
1− D − 1

w

)
wn ≤ |Γ′ ∩W ′| ≤ 1

D

(
1 +

D − 1

w

)
wn.

112 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

Applying the theorem to our situation we find that

|Γ ∩W−|
En

≥
1
N

(
1− N−1

E−d

)
(E − d)n

En

=
1

N

(
1− N − 1

E − d

)(
1− 1

E/d

)E
d

nd
E

≥ 1

N

(
1− 1

5

)(
1− 1

E/d

)E
d

1
40

for E ≥ 5N + d and E ≥ 40nd; since n is subexponential

in logN ′, d ∈ O∼(1) and E ≥ N ′, the second condition

is fulfilled asymptotically

≥ 4

5 40
√
eN

where e is Euler’s constant;

and similarly
|Γ ∩W+|

En
≤ 6 40

√
e

5N
.

Thus we have shown the following result:

Theorem 6.9 If E ≥ max{5N + d, 40nd} and e is chosen uniformly in the range
{0, . . . , E − 1}n, then the probability of finding a relation lies between

4

5 40
√
e

NS

N
and

6 40
√
e

5

NS

N
.

6.3.2 Linear algebra

Since we are dealing with matrices of subexponential size, we must make sure that all
matrix operations take time polynomial in the sizes of the matrices and their entries.
Moreover, the exact exponents of the polynomial time bounds for the matrix operations
have a direct impact on the constant of the subexponential time bound for the algorithm.
Hence a judicious arrangement of the computations is necessary. We need the following
results.

Theorem 6.10 Let A = (aij) ∈ Zn×m with m ≥ n, |A| = max{|aij | : i = 1, . . . , n, j =
1, . . . ,m} and f(k) = k log2 k log log k.

1) The rank of A can be determined in time O(mn2f(n log(n|A|))).

2) If A has full rank n, then its Hermite normal form can be computed in time
O(mn2f(n log(n|A|))).

6.3. ANALYSIS 113

3) If B ∈ Zn×n is the essential part of the Hermite normal form of A and N its
determinant, then its elementary divisor form ∆ and the unimodular matrix S
such that ∆ = SB can be computed in time O(n3 logNf(logN)).

Proof: See [HM91], Proposition 2.3, Corollary 2.2 and Theorem 2.6. Notice that |B| ≤ N .
By the remark in the last paragraph of [HM91], the multiplier matrices are obtained
within the same time bound when the original matrix is square and of full rank, which
is the case in 3). �

6.3.3 Success probability

In this section we estimate the probability that one run of Steps 1) to 5) in Algorithm 6.5
determines the correct group structure, in which case the discrete logarithm computation
is bound to succeed.

While according to Section 6.3.1 there is a positive probability of finding relations, there
is no guarantee that a new relation is not already contained in the lattice generated so far.
Hence there is a small chance that the 20n relations created in Step 2) of Algorithm 6.5
do not generate a full lattice.

Formally, assume that during the algorithm we have generated a sublattice Γ1 of Γ of
dimension less than n, and let c be a further relation as determined in Step 2). We call c
useful if it increases the dimension of Γ1, and it is our aim to determine the probability
that a newly created relation is useful.

Denote by Γ2 Γ a full sublattice which contains QΓ1∩Γ. Then all relations outside Γ2

are useful, and the probability of finding a relation within Γ2 is by Corollary 6.7 bounded
above by

|Γ2 ∩W+|
En

NS ≤ 1

kN

(
1 +

kN − 1

E + d

)(
E + d

E

)n

NS

by Theorem 6.8, where k ≥ 2 is the index of Γ2 in Γ

≤ 7 40
√
e

10

NS

N

by arguments analogous to those used in the proof of Theorem 6.9.

Hence the conditional probability that a newly found relation is useless, which is the
probability of finding a useless relation divided by the probability of finding any relation,

is bounded above by 7 40
√
eNS

10N / 4NS

5 40
√
eN

= 7 20
√
e

8 < 18
19 according to Theorem 6.9, and the

probability that a newly found relation is useful is at least 1/19.

Theorem 6.11 The probability of success for one run of the algorithm is asymptotically
1 for N ′ → ∞.

114 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

Proof: We first compute the probability that the matrix A obtained after Step 2) has full
rank, which is equivalent to saying that n of the 20n relations computed are useful. Let
X denote a Binomial(20n, 1/19)-distributed random variable. By the discussion above,
the probability that A has full rank is at least

P (X ≥ n) ≥ 1− P

(∣∣∣∣X − 20

19
n

∣∣∣∣ ≥ 1

19
n

)
≥ 1− Var(X)

1
361n

2

by Tschebyscheff’s inequality (see any statistics textbook). Since Var(X) = 360
361n, the

matrix A has full rank with probability at least 1− 360
n , which tends to 1 for N ′ → ∞.

A similar reasoning applies to Step 4). Now let the full lattice Γ2 Γ be already
generated, and call a relation useful if it decreases the index of Γ2 in Γ. Then the same
reasoning as above shows that a new relation is useful with probability at least 1/19. We
now have to estimate the number of useful relations needed to find a generating system
of Γ. Let Γ1 be the lattice obtained in Step 2). Then the number of useful relations
needed for Γ is bounded above by

ld[Γ : Γ1] = ld(det Γ1)− ld(det Γ) ≤ ld(det Γ1).

From the description of the relation collecting phase in Algorithm 6.5 we know that all
relations constructed lie in the cube {1 − E, . . . , d}n. Now Hadamard’s upper bound
shows that |det Γ1| ≤ (

√
nE)n ≤ E2n at least asymptotically since n is subexponential

and E exponential in logN ′. Hence,

ld(det Γ1) ≤ 2n ldE.

Simulating the creation of relations again by a binomially distributed variable shows that
the probability of obtaining a generating system is asymptotically 1 for N ′ → ∞. �

6.3.4 Running time

Recall that the complexity of one group operation is on O∼(1) by the assumptions set
forth in Section 5.1. Moreover, multiplying a group element by an integer in {0, . . . , E−1}
by a double and add scheme takes time in O∼(logE) = O∼(1).

Let ts and td be upper bounds on the expected time needed for a smoothness test and
the decomposition of a smooth group element into a sum of primes. By the assumptions
of Section 5.1, we have ts, td ∈ O∼(d + n) = O∼(n), for instance by realising the
decomposition through trial division by the elements of PS .

6.3. ANALYSIS 115

We determine the expected time needed for one run of the algorithm, assuming that each
step is executed only once and no jump back to Step 2) is required. By assumption, the
factor base PS can be constructed in time in O∼(n2). The time needed for computing a
linear combination of the n prime elements and testing it for smoothness is inO∼(n+ts) =
O∼(n), which also covers the possible decomposition in the case of smoothness, and by
the assumptions of Section 5.1, at least one out of 2 ∈ O(1) smooth elements is recognised
as such. From Theorem 6.9 we know that the expected number of trials for obtaining a

smooth element is in O
(

N
NS

)
. Hence the expected time needed for carrying out Step 2)

is in O∼
(
n2 N

NS

)
. The same bound holds for Step 4) since logE ∈ O∼(1).

Observing that the entries in A lie between 0 and d ∈ O∼(1) and that the number of
columns of A is in O∼(n), the discussion of Section 6.3.2 shows that the rank of A and
its elementary divisor form are computed in O∼(n4). So the total time for one execution

of the steps of Algorithm 6.5 is in O∼
(
n2 + n4 + n2 N

NS

)
.

Smoothing the elements g1 and g2 as described in Section 6.2.2 is performed in expected

time O∼
(
n N

NS

)
; this follows from arguments analogous to those of Section 6.3.1. With

the notation of Section 6.2.2, computing a(1) and a(2) and solving the system of equations
modulo the di takes time in O∼(n2) since the transformation matrix S is known from
the computation of the elementary divisor form of A. Hence, these steps are dominated
by the running time of Algorithm 6.5.

Since by the analysis of Section 6.3.3 the complete algorithm has to be repeated only an
expected O(1) number of times, the overall expected complexity is

O∼
(
n2 + n4 + n2

N

NS

)
⊆ O∼

(
n4 + n2

N

NS

)
.

6.3.5 Subexponentiality

Assume that the bound S can be chosen such that

n ∈ O(LN ′(ρ+ o(1)))

and
N

NS
∈ O(LN ′(σ + o(1)))

for some constants ρ, σ > 0. Then the expected running time of the algorithm is in

O (LN ′ (max(4ρ, 2ρ+ σ) + o(1))) .

Examples.

116 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

1) Ideal class groups of imaginary quadratic number fields of discriminant D

Theorem 5.6 shows that with S = dlogLN (ρ)e and assuming the validity of the
generalised Riemann hypothesis, we have σ = 1

2ρ . Then the running time of the
algorithm is in

O

(
LN

(
max

{
4ρ, 2ρ+

1

2ρ

}
+ o(1)

))
for any ρ > 0.

To find an optimal value for the parameter ρ, we have to minimise the function

ρ 7→ max
{
4ρ, 2ρ+ 1

2ρ

}
, which is unimodal and thus has a unique global minimum.

The strictly convex function ρ 7→ 2ρ+ 1
2ρ admits its unique global minimum at

ρ =
1

2
.

Both functions agree for

ρ∗ =
1

2
.

Hence f admits its unique minimum at min{ρ, ρ∗} = 1
2 . This proves the following

result.

Theorem 6.12 Assuming the generalised Riemann hypothesis, the algorithm of
Section 6.2 computes discrete logarithms in the ideal class groups of imaginary
quadratic number fields of discriminant D in expected time in

O (LN (2 + o(1))) = O
(
L|D|

(√
2 + o(1)

))
.

2) Jacobians of imaginary quadratic hyperelliptic curves over finite fields

As explained in Section 6.1.3, we consider only problem instances with g ≥ ϑ log q
for some positive constant ϑ. With S = dlogq(Lqg (ρ))e, Theorem 6.3 shows

that n ∈ Lqg

(
ρ+ 1√

ϑ
+ o(1)

)
and Theorem 5.10 shows that N

NS
∈ O∼

(
N ′

NS

)
⊆

O
(
Lqg

(
1
2ρ + o(1)

))
. Thus, the running time of the algorithm is in

O

(
Lqg

(
max

{
4

(
ρ+

1√
ϑ

)
, 2

(
ρ+

1√
ϑ

)
+

1

2ρ

}
+ o(1)

))
for any ρ > 0.

Repeating the optimisation step for ρ as above, we find that ρ = 1
2 and ρ∗(ϑ) =

1
2

(√
1 + 1

ϑ −
√

1
ϑ

)
depending on ϑ. Since ρ∗(ϑ) < ρ for all positive values of ϑ,

the optimal value for ρ is ρ∗(ϑ). This proves the following result.

6.4. PREVIOUS ALGORITHMS 117

Theorem 6.13 The algorithm of Section 6.2 computes discrete logarithms in the
Jacobians of imaginary quadratic hyperelliptic curves of genus g over finite fields
Fq satisfying g ≥ ϑ log q for some positive constant ϑ in expected time in

O

(
Lqg

(
2

(√
1 +

1

ϑ
+

√
1

ϑ

)
+ o(1)

))
.

If g/ log q tends to infinity for the instances under consideration, e.g. if q is constant
and g → ∞, then the complexity is

O (Lqg (2 + o(1))) .

�

6.4 Previous algorithms

The algorithm above was first described by Hafner and McCurley in the special setting
of imaginary quadratic number fields ([McC89, HM89]).

Buchmann generalised Hafner and McCurley’s algorithm to determine the class group
structure of an arbitrary number field in [Buc90]. Since for number fields of degree larger
than 2 no smoothness result has been verified, the subexponential running time of his
algorithm remains a conjecture.

Adleman, DeMarrais and Huang were the first to consider hyperelliptic Jacobians and
to devise a discrete logarithm algorithm with a conjectured subexponential running time
([ADH94]). The basic difference to our algorithm is the way in which the relations
are created: Adleman, DeMarrais and Huang randomly choose polynomial functions
ay + b ∈ Fq[C] with a, b ∈ Fq[X] until the divisor of the corresponding principal ideal
is smooth, whence it forms a relation. In our general model this corresponds to directly
choosing elements of the submonoid M0 = {m ∈ M : m ∼ 0} of M and decomposing
them over the factor base. This generalisation, however, is not completely satisfying,
since M0 is not accessible in an abstract way, so that the selection of elements of M0 has
to be described for each type of discrete logarithm problem separately.

Maybe, this is also the source of problems for proving a subexponential running time of
the algorithm in [ADH94]. On one hand, we can work with a nearly uniform distribution
over a finite set, namely the elements of G, in our algorithm, which allows to derive
assertions on the probability of finding a relation. On the other hand, the coefficients
of our relations may become as large as about E ≈ N ′, so that we have the potential
of reaching all relations corresponding to elements of M0 of degree up to about nN ′, cf.
Corollary 6.7. In the algorithm of [ADH94], one needs to fix an at most subexponential

118 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

bound for the degrees of a and b, so that only elements of M0 of subexponential degree
can be constructed. It is even unclear whether this smaller part ofM0 suffices to generate
the complete relation lattice Γ.

In its present formulation, the algorithm of Section 6.2 does not allow to compute discrete
logarithms in Jacobians of real quadratic hyperelliptic curves over finite fields; in fact,
there is no known way to realise the arithmetic of the Jacobian in this case. Instead, it has
been suggested to work with a different structure, the so-called infrastructure. Although
the infrastructure is not a group, it is possible to define an arithmetic and a discrete
logarithm problem and to base cryptosystems on it ([SSW96, MVZ98]). In [MST99], the
authors describe an algorithm for solving the infrastructure logarithm problem over a field
of odd characteristic which follows the same principles as ours. Assuming the validity
of Theorem 5.10, they are able to prove a subexponential running time. Considering
the case ϑ = 1, they unfortunately do not take into account that the smoothness bound
S has to be rounded up. Their assumption that qS ∈ Lqg (ρ + o(1)) and consequently
their running time analysis are, however, correct for g/ log q → ∞. Since their analysis is
based on a higher complexity of the elementary divisor form computation, their running
time is worse than that of our algorithm. Correcting the analysis of [MST99] and using
Theorem 6.10, the following result can be proved:

Theorem 6.14 There is a subexponential algorithm computing discrete logarithms in
the infrastructures of real quadratic hyperelliptic curves of genus g over finite fields Fq
of odd characteristic satisfying g ≥ ϑ log q for some positive constant ϑ. Its expected
running time is in

O

(
Lqg

(
2

(√
1 +

1

ϑ
+

√
1

ϑ

)
+ o(1)

))
.

If g/ log q tends to infinity for the instances under consideration, e.g. if q is constant
and g → ∞, then the complexity of the algorithm is

O (Lqg (2 + o(1))) .

Using the theory of real quadratic hyperelliptic curves over fields of characteristic 2
developed in [MVZ98] it should be possible to extend the theorem to curves over arbitrary
finite fields.

We noted in Section 3.2.1 that the existence of a ramified prime divisor of degree 1 allows
to transform a real into an imaginary quadratic hyperelliptic curve with the same function
field. After a constant field extension of degree at most 2g+2, such a divisor always exists.
Paulus and Rück observed that under this transformation the infrastructure logarithm
problem on the real quadratic curve and the logarithm problem in the Jacobian of the
imaginary quadratic curve are equivalent. (In [PR99], the authors consider only the case
of odd characteristic, but the result should carry over to general curves.)

6.5. GROUP STRUCTURE 119

6.5 Group structure

If g2 lies in the subgroup generated by g1, then our algorithm is bound to ultimately
find its discrete logarithm. Otherwise, i.e. if no discrete logarithm exists, which is never
the case in the cryptographic context, it will run forever. This problem can be solved
by taking into account that one run of the algorithm may fail for two reasons: It fails if
Algorithm 6.5 does not determine the correct group structure or if no discrete logarithm
exists. So it is of interest to decide when the first case occurs.

Notice that in the notation of Section 6.2, the determinant d1 · · · dn of the elementary
divisor form of A is a multiple of N ; it equals N if and only if the columns of A generate
the relation lattice Γ, which means that the group structure problem for G is solved
correctly. Thus, it is sufficient to know a bound N on the group order such that N ≤
N < 2N . Then d1 · · · dn is the correct group order N if and only if it does not exceed N .
It has been mentioned in Section 6.1.2 that the problem of computing such a bound N
in polynomial time has been solved for imaginary quadratic number fields. The method
is generalised to computing an analogous bound on the cardinality of real quadratic
Jacobians over finite fields of odd characteristic in [Ste96]. A similar approach should be
possible to derive a bound for Jacobians of imaginary quadratic hyperelliptic curves over
any finite field.

6.6 Implementation

The algorithm is clearly not suited for a direct implementation in its present formulation.
We present a few practical improvements for hyperelliptic Jacobians, which belong to two
distinct categories.

Some practical enhancements do not alter the rigorous proof of the running time, but we
did not care to include them into the description because they result in only a polynomial
speed-up, which would have vanished in the o(1) term. A first simple observation is that if
P is a splitting prime divisor, then P ∼ −P, so that it is sufficient to include only one out
of each pair of splitting prime divisors into the factor base, if at the same time negative
coefficients for the decomposition into primes are allowed. So the size of the factor
base can be halved approximately. From a more abstract point of view, we have used the
hyperelliptic involution σ, which is the unique non-trivial automorphism of K(C)/K(X),
and the known relation that σ(P) = νPP with some known constant νP ∈ Z for any
prime divisor P to keep only one prime divisor in each orbit of σ in the factor base. This
approach can sometimes be generalised to more general automorphisms of K(C), which
need not fix K(X); for instance, if K = Fpm , the Frobenius automorphism of raising to
the p-th power might be employed. The method is effective if integers νP do exist and
can be determined easily. For details, cf. [Gau00].

120 CHAPTER 6. SUBEXPONENTIAL ALGORITHMS I

In practice, computing 20n + 40n logE relations seems exaggerated; one would expect
that in the beginning each additional relation will increase the rank of A by 1 and that
only slightly more than n relations will suffice to generate Γ. However, the obtainable
speed-up would again be only polynomial, so from a theoretical point of view there is no
reason to refine the argumentation. In practice, it is recommendable to create some more
than n relations and — instead of restarting the complete algorithm in case it fails —
possibly add further relations and use incremental algorithms to update the elementary
divisor form.

The second type of improvements provides a speed-up also in theory, i.e. a better constant
in the subexponential complexity. Unfortunately, it introduces less randomness so that
the better running time cannot be proved rigorously. Recall the complexity of

O∼
(
n4 + n2

N

NS

)
proved in Section 6.3.4, the first term of which stems from the complexity of the ele-
mentary divisor form computation and the second one from the time needed to find the
relations. Since the parameter ρ is chosen ultimately so as to balance the contribution of
the two terms, an improvement in any of them would result in a better overall complexity.

The elementary divisor form is essential for the group structure determination; we develop
an algorithm for which the linear algebra step is faster in Chapter 7, provided that the
group structure is already known. Concerning the relation finding step, the computation
of a random linear combination of n prime divisors has a complexity in O∼(n). This can
be dropped to O∼(1) if it is replaced by a random walk in which in each step a random
multiple of only one random prime divisor is added to the previous combination. The
heuristic complexity is then lowered to

O∼
(
n4 + n

N

NS

)
provided that the smoothness test and the decomposition are dominated by the other
steps; however, the constructed group elements are not distributed independently and
the rigorous analysis does not apply any more. Repeating the optimisation of ρ as in
Section 6.3.5, the heuristic running time bound becomes

O

(
Lqg

(
2
√
6

3

(√
1 +

3

2ϑ
+

√
3

2ϑ

)
+ o(1)

))

for hyperelliptic Jacobians with g ≥ ϑ log q and

O

(
LN

(
2
√
6

3
+ o(1)

))
= O

(
L|D|

(
2√
3
+ o(1)

))

6.6. IMPLEMENTATION 121

for imaginary quadratic number fields of discriminant D. In any case, this is still worse
than the fully proved complexity of the algorithm of the next chapter. An alternative
would be to find the relations by sieving techniques as common for finite fields.

It should also be noted that the relation collection phase can be parallelised to an arbi-
trary extent with a gain in speed proportional to the number of participating machines.
Communicational overhead is only produced when a new relation is found, which has to
be sent to a central processor to be included into the matrix. So the practical bottleneck
is the linear algebra step, and a parallel algorithm for computing the elementary divisor
form would push the applicability of the algorithm much further.

Hafner and McCurley’s algorithm of [HM89] for imaginary quadratic number fields has
been implemented by Düllmann ([Dül91]), who solved the discrete logarithm problem
for discriminants of about 40 decimal digits. More recently, Jacobson presented an im-
plementation running successfully on instances with an 80 digit discriminant in [Jac00].
The speed-up is mostly due to the use of sieving techniques. For hyperelliptic Jacobians,
I know of only one implementation, which also involves sieving for finding the relations
([FP99]).

Chapter 7

Subexponential algorithms for
groups with known order

The running time of the algorithm of Chapter 6 on class groups is substantially worse than
that of even fully proved algorithms for finite fields. As mentioned in Section 6.6, this is
due to the fact that the linear algebra step for finding the group structure is simply too
costly. Now, the group structure is usually known in the cryptographic setting, in which
the discrete logarithm problem has to be solved in a cyclic group of known order. In this
chapter, we develop a fast subexponential algorithm for computing discrete logarithms
in the case that the group order is known. The algorithm was conceived by Gaudry for
hyperelliptic curves ([Gau00]), but it generalises nicely to our abstract model. Like the
algorithm of Chapter 6 it consists of two phases, a relation collection and a linear algebra
step. Its main gain in efficiency stems from the linear algebra step, where sparse matrix
techniques can be employed. To this purpose, we extend some results on sparse linear
algebra, see Section 7.2. Additionally, the relations are created faster.

It turns out that all examples for which smoothness results are available have basically
the same complexity of

O(LN (
√
2 + o(1)).

(If there is an additional parameter ϑ, the bound is valid for ϑ → ∞.) This shows that
class groups (with a large value of ϑ) are as vulnerable to subexponential attacks as finite
fields if no algorithms with an unproven running time are taken into account.

It is common practice in the literature to distinguish between impractical algorithms with
a proven and practical algorithms with only a conjectured subexponential complexity;
the distinction is particularly true for finite fields, in which all proven algorithms have
a running time in LN (1/2, c), while the number field and function field sieve algorithms
have a conjectured running time in LN (1/3, c). Our algorithm shows that this distinction

123

124 CHAPTER 7. SUBEXPONENTIAL ALGORITHMS II

is no more valid for class groups. While being the fastest one suggested so far, our
algorithm can nevertheless be implemented with only minor changes.

For the time being, assume that G is an arithmetical formation (see Section 5.1) of known
cardinality N . Let again be N ′ the parameter describing the input size of the problem,
i.e., N ′ = N unless G is the Jacobian of a hyperelliptic curve, in which case N ′ = qg.
Later on, we consider the situation in which discrete logarithms are sought in a cyclic
subgroup of an arithmetical formation. This poses the problem that smoothness results
are usually only available for the full group and not for its subgroups. The same problem
occurred in Chapter 6, but there it was less important since we had to work with the
complete group anyway to determine its structure. A few possible solutions are discussed
in Section 7.4. While they do not cover all possible groups, we show that the running
time analysis remains valid at least for all instances of cryptographic interest.

It may seem tempting to factor N and to use a Pohlig–Hellman type approach. However,
this reintroduces the problem of working in subgroups by the back door. While solving
the discrete logarithm problem directly in the cyclic group G, we nevertheless factor N
during the algorithm to simplify the linear algebra step.

7.1 Algorithm

Let g1 be a generator and g2 a further element of G. The following algorithm determines
the unique integer l ∈ ZN = {0, . . . , N − 1} such that g2 = lg1.

Algorithm 7.1

1) Choose a smoothness bound S and construct the factor base PS = {P1, . . . ,Pn}
with n = nS. Set k = dld(n ldN)e+ 1.

2) Construct a matrix A = (aij) ∈ Zn×(2kn)
N as follows: For j = 1, . . . , kn, select

randomly and uniformly αj, βj ∈ ZN until αjg1 + βjg2 is S–smooth, and write

αjg1 + βjg2 =
n∑

i=1

aijPi.

For j = kn+1, . . . , 2kn, write j = (k+r)n+m with 0 ≤ r ≤ k−1, 1 ≤ m ≤ n, and
select randomly and uniformly αj, βj ∈ ZN until αjg1 + βjg2 −Pm is S–smooth;
then write

αjg1 + βjg2 = Pm +

n∑
i=1

bijPi =

n∑
i=1

aijPi.

7.2. LINEAR ALGEBRA 125

3) By the randomised procedure described in Section 7.2, try to find a non-zero vector
γ = (γ1, . . . , γ2kn) ∈ Ker(A) in the kernel of A. If the procedure fails, go back to
2).

4) If
∑2kn

j=1 βjγj is invertible in ZN , then output

l = −

2kn∑
j=1

βjγj

−12kn∑
j=1

αjγj

 ;

otherwise go back to 2).

If the algorithm halts in Step 4), then it outputs the correct discrete logarithm of g2 to
the base g1. The fact that γ ∈ Ker(A) means that

0 =
2kn∑
j=1

aijγj ∀i = 1, . . . , n;

multiplying these equations by Pi and summing them up yields

0 =

2kn∑
j=1

(
n∑

i=1

aijPi

)
γj =

2kn∑
j=1

αjγj

 g1 +

2kn∑
j=1

βjγj

 g2.

As g1 and g2 are both of N–torsion, multiplying by the inverse of
∑2kn

j=1 βjγj in ZN , if it
exists, shows the correctness of the result.

7.2 Linear algebra

Since rankA ≤ n, it is possible to find a non-zero vector γ ∈ Ker(A). How this is done,
however, needs further explication. On one hand, it is desirable to exploit the sparse
structure of the matrix, which has only O∼(1) entries per column, and the corresponding
algorithms are prone to failure with a certain probability. On the other hand, algorithms
for sparse linear algebra are usually described for fields in the literature. Thus, a com-
plication is introduced by the fact that N need not be prime and ZN may not be a
field.

To exploit the matrix sparseness, one may use a randomised Lanczos algorithm; we rely
on the following trivial corollary of Theorem 6.2 in [EK97].

Theorem 7.2 Let Fq be the finite field with q elements and let A ∈ Fn×d
q be a matrix

of rank r with ω non-zero entries and b ∈ Fnq . There is a probabilistic algorithm which

either returns a vector x ∈ Fdq such that Ax = b or reports failure. The algorithm requires

O(r(ω + d)) operations in Fq and has a failure probability of at most 11d2−d
2(q−1) .

126 CHAPTER 7. SUBEXPONENTIAL ALGORITHMS II

Moreover, the solution vector returned by the algorithm can be made to vary uniformly
over all possible solutions by randomising the right hand side in the following way (in
fact, this randomisation is already part of the algorithm in [EK97]): Choose y ∈ Fdq
according to a uniform distribution, solve Ax = b+Ay and let x = x−y. If y varied over
a fixed class of Fdq/KerA, then x would not depend on y, and x would be distributed
uniformly over the solution space x+KerA of the equation. Hence, the same assertion
holds when y does not belong to a fixed class.

When q is small compared to d, it is not possible to apply the theorem directly. Instead,
one may switch to a field extension. While this idea does not seem to be new — it was
used, for instance, in the implementation of [LO91], see also [KS91] — I did not find it
detailed in the literature and thus expand on the topic. In particular, it is possible to
maintain the uniform distribution over the solution vectors.

In the situation of Theorem 7.2, let p be the characteristic of Fq, ν = min{l : ql >
11d2, p - l} and q′ = qν . Then qν−2 ≤ 11d2, so that q′ ∈ O(d2q2). We would like
to solve a matrix equation over Fq′ and project the solution onto a solution x ∈ Fdq
of Ax = b. For projection, one may use the trace function Tr : Fq′ → Fq, which is a
homomorphism of Fq-vector spaces and acts on Fq as multiplication by ν. It can be
extended to a map Tr : F d

q′ → Fdq by componentwise application. Let b′ = ν′b ∈ Fdq with
νν′ ≡ 1 (mod p), so that νb′ = b. The value ν′ exists because gcd(ν, p) = 1 and can be
computed by the extended Euclidean algorithm in time O(log ν log p), which as well as
the multiplication of b by ν′ is negligible compared to the following linear algebra step.
Solve Ax′ = b′ by the algorithm in [EK97]. The success probability for this step is at

least 1 − 11d2−d
2(q′−1) ≥ 1

2 . Let x = Tr(x′). Then from the linearity of the trace we deduce

that b = νb′ = Tr(b′) = Tr(Ax′) = Ax.

Moreover, any solution x ∈ Fdq of Ax = b can be obtained in this way, and all of
them have the same probability of occurring. Namely, for a given solution x, the set
of solutions to Ax′ = b′ over Fdq′ which map to x under the trace function is given by

ν′x+ (KerA∩KerTr), whose cardinality (q′)dim(KerA∩KerTr) is independent of x. Thus,
we have shown the following result.

Theorem 7.3 Let A ∈ Fn×d
q be a matrix of rank r with ω non-zero entries and b ∈ Fnq .

There is a probabilistic algorithm which either returns a vector x ∈ Fdq such that Ax = b

or reports failure. The running time of the algorithm is in O(r(ω + d) log2(dq)), and its
failure probability is at most 1

2 . Moreover, the resulting vector is uniformly distributed
over all possible solutions.

This solves the linear algebra step if N is prime. Otherwise, one factors N , computes γ
modulo pν for all pν‖N and combines the results by the Chinese Remainder Theorem.
The computations modulo pν may be broken up into ν iterations modulo p via a lifting
procedure: Suppose that a non-zero solution γ1 ∈ {0, . . . , pe − 1}2kn is known to the

7.3. ANALYSIS 127

equation Ax ≡ 0 (mod pe), for instance Aγ1 = peδ with δ ∈ Z2kn. Assume that there
is a solution γ2 of Ax ≡ δ (mod p). Then peγ2 − γ1 is a non-zero solution of Ax ≡ 0
(mod pe+1). If all computations modulo a prime return a random vector according to a
uniform distribution over all possible solutions, then the combined result varies uniformly
over the kernel of A.

Considering the elementary divisor form of the matrix A, however, it is easily seen that
the lifting procedure may fail if (and only if) rankQA 6= rankZp A because then the matrix
equation Ax ≡ δ (mod p) need not have a solution. This is the reason why, following
[Pom87], we create the matrix A in a special way, generating many more than the n+ 1
columns one would expect to need in practice and forcing the basis elements Pm into
the relations. Indeed, it is proved in Lemma 4.1 and the subsequent remark of [Pom87]
that with high probability the matrix has full rank over Zp. We recall this lemma in our
notation.

Lemma 7.4 Let V be a vector space over a field F with dimV = n <∞. Let S be a finite
set of vectors in V and b1, . . . , bn a basis for V . Let k ∈ N. We make 2kn independent
choices of elements from S with an arbitrary probability distribution over S, labelling the
chosen vectors v1, . . . , vkn, w1, . . . , wkn, and we denote by V ′ the subspace of V spanned
by v1, . . . , vkn, and the vectors bj + w(j−1)k+i for j = 1, . . . , n and i = 1, . . . , k. Then
with probability at least 1− n

2k−1 we have V = V ′.

In our case, the vector space V is the space of column vectors of size n with coefficients
in Zp, the basis is the canonical basis, and the set S is the set of all column vectors
representing a smooth element of G. We see that the vectors generating V ′ correspond
precisely to the vectors forming the matrix A. Hence the probability that the lifting
is possible on Zp is at least 1 − n

2k−1 . There are at most ldN
2 distinct primes p whose

squares divide N , thus the probability that the lifting is possible for all of them is at
least 1− n ldN

2k
≥ 1

2 for our choice of k.

In this case, repeating ld(2 ldN) times the algorithm of Theorem 7.3, we obtain a solution
of one problem modulo a prime with probability at least 1− 1

2ld(2 ldN) = 1− 1
2 ldN . As at

most ldN single problems have to be solved, we get a solution modulo N with probability
at least 1

2 . Altogether, Step 3) is thus successful with a probability of at least 1
4 , in which

case the output vector is uniformly distributed over the kernel.

7.3 Analysis

7.3.1 Success probability

To estimate the probability that the algorithm succeeds during one run of Steps 2) to 4),
we assume that Step 2) has been accomplished successfully, the study of this step being
postponed to the running time analysis below.

128 CHAPTER 7. SUBEXPONENTIAL ALGORITHMS II

As shown in Section 7.2, Step 3) succeeds with probability at least 1
4 . The algorithm

may also fail if
∑2kn

j=1 βjγj is not invertible in ZN in Step 4). However, this happens with
a sufficiently low probability. For given j ≤ kn and any βj , as g1 is a generator of G
and αj is uniformly distributed, the element αjg1 + βjg2 is uniformly distributed over
all group elements. The same holds for j > kn and αjg1 + βjg2 − Pm. Consequently,
the matrix A and the vector β are independent random variables, so that γ and β are
also independent. Let p be a prime divisor of N . Since γ is uniformly distributed over
all vectors of the kernel, the probability that γ 6≡ 0 (mod p) is at least 1 − 1

p . Then

the orthogonal space of γ mod p in Z2kn has dimension 2kn − 1, and the conditional
probability that β mod p is not orthogonal to γ mod p is at least 1− 1

p . Hence
∑2kn

j=1 βjγj

is invertible in ZN with probability at least
∏

p|N

(
1− 1

p

)2
=
(

ϕ(N)
N

)2
. From (3.41) in

[RS62] we have ϕ(N)
N ∈ Ω(1/ log logN).

Thus, the total success probability for one run of Steps 2) to 4) is in

Ω

(
1

(log logN)2

)
.

7.3.2 Running time

Denote again by NS the number of S–smooth group elements. Let ts, td and tf be
upper bounds on the expected time needed for a smoothness test, the decomposition of
a smooth group element into a sum of primes and the factorisation of N , respectively.

With the assumptions set forth in Section 5.1, PS can be constructed in time O∼ (n2).
The time needed for computing one linear combination of g1 and g2 and testing for
smoothness is in O∼(ts); this has to be repeated an expected N

NS
times until a smooth

element is obtained. This smooth element is recognised with a probability of at least 1/2,
so that no more than two repetitions of the previous procedure are needed on average
until a column of the matrix can be filled. So the total time used in Step 2) is in

O∼
(
n

(
N

NS
ts + td

))
⊆ O∼

(
n
N

NS
ts + n2

)
since 2kn, td ∈ O∼(n).

As explained in Section 7.2, Step 3) requires ld(2 ldN) ldN ∈ O∼(1) executions of the
algorithm behind Theorem 7.3. The number of entries in each column of A is in O∼(1),
so that Step 3) needs time in O∼(tf + n2).

Finally, Step 4) can be performed in O∼(1).

Since by the analysis of Section 7.3.1 only O((log logN)2) ⊆ O∼(1) repetitions of Steps 2)
to 4) are needed on average, the total running time of the algorithm is in

O∼
(
tf + n2 + n

N

NS
ts

)
.

7.3. ANALYSIS 129

Examples.

1) G = F×p , p prime

With deterministic algorithms due to Pollard and Strassen [Pol74, Str76] we have
ts ∈ O∼(

√
n). A more efficient probabilistic method has been proved using hyper-

elliptic curves. The test of [LPP93] recognises (and decomposes) a smooth number
with probability at least 1/2 in time ts ∈ O∼(Ln(2/3, c), where c is some positive
constant. Thus, the total running time is in

O∼
(
tf + n2 + nLn(2/3, c)

N

NS

)
.

2) G = F×
2k

Now ts ∈ O∼(1) since a smoothness test can be performed in deterministic poly-
nomial time by computing the distinct degree factorisation of the polynomial rep-
resenting the group element. Precisely, let f ∈ F2[X]′ be the element to be tested,
and g = f

gcd(f,f ′) its square-free part. Then f is S–smooth if and only if g is. Since

X2i −X is the product of all irreducible polynomials of degree dividing i in F2[X]′,
the latter is the case if and only if

g = lcm({gcd(g,X2i −X) : i = 1, . . . , S}).

Computing X2i − X mod g by successive squaring and reduction modulo g, this
can be tested in time polynomial in S ∈ O∼(1) and deg f ∈ O∼(1). Thus, the total
running time of the algorithm is in

O∼
(
tf + n2 + n

N

NS

)
.

3) G = Fpk , p prime

An element (m, f) ∈ N×Fp[X]′ is S–smooth if and only if m and f are S–smooth.
The smoothness of m can be tested in time in O∼(Lp(2/3, c)) as mentioned in Ex-
ample 1). The smoothness of f can again be checked by distinct degree factorisation
in time O∼(1). Thus, the total running time of the algorithm is in

O∼
(
tf + n2 + nLp(2/3, c)

N

NS

)
.

4) Ideal class groups of imaginary quadratic number fields

As the smoothness test and the decomposition into primes are reduced to the case
of natural integers, the analysis of Example 1) shows that the running time is in

O∼
(
tf + n2 + nLn(2/3, c)

N

NS

)
.

130 CHAPTER 7. SUBEXPONENTIAL ALGORITHMS II

5) Jacobians of imaginary quadratic hyperelliptic curves over finite fields

Now the smoothness test and the decomposition are reduced to the case of monic
polynomials, and the analysis of Example 2) carries over and shows that the running
time is in

O∼
(
tf + n2 + n

N

NS

)
.

�

7.3.3 Subexponentiality

Assume again that the bound S can be chosen such that

n ∈ O(LN ′(ρ+ o(1)))

and
N

NS
∈ O(LN ′(σ + o(1)))

for some constants ρ, σ > 0.

Notice that N can be factored in expected time in O(LN (1 + o(1))) by the algorithm
presented in [LP92] and that LN (1) ∈ O (LN ′(1 + o(1))) since N ∈ O∼(N ′). Introducing
an exponent τ such that ts ∈ O∼(nτ), we obtain that the running time of the algorithm
is in

O (LN ′ (max(1, 2ρ, (1 + τ)ρ+ σ) + o(1))) .

In fact, the constants for all examples presented below are worse than 1 anyway, so that
the need for factoring N has no influence on our running time bounds.

Examples.

1) G = F×p , p prime

For S = dlog(LN (ρ))e we have σ = 1
2ρ by Theorem 5.3. Moreover from n ∈

O(LN (ρ)) we deduce Ln(2/3, c) ∈ LN (o(1)), cf. Section 5.3. The running time of
the algorithm is thus in

O

(
LN

(
max

(
2ρ, ρ+

1

2ρ
, 1

)
+ o(1)

))
for any ρ > 0; the optimal choice ρ = 1/

√
2 yields a running time in

O(LN (
√
2 + o(1))).

This is precisely the complexity of the fastest previously known algorithm described
in [Pom87].

7.3. ANALYSIS 131

2) G = F×
2k

For S = dlog(LN (ρ))e we have σ = 1
2ρ by Theorem 5.5. Thus, the running time of

the algorithm is in

O

(
LN

(
max

(
2ρ, ρ+

1

2ρ
, 1

)
+ o(1)

))
for any ρ > 0. The optimal choice ρ = 1/

√
2 again yields a running time in

O(LN (
√
2 + o(1))),

which corresponds to the fastest previously known algorithms described in [Pom87]
and [BP98].

3) G = Fpk , p prime

Notice first that in the polynomial representation we have chosen, it is impossible to
obtain a subexponential running time for fixed k ≥ 2 and p→ ∞. If we let S = 0,

then only the constants have a chance of being smooth, and N
NS

≥ pk−1
p−1 ≥ pk−1

is exponential in N . If S ≥ 1, then all p monic linear polynomials are contained
in the factor base, which is thus of exponential size. Hence, we must restrict our
attention to instances in which p is sufficiently small compared to k, which is a
situation similar to that of Section 6.1.3.

With the notation of Theorem 5.5, we have the estimate

N

NS
∈ O

(
pLN

(
1

2ρ
+ o(1)

))
for S = dlogp(LN (ρ))e, which introduces the additional factor p to the subexpo-
nential function. Moreover, since we have to round up S, it need not be true any
more that n ∈ O(LN (ρ)). In fact,

n ≤
S∑

i=0

∣∣{f ∈ F′p[X] : deg f = i}
∣∣

∣∣{m ∈ {1, . . . , p− 1} : ldm ≤ S − i}
∣∣

=
S∑

i=0

pi min
{
p− 1, 2S−i

}
≤

S−1∑
i=0

pi+1 + pS

∈ O
(
pS
)

⊆ O(pLN (ρ)).

132 CHAPTER 7. SUBEXPONENTIAL ALGORITHMS II

For a first special result we consider the case p ∈ O∼(1), which implies n ∈
O∼(LN (ρ)) and Lp(2/3, c) ∈ LN (o(1)). So the running time analysis of Exam-
ple 2) carries over without modification.

More generally, we must ensure that p is subexponential in logN ∈ k log p(1+o(1)).
Following the ideas of Section 6.3.5, we consider the case k ≥ ϑ log p for some

positive constant ϑ, in which p ≤ LN

(
1√
ϑ

)
. Then n ∈ O

(
LN

(
ρ+ 1√

ϑ

))
and

N
NS

∈ O
(
LN

(
1
2ρ + 1√

ϑ
+ o(1)

))
for the same value of S as above, Lp(2/3, c) ∈

LN (o(1)), and the total running time is in

O

(
LN

(
max

{
2ρ+

2√
ϑ
, ρ+

1

2ρ
+

2√
ϑ
, 1

}
+ o(1)

))
.

The optimal choice for ρ is
√
2
2 , which yields a running time of

O

(
LN

(√
2 +

2√
ϑ
+ o(1)

))
.

Asymptotically for ϑ → ∞ (e.g., for p fixed), we recover the running time of
Example 2).

In [AD93], Adleman and DeMarrais describe an algorithm with conjectured subex-
ponential running time for p > k. They represent the field as the ring of integers
of a number field modulo a prime ideal. See also [Sem95]. It is an interesting open
question whether these algorithms can be made rigorous.

4) Ideal class groups of imaginary quadratic number fields

Letting S = dlogLN (ρ)e, we have σ = 1
2ρ under the generalised Riemann hypothesis

by Theorem 5.6. Repeating the analysis of Example 1) proves the following result.

Theorem 7.5 Assuming the generalised Riemann hypothesis, Algorithm 7.1 com-
putes discrete logarithms in the ideal class groups of imaginary quadratic number
fields of discriminant D in expected time in

O
(
LN

(√
2 + o(1)

))
= O

(
L|D| (1 + o(1))

)
.

5) Jacobians of imaginary quadratic hyperelliptic curves over finite fields

We assume that g ≥ ϑ log q as in Example 2) of Section 6.3.5. Letting S =
dlogq Lqg (ρ)e, a similar analysis shows that the complexity of the algorithm is in

O

(
Lqg

(
max

{
2ρ+

2√
ϑ
, ρ+

1

2ρ
+

1√
ϑ
, 1

}
+ o(1)

))
,

7.4. CYCLIC SUBGROUPS 133

which is minimised for

ρ = min{ρ, ρ∗(ϑ)} = min

{√
2

2
,

√
1

2
+

1

4ϑ
− 1

2
√
ϑ

}

=

√
1

2
+

1

4ϑ
−
√

1

4ϑ
.

This proves the following result.

Theorem 7.6 Algorithm 7.1 computes discrete logarithms in Jacobians of imag-
inary quadratic hyperelliptic curves of genus g over finite fields Fq satisfying g ≥
ϑ log q for some positive constant ϑ in expected time in

O

(
Lqg

(
√
2

(√
1 +

1

2ϑ
+

√
1

2ϑ

)
+ o(1)

))
.

If g/ log q tends to infinity for the instances under consideration, e.g. if q is constant
and g → ∞, then the complexity is

O
(
Lqg

(√
2 + o(1)

))
.

�

7.4 Cyclic subgroups

In this section, we discuss a few approaches how Algorithm 7.1 can be used to compute
discrete logarithms in cyclic subgroups. Let G be an arithmetical formation andH = 〈g1〉
a cyclic subgroup of G of known order N . For another element g2 ∈ H, we wish to
determine logg1 g2.

7.4.1 Perturbing with elements of the complement

The simplest situation arises when gcd
(
|H|, |G|

|H|

)
= 1; then H admits a complement H ′

in G, i.e., G = H ×H ′. Assume that it is possible to select independently elements hj of
H ′ according to a uniform distribution in time polynomial in logN . This is for instance
the case if we can select random elements in G in polynomial time, because multiplying a

uniformly distributed element of G by |G|
|H| yields a uniformly distributed element of H ′.

Another favourable situation is the case where we know a basis of H ′. (In this context,

134 CHAPTER 7. SUBEXPONENTIAL ALGORITHMS II

we understand by a basis of H ′ a set {b1, . . . , br} such that H ′ is equal to the direct sum
〈b1〉 × · · · × 〈br〉. The cardinality r of a basis is not an invariant of H ′, but it is bounded
above by ld |H ′|.)
Then αjg1 + βjg2 + hj is distributed uniformly and independently of β over G, so that
the algorithm may be carried out with these group elements instead of αjg1 + βjg2. If it
is successful, then2kn∑

j=1

αjγj

 g1 +

2kn∑
j=1

βjγj

 g2 = −
2kn∑
j=1

γjhj ∈ H ∩H ′ = {0},

so that

logg1 g2 =

2kn∑
j=1

βjγj

−12kn∑
j=1

αjγj


as before. Also, the running time analysis remains unchanged.

While this situation seems to be very special, it is typical for cryptographic applications

in whichH is supposed to have large prime order and the cofactor |G|
|H| is small, so that |H|

and |G|
|H| are automatically coprime. Moreover, for |G|

|H| polynomial in logN , the structure

and, in particular, a basis of H ′ ' G/H can be determined in polynomial time (see, for
instance, [Coh93]), and the assumptions of this subsection are satisfied.

7.4.2 Using a basis for G

Assume that a basis {b1, . . . , br} of G along with the orders e1, . . . , er of its elements
are known. Then the discrete logarithm problem can be solved in two steps. Instead of
directly writing g2 as a multiple of g1 we first express g1 as a linear combination of the
basis elements and then proceed in the same way for g2. The discrete logarithm can be
computed by a few operations modulo the ei.

In order to write g1 in terms of the bi, a slight variation of the algorithm allows to use
the smoothness properties. For given j ≤ kn, pick random elements αij and βj until∑
αijbi+βjg1 is S–smooth and write this element as

∑
aijpi. Similarly, for j > kn pick

random elements until
∑
αijbi + βjg1 − Pm is S–smooth. Here again, the elements of

G which are tested for smoothness are distributed uniformly and independently of β, so
that the same analysis as in Section 7.3.1 can be carried out. Hence with high probability
a non-zero vector of the kernel is obtained and g1 is expressed as a linear combination
g1 =

∑
γibi. The same process yields g2 =

∑
δibi. Now try to solve the system of

modular equations δi ≡ lγi (mod ei). If this is possible, then l is the correct discrete
logarithm of g2 with respect to g1. Otherwise, g2 does not lie in the cyclic subgroup
generated by g1. In this case, which does not occur in the cryptographic setting, the

7.5. IMPLEMENTATION 135

original algorithm would run forever without giving proof of the non-existence of the
discrete logarithm. Thus, the ability to detect this case is an additional advantage of the
modified algorithm.

7.5 Implementation

Basically, the same remarks as in Section 6.6 apply to the algorithm of this chapter. In
practice, it is sufficient to collect some more than n+1 relations, and one can profit from
automorphisms to reduce the size of the factor base.

The computation of random linear combinations of g1 and g2 can also be replaced by a
random walk. After precomputing a few linear combinations, one may randomly select
one of them in each step and add it to the previous element. In practice, this results in
a polynomial speed-up.

A first version of the algorithm has been implemented by Gaudry. The largest example
he was able to attack was the Jacobian of a curve of genus 6 over F223 of size about
2138; it had an automorphism of order 23 ([Gau00]). This size is so close to values
deemed secure for elliptic curve cryptosystems that hyperelliptic curves of genus 6 or
more should definitely be avoided. Since further implementational progress can be ex-
pected, even curves of smaller genus might be insecure. A different analysis carried out
in [Gau00] for fixed genus and the field size tending to infinity shows that Algorithm 7.1
is asymptotically faster than the square root attacks of Sections 1.2.3 and 1.2.4 as soon
as the genus exceeds 4. In the light of the results of Chapter 4, this means that elliptic
curve cryptosystems are likely to remain the state of the art and to not be replaced by
hyperelliptic cryptosystems.

Bibliography

[AD93] Leonard M. Adleman and Jonathan DeMarrais. A subexponential algorithm
for discrete logarithms over all finite fields. Mathematics of Computation,
61(203):1–15, 1993.

[ADH94] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh Huang. A subex-
ponential algorithm for discrete logarithms over the rational subgroup of the
Jacobians of large genus hyperelliptic curves over finite fields. In [AH94],
pages 28–40, 1994.

[AH94] Leonard M. Adleman and Ming-Deh Huang, editors. Algorithmic Number
Theory, volume 877 of Lecture Notes in Computer Science, Berlin, 1994.
Springer-Verlag.

[Art24a] E. Artin. Quadratische Körper im Gebiete der höheren Kongruenzen I. Math-
ematische Zeitschrift, 19:153–206, 1924.

[Art24b] E. Artin. Quadratische Körper im Gebiete der höheren Kongruenzen II.
Mathematische Zeitschrift, 19:207–246, 1924.

[Art67] Emil Artin. Algebraic Numbers and Algebraic Functions. Notes on Math-
ematics and its Applications. Gordon and Breach Science Publishers, New
York, 1967.

[AS27] Emil Artin and Otto Schreier. Eine Kennzeichnung der reell abgeschlossenen
Körper. Abhandlungen aus dem mathematischen Seminar der hamburgischen
Universität, 5:225–231, 1927.

[Bac90] Eric Bach. Explicit bounds for primality testing and related problems. Math-
ematics of Computation, 55(191):355–380, 1990.

[Ber68] Elwyn R. Berlekamp. Algebraic Coding Theory. McGraw-Hill Series in Sys-
tems Science. McGraw-Hill, New York, 1968.

137

138 BIBLIOGRAPHY

[Bom74] Enrico Bombieri. Counting points on curves over finite fields. In [DE74],
pages 234–241, 1974.

[BP98] Renet Lovorn Bender and Carl Pomerance. Rigorous discrete logarithm com-
putations in finite fields via smooth polynomials. In [BT98], pages 221–232,
1998.

[BT98] D. A. Buell and J. T. Teitelbaum, editors. Computational Perspectives on
Number Theory: Proceedings of a Conference in Honor of A.O.L. Atkin, vol-
ume 7 of Studies in Advanced Mathematics. American Mathematical Society,
1998.

[Buc90] Johannes Buchmann. A subexponential algorithm for the determination of
class groups and regulators of algebraic number fields. In [Gol90], pages
27–41, 1990.

[Buh98] J. P. Buhler, editor. Algorithmic Number Theory — ANTS-III, volume 1423
of Lecture Notes in Computer Science, Berlin, 1998. Springer-Verlag.

[BW88] Johannes Buchmann and H. C. Williams. A key-exchange system based on
imaginary quadratic fields. Journal of Cryptology, 1:107–118, 1988.

[Can87] David G. Cantor. Computing in the Jacobian of a hyperelliptic curve. Math-
ematics of Computation, 48(177):95–101, 1987.

[Car87] Mireille Car. Théorèmes de densité dans Fq[x]. Acta Arithmetica, 68:145–165,
1987.

[Che51] Claude Chevalley. Introduction to the Theory of Algebraic Functions of one
Variable. American Mathematical Society, 1951.

[Coh93] Henri Cohen. A Course in Computational Algebraic Number Theory. Grad-
uate Texts in Mathematics. Springer-Verlag, New York, 1993.

[Coh96] Henri Cohen, editor. Algorithmic Number Theory — ANTS-II, volume 1122
of Lecture Notes in Computer Science, Berlin, 1996. Springer-Verlag.

[DE74] A. Dold and B. Eckmann, editors. Séminaire Bourbaki vol. 1972/73 Exposés
418-435, volume 383 of Lecture Notes in Mathematics, Berlin, 1974. Springer-
Verlag.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Transactions on Information Theory, 22(6):644–655, November 1976.

[Dül91] Stephan Düllmann. Ein Algorithmus zur Bestimmung der Klassengruppe
positiv definiter binärer quadratischer Formen. PhD thesis, Universität des
Saarlandes, Saarbrücken, 1991.

BIBLIOGRAPHY 139

[DW82] R. Dedekind and H. Weber. Theorie der algebraischen Functionen einer
Veränderlichen. Journal für die reine und angewandte Mathematik, 92:181–
290, 1882.

[Eic63] Martin Eichler. Einführung in die Theorie der algebraischen Zahlen und
Funktionen, volume 27 of Mathematische Reihen. Birkhäuser-Verlag, Basel,
1963.

[EK97] Wayne Eberly and Erich Kaltofen. On randomized Lanczos algorithms. In
[Küc97], pages 176–183, 1997.

[ElG85] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, July 1985.

[Eng99] Andreas Enge. Elliptic Curves and Their Applications to Cryptography —
An Introduction. Kluwer Academic Publishers, 1999.

[FP99] Ralf Flassenberg and Sachar Paulus. Sieving in function fields. Experimental
Mathematics, 8(4):339–349, 1999.

[FR94] Gerhard Frey and Hans-Georg Rück. A remark concerning m-divisibility and
the discrete logarithm in the divisor class group of curves. Mathematics of
Computation, 62(206):865–874, April 1994.

[Ful69] William Fulton. Algebraic Curves. Mathematics Lecture Note Series. The
Benjamin/Cummings Publishing Company, Reading (Massachusetts), 1969.

[Fum97] Walter Fumy, editor. Advances in Cryptology — EUROCRYPT ’97, volume
1233 of Lecture Notes in Computer Science, Berlin, 1997. Springer-Verlag.

[Gau01] Carl Friedrich Gauß. Disquisitiones Arithmeticae. Gerh. Fleischer Jun.,
Leipzig, 1801.

[Gau00] Pierrick Gaudry. An algorithm for solving the discrete log problem on hy-
perelliptic curves. In [Pre00], pages 19–34, 2000.

[GG99] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, 1999.

[Gol90] Catherine Goldstein, editor. Séminaire de Théorie des Nombres, Paris 1988–
1989, Progress in Mathematics, Boston, 1990. Birkhäuser.

[Gra73] De la Grange. Recherches d’arithmétique. Nouveaux Mémoires de l’Académie
Royale des Sciences et Belles-Lettres, pages 265–312, 1773.

140 BIBLIOGRAPHY

[Hal76] Marshall Hall Jr. The Theory of Groups. Chelsea Publishing Company, New
York, 2nd edition, 1976.

[Har01] Robert Harley. Advanced algorithms for algebra and number theory. PhD
thesis in preparation, title susceptible to change, 2001.

[Has33] Helmut Hasse. Beweis des Analogons der Riemannschen Vermutung für die
Artinschen und F. K. Schmidtschen Kongruenzzetafunktionen in gewissen
elliptischen Fällen. Nachrichten von der Gesellschaft der Wissenschaften zu
Göttingen, Mathematisch-Phyikalische Klasse, pages 253–262, 1933.

[Has34] Helmut Hasse. Abstrakte Begründung der komplexen Multiplikation und
Riemannsche Vermutung in Funktionenkörpern. Abhandlungen aus dem ma-
thematischen Seminar der hamburgischen Universität, 10:325–348, 1934.

[Has35] Helmut Hasse. Theorie der relativ-zyklischen algebraischen Funktionenkör-
per, insbesondere bei endlichem Konstantenkörper. Journal für die reine und
angewandte Mathematik, 172:37–54, 1935.

[Hen85] Douglas Hensley. The number of positive integers ≤ x and free of prime
factors > y. Journal of Number Theory, 21:286–298, 1985.

[Heß99] Florian Heß. Zur Divisorenklassengruppenberechnung in globalen Funktio-
nenkörpern. PhD thesis, Technische Universität Berlin, 1999.

[HI98] Ming-Deh Huang and Doug Ierardi. Counting points on curves over finite
fields. Journal of Symbolic Computation, 25:1–21, 1998.

[Hil86] Adolf Hildebrand. On the number of positive integers ≤ x and free of prime
factors > y. Journal of Number Theory, 22:289–307, 1986.

[HM89] James L. Hafner and Kevin S. McCurley. A rigorous subexponential algo-
rithm for computation of class groups. Journal of the American Mathematical
Society, 2(4):837–850, 1989.

[HM91] James L. Hafner and Kevin S. McCurley. Asymptotically fast triangulariza-
tion of matrices over rings. SIAM Journal on Computing, 20(6):1068–1083,
1991.

[HT86] Adolf Hildebrand and Gérald Tenenbaum. On integers free of large prime
factors. Transactions of the American Mathematical Society, 296(1):265–290,
1986.

[IMW91] Karl-Heinz Indlekofer, Eugenius Manstavicius, and Richard Warlimont. On
a certain class of infinite products with an application to arithmetical semi-
groups. Archiv der Mathematik, 56:446–453, 1991.

BIBLIOGRAPHY 141

[INR00] Biggest public-key crypto crack ever — INRIA leads worldwide internet-
distributed calculation. INRIA Press Release, April 2000. Available at
http://www.inria.fr/presse/pre67.en.html.

[IZ00] Hideki Imai and Yuliang Zheng, editors. Public Key Cryptography — 3rd
International Workshop on Practice and Theory in Public Key Cryptosystems
PKC 2000, volume 1751 of Lecture Notes in Computer Science, Berlin, 2000.
Springer-Verlag.

[Jac00] Michael J. Jacobson Jr. Computing discrete logarithms in quadratic orders.
Journal of Cryptology, 13:473–492, 2000.

[JNNW87] David S. Johnson, Takao Nishizeki, Akihiro Nozaki, and Herbert S. Wolf,
editors. Discrete Algorithms and Complexity, Proceedings of the Japan–US
Joint Seminar, June 4–6, 1986, Kyoto, Japan, volume 15 of Perspectives in
Computing, Orlando, 1987. Academic Press.

[Jun93] Dieter Jungnickel. Finite Fields — Structure and Arithmetics. BI Wis-
senschaftsverlag, Mannheim, 1993.

[KK88] Arnold Knopfmacher and John Knopfmacher. The exact length of the Eu-
clidian algorithm. Mathematika, 35:297–304, 1988.

[Kno75] John Knopfmacher. Abstract Analytic Number Theory, volume 12 of North-
Holland Mathematical Library. North-Holland Publishing Company, Ams-
terdam, 1975.

[Kno79] John Knopfmacher. Analytic Arithmetic of Algebraic Function Fields, vol-
ume 50 of Lecture notes in pure and applied mathematics. Marcel Dekker,
New York, 1979.

[Knu81] Donald Ervin Knuth. The Art of Computer Programming, volume 2 - Seminu-
merical Algorithms. Addison-Wesley, Reading (Massachusetts), 2nd edition,
1981.

[Kob87] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,
48(177):203–209, January 1987.

[Kob89] Neal Koblitz. Hyperelliptic cryptosystems. Journal of Cryptology, 1:139–150,
1989.

[Kob98] Neal Koblitz. Algebraic Aspects of Cryptography, volume 3 of Algorithms and
Computations in Mathematics. Springer-Verlag, Berlin, 1998.

[Kri97] Uwe Krieger. signature.c — Anwendung hyperelliptischer Kurven in der
Kryptographie. Master’s thesis, Universität Essen, Deutschland, 1997.

142 BIBLIOGRAPHY

[KS91] Erich Kaltofen and B. David Saunders. On Wiedemann’s method of solving
sparse linear systems. In [MMR91], pages 29–38, 1991.

[Küc97] Wolfgang W. Küchlin, editor. ISSAC 97 — Proceedings of the 1997 Inter-
national Symposium on Symbolic and Algebraic Computation. ACM Press,
1997.

[Len88] A. K. Lenstra. Fast and rigorous factorization under the generalized Riemann
hypothesis. Indagationes Mathematicae, 50:443–454, 1988.

[Lew71] Donald Lewis, editor. Proceedings of Symposia in Pure Mathematics, vol-
ume 10, Providence (Rhode Island), 1971. American Mathematical Society.

[LMO79] J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko. A bound for the least
prime ideal in the Chebotarev density theorem. Inventiones mathematicae,
54:271–296, 1979.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields, volume 20 of Encyclope-
dia of Mathematics and Its Applications. Cambridge University Press, Cam-
bridge, 2nd edition, 1997.

[LO91] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems
over finite fields. In [MV91], pages 109–133, 1991.

[LP92] H. W. Lenstra Jr. and Carl Pomerance. A rigorous time bound for factoring
integers. Journal of the American Mathematical Society, 5(3):483–516, 1992.

[LPP93] H. W. Lenstra Jr., J. Pila, and Carl Pomerance. A hyperelliptic smoothness
test. I. Philosophical Transactions of the Royal Society of London, Series A,
345:397–408, 1993.

[LT82] H. W. Lenstra Jr. and R. Tijdeman, editors. Computational Methods in
Number Theory. Part II, Amsterdam, 1982. Mathematisch Centrum.

[LV00] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes
(extended abstract). In [IZ00], pages 446–465, 2000.

[Ma87] Keju Ma. Analysis of polynomial gcd computations over finite fields. Master’s
thesis, University of Toronto, Toronto, 1987.

[Man92a] E. Manstavičius. Remarks on the semigroup elements free of large prime
factors. Lithuanian Mathematical Journal, 32(4):400–409, 1992.

[Man92b] E. Manstavičius. Semigroup elements free of large prime factors. In [SM92],
pages 135–153, 1992.

BIBLIOGRAPHY 143

[McC89] Kevin S. McCurley. Cryptographic key distribution and computation in class
groups. In [Mol89], pages 459–479, 1989.

[McN99] David McNett. US government’s encryption standard broken in less
than a day. Formal Press Release, January 1999. Available at http://-
www.distributed.net/des/release-desiii.txt.

[MG90] Keju Ma and Joachim von zur Gathen. Analysis of Euclidian algorithms for
polynomials over finite fields. Journal of Symbolic Computation, 9:429–455,
1990.

[Mil86] Victor S. Miller. Use of elliptic curves in cryptography. In [Wil86], pages
417–426, 1986.

[MMR91] H. F. Mattson, T. Mora, and T. R. N. Rao, editors. Applied Algebra, Alge-
braic Algorithms and Error-Correcting Codes, volume 539 of Lecture Notes
in Computer Science, Berlin, 1991. Springer-Verlag.

[Mol89] Richard A. Mollin, editor. Number Theory and Applications, volume 265 of
NATO ASI Series C: Mathematical and Physical Sciences, Dordrecht, 1989.
Kluwer Academic Publishers.

[MOV93] Alfred J. Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing
elliptic curve logarithms to logarithms in a finite field. IEEE Transactions
on Information Theory, 39(5):1639–1646, September 1993.

[MOV97] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, Boca Raton, 1997.

[MST99] Volker Müller, Andreas Stein, and Christoph Thiel. Computing discrete log-
arithms in real quadratic congruence function fields of large genus. Mathe-
matics of Computation, 68(226):807–822, 1999.

[MV91] A. J. Menezes and S. A. Vanstone, editors. Advances in Cryptology —
CRYPTO ’90, volume 537 of Lecture Notes in Computer Science, Berlin,
1991. Springer-Verlag.

[MVZ98] Volker Müller, Scott Vanstone, and Robert Zuccherato. Discrete logarithm
based cryptosystems in quadratic function fields of characteristic 2. Designs,
Codes and Cryptography, 14(2):159–178, May 1998.

[MW99] Ueli M. Maurer and Stefan Wolf. The relationship between breaking the
Diffie–Hellman protocol and computing discrete logarithms. SIAM Journal
on Computing, 28(5):1689–1721, 1999.

144 BIBLIOGRAPHY

[MWZ98] Alfred J. Menezes, Yi-Hong Wu, and Robert J. Zuccherato. An elementary
introduction to hyperelliptic curves. In [Kob98], pages 155–178. Springer-
Verlag, 1998.

[Nec94] V. I. Nechaev. Complexity of a determinate algorithm for the discrete loga-
rithm. Mathematical Notes, 55(2):165–172, 1994.

[NIS97] NIST. Announcing request for candidate algorithm nominations for the ad-
vanced encryption standard (AES). National Institute of Standards and Tech-
nology, September 1997. Available at http://csrc.nist.gov/encryption/aes/-
pre-round1/aes 9709.htm.

[OW99] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptan-
alytic applications. Journal of Cryptology, 12(1):1–28, 1999.

[PGF98] Daniel Panario, Xavier Gourdon, and Philippe Flajolet. An analytic approach
to smooth polynomials over finite fields. In [Buh98], pages 226–236, 1998.

[PH78] Stephen C. Pohlig and Martin E. Hellman. An improved algorithm for
computing logarithms over GF (p) and its cryptographic significance. IEEE
Transactions on Information Theory, 24(1):106–110, January 1978.

[Pil90] J. Pila. Frobenius maps of Abelian varieties and finding roots of unity in
finite fields. Mathematics of Computation, 55(192):745–763, 1990.

[Pol74] J. M. Pollard. Theorems on factorization and primality testing. Proc. Camb.
Phil. Soc., 76:521–528, 1974.

[Pol78] J. M. Pollard. Monte Carlo methods for index computation (mod p). Math-
ematics of Computation, 32(143):918–924, July 1978.

[Pom87] Carl Pomerance. Fast, rigorous factorization and discrete logarithm algo-
rithms. In [JNNW87], pages 119–143, 1987.

[Poo96] Bjorn Poonen. Computational aspects of curves of genus at least 2. In
[Coh96], pages 283–306, 1996.

[PR99] Sachar Paulus and Hans-Georg Rück. Real and imaginary quadratic rep-
resentations of hyperelliptic function fields. Mathematics of Computation,
68(227):1233–1241, 1999.

[Pre00] Bart Preneel, editor. Advances in Cryptology — EUROCRYPT 2000, volume
1807 of Lecture Notes in Computer Science, Berlin, 2000. Springer-Verlag.

[PS98] Sachar Paulus and Andreas Stein. Comparing real and imaginary arithmetics
for divisor class groups of hyperelliptic curves. In [Buh98], pages 576–591,
1998.

BIBLIOGRAPHY 145

[RS62] J. Barkley Rosser and Lowell Schoenfeld. Approximate formulas for some
functions of prime numbers. Illinois Journal of Mathematics, 6:64–94, 1962.

[SA98] Takakazu Satoh and Kiyomichi Araki. Fermat quotients and the polyno-
mial time discrete log algorithm for anomalous elliptic curves. Commentarii
Mathematici Universitatis Sancti Pauli, 47(1):81–92, 1998. Errata in vol. 48
(2):211–213, 1999.

[Sch31] Friedrich Karl Schmidt. Analytische Zahlentheorie in Körpern der Charak-
teristik p. Mathematische Zeitschrift, 33:1–32, 1931.

[Sch82] R. J. Schoof. Quadratic fields and factorization. In [LT82], pages 235–286,
1982.

[Sem95] I. A. Semaev. Computation of discrete logarithms in an arbitrary finite field.
Discrete Mathematics and Applications, 5(2):107–116, 1995.

[Sem98] I. A. Semaev. Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p. Mathematics of Computation,
67(221):353–356, 1998.

[Sey87] Martin Seysen. A probabilistic factorization algorithm with quadratic forms
of negative discriminant. Mathematics of Computation, 48(178):757–780,
1987.

[Sha71] D. Shanks. Class number, a theory of factorization and genera. In [Lew71],
pages 415–440, 1971.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems.
In [Fum97], pages 256–266, 1997.

[Sie36] Carl Ludwig Siegel. Über die Classenzahl quadratischer Zahlkörper. Acta
Arithmetica, 1:83–86, 1936.

[SM92] F. Schweiger and E. Manstavičius, editors. New Trends in Probability and
Statistic, 1992.

[Sma99] Nigel P. Smart. The discrete logarithm problem on elliptic curves of trace
one. Journal of Cryptology, 12(3):193–196, 1999.

[Spa94] Anne-Monika Spallek. Kurven vom Geschlecht 2 und ihre Anwendung in
Public-Key-Kryptosystemen. PhD thesis, Universität Gesamthochschule Es-
sen, 1994.

[SSW96] R. Scheidler, A. Stein, and H. C. Williams. Key-exchange in real quadratic
congruence function fields. Designs, Codes and Cryptography, 7(1/2):153–
174, 1996.

146 BIBLIOGRAPHY

[Ste96] Andreas Stein. Algorithmen in reell-quadratischen Kongruenzfunktionenkör-
pern. PhD thesis, Universität des Saarlandes, Saarbrücken, 1996.

[Sti93] Henning Stichtenoth. Algebraic Function Fields and Codes. Springer-Verlag,
Berlin, 1993.

[Str76] Volker Strassen. Einige Resultate über Berechnungskomplexität. Jahres-
bericht der Deutschen Mathematiker-Vereinigung, 78:1–8, 1976.

[Ten90] Gérald Tenenbaum. Introduction à la théorie analytique et probabiliste des
nombres. Institut Elie Cartan, Nancy, 1990.

[Ten95] Gérald Tenenbaum. Introduction to Analytic and Probabilistic Number The-
ory, volume 46 of Cambridge studies in advanced mathematics. Cambridge
University Press, Cambridge, 1995.

[Tes01] Edlyn Teske. On random walks for Pollard’s rho method. Mathematics of
Computation, 70(234):809–825, 2001.

[Wei48] André Weil. Sur les courbes algébriques et les variétés qui s’en déduisent. In
[Wei71]. Hermann, Paris, 1948.

[Wei71] André Weil. Courbes algébriques et variétés abéliennes. Hermann, Paris,
1971.

[Wil86] Hugh C. Williams, editor. Advances in Cryptology — CRYPTO ’85, volume
218 of Lecture Notes in Computer Science, Berlin, 1986. Springer-Verlag.

[Zuc97a] Robert Zuccherato. New Applications of Elliptic Curves and Function Fields
in Cryptography. PhD thesis, University of Waterloo, 1997.

[Zuc97b] Robert J. Zuccherato. The continued fraction algorithm and regulator for
quadratic function fields of characteristic 2. Journal of Algebra, 190:563–587,
1997.

Index

λ-algorithm, 9–12
µ, 91
πO, 28
ψ(N, 2S), 93
ρ-algorithm, 9–12
A#, 93
O∼(f), 85
Div(F/K), 24
Div0(F/K), 25
Div∞(O), 28
Div0∞(O), 28
div(a, b), 54
div(z), 25
div(a), 27
div0(z), 25
div∞(z), 25
H(O), 27
I(O), 27
J(F/K), 25
L(D), 25
l(D), 25
N, 47
o(1), 91
Prin(F/K), 25
Prin(O), 27
Tr, 47

absolute irreducibility, 19, 22, 33, 35
additive arithmetical semigroup, 84
affine

curve, 18
plane, 18

almost prime, 9

arithmetical formation, 84, 104, 124, 133
arithmetical semigroup, 84, 92
Artin–Schreier extension, 33, 38, 39, 41
asymmetric cryptography, 5
Axiom A#, 93

baby step, 9
basis of group, 133, 134
binary quadratic form, 57
binomial distribution, 69, 114
birational equivalence, 19
bisection, 7
brute force, 7

canonical divisor, 26, 56
Cantor reduction, 60, 61, 77
character, 105

principal, 105
Chinese Remainder Theorem, 8, 67, 126
class group, 24, 25, 27, 46, 87, 95, 105,

116, 123, 129, 132
class number, 26, 28
class number formula, 107
Clifford’s theorem, 56
closed point, 20, 23
closure, projective, 19
collision, 9, 12
column echelon form, 109
complement, 133
composition, 57, 58, 76
conjugation, 47, 48, 51
constant field, 22
coordinate ring, 18, 20

147

148 INDEX

cryptography
asymmetric, 5
public key, 5
symmetric, 5, 8

cube, 111
curve

affine, 18
elliptic, see elliptic curve
hyperelliptic, see hyperelliptic

curve
non-singular, 18, 19
projective, 19
real quadratic, see real quadratic

curve
smooth, 18, 19

cyclic extension, 31

decomposition law, 23, 24
Dedekind ring, 17, 23, 24, 27
degree

of closed point, 20, 23
of divisor, 25
of map, 6
of prime divisor, 23, 89

dehomogenisation, 19, 28
determinant, 109
Diffie–Hellman

key exchange, 6
problem, 7

digital signature, 5, 6, 103
discrete logarithm, 5, 7–12
discrete valuation, 18–20, 24
discrete valuation ring, 20, 21
discriminant, 105, 107, 116, 121
distinguished point, 11
distributed algorithm, see parallel algo-

rithm
distribution

binomial, see binomial distribution
uniform, see uniform distribution

divisor, 24
canonical, 26

effective, 26
of ideal, 27
of poles, see pole divisor
of zeroes, see zero divisor
positive, 26
prime, see prime divisor
principal, see principal divisor
reduced, see reduced divisor
semireduced, see semireduced divi-

sor
divisor class group, 25, 27
divisor class number, 26
double and add, 114

effective divisor, 26
elementary divisor, 29, 104, 109, 113,

118–120, 127
ElGamal signature, 6
elliptic curve, 26, 38, 107, 135
Euclidean algorithm, 7, 52, 57–59, 61,

62, 67–74, 78, 126
extended Euclidean algorithm, see Eu-

clidean algorithm
extension

cyclic, 31
Galois, see Galois extension
of prime divisor, 23

factor base, 14, 104, 110, 117, 119, 124
field

of constants, 22
of definition, 22
of numbers, see number field
of residue classes, see residue class

field
perfect, 19

finite point, 18
flea, 11
formation, arithmetical, 84, 104, 124,

133
Frobenius automorphism, 20
function

INDEX 149

polynomial, 18
rational, 18
subexponential, 13

function field, 18, 20
hyperelliptic, 38
rational, 20, 22, 26, see rational

function field
function field sieve, 13
fundamental unit, 29

Galois extension, 19, 23, 31–33, 47
Gauß reduction, 59, 77
generalised Riemann hypothesis, see

Riemann hypothesis
generating function, 92, 96
genus, 26, 33
giant step, 9
greatest common divisor of divisors, 49
group invariants, 104
group structure, 104, 109, 119, 123

Hadamard’s bound, 114
half-extended Euclidean algorithm, 58,

78
hash function, 6, 10
Hasse–Weil bound, see Weil’s theorem
Hermite normal form, 109, 112
heuristic, 103
hyperelliptic

curve, 39, 86, 96, 105, 116, 129, 130,
132

function field, 38
involution, 47, 48, 119

ideal class group, 27, 46, 87, 105, 116,
129, 132

ideal class number, 28
imaginary quadratic

curve, 39, 40, 46
number field, 57, 87, 95, 105, 107,

116, 119, 121, 129, 132
inertia degree, 23, 28, 33, 35

infinite point, 18
infrastructure, 118
integral ideal, 27
integral power basis, 47, 87
invariants of group, 104
involution, hyperelliptic, 47, 48, 119
irreducibility, see absolute irreducibility

Jacobian, 25, 86, 105, 107, 116, 130, 132

kangaroo, 10
key

public, 6
secret, 6

key exchange, 6
Kummer extension, 32, 38, 39
Kummer’s theorem, 46, 48, 50, 87–89

L–polynomial, 30
Lagrange reduction, 63, 78
Lanczos algorithm, 125
lattice, 109, 111, 113
lifting, 8, 126
line, projective, 22
local integral power basis, 47
local parameter, 21, 89

Möbius inversion, 90
matrix

sparse, 123, 125
unimodular, 109, 113

monoid, 84
multiplier, 58, 68

non-singular
curve, 18, 19
point, 18

norm, 47, 51, 88, 105
normal basis, 75
number field, 24
number field sieve, 13

parallel algorithm, 8, 11, 121

150 INDEX

partial fraction decomposition, 34
perfect field, 19
periodic sequence, 10
place, 21
plane

affine, 18
projective, 18

Pohlig–Hellman attack, 8, 66, 103, 124
point

closed, 20
distinguished, 11
finite, 18
infinite, 18
non-singular, 18
projective, 18
rational, 20
singular, 18, 19, 40, 42

pole, 21
pole divisor, 25, 28, 34
Pollard’s algorithms, 9–12
polynomial function, 18
positive divisor, 26
prime, 84, 104

almost, 9
prime divisor, 21, 25, 87, 89
prime divisor theorem, 90, 93, 96, 100,

107
prime number theorem, 84, 90, 93
prime polynomial theorem, 94
principal character, 105
principal divisor, 25
projection, 28
projective

closure, 19
curve, 19
line, 22
plane, 18
point, 18

public key, 6
public key cryptography, 5

ramification index, 23, 33, 35

random walk, 9
rational function, 18
rational function field, 20, 22, 26, 30
rational point, 20
real quadratic curve, 39, 40, 46
reciprocal root, 31
reduced divisor, 55, 87
reduction, 57, 59

Cantor, 60, 61, 77
Gauß, 59, 77
Lagrange, 63, 78

regulator, 28
relation, 14, 109, 110, 113

useful, 113, 114
residue class field, 23, 24, 33
Riemann hypothesis, 17, 31, 88, 96, 105,

107, 116, 132
Riemann’s theorem, 25, 55
Riemann–Roch Theorem, 26, 56, 57
root, reciprocal, 31

secret key, 6
semigroup, arithmetical, 84, 92
semireduced divisor, 54, 88, 96
Shanks’s algorithm, 9
sieving, 121
signature, see digital signature
singularity, 18, 19, 40, 42
size, 84, 104
Smith normal form, 109
smoothness, 14, 84, 85, 92, 95, 100

curve, 18, 19
smoothness bound, 14, 85, 124
sparse matrix, 123, 125
splitting prime divisor, 23
square and multiply, see double and add
strict triangle inequality, 21, 47, 50
subexponential function, 13, 91
subexponentiality, 13, 115, 130
Sylow subgroup, 8
symmetric cryptography, 5, 8

INDEX 151

trace, 47
trial division, 85, 114
triangle inequality, 21, 50

strict, 21, 47, 50
Tschebyscheff’s inequality, 114

uniform distribution, 66, 70, 110, 111,
117, 124, 126, 128, 133, 134

uniformising parameter, 21
unimodal function, 116
unimodular matrix, 109, 113
unit, fundamental, 29
useful relation, 113, 114

valuation, see discrete valuation

Weil’s theorem, 30, 85, 89, 105

zero, 21
zero divisor, 25
zeta function, 30

By the same author

ELLIPTIC CURVES AND THEIR
APPLICATIONS TO CRYPTOGRAPHY

An Introduction

Since their invention in the late seventies, public key cryptosystems have become an
indispensable asset in establishing private and secure electronic communication, and this
need, given the tremendous growth of the Internet, is likely to continue growing. Elliptic
curve cryptosystems represent the state of the art for such systems.

Elliptic Curves and Their Applications to Cryptography: An Introduction provides a com-
prehensive and self-contained introduction to elliptic curves and how they are employed
to secure public key cryptosystems. Even though the elegant mathematical theory un-
derlying these cryptosystems is considerably more involved than for other systems, this
text requires the reader to have only an elementary knowledge of basic algebra. The text
nevertheless leads to problems at the forefront of current research, featuring chapters
on point counting algorithms and security issues. The adopted unifying approach treats
with equal care elliptic curves over fields of even characteristic, which are especially suited
for hardware implementations, and curves over fields of odd characteristic, which have
traditionally received more attention.

Elliptic Curves and Their Applications to Cryptography: An Introduction has been used
successfully for teaching advanced undergraduate courses. It will be of greatest interest to
mathematicians, computer scientists, and engineers who are curious about elliptic curve
cryptography in practice, without losing the beauty of the underlying mathematics.

Contents

1. Public Key Cryptography
2. The Group Law on Elliptic Curves
3. Elliptic Curves Over Finite Fields
4. The Discrete Logarithm Problem
5. Counting Points On Elliptic Curves

184 pages
Hardbound
Kluwer Academic Publishers 1999
ISBN 0-7923-8589-6

