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HABILITATION À DIRIGER DES RECHERCHES

présentée par

Emmanuel Pietriga
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Introduction





Advances in our ability to acquire, store, query and process data have led to a spectacular
increase in the amount of information that systems can collect and analyze. This has had a
profound impact in many domains: scientific research, commerce, finance, industrial processes,
as well as all activities related to electronic government. Progress in bioinformatics and in
the life sciences at large have led to the creation of immense databases, the Human Genome
Project being one of the most emblematic initiatives in this domain. Scientific instruments
such as telescopes and particle accelerators generate increasingly detailed observations of our
environment and enable ever more complex experiments: the ALMA1 data production rate has
been estimated at approximately 180 terabytes per year; that of the LSST2 at 1.28 petabytes a
year; and that of the LHC3 at 15 petabytes per year. Advances in high-performance computing
enable simulations of increasing complexity, that are being fed, and produce, large quantities
of data. Other domains generating large datasets include open data initiatives such as those
launched by many governments, digital preservation initiatives such as that of the US Library
of Congress and the Bibliothèque Nationale de France, information about customers and their
transactions stored by businesses and insurance companies, user-generated content such as blog
entries, pictures and videos stored by people on social networks and other Web sites.

In addition to these data sources and providers, recent and emerging technologies such as
Web services and the Web of Data at large [BL09], ranging from microformats to ontolo-
gies on the Semantic Web, have the potential to revolutionize (again) data-driven activities in
many domains, by making information accessible to machines as semistructured data [ABS99]
that eventually becomes actionable knowledge4. Thanks to those technologies, heterogeneous,
and possibly autonomous, systems can exchange information, infer new data using reasoning
engines and knowledge encoded in ontologies, cross multiple data sources with the ability to
resolve ambiguities and conflicts between them. The resulting datasets are often very large, and
can be made even larger and more useful by interlinking them, as exemplified by the Linked
Data initiative [HB11] (Figure 1.1).

One term has recently arisen to denote the many challenges and research questions posed by
the management and effective use of those massive datasets: Big Data. While Big Data has
clearly become a buzzword, those problems and challenges are real, and span numerous fields
of computer science research: data and knowledge bases, communication networks, security
and trust, data mining, data processing, as well as human-computer interaction.

The goal of human-computer interaction (HCI) can be broadly stated as trying to make com-
puters easier to use while augmenting peoples’ capabilities, enabling them to deal with more
complex problems, larger datasets, as efficiently as possible, in single-user or cooperative work

1Atacama Large Millimeter/submillimeter Array, http://almaobservatory.org
2Large Synoptic Survey Telescope, http://www.lsst.org
3Large Hadron Collider, http://lhc.web.cern.ch
4Throughout this dissertation we try to employ the terms data, information and knowledge according Ackoff’s

definition of data, information, knowledge, understanding and wisdom [Ack89]: data are the raw facts, information
is data processed to be useful, that helps answer who/what/where/when questions; knowledge is coherent informa-
tion that helps answer how questions

http://almaobservatory.org
http://www.lsst.org
http://lhc.web.cern.ch
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Figure 1.1 : The Linking Open Data cloud diagram (in September 2011): 295 interlinked
datasets from varied domains, including e-government, geography, sciences and the media, for
a total of more than 25 billion statements.

contexts. A more formal description is that HCI is about designing systems that lower the bar-
rier between the humans’ cognitive model of what they want to accomplish and the computer’s
understanding of the user’s task. HCI is concerned with the design, implementation and eval-
uation of computing systems that humans interact with. It is a highly multidisciplinary field
of research, involving experts in computer science, cognitive psychology, design, engineering,
ethnography, human factors and sociology. In the more specific context set above, HCI research
relates to the design, development and evaluation of interaction and visualization techniques
that can help users better comprehend and manipulate large, semistructured datasets. Users can
be mere consumers, trying to make sense of the information and to extract knowledge and in-
sights from the data; or they can be producers of those data, creating, structuring, transforming
and publishing them for consumption by others; or they can be both. In any case, users are
faced with large-to-massive datasets, organized according to more or less complex structures,
that can be interlinked as illustrated in Figure 1.1. No matter how elaborate data acquisition,
processing and storage pipelines are, the data are produced by users, and eventually get con-
sumed by users in one way or another.

My research is based on the conviction that user interfaces, and more particularly graphical
user interfaces, when providing relevant visualizations of the data and their structure coupled
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with innovative interaction techniques to navigate in them, can be of great help to users, and
thus play an important role in the research and development of computing systems for the
management and analysis of massive, semistructured data. My activities have revolved around
two main themes, briefly introduced here and presented in more detail in the next two chapters:

· Visual languages and information visualization techniques to help users better make
sense of, and manipulate, semistructured datasets.

· The design, implementation and evaluation of multi-scale interaction techniques for nav-
igating large datasets.

1.1 Visualization and Transformation of Semistructured Data

Languages for describing semistructured data, from XML to RDF, OWL and SKOS5, enable
users to organize their data, but most importantly, they make those data accessible to machines:
beyond structure, they provide machine-processable meaning to the data, through domain-
specific vocabularies or ontologies, and significantly ease their interlinking and merging.

The original Web was, and still is, mostly about serving Web pages to human readers. It
is now often called the Web of documents, to contrast it with the Web of data enabled by the
above languages. The Web of data is about sharing information from different sources that
can be read automatically, and to some extent reasoned upon, by machines. Consequently, the
underlying languages, XML included, are designed to facilitate machine interpretability; the
raw data, while encoded using conventional character sets such as UTF-8 and viewable in text
editors, is not aimed at being read as is by users, as opposed to HTML pages typically served
to human readers on the Web of documents.

While most end-users of the Web of data will never see a single line of XML or RDF code,
several categories of users are faced with the raw data and have to make sense of it:

· domain experts that create the vocabularies and ontologies that give machine-processable
meaning to the data, and populate them with actual data;

· software developers that write programs to query and manipulate the data to, e.g., corre-
late different sources, infer new data, and eventually transform the resulting data struc-
tures to a target vocabulary, such as HTML, for human consumption.

While conducting my PhD from 2000 to 2002 at Xerox Research Centre Europe6 and INRIA
Rhône-Alpes7, I worked on the design and implementation of a visual programming language,
VXT, for the specification of XML document structure transformations [PVDQ01, PVD01].

5The reader is referred to http://www.w3.org/standards/semanticweb/ for a description of how
these and other technologies build upon, and complement, each other.

6http://www.xrce.xerox.com
7http://www.inria.fr

http://www.w3.org/standards/semanticweb/
http://www.xrce.xerox.com
http://www.inria.fr
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The goal of this language was to ease the development of XML transformations by taking
advantage of the multi-dimensional nature of visual languages to explicitly represent the hi-
erarchical structure of the data, deemed an important piece of information in itself, that even
relatively high-level languages such as XSLT [W3C99] were only partially conveying due (in
part) to their uni-dimensional nature. While a significant part of my work focused on the
formal definition of the syntax and semantics of the language and on proving some of its prop-
erties (completeness of transformations, well-formedness of productions) [Pie02a, VDP01],
I quickly got interested in the human-computer interaction issues that arose while designing
a development environment for that visual programming language. Visual languages can be
very powerful tools, and some perform very successfully, such as LabView [Pow11]. But they
require careful visual design and interaction design to really take advantage of their potential
and avoid common pitfalls [GP96]. Problems of scalability are among the main issues encoun-
tered when designing visual languages [BBB+95]. This was particularly true for VXT, that had
to visually represent potentially large and complex hierarchical data structures, the associated
grammars (Document Type Definitions, XML Schemas), and transformation rules à la XSLT
all using a visual representation paradigm. This led me to survey the field of information visu-
alization, and eventually adopt techniques for tree representations and multi-scale navigation in
large information spaces for the purpose of representing, and navigating in, large hierarchical
data structures using a zoomable user interface, that enables smooth panning and zooming in
large 2D information spaces possibly coupled with semantic zooming capabilities [PF93].

A 4-month internship in the World Wide Web Consortium8 (W3C) team at MIT during the
fall of 2001 gave me the opportunity to work on a related problem: that of providing users
with an interactive visual representation of RDF data. The structure of those data, i.e., di-
rected labeled graphs, is poorly conveyed by textual serializations. While the latter are the
primary mean of representing and exchanging information between software agents, they are
non-optimal when the information is exchanged between computers and humans. Visual rep-
resentations can help, but introduce their own problems, and I investigated possible solutions
for some of them. This work, that I continued during my post-doc in the Decentralized In-
formation Group9 at MIT in 2003, and the subsequent collaboration on the Fresnel language
with the Simile project10 in 2005-2006, is detailed in Chapter 2, along with other collaborative
projects conducted in recent years, in which my contribution lied essentially in the design and
implementation of semistructured data visualizations for domain-specific applications.

1.2 Multi-scale Navigation in Large Datasets

After my post-doc and a year spent in the industry working on Web-based content manage-
ment systems, I joined the In-Situ project-team11 at INRIA Saclay as a Chargé de Recherche
in the fall of 2004. My interest in human-computer interaction, and more particularly in inter-

8http://www.w3.org
9http://dig.csail.mit.edu

10http://simile.mit.edu
11http://insitu.lri.fr

http://www.w3.org
http://dig.csail.mit.edu
http://simile.mit.edu
http://insitu.lri.fr
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action techniques and information visualization, had grown over the years, and I was willing
to conduct research in, rather than just apply results from, this field. In-Situ provided me with
excellent conditions to achieve this transition.

My work in the field of human-computer interaction has essentially focused on the de-
sign, implementation and evaluation of interaction techniques for navigating large informa-
tion spaces, containing visual representations of structured datasets or other types of graphics:
large imagery, geographical information systems, digital libraries. Providing means to effi-
ciently navigate such spaces, at different levels of detail, is a general question that has received
a lot of attention over the years [CKB08]. But as datasets grow in size, sometimes exponen-
tially, novel, more efficient techniques, better adapted to their context of use [ABM05], have to
be designed and validated.

I first worked on a method for operationalizing multi-scale search that enables a more rigor-
ous evaluation of interaction techniques that support this type of task, including pan & zoom,
overview + detail and focus + context interfaces. I then proposed several enhancements to the
focus + context interface scheme, that smoothly integrates a detailed, magnified region of in-
terest into the surrounding context. I studied alternatives to spatial distortion to achieve smooth
transitions between the focus and context regions based on the use of translucence and dynamic
adaptation to user input, described a method to render magnification lenses that applies to ar-
bitrary types of graphics, and investigated solutions to the problem of quantization that arises
when manipulating lenses set to high magnification factors.

Multi-scale visualization is also the central theme of the ongoing WILD project (Wall-sized
Interaction with Large Datasets), in which we study the use of ultra-high-resolution, wall-sized
displays for the visualization of massive scientific datasets. Research on WILD, a 131-million-
pixel display, is organized around three main themes: the design and evaluation of interaction
techniques adapted to this type of platform; the user-centered design of scientific visualization
applications involving scientists from various disciplines such as astronomy and neurosciences;
the design and development of user interface toolkits that facilitate the rapid prototyping of
novel interaction and visualization techniques, hiding the complexity that is inherent in this
type of environment, where displays are driven by clusters of computers and where interaction
involves multiple heterogeneous input devices.

These contributions to the field of human-computer interaction, as well as related ones on the
topic of pointing facilitation and other desktop interaction techniques, are detailed in Chapter 3.

Appendix A contains selected publications that are representative of my work in both themes.
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The goal of the Semantic Web is to enable machines to more easily exchange, merge and
reuse datasets by creating a Web of data where the data has clearly-defined, machine-processable
semantics [SBLH06].

The Semantic Web is based on a set of languages and technologies that build on top of one
another. Uniform Resource Identifiers (URI) [BLFM05] and the more recent Internationalized
Resource Identifiers (IRI) [DS05] provide an identification scheme for Web resources; the
XML markup language provides a syntax for representing semistructured data. On top of these,
the Resource Description Framework (RDF) is the foundational layer for structuring the data,
publishing it on the Web, and easily interlinking datasets [MM04]. Additional layers build on
RDF, including RDF Schema and the Web Ontology Language (OWL) [MvH04] to organize
the data and give it machine-processable semantics, query languages such as SPARQL [PS05],
and inference mechanisms that reason over the data using rules and the semantics captured in
ontologies.

The languages of the original Web, such as HTML and SVG (Scalable Vector Graphics)
[W3C07], are meant to facilitate the exchange of documents between people, who are the pri-
mary consumers of those resources. The above languages, including XML, RDF and OWL,
are designed to facilitate machine interpretability of information and do not define a visual pre-
sentation model since human readability is not among their primary goals. However, Semantic
Web data is, at least partially, created and manipulated by people: software developers that
write programs to query and manipulate the data; domain experts who do not necessarily have
advanced skills in computer science but still have to understand the data. The latter have to
be easy enough to create, read, modify and interlink for this Web of data to gain momentum
and be successful. Downward in the data processing pipeline, end-users eventually make use
of the data, or a subset of it, presented to them in some form [DLK+10]. Those data have
to be displayed in a human-friendly way, that raw textual serializations do not allow, requir-
ing solutions for data restructuring and transformation to target formats such as HTML pages,
PDF documents, interactive visualization components (maps, charts, etc.) or other presentation
means.

Section 2.1 describes the work on IsaViz, a multi-scale graphical editor that represents RDF
graphs as node-link diagrams and enables more relevant representations than the ubiquitous
conceptual graph representation through Graph Style Sheets. Section 2.2 describes the Fresnel
RDF presentation vocabulary that addresses the latter need by enabling the high-level, declar-
ative specification of presentation rules of RDF datasets in a manner that is independent of the
representation paradigm. Finally, Section 2.3 gives an overview of my subsequent work on
interactive graph visualization, that led to multiple collaborations and applications.
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2.1 Graphical Transformation and Representation of Semantic
Web Data

Statements, made of a subject, a predicate and an object, are the basic elements, some-
times called triples, that constitute RDF models. The subject and object are connected together
through the predicate, expressed by a property that characterizes the relationship between them.
Sets of statements form RDF graphs, whose nodes are the subjects and objects of those state-
ments, and edges the predicates that link them. The relationship expressed in a statement is
always directed from the subject to the object. The RDF data model is thus that of a structured,
labeled graph [KC04].

Multiple textual formats have been defined for the serialization, exchange and raw editing
of RDF data. RDF/XML [Bec04], perhaps the most well-known of them, encodes RDF graphs
as XML trees. This format benefits from all the XML machinery and tools that facilitate data
interchange, but it is totally illegible for most users. Not only is the graph serialized using a rel-
atively complex and verbose syntax, but the XML tree structure the original graph is projected
on has absolutely no meaning, creating a level of indirection forced on developers and appli-
cations by the constraints of the XML data structure. Other, more user-friendly formats exist,
such as Turtle [BBLP11] and Notation 3 (N3) [BL05]. The latter is often used by software de-
velopers who manipulate raw RDF data directly. However, like all other textual serializations,
this format has one weakness due to its uni-dimensional nature: it cannot explicitly represent
the graph structure of RDF models, as shown in Figure 2.1.

The way the data are structured on the Semantic Web depends a lot on the RDF vocabularies
used to describe those data. Some vocabularies generate acyclic, monotonous and shallow
tree-like structures, while others generate complex directed graphs containing widely different
substructures. The organization of the data can be a very important piece of information in
itself, beyond the values of the raw data items. The additional structure created by the links
that interconnect independent datasets can also be an important element, that users have to
be able to understand, especially when different vocabularies are used in the same graph to
describe multiple aspects of a resource, or when resources from different domains are linked
with one another [PL09].

2.1.1 Multi-scale Visualization of RDF Graphs

Hierarchical and graph structures can be more easily understood when visualized using
graphical representation techniques. Graph visualization techniques [HMM00] represent the
structure explicitly, and can lower users’ cognitive load significantly when their tasks involve
getting an understanding of how the data is structured, both globally and locally. As an exam-
ple, compare Figure 2.1 with Figure 2.3-a, both representing the same RDF data.

However, graph drawing techniques alone do not scale to graphs that contain more than a few
hundred nodes and edges, no matter the layout algorithm employed. Larger graphs require the
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<http://www.daml.org/cgi-bin/airport?BOS>
a airport:Airport ;
airport:iataCode "BOS" ;
airport:name "Logan Airport" .

_:b1 a foaf:Person ;
airport:nearestAirport <http://www.daml.org/cgi-bin/airport?BOS> ;
foaf:surname "Swick" ;
foaf:givenname "Ralph" .

[] a foaf:Person ;
airport:nearestAirport <http://www.daml.org/cgi-bin/airport?CDG> ;
foaf:depiction <http://www.lri.fr/˜pietriga/id.jpg> ;
foaf:homepage <http://www.lri.fr/˜pietriga/> ;
foaf:knows _:b1 ;
foaf:knows [ a foaf:Person ;

airport:nearestAirport <http://www.daml.org/cgi-bin/airport?BOS> ;
foaf:knows _:b1 ;
foaf:surname "Lee" ;
foaf:givenname "Ryan" ] ;

foaf:knows [ a foaf:Person ;
airport:nearestAirport <http://www.daml.org/cgi-bin/airport?BOS> ;
foaf:surname "Prud’hommeaux" ;
foaf:givenname "Eric" ] ;

foaf:surname "Pietriga" ;
foaf:givenname "Emmanuel" ;
foaf:phone <tel:+33-1-69153466> ;
foaf:workplaceHomepage <http://www.inria.fr> .

<http://www.daml.org/cgi-bin/airport?CDG>
a airport:Airport ;
airport:iataCode "CDG" ;
airport:name "Charles de Gaulle Airport" .

Figure 2.1 : N3 serialization of an RDF graph describing people, their friends (FOAF vocabu-
lary) and the airports nearest the cities where they live (DAML Airport vocabulary).

visualization software to provide users with interactive navigation capabilities that will enable
them to move from an overview of the graph to zoomed-in, detailed renderings of particular
regions of interest.

My work on IsaViz [Pie02b] was one of the first attempts at creating a visual interactive
authoring tool for RDF models (Figure 2.2). IsaViz was based on a zoomable user interface
component that I had started developing during my PhD as part of my work on the develop-
ment environment for the VXT visual programming language (Section 1.1). This component
eventually grew into a full-fledged post-WIMP [BL00] user interface toolkit now called ZVTM
[Pie05a], that has been, and is still actively, used in many projects, as detailed in the next sec-
tions. IsaViz enabled users to load moderately large RDF models (several thousands of triples)
and smoothly pan & zoom in the graphical representation of RDF graphs whose layout was
computed by Graphviz/dot [EGK+01].
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Figure 2.2 : Visual Authoring of RDF graphs with IsaViz.

IsaViz offered editing capabilities, that let users add, edit and remove or deactivate1 resources
and whole statements in a data-model aware manner to make sure that RDF models were always
syntactically correct: the editor would not constrain user actions, but would ensure the model
was still valid by, e.g., removing dangling edges when a resource had been removed from the
graph.

2.1.2 Graph Style Sheets

IsaViz was welcome by the community and got a lot of visibility, being distributed2 by W3C.
However, it had two major flaws. First, depending on their structure, some RDF models would
translate into dense graph layouts with many crossing edges that would clutter the screen and
would make the representation illegible (Figure 2.4-a). Second, the representation was that
generally used for representing simple RDF graphs [KC04]: all elements were represented
in the same manner, independently of the type of resource or predicate, as illustrated in Fig-
ure 2.3-a. Resources were represented as URIs in ellipses, literal property values as boxed text,
and statements as solid arrows. This representation was acceptable for very simple graphs,
but was not optimal for complex graphs, especially those describing resources using multiple
vocabularies and ontologies.

Graph Style Sheets (GSS) [Pie03, KKPS03] addresses those two problems by providing
graphical styling, filtering and visual data restructuring capabilities in IsaViz. GSS is a style
sheet language that makes it possible to transform the default node-link diagrammatic repre-
sentation through the declarative specification of visibility, layout and styling rules applied to
its nodes and arcs. Graph Style Sheets can be considered as graph transformations of a specific
kind, although they are conceptually much simpler: Graph Style Sheets are not general graph
rewriting systems, in the sense that GSS rules do not replace matched subgraphs with other ar-
bitrary subgraphs; the GSS transformation process is about taking the “default” representation
of an RDF graph displayed as a node-link diagram (Figure 2.3-a), and modifying the visual

1Deactivation of statements is like commenting out lines in the source code of a program or text data file.
2http://www.w3.org/2001/11/IsaViz/
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(a)

(b)

Figure 2.3 : Default (a) and GSS (b) rendering of the same Friend-of-a-Friend model with
DAML Airport data as in Figure 2.1.

appearance of its elements (Figure 2.3-b). It is thus conceptually much closer to the process
of applying the now ubiquitous CSS style sheets [W3C98] to the default rendering of HTML
pages.

In the default node-link diagram representation of RDF graphs that was originally employed
in IsaViz, variables such as color, font, shape border thickness and stroke pattern (solid, dotted,
dashed, etc.), did not bear any semantics, thus giving significant freedom to customize the
visual rendering of elements. GSS rules specify styling instructions, that are modifications
made to these variables; content reorganization instructions, such as grouping a set of related
properties in a table; and visibility instructions that can be used to hide elements of the graphs
considered as irrelevant for a given task backed by the visualization. GSS rules are composed
of a selector on the left-hand side, associated with a styling instruction set on the right-hand
side. GSS’ execution model is similar to that of CSS, though applied to a directed labeled
graph instead of a tree: given the set of rules defined in a style sheet, the GSS processor walks
the entire graph, i.e., all nodes and arcs, and evaluates relevant rules on them. If the selector of
a rule matches the current node (or arc) in the graph, the corresponding set of styling, visibility
and layout instructions is applied to that node (or arc).
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The simplicity with which two RDF graphs can be merged3 means that datasets can easily
be interlinked (actually, this does not require an explicit operation beyond making the triples of
both datasets available to the client application), and that different users and organizations can
describe, or ”say things” about the same resources, possibly using different RDF vocabularies.
While one could imagine one huge style sheet containing rules for all classes and properties
defined in all known ontologies, this approach would not be practical and would cause many
problems, as designing a single ontology for all things in the world would. Style sheet design-
ers are typically expected to create one style sheet per RDF vocabulary, though this is not a
requirement. As RDF models often make use of several vocabularies to describe resources,
GSS features a cascading mechanism similar to that of CSS that makes it possible to apply
several style sheets to the same model. Style sheets can easily be merged together, GSS being
itself expressed in RDF, and thus benefiting from all the features enabled by the framework.
Style sheets will often act on different elements of the graph, but conflicts between rules may
arise and are handled through the computation of a specificity metrics for each rule.

In Figure 2.3, the Friend-of-a-Friend (FOAF) RDF vocabulary is used to represent informa-
tion about people (contact information, current projects, workplace, etc.) and about the social
network that links them. The DAML Airport vocabulary provides information about airports
nearest to the people involved in the network. Two GSS style sheets are applied to the original
model: the first one applies to FOAF elements while the second one applies to DAML Airport
elements. The style sheets make it easier to get a general understanding of the graph and to
extract information without having to go in the low-level details of the representation. For in-
stance, all nodes and arcs representing class membership information have been removed, but
this essential information is still conveyed, as resources are now depicted by icons or shapes
representative of each class (Airport, Person, Document). Nodes representing persons have
been made larger than other nodes as they represent the central elements of the network. Other
styling instructions include using similar color hues for the elements of a given vocabulary
(green for FOAF, blue for Airport), and grouping related information for a given resource in
tables, e.g., all contact information about a person.

Figure 2.4 illustrates GSS on another dataset. [VPJM05] describe how IsaViz and GSS
were extended to create a domain-specific application for the representation of metabolic and
regulatory networks.

Significant changes were made to GSS in [Pie06], aimed at enhancing the language, based
on user feedback and on our own experience developing style sheets. The most important
change was that the selector language, based on RDF’s reification mechanism, was eventually
replaced by the Fresnel Selector Language [Pie05b] described in Section 2.2, as the original
language was powerful but too verbose and too complex to express simple things.

3URIs provide unique identifiers for resources. Merging the two graphs of two RDF datasets is just as simple as
putting all triples together in the same “bag”.
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(a)

(b)
Figure 2.4 : (a) Default – totally illegible – rendering of documents going through the W3C
Recommendation track workflow; (b) GSS rendering of the same data, with a very simple set of
styling rules: one rule colors nodes according to their status in the workflow, another rule hides
the corresponding statements. As a result, the graph structure gets significantly simplified. It
then becomes easy to observe several facts about the dataset, that are very difficult to see in
the default rendering, e.g., some documents went through many working draft (red) iterations
before going through the next steps, while others reached the next state more quickly; some
actually went back to working draft from candidate recommendation (yellow); one document
was split into six different parts between the proposed recommendation (orange) and candidate
recommendation steps.
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2.1.3 Visualization of Populated Ontologies

As Semantic Web technologies are slowly but steadily gaining adoption, more and more
datasets are made available in the form of populated ontologies, many of which contain mil-
lions of triples. Conventional node-link diagram representations do not scale to such large
datasets. Actually, no existing visualization technique scales to such large quantities of triples,
and only overviews or summaries of the data can be generated [TXZ+05]. In their position
paper, schraefel and Karger [sK06] were questioning the value of “big fat graph” represen-
tations. While it is certainly true that visualizations based on node-link diagrams should not
be the default mechanisms for the representation of Semantic Web data, my position is that
generic visualizations are still useful and can effectively support tasks such as the exploration
of datasets the user is not very familiar with. Carefully designed visualizations can be effective
at providing insight into the data, and help users “answer questions they didn’t know they had”
[Pla04]. Furthermore, depending on the domain, explicitly visualizing the structure by graph-
ically depicting relations can be helpful for some tasks, as the underlying graph structure by
itself bears information [MG03] (e.g, social network analysis, or applications in bioinformat-
ics).

In 2010, I worked with Benjamin Bach, now a PhD student co-advised with Jean-Daniel
Fekete, on the problem of visualizing populated ontologies using techniques that would scale
to datasets one order-of-magnitude larger than what node-link diagrammatic representations
enabled.

Two main issues with node-link diagram representations of ontology graphs are their inef-
ficient use of screen real-estate and edge crossings that make dense regions difficult to read.
A well-known alternative to node-link diagrams for graph visualization are adjacency matrices
[HFM07, ZKB02]. Nodes are represented as rows and columns, and edges as filled cells at
the intersection of connected rows and columns. While node-link diagrams are good at show-
ing the structure of relatively small and sparse graphs, adjacency matrices are very effective
at showing large (better use of screen real-estate) and dense (no edge crossing) graphs. How-
ever, adjacency matrix representations are much less familiar to users than node-link diagrams,
and make tasks that involve following paths in the graph more difficult [HFM07], significantly
increasing the user’s cognitive load.

We designed and implemented a new ontology representation tool (Figure 2.5), OntoTrix
[BLP10, BPLL11], inspired by a hybrid visualization called NodeTrix that was originally ap-
plied to social networks [HFM07]. NodeTrix is very efficient at visualizing locally dense but
globally sparse networks, representing the overall structure of the network using a node-link di-
agram and the dense subgraphs that represent communities using matrices: “Intra-community
relationships use the adjacency matrix representation while inter-community relationships use
normal links” [HFM07]. While the graph structure of ontologies might not always share the
small-world characteristics of social networks, we believed that such a hybrid representation,
combined with appropriate interaction techniques, could be an efficient means to perform ex-
ploratory visualization of large ontology instance sets. Indeed, this hybrid visualization pro-
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Figure 2.5 : Visualizing 724 instances from 49 classes, and 1 636 object properties (29 defini-
tions) from the NTN ontology with OntoTrix.

duces more compact and legible representations than node-link diagram approaches, as it suf-
fers significantly less from the spaghetti-like effect due to edge crossing problems typically
encountered with conventional node-link layouts of non-planar graphs.

We extended NodeTrix to handle the much richer and complex graph structures of popu-
lated ontologies (different types of nodes, different types of relations) compared to basic social
networks, exploiting ontological knowledge to drive the layout of, and navigation in, the rep-
resentation of instances and their relations. To provide enhanced task and cognitive support
to users, the OntoTrix representation is embedded in a zoomable environment implemented
on top of our zoomable user interface toolkit (ZVTM, Section 3.2), and coupled with highly-
coordinated [NS00] views of the class and property hierarchies that enable interactive naviga-
tion and filtering of instance data. Using OntoTrix, we managed to get legible visualizations
of populated ontologies such as the Wine ontology4 (4,547 statements), and up to 23,665 state-
ments in the SC ontology5, something that would have been extremely challenging (at best)
with a conventional node-link representation.

4http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
5http://www.mindswap.org/ontologies/SC.owl

http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine
http://www.mindswap.org/ontologies/SC.owl
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2.2 A Presentation Vocabulary for the Web of Data

The target audience for IsaViz was mainly domain experts and software developers who
have an interest in visualizing the structure of the data they manipulate at a low-level of ab-
straction. Other audiences, closer to end-users in the sense that they are not programmers or
data architects, have used it in conjunction with GSS to visualize and manipulate data in a
particular domain, such as biologists with Metabolic IsaViz [VPJM05], but these presently re-
main exceptions to the norm. However, software developers and domain experts are not the
only consumers of Semantic Web data. As discussed earlier, the data, or a subset of it accord-
ing to Shneiderman’s visual information seeking mantra “Overview first, zoom and filter, then
details on demand” [Shn96], must eventually be presented to end-users. Those data have to
be displayed in a human-friendly way, requiring solutions for data restructuring and transfor-
mation to target formats such as HTML pages [Sim05, BLCC+06] (Figure 2.6-left) possibly
containing interactive visualization components such as maps and charts [HMK05], sometimes
produced as mashups [AGM08, ZR08]. They can also be output as PDF documents and sim-
ilar formats for more static content; or to rich clients featuring advanced graphics capabilities
[QHK03, sSO+05] for dynamic content or when providing a highly-interactive user experience
(Figure 2.6-right).

In any of these cases, the problem is the same: presenting content primarily intended for ma-
chine consumption in a human-readable way. Semantic Web browsers and related applications
offer solutions that differ but in the end address the same two high-level issues, no matter the
underlying representation paradigm: specifying (i) what information contained in RDF models
should be presented (content selection) and (ii) how this information should be presented (con-
tent formatting and styling). However, each tool currently relies on its own ad hoc mechanisms
and vocabulary for specifying RDF data presentation knowledge, making it difficult to share
and reuse such knowledge across applications.

Figure 2.6 : Two different applications using the same Fresnel lenses and formats to display
information from geonames.org: (left) the Web-based Longwell faceted browser generates
HTML+CSS pages that can be served to any Web browser; (right) a prototype multi-scale
geographical information system implemented in Java2D+Swing, overlays the data on top of
NASA’s Blue Marble Next Generation world map (dimensions: 86 400 x 43 200 pixels).

geonames.org
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From 2005 to 2006, I worked in collaboration with researchers from MIT and from Freie
Universität Berlin on the design and implementation of Fresnel6, a browser-independent vo-
cabulary of core RDF display concepts [PBKL06].

Our goal with Fresnel was to provide a vocabulary to encode information about how to
present Semantic Web content to users (i.e., what content to show, and how to show it) as
presentation knowledge that can be exchanged and reused between browsers and other visu-
alization tools. We identified a set of core presentation concepts that were meaningful across
applications and that formed the core modules of Fresnel. One of the design goals of these mod-
ules was to make them easy to learn and use, but also easy to implement in order to promote
their adoption by many applications. This effort has been relatively successful, the vocabulary
now being used in several applications and linked data browsers, and cited by more than one
hundred and thirty scholarly articles five years after its publication.

Fresnel is itself an RDF vocabulary, described by an OWL ontology. Fresnel presentation
knowledge is thus expressed declaratively in RDF and relies on two foundational concepts:
lenses and formats. Lenses specify which properties of RDF resources are shown and how
these properties are ordered, while formats indicate how to format content selected by lenses
and optionally generate additional static content and hooks in the form of CSS class names that
can be used to style the output through external CSS style sheets.

As GSS styling rules, both Fresnel lenses and formats apply to specific RDF resources and
properties only, as defined by their domain. Domains are selection expressions that can ex-
press constraints as basic as class membership, or possibly much more elaborate ones written
with either the SPARQL query language for RDF [PS05], or the Fresnel Selector Language
(FSL) [Pie05b], that offers developers a more XPath-like7 way of expressing semistructured
data pattern matching constraints [CD99].

Fresnel lenses specify what properties of resources to display. Several lenses can apply to
the same resource, and ask for different property sets to be displayed. For instance, a summary
lens that applies to a foaf:Person would only show her name, while a details lens would also
show a depiction of that person, if available, as well as, e.g., contact information and/or links
to her friends on the social network. It is then up to the application, depending on the context,
to choose the most appropriate lens to render a given resource. In addition, lenses provide con-
structs to handle the potential irregularity of RDF data stemming from the fact that different
authors and organizations might use similar terms coming from different vocabularies to make
equivalent statements. Sets of properties considered as similar for a given purpose can be de-
clared as such. For instance, a lens could declare foaf:depiction, foaf:img and p3p:image8

6http://www.w3.org/2005/04/fresnel-info/manual
7XPath has proven to be a well-adapted selector language for XSLT transformation rules. FSL thus adopts a sim-

ilar syntax, but is a genuine path language that works at the RDF graph level, not an adaptation of XPath that would
apply to RDF/XML tree projections of RDF graphs. Nevertheless, the syntax and data model are relatively similar,
making it straightforward for somebody knowledgeable about XPath to write FSL pattern matching expressions.

8Platform for Privacy Preferences Project. http://www.w3.org/P3P

http://www.w3.org/2005/04/fresnel-info/manual
http://www.w3.org/P3P
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Figure 2.7 : Fresnel in IsaViz: (left) default rendering of a region of an RDF model containing a
foaf:Person. At this level of magnification, only a few of the many property values associated
with the resource are visible. Users need to navigate in the graph in order to get to the values of
properties, which can be cumbersome. Alternatively, users can select a Fresnel lens from the
list of available lenses loaded in IsaViz. The selected lens is then tied to the mouse cursor, and
when the lens hovers over a resource that matches its domain, the resource’s visual appearance
gets modified according to the lens and associated format(s). Resources that match the selected
lens’ domain are made visually prominent by rendering all other nodes and all arcs using shades
of gray with minimum contrast. When the lens hovers over a resource, properties selected by
the lens are temporarily rendered with highly-contrasted vivid colors and brought within the
current view, closer to the main resource and reordered clockwise according to the ordering
of properties in the lens definition. Property values revert back to their original state when the
lens moves away from the resource.

as similar. The Fresnel engine would first look for a foaf:depiction to visually represent a
foaf:Person. If it failed to find this property, it would then look for a foaf:img, and then
for a p3p:image if necessary. Similarly, all values of properties considered equivalent can be
merged together in a single list that can later be formatted as a whole. Such knowledge can also
be represented through ontology mapping mechanisms, but Fresnel provides these constructs
as the ontology layer should not be made a requirement of the Fresnel presentation process,
which should be as lightweight as possible and should not rely on possibly computationally-
expensive inference mechanisms. Furthermore, what is formally considered at the ontological
level as equivalent or not might be or might not be considered as equivalent for the purpose of
presentation in a given context.

The presentation of property values is not limited to a single level, and (possibly recursive)
calls to lenses can be made to display details about the value of a property. Lenses used in this
context are referred to as sublenses. Fresnel defines a closure mechanism to prevent infinite
loops caused by recursive calls that would otherwise occur when lenses call themselves as
sublenses for displaying property values.
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The default layout of selected information items is highly dependent on the browser’s rep-
resentation paradigm. A Web-based browser such as Longwell (Figure 2.6-left) will typically
adopt the nested box layout model defined by HTML+CSS; graph visualization tools such as
IsaViz will typically represent the data as node-link diagrams (Figure 2.7-left); rich clients
such as Haystack [QHK03] and the prototype depicted in Figure 2.6-right will use different
paradigms depending on the widget used to represent the information, ranging from basic
WIMP widgets such as buttons and checkboxes, to calendars and maps. But the rendering
can usually be customized by associating high-level formatting and styling instructions with
elements of the representation.

Fresnel formats give high-level directives regarding how the resource and its properties
should be presented. For instance, formats can be used to set a property’s label, or to spec-
ify how to separate the multiple values of a given property or set of merged properties, for
instance using commas. Formats can also give instructions regarding how to render values: as
clickable links (email addresses), as bitmap images, etc. For lower-level (graphical) formatting
and styling, CSS class names can be associated with the various elements being formatted.
These names appear in the output document and can be used to style the output by authoring
and referencing CSS style sheets that use rules with the same class names as selectors. We
chose to re-use existing languages for this level of formatting, as languages such as CSS fulfill
that requirement well, and redefining yet another styling language would have put an unnec-
essary load on both Fresnel engine implementors and Fresnel presentation developers, without
bringing any clear benefit.

Obviously, Fresnel implementations will apply those formatting instructions differently, de-
pending on the underlying representation paradigm. For instance, IsaViz uses Fresnel lenses
not as a general indication about how to organize information, but as an interaction technique
to navigate large node-link diagrams. As illustrated in Figure 2.7, Fresnel lenses are used to
temporarily bring inside the current viewport the property values of the resource hovered by
the lens that are not visible in that viewport but are declared by the lens as properties to display,
and that would otherwise have required the user to perform tedious pan & zoom navigation
actions.

Fresnel - A Browser-Independent Presentation Vocabulary for RDF [PBKL06], available
in Appendix A, gives more information about Fresnel. As mentioned earlier, several Fresnel
engines have been implemented, by project members as well as third parties. One implementa-
tion, called JFresnel9, was developed at INRIA. It is used as the Fresnel engine in IsaViz, in the
tool depicted in Figure 2.6-right, as well as in the ANR RNTL Project WebContent10 that ran
from 2005 to 2009 and gave us the resources to develop a significant part of the engine. This
implementation was later used by HP Labs, by members of project SELE at Masaryk Univer-
sity, and by the Simile Longwell browser at MIT, which used JFresnel to provide FSL support

9http://jfresnel.gforge.inria.fr
10http://www.webcontent.fr

http://jfresnel.gforge.inria.fr
http://www.webcontent.fr
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Figure 2.8 : Multi-scale visualization of graph layouts generated by GraphViz with
ZGRViewer.

in its own engine. Work on FSL also gave me the opportunity to work with the bioinformat-
ics group at Université Paris-Sud, where it was extended to model queries for the selection of
biological data sources and tools [CFP06].

2.3 Graph Visualization

Graph visualization [HMM00] is a rich and very active area of research, with its own yearly
conference, and many papers published about that topic at conferences such as IEEE InfoVis.
It has many domains of applications beyond the visualization of Semantic Web data, including
visual analytics, software engineering, document workflows, social networks, communication
networks, systems biology, and industrial processes.

2.3.1 Multi-scale Visualization of Large Graphs

From 2003 onward, while working on Graph Style Sheets, I realized that there was a strong
demand for interactive graph visualization tools that would scale to large graphs and enable
smooth navigation in the structure. While there were already some toolkits and applications
written for that purpose, there was no tool that would enable the interactive visualization of
graph drawings generated by layout algorithms from the well-known GraphViz package11 de-
veloped by AT&T, beyond basic applications such as dotty that could hardly handle graphs
composed of more than a few dozens of nodes.

The code developed for visualizing RDF graphs in IsaViz was using GraphViz to compute
the initial layout of the RDF graph and on ZVTM to display the resulting SVG vector graphics
document (Section 3.2). But that code was actually modular enough that the GraphViz SVG
output parsing code and ZVTM scene graph construction code could be extracted and re-used
to create a generic tool for the visualization of arbitrary graph layouts generated by any of the
GraphViz layout programs.

11http://www.graphviz.org

http://www.graphviz.org
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I thus started to work on a new lightweight tool, called ZGRViewer (for Zooming GRaphviz
Viewer) that would enable users to smoothly pan & zoom in large graphs generated by GraphViz
programs, a capability that existing software viewers lacked. Beyond smooth zooming ca-
pabilities, the tool initially offered only a few features: an interactive bird’s eye view for
overview+detail navigation [CKB08] and the possibility to run as an applet. This effort even-
tually became a standalone open-source project12 with a relatively wide audience13 spanning
many domains, due in part to the widespread use of the GraphViz software package itself.
Novel features were added as the audience and use cases grew, including topology-related op-
erations and import/export capabilities.

While the development of ZGRViewer has never been a research project per se, it has served
as a showcase for my research activities, demonstrating the capabilities of the ZVTM toolkit
[Pie05a] (Section 3.2), and acting as a testbed for the design of several multi-scale interaction
techniques [PAB07, PA08, PBA10], techniques specifically aimed at navigating network struc-
tures [MCH+09], and a technique for the selection of small interface components [CLP09].
See sections 2.3.2 and 3.1 for additional information.

Most importantly, and possibly a consequence of the above, it has given me several op-
portunities to directly collaborate on research projects with scientists from other fields. First
with Universidad Politécnica de Valencia on the integration of graph visualization capabili-
ties in a bioinformatics tool for functional genomics research [CGGG+05]; and now on social
network visualization (ANR project Multi-Level Social Networks14), and on another ongoing
project with the Japan Advanced Institute of Science and Technology related to the use of for-
mal methods for the modeling and simulation of the behavior of, and interactions between,
biological entities such as the λ phage virus.

2.3.2 Interactive Navigation in Large Graphs

To navigate in large graphs, interactive visualization tools including ZGRViewer and IsaViz
originally provided generic techniques only: pan & zoom, and sometimes a bird’s eye view.
However, for large graphs, but also for large roadmaps and other representations of networks
with geo-coordinates such as airline route maps or subway maps, some important tasks related
to the graph or network’s topology are not efficiently supported by these techniques. For in-
stance, using Google Maps, exploring a route often involves panning over long portions of a
highway with no exits. Zooming out or using a bird’s eye view is possible, but some highway
exits are difficult to distinguish from roads passing over or under the highway, and an exit can
be missed. The same problem arises in graph visualization tools where nodes are connected

12http://zvtm.sf.net/zgrviewer.html
13A Google search returns 9,640 results. ZGRViewer has been downloaded 35,586 times from sf.net. This

does not account for Maven dependency downloads, SVN checkouts, or for users of the applet version served on
many third-party Web pages. Statistics collected on February 21th, 2012.

14Collaborative project involving Adis (economics, Université Paris-Sud), Irisso (social sciences, Université
Paris-Dauphine), In-Situ (situated interaction, INRIA, CNRS & Université Paris-Sud) and BasicLead (SME). Prin-
cipal Investigator for partner INRIA: Emmanuel Pietriga.

http://zvtm.sf.net/zgrviewer.html
sf.net
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Figure 2.9 : Link Sliding technique: (a) When the technique is engaged in the vicinity of a
node, the mouse cursor is free to move within a predefined selection radius around it, sym-
bolized by a gray circle. The link cursor shows the closest link, which will be selected upon
passing the selection radius. (b) Link selection can also be performed at junctions of edge-
bundles. Beyond a node or junction’s selection radius, the mouse cursor is constrained to slide
along the selected link.

by links that can be long and cross many other links. Following a specific link can take a long
time without zooming out, but zooming out makes it difficult to trace a link when other links
overlap with it or cross it at shallow angles.

I had started developing an alternative navigation method to pan & zoom for RDF node-
link diagrams in IsaViz while working on the Fresnel project (Section 2.2, Figure 2.7). A
Fresnel lens, when hovering a resource node to which it was applicable, would temporarily
bring inside the viewport the property values of that resource that were not currently visible
but were declared by the lens as properties to display. The technique was using topological
information about the RDF graph to facilitate resource-centric navigation in the data, a task
that would otherwise have required the user to perform possibly tedious pan & zoom navigation
actions depending on the graph’s size and layout.

In collaboration with members of the Aviz team at INRIA, we later pushed the concept of
topology-aware navigation [MCH+09] (Topology-Aware Navigation in Large Networks, avail-
able in Appendix A). We designed two techniques, called Link Sliding and Bring & Go, and
empirically compared them against pan & zoom techniques on representative graph navigation
tasks. Both techniques are now available in ZGRViewer (Section 2.3.1) to navigate in arbitrary
GraphViz layouts.

Following a route on a map, or a link in a graph visualization, is essentially a one-dimensional
navigation task. However, traditional navigation techniques, such as pan & zoom, require the
control of two or three degrees-of-freedom to accomplish the task effectively. The Link Sliding
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(a) (b) (c)

Figure 2.10 : (a) Highlighting all flights to/from Sydney, Australia. (b) Close-up on Sydney,
with highlighting. (c) Bring and Go initiated on Sydney.

technique simplifies the control task by constraining motion to a single path (Figure 2.9). The
user slides a link cursor along the link towards the destination node, as though sliding a bead
on a wire. Changes in the direction of mouse movements are only necessary if the path curves
sharply. Otherwise, the user may slide between two nodes by simply moving the mouse along
the direction tangent to the path. This motion does not require a high degree of precision, as
any movement perpendicular to the path is ignored, and motion stops at the destination node.
The view is automatically panned to follow the mouse cursor, keeping it in its initial screen
location, and the zoom level is adjusted so as to provide the user with additional context while
sliding along the link. The technique also supports traversal of edge bundles, that are used to
reduce visual clutter in dense graphs [Hol06]. Sliding along a bundle of links is identical to
sliding along a single link until a junction in the bundle is reached. Around each bundle junc-
tion (Figure 2.9-b), a light-gray circle indicates a selection radius where the mouse cursor is
detached from the link cursor, allowing the user to select an exiting link in the same manner as
is done at the node where sliding got initiated. Users can jump between nearby links in a bun-
dle by moving the mouse cursor rapidly away from the current link to which it is constrained.
Isolated links strongly maintain the sliding constraint, as no other link can be reached within a
single mouse motion event.

Link Sliding makes it easy to navigate along a given path. However, it does not help in the
decision process that leads to the selection of one path among many potential candidates. This
decision might depend on the type of arc to be followed when there are different types of paths.
It might also depend on attributes of the node at the other end of the path. Having to navigate
to the other end, in order to decide whether this is the path of interest or not, quickly becomes
tedious as the number of connected arcs increases. The second technique we designed, called
Bring & Go, is a generalization of the technique I had originally developed for Fresnel. Bring
& Go is aimed at reducing the time and effort required to navigate to a distant location, as
well as simplifying the selection of a destination. It accomplishes this by bringing adjacent
nodes close to a node upon selection of the latter, and automatically transports the user to the
selected point. To illustrate this, Figure 2.10-a shows a map of about 700 commercial flights
connecting 232 airports. Highlighting (in red) gives a general idea of the number and location
of airports connected to the currently selected node: Sydney International. At this scale, the
node is difficult to select, being only 2-pixel large on a 24” display. Moreover, some parts
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of the network are very crowded, making it difficult to visually follow the paths. One has to
zoom-in to get detailed information such as airport names, thus losing context and moving all
airports connected to Sydney out of the viewport (Figure 2.10-b). When selecting the node
corresponding to Sydney, Bring & Go translates all airports connected to it inside the current
viewport (Figure 2.10-c) using smooth animations to preserve perceptual continuity [RCM93].
The spline curves that represent links are smoothly flattened and brought inside the viewport,
thus providing additional contextual information, such as the degree of connected nodes, that
might help the user make her decision. For instance, she might be looking firstly for an airport
hub, which would be more likely to offer her a direct flight to her final destination.

We conducted an experiment to compare the two techniques with simple visual augmentation
of the methods currently available for navigating in node-link diagrams and maps: pan & zoom,
with neighboring node highlighting, optionally augmented with an interactive bird’s eye view.
Participants were asked to perform various compound navigation tasks on an abstract graph,
based on representative tasks from Lee et al.’s task taxonomy for graph visualization [LPP+06]:
identifying all nodes connected to a given node, following a link, and returning to a previously
visited link.

The results of this experiment clearly illustrated that using connectivity information as a
basis for graph navigation can significantly improve task performance, while enhancing the
quality of the user experience. Bring & Go was faster and easier to use than the others we tested.
While the other techniques do use connectivity information to some extent, they rely primarily
on the spatial layout of the graph, and on the motion of the user’s view port in this space. The
ability to see all connected nodes quickly, and traverse links rapidly, is probably what reduced
participants’ need to rely on their memory and eventually gave a clear advantage to Bring &
Go. Link Sliding, on the contrary, did not fare as well as expected, performing the same as,
or only slightly better than, pan & zoom augmented with a bird’s eye view. Nevertheless,
Link Sliding can be of interest for navigating networks such as route-maps, that are spatially
embedded in a geographic context. Indeed, while Bring & Go works well for finding labeled
nodes in abstract graphs, it provides very little information about the connected nodes’ spatial
context.

In the end, any system for visualizing large networks should benefit from some form of
topology-aware navigation. As both the visual augmentation and the navigation techniques
are triggered only in the context of links and nodes, they do not interfere with existing inter-
action techniques for spatial navigation. As each technique has its own unique strengths, a
combination of two or more of them may be required for high-level navigation tasks.



Multi-scale Navigation in Large
Datasets





The amount of data produced worldwide grows at an exponential rate. Twenty years ago,
more new information had been produced in the previous thirty years than in the previous five
thousands [Wur89]; and 90% of the data available today has been produced in the last two
years [IBM12]. As mentioned earlier, those data come from everywhere: scientific research,
georeferenced services, user-generated content and social networks, digital libraries, industrial
processes and critical systems, finance and commerce. Telescopes can now produce extremely
large images, such as Spitzer’s 4.7 billion-pixel infra-red image of the inner part of our galaxy.
Photographers can create huge images, such as the 26 gigapixel panorama of Paris based on
2,346 pictures stitched together, which was recently overtaken by an 80 gigapixel panorama of
London. OpenStreetMap data, which range from an overview of the world down to detailed
information at street level, fit in a 20-gigabyte compressed file (roughly 312GB uncompressed).
Rasterizing the entire world at the highest level of detail would require an 18 peta (18 · 1015)
pixel bitmap. The Google Maps/Google Earth dataset is likely much bigger than that.

Navigating in such large images and maps, or in visual representations of large networks and
other structures generated via information visualization techniques [CMS99, War04], requires
interaction techniques that scale both in terms of technical performance (graphical frame rate,
information update rate) and user performance (providing effective task support, enhancing the
user experience).

Joining the In-Situ project team at INRIA in late 2004 gave me the opportunity to focus
my work on the design, implementation and evaluation of interaction techniques for navigat-
ing large information spaces. The following sections summarize the results obtained so far,
organized in two main themes: the design and evaluation of novel interaction techniques for
multi-scale navigation, including techniques for interacting with wall-sized displays; and the
engineering of multi-scale interactive systems, focusing on how to make the programming of
advanced visual interfaces easier for software developers.

3.1 Design and Evaluation of Interaction Techniques

3.1.1 An Operationalization of Multi-scale Search

Zoomable User Interfaces (ZUI) [PF93] and multi-scale interfaces at large have generated
a growing interest over the past two decades as a powerful way of representing, navigating
and manipulating large sets of data. A number of techniques have been designed and im-
plemented, that can be categorized in three primary interface schemes [CKB08]: zooming,
overview+detail, and focus+context. Up until recently, the efficiency of these techniques had
been evaluated with two kinds of experimental studies: usability studies based on domain-
specific tasks, and controlled experiments based on multi-scale versions of Fitts’ pointing
paradigm [GB04].

The usability studies that relied on domain-specific tasks such as searching for items on
geographical maps [HBP02], comparing hierarchical data structures [NBM+06], or reading
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textual documents [HF01] had typically produced inconclusive and sometimes contradictory
results. More precisely, experimental findings varied from study to study, but since application
domains varied dramatically, these findings could neither be compared nor generalized. Such
results had to be expected since the performance of a given technique is indeed dependent on
its context of use [ABM05].

The goal of this work [PAB07] (Pointing and Beyond: an Operationalization and Prelimi-
nary Evaluation of Multi-scale Searching, available in Appendix A), conducted together with
two members of the team, Caroline Appert and Michel Beaudouin-Lafon, was to get a better
understanding of the fundamental aspects of multi-scale navigation. A better understanding
could help explain – or even predict – experimental results, therefore saving valuable time and
allowing better exploration of novel techniques. Fitts’ pointing paradigm provides such a fun-
damental tool for exploring and understanding the elementary task of reaching a known target
as fast as possible. Originally devised to study pointing in the real world [Fit54], it has been
used repeatedly in HCI for evaluating a variety of pointing techniques and devices. Fitts’ law
has proven remarkably robust, to the point of being used as part of an ISO standard for point-
ing devices [SM04]. Fitts’ pointing task has also been used with multi-scale interfaces and it
has been shown that Fitts’ law still applies for pointing targets with pan & zoom [GB04]. In
particular, it has been shown that Fitts’ paradigm could address navigation, not just pointing,
in interfaces that require scrolling or zooming.

While Fitts’ pointing paradigm is very powerful, it models a very specific task: that of
reaching a target whose location is known to the user. However, this scenario only captures one
of several navigation tasks in multi-scale worlds. Users might only have partial information
about the target’s location and appearance, thus requiring them to search for potential targets
and get more details about each one until the actual target is identified. Consider for example
a user searching for a salt lake with particular visual characteristics on a world map, only
knowing that it is in the Andes. The strategy first consists in zooming towards South America
to then inspect each potential target one by one, zooming in to discover that it is not the right
one, zooming out, maybe as far as the whole cordillera, and zooming in to the next potential
target until the right salar is found. Exploring large spaces in search of a particular target
differs from pure pointing, as it requires users to perform additional motor actions to identify
the target. In the same way as Fitts’ reciprocal pointing task operationalized the task of reaching
a known target, we proposed to operationalize the above search task in a way that was easily
amenable to controlled experiments.

Our operationalization of multi-scale search is based on an abstract search task that consists
in finding a target among a set of objects as quick as possible while minimizing the number
of errors. To find the target, users have to navigate in both space and scale to a position that
reveals enough details about each object, in order to decide whether it is the target or a dis-
tractor. Initially, users make a blind choice of a potential target at a high scale and navigate to
it to acquire enough information. If it is a distractor, they have to navigate to another object,
typically by zooming-out, panning, then zooming-in.
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One of the main contributions of this operationalization, that was later reused in other exper-
iments conducted in the team and elsewhere [JGE12], is the manner in which we minimized
the influence of luck when looking for one particular object in a set of distractors. The exper-
imental setup consists of a multi-scale world containing a set of n objects, one of them being
the target and the others distractors. We defined the “quantity” of exploration as the number k
of distractors that users have to visit before finding the target: the larger the number of visited
distractors, the larger the quantity of exploration. k is probabilistically dependent on n: the
larger the number of objects, the higher the probability of having a large number of objects to
visit before reaching the target. We controlled this parameter by forcing participants to visit a
predefined number of objects before finding the target. The “trick” lied in how we were chosing
the target object. If we had chosen a priori which object was the target, participants could have
found it immediately by chance, or on the contrary they could have spent a lot of time searching
for it. This uncontrolled factor would have had a significant impact on our measurements. We
thus designed our experiment to ensure that the target was the kth object visited, no matter the
order of exploration chosen by each participant. In other words, what object in the whole set
would be the target was decided dynamically, at the last moment, depending on the value of k
for the current trial and on how many objects the participant had already inspected.

We ran a first experiment based on this operationalization, whose purpose was to evaluate
how four multi-scale navigation techniques perform in one particular configuration of a multi-
scale world: classical pan & zoom, overview + detail as typically found in mapping applica-
tions, and two focus + context techniques: a constrained fisheye lens [CM01] and a variation
on the DragMag image magnifier [WL95]. The results of this experiment indicated that, in this
context, pan & zoom combined with an overview is the most efficient technique of all four, and
that focus + context techniques perform better than pan & zoom alone. The results are valid
for this type of configuration only, and additional experiments should be conducted to find out
whether they also apply to other configurations of multi-scale worlds.

3.1.2 A Design Space for Focus+Context Interaction Techniques

The various types of interface schemes that we tested in the experiment mentioned above
are actually complementary. Pan & zoom navigation is often augmented with an interactive
bird’s eye view (overview + detail). Magnification lenses [CM01] or widgets such as the Drag-
Mag [WL95] (both focus + context) can be combined with classical pan & zoom, in elaborate
techniques that enable users to probe regions of the space currently observed in the main view-
port [PAB07]. Overview + detail techniques [PCS95] usually put the context view in a small
inset located in a corner of the screen, leaving most of the latter to the detailed view, while
focus + context techniques do the opposite: the context occupies the whole screen except for a
small area that provides an in-place, smoothly integrated, magnification of a limited region of
the context [CKB08]. While overview + detail techniques are generally favored and have been
shown to perform well in some situations [HBP02, NS00, PAB07], there are cases where they
show their limits: for instance, when navigating a map of a densely populated region to look
for particular localities, overview + detail techniques can only use a few pixels to display each
of them in the context view. On the contrary, focus + context techniques can convey additional
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Figure 3.1 : Three different lenses obtained with minor modifications to the scale and com-
positing functions: (left) a distortion lens on a high-resolution bitmap (subway map), (middle)
a hovering lens on 2D vector graphics and text (keyword tag cloud), (right) a speed-coupled
blending lens on a 3D model of the Moon orbiting the Earth.

information in the context view, such as the localities’ names, thus providing users with more
contextual information that can guide navigation. This happens, however, at the expense of the
focus region’s size.

Focus + context techniques have been studied for some time, but their adoption remains lim-
ited. This is likely due to comprehension and low-level interaction problems related to how the
transition between the context and the magnified focus region is achieved [CCF97, Gut02].
Many of the transitions described in the literature are inspired by the physical world and are
presented through metaphors such as magnifying glasses, rubber sheets [SSTR93], and more
generally surface deformations [CCF95]; in other words, spatial transitions that cause various
problems likely to hinder performance. For instance, simple magnifying glasses create occlu-
sion of the immediate context adjacent to the magnified region [RCM93]; graphical fisheyes
[SB94], also known as distortion lenses, make it difficult to acquire targets [Gut02], especially
for high magnification factors.

In collaboration with Caroline Appert and Olivier Bau, who were then both PhD students at
Université Paris-Sud, we worked on the definition of the Sigma Lens framework. The founda-
tional idea of Sigma lenses was that other dimensions than spatial distortion, readily available
in the electronic world, could be used to provide more efficient transitions between the focus
and context regions of a bi-focal visualization based on constrained lenses.

The framework is based on the general observation that no matter the representation and
underlying graphics API, the process of rendering focus+context magnifications consists in
rendering a subregion F of the current representation C at a larger scale and with more detail,
and integrating F into C through a non-linear transformation to achieve a smooth transition
between the two. Sigma Lenses extend this general process by defining a design space of
transitions between focus and context. Transitions are combinations of dynamic displacement
and compositing functions, that make it possible to create a variety of lenses that use tech-
niques other than spatial distortion to achieve smooth transitions between focus and context,
and whose properties adapt to the users’ actions, all in an effort to facilitate interaction.
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Definition 1: displacement and compositing function R
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We worked on both the design and evaluation of novel techniques in this design space [PA08],
and on a general, representation-independent approach to the framework’s implementation, that
is based on a rendering technique founded on a unified model that can be integrated with min-
imal effort in different graphics frameworks, ranging from 3D graphics consisting of complex
textured meshes to rich multi-scale 2D graphics combining text, bitmaps and vector graph-
ics [PBA10] (Representation-Independent In-Place Magnification with Sigma Lenses, avail-
able in Appendix A), as illustrated in Figure 3.1.

Our general approach is positioned at a level of abstraction high enough for the model to be
applicable to a variety of graphics frameworks, requiring the underlying libraries to provide as
small a number of features as possible. The underlying graphics library must allow i) for the
scene to be rendered at different levels of detail, and ii) for the pixels that constitute the two ren-
dered images (the context region and the lens region) to be manipulated and composited before
the actual rendering to the screen occurs. We developed two different implementations, one in
Java for multi-scale 2D graphics that is now part of the core module of the ZVTM zoomable
user interface tookit (Section 3.2.1), the other for OpenGL 3D scenes, that takes advantage of
programmable graphics hardware (lenses are written with GLSL, the OpenGL Shading Lan-
guage). The approach basically consists in transforming the representation at the pixel level
after it has been rendered, independently of how it was rendered. Our technique consists in
asking the underlying graphics library for two separate rendering passes. One corresponds to
what is seen in the context region and is stored in the context buffer, whose dimensions match
that of the final viewing window displayed to the user. The other rendering pass corresponds
to what is seen in the lens region. The final viewing window displayed on screen can then
be obtained through the arbitrary transformation and composition of pixels from both buffers.
This includes displacement and compositing functions that will control the transition between
the focus and context regions, summarized in Definition 1. The flat-top region corresponds
to case (1.1), the transition to case (1.2), and the region beyond the lens boundaries, i.e., the
context, corresponds to case (1.3).

The standard transformation performed by graphical fisheyes consists in displacing all points
in the focus buffer to achieve a smooth transition between focus and context through spatial
distortion (Figure 3.2-a). This type of transformation can be defined through a drop-off function
which models the magnification profile of the lens. The drop-off function is defined as:

Gscale : d 7→ s
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Figure 3.2 : Sigma lenses in a 1+1D space-scale diagram, and corresponding 2D rendering:
(a) Gaussian distortion lens, (b) Blending lens. Speed-Coupled Blending Lens moving from
left to right over time (c).

where d is the distance from the center of the lens and s is a scaling factor. Distance d is
obtained from an arbitrary distance function D. A Gaussian-like profile is often used to define
drop-off function Gscale, as it provides one of the smoothest visual transitions between focus
and context. Distance functions producing basic regular lens shapes are easily obtained through
L(P )-metrics [CM01]:

D : (x, y) 7→ P

√
|x− xc|P + |y − yc|P

where (x, y) are the coordinates of a point seen through a lens centered in (xc, yc), and P ∈ N∗.
P = 2 corresponds to a circular lens and P =∞ to a square lens.

In our approach, the overall process consists in applying a displacement function to all pixels
in the lens buffer that fall into the transition zone. Pixels of the lens buffer can then be com-
posited with those of the context buffer that fall into the lens region. When only interested in
spatial distortion, generating the final representation simply consists in replacing pixels in the
lens region of the context buffer by those of the lens buffer; in other words compositing them
with the over operator (α = 1.0). But other values of α and other operators in Porter & Duff’s
rich algebra [PD84] can be used to achieve interesting visual effects. It is for instance possible
to obtain smooth, distortion-free transitions between focus and context by applying an alpha
blending gradient centered on the lens (Figure 3.2-b).
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The rendering of a point (x, y) in the final viewing window is controlled by function R (see
Definition 1), where

plens ⊗α pcontext

denotes the pixel resulting from alpha blending a pixel from the lens buffer and another from
the context buffer with an alpha value of α. As with scale for distortion lenses, the alpha
blending gradient can be defined by a drop-off function that maps a translucence level to a
point (x, y) located at a distance d from the lens center:

Gcomp : d 7→ α

where α is an alpha blending value in [0, αFT ], αFT being the translucence level used in the
flat-top of the lens.

The Sigma Lens framework also allows for lens properties such as magnification factor, ra-
dius or flat-top opacity to vary over time. The first example of lens to make use of dynamic
properties was Gutwin’s speed-coupled flattening lens [Gut02], which uses the lens’ dynamics
(velocity and acceleration) to automatically control magnification (Figure 3.4-a). By canceling
distortion during focus targeting, speed-coupled flattening lenses improve the usability of dis-
tortion lenses. Basically, magnification decreases toward 1.0 as the speed of the lens (operated
by the user) increases, therefore flattening the lens into the context, and increases back to its
original value as the lens comes to a full stop. Such behavior can easily be implemented in
our approach using a simple interpolated low-pass filter (see [PA08] for detailed information).
Other properties can be made speed-dependent, including the radii, as well as the translucence
value in the lens’ flat-top αFT . For instance, the speed-coupled blending lens (Figure 3.2-c
and Figure 3.4-b) is also easily modeled. This lens features a larger flat-top area compared to
lenses of the same size that feature a transition zone. This makes focus targeting tasks easier
for the user from a purely motor perspective, but the occlusion stemming from the absence of
a smooth transition zone counterbalances this theoretical advantage. The occlusion problem is
addressed by coupling αFT to the speed of the lens: the lens becomes increasingly translucent
as it is moved faster, and conversely.

Various Sigma lens designs, including the speed-coupled blending lens described above,
were evaluated to assess the impact of the various transition types on users’ focus targeting
performance. This task consists in putting a given target in the flat-top of the lens and is
one of the building blocks of many higher-level navigation tasks such as multi-scale searching
(Section 3.1.1). A total of four experiments were run in different contexts, ranging from very
abstract and basic environments as those generally used in pointing experiments [SM04] to
networks represented as vector graphics, or labels overlaid on complex satellite imagery with
a varying level of visibility. The overall results of those experiments were that one of the
new designs enabled by the Sigma lens framework, namely the speed-coupled blending lens,
outperformed all others on this task, in all contexts we tested.
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Figure 3.3 : (a) In-place magnification by a factor of 12 of the south-west corner of the Boston
Public Garden. Between (b) and (c), the lens has moved by 1 unit of the input device, cor-
responding to 1 pixel in the context, but the magnified region is offset by 12 pixels. Objects
can thus be difficult or even impossible to select; even if their visual size is above what is usu-
ally considered a small target (less than 5 pixels). The square representing Arlington station is
9-pixel wide, yet its motor size is only 1 pixel.

One problem related to focus targeting that was not addressed in the original work on Sigma
lenses is that of the mismatch between visual and motor precision in the magnified region.
Early implementations of magnification techniques only magnified the pixels of the context
by duplicating them without adding more detail, thus severely limiting the range of useful
magnification factors (up to 4x). Newer implementations, including Sigma lenses, do provide
more detail as magnification increases. Theoretically, this means that any magnification factor
can be applied, if relevant data is available. In practice, this is not the case as another problem
arises that gets worse as magnification increases: quantization.

Lenses are most often coupled with the cursor and centered on it. The cursor, and thus
the lens, are operated at context scale. This allows for fast repositioning of the lens in the
information space, since moving the input device by one unit makes the lens move by one
pixel at context scale. However, this also means that when moving the input device by one
unit, the representation in the magnified region is offset by MM pixels, where MM is the
focus’ magnification factor. This means that only one pixel every MM pixels can fall below
the cursor in the magnified region. In other words some pixels are unreachable, as illustrated
in Figure 3.3.

This quantization problem has been a strong limiting factor in terms of the range of mag-
nification factors that can be used in practice; the upper limit reported in the literature rarely
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Figure 3.4 : Behavior of two Sigma lenses during a focus targeting task ending on East Drive
in Central Park. (a) As speed increases, the speed-coupled flattening lens smoothly flattens
itself into the context (from t1 to t3), and gradually reverts to its original magnification factor
when the target has been reached (t4 and t5). The inner circle delimits the region magnified in
the flat-top. (b) As speed increases, the speed-coupled blending lens smoothly fades into the
context (from t1 to t3), and gradually fades back in when the target has been reached (t4 and
t5). The inner circle fades in as the lens fades out; it delimits which region of the context gets
magnified in the lens. The magnification factor remains constant.

exceeds 8x, a value relatively low compared to the ranges of scale encountered in the infor-
mation spaces mentioned throughout this memoir. Together with Caroline Appert and Olivier
Chapuis, we designed and evaluated three novel interaction techniques that enable fast naviga-
tion and high-precision focus-targeting and object selection in the magnified region [ACP10]
(High-precision Magnification Lenses, available in Appendix A). The three techniques use dif-
ferent strategies: one continuously adapts motor precision to navigation speed, while the two
others use a discrete switch between two levels of precision (focus and context): one using an
additional input channel, e.g., a modifier key such as shift; the latter by decoupling the cursor
from the lens’ center. Those three techniques were integrate in the speed-dependent visual
behaviors from the Sigma Lens framework, with the resulting hybrid lenses significantly en-
hancing focus targeting performance and allowing for higher magnification factors, typically
up to 12x, as shown in a series of experiments reported in [ACP10].

Work on focus+context visualization techniques is now continuing mostly through Cyprien
Pindat’s PhD (co-advised with Claude Puech) who got interested in the concept of adaptive
lenses [PPCP12] that dynamically adapt their shape to provide more relevant magnifications
than the regular, statically defined lenses that currently represent the state-of-the-art.

As can be seen in the various publications about Sigma lenses and high-precision lenses,
the operationalization of the focus targeting task that served as a basis for the evaluation of
our new lens designs is strongly inspired by the framework provided by Fitts’ law [Fit54,
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SM04]. The study of pointing, and the design and evaluation of pointing facilitation techniques
is also a research theme developed in the team, and I had the opportunity to collaborate with
team members, first and foremost with Olivier Chapuis, on this topic. This led for instance
to the design of DynaSpot [CLP09] (DynaSpot: Speed-dependent Area Cursor , available
in Appendix A), a new pointing facilitation technique for acquiring targets based on the area
cursor [KB95]. DynaSpot is further related to the work on Sigma lenses as it also features a
speed-dependent behavior: the technique couples the cursor’s activation area with its speed,
making it grow as a function of speed up to a maximum size, typically set to a few dozen
pixels, and behaving like a point cursor at low speed or when motionless, thus allowing users to
access all conventional point cursor interactions seamlessly, including empty space and region
selections without the need for an explicit mode switch.

3.1.3 Focus+Context Interaction for Time-series

Beyond the multiple types of datasets amenable to multi-scale two-dimensional representa-
tions that were discussed so far (trees, networks and other types of node-link diagrams, maps,
collections of documents, etc.), another type of data are often produced in massive quantities
and call for multi-scale visualization techniques: time-series. Visual representations of time-
series make it significantly easier for users to discover trends and patterns at different scales,
but also to identify anomalies in the data [BAP+05, MMKN08]. However, basic time-series
visualizations using line plots do not scale well; and as time-series data are often very large,
featuring multiple, possibly heterogeneous, dependent variables measured for long periods of
time and/or at high sampling rates, visualization of real-world time-series data poses significant
challenges and has been an active area of research for many years.

While many interactive visualization tools have been developed to address this scalability
problem, offering innovative alternatives to the common line plot visualizations or enhancing
the visualization with advanced interactive features, there has been comparatively little research
on how to support the more elaborate tasks typically associated with the exploratory visual
analysis of time-series, e.g., visualizing derived values, identifying correlations, or identifying
anomalies beyond obvious outliers. Such tasks typically require deriving new time-series from
the data, visualizing those time-series and relating them to the original data plots.

Visual exploration techniques take advantage of human abilities to drive the data exploration
process and are especially useful for undirected searches, when users know little about the data
or have only vague exploration goals [Kei02, Shn96]. As emphasized by Keim’s visual analyt-
ics mantra – “Analyze first, Show the important, Zoom, Filter and analyze further, Details on
demand” [KMSZ06], that draws on Shneiderman’s visual information seeking mantra [Shn96]
– this process is iterative. For it to be efficient, visual representations, that support human
judgment, and interactions, that re-parameterize the visual representation, should be tightly in-
tegrated, enabling users to quickly choose and refine parameter values that best suit the task at
hand [AMM+08]. New plots derived from the original data should be put in context and made
easy to relate both to the original data and to other plots that have been derived as part of the
exploratory process.
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Figure 3.5 : Exploring ALMA Line Length Correction Stretcher Voltage plots: (a) two-day
overview at a sampling rate of one second; (b) magnification of the 5 hours seen through the
remove mean lens applied in (a); magnification of the 50 minutes for a single antenna seen
through a filtering lens, rendered in scatterplot mode (c) and line-plot mode (d).

Together with members of the Dynamic Graphics Project at the University of Toronto1,
we recently investigated the applicability of lens-based visualizations to the exploratory vi-
sual analysis of large time-series data [ZCPB11] (Exploratory Analysis of Time-series with
ChronoLenses, available in Appendix A). We designed ChronoLenses, illustrated in Figure 3.5.

ChronoLenses, as many other types of lenses, delimit a region of interest in the data to be
put in focus. But as opposed to Sigma lenses and related detail-in-context techniques, the vi-
sual transformation is not limited to magnification, but also includes visual filtering [Fur86]
and other arbitrary graphical transformations of the underlying content [BSP+93]. Based on
the metaphor of direct manipulation [Shn83], ChronoLenses perform on-the-fly transformation
of the data points in their focus area, tightly integrating visual analysis with interaction. Users
can build pipelines composed of lenses performing various transformations on the data (e.g., re-
move mean, compute 1st derivative, auto-correlation), effectively creating flexible and reusable
time-series visual analysis interfaces. At any moment, users can change the parameters of al-
ready created lenses, with the modifications instantaneously propagating down through the
pipeline, providing immediate visual feedback that supports the iterative exploration process.

1http://www.dgp.toronto.edu

http://www.dgp.toronto.edu
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Figure 3.6 : Left: OpenStreetMap of Manhattan. The inset illustrates the amount of informa-
tion available in a 9cm × 5cm area. Right: zoomed-in view of the inner part of our galaxy in
the infrared domain (396 032 × 27 040 pixels), taken by the Spitzer telescope.

The design of ChronoLenses was informed by a set of design requirements. Those re-
quirements were derived from the low-level tasks identified through interviews with expert
users from varied domains including operations monitoring and control for the ALMA radio-
observatory, environmental research related to weather forecast, as well as financial and net-
work streaming data analysis. Figure 3.5 shows an example of multi-scale visualization of
monitoring data coming from the ALMA radio-telescope (Section 3.2.1), where time-series
visualization is used by both operators and astronomers for a variety of tasks, ranging from
checking some of the thousands of monitor points in the system to performing scientific data
quality assurance during observations.

3.1.4 Interacting with Wall-sized Displays

Problems of multi-scale visualization are not limited to desktop/workstation environments.
They also arise on small devices such as smartphones and tablets, as well as on large screens
and wall-sized displays. The latter, however, also offer tremendous new opportunities for multi-
scale visualization, when physically large entails significantly higher number of pixels.

Many of the early so-called large displays or even wall-sized displays were large in terms
of physical size indeed, but did not feature a number of pixel that was dramatically different
from desktop setups. In the last five years, wall-sized displays have evolved from arrays of
tiled projectors to setups that consist of juxtaposed LCD panels. The latter are often called
ultra-high-resolution displays to emphasize their significantly higher display capacity com-
pared to projector-based very-high-resolution displays. For instance, the display depicted in
Figure 3.6 features a resolution of 20 480 × 6 400 ' 131 megapixels on a 5.5m × 1.8m sur-
face (' 100ppi resolution). These displays typically accommodate several hundred megapix-
els. They enable the visualization of truly massive datasets, and afford a more physical, as
opposed to virtual, way of navigating in the data [BNB07] than desktop displays or even large
projection-based displays. They can represent the data with a high level of detail while retain-



Design and Evaluation of Interaction Techniques 47

ing context [NWP+11], and enable the juxtaposition of data in various forms. Applications
include scientific visualization, automotive or airplane design, network monitoring, geospatial
intelligence, crisis management centers and control rooms.

From 2008 to 2012, I coordinated the WILD project2 (Wall-sized Interaction with Large
Datasets [BCE+12]). WILD is an experimental, ultra-high-resolution interactive platform for
conducting research on collaborative human-computer interaction and the visualization of mas-
sive datasets. While other ultra-high-resolution wall-sized displays had been built before in
other laboratories, most of these were focusing on the technical aspects of how to operate such
platforms: how to display complex graphics, how to stream data; but they did not pay much
attention to issues related to interaction with such displays, and offered only poor interaction
capabilities such as wireless mouse & keyboard on a stand or in some cases gyroscopic mice.
One exception was the setup built by the DGP lab at the University of Toronto, but this wall-
display was projection-based, and featured a resolution much lower than what could now be
achieved using juxtaposed LCD tiles. We were interested in designing and developing novel
interaction and visualization techniques for massive scientific datasets3 that would enable users
to visualization and manipulate data directly and would foster physical navigation patterns af-
forded by the significantly increased display capacity of ultra-high-resolution walls.

The platform, which now hosts many projects and has become one of the nodes of the larger
Digiscope project4, consists of a wall-sized display, a 3D motion capture system, a tabletop
interactive surface and mobile devices such as smartphones and tablets. Research on WILD is
organized around three main themes:

· Multi-scale interaction: as mentioned earlier, the ultra-high resolution affords multi-scale
interaction through simple physical navigation: approaching the wall reveals details5,
stepping back gives an overview of the information space. Visualizations are not nec-
essarily made of one single image or 3D model rendered at a very high resolution; they
can be made of multiple coordinated views of instances of the same type, such as the
synchronized brain scans in Figure 3.7, or even heterogeneous data related to the same
analysis task (PDF documents, images, interactive 3D graphics, maps, charts, spread-
sheets, etc.). We are interested in designing interaction and visualization techniques that
take advantage of these properties.

· Multi-user and multi-surface interaction: ultra-high-resolution wall-sized displays are
well-suited to collaborative analysis tasks. Users can interact simultaneously on the same

2Collaborative project involving three teams: In-Situ (situated interaction - INRIA, CNRS & Université Paris-
Sud), Aviz (visual analytics - INRIA) and AMI (architectures and models for interaction - CNRS & Université
Paris-Sud). Coordinators and Principal Investigators: Emmanuel Pietriga and Michel Beaudouin-Lafon. More
information at http://insitu.lri.fr/Projects/WILD

3The project involved associate laboratories from other scientific disciplines that were interested in using the
platform for the visual collaborative analysis of their data, including astrophysics with the Institut d’Astrophysique
Spatiale (IAS), particle physics with the Laboratoire de l’Accélérateur Linéaire (LAL) and neuroanatomy with the
Laboratoire de Neuroimagerie Assistée par Ordinateur (LNAO/Neurospin).

4http://www.digiscope.fr
5At ' 100ppi, text elements rendered with fonts as small as 8pt are still perfectly legible.

http://insitu.lri.fr/Projects/WILD
http://www.digiscope.fr
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Figure 3.7 : Manipulating 64 synchronized 3D brain scans using physical props.

dataset and exchange data through the wall, that can be used as a shared information
space. We are interested in collaborative interactions involving multiple display and
input surfaces, including smartphones, tablets, and tabletop surfaces connected to the
wall display, and the exchange of data across devices.

· Facilitating software development for such platforms: This particular research theme
is developed further in Section 3.2.2. Ultra-high-resolution wall displays are generally
driven by clusters of computers, making the development of visualizations challenging
as the data and/or rendering pipeline has to be distributed across multiple computers to
eventually form a coherent result. Input devices also have to work seamlessly across
surfaces, and across the multiple computers that drive a single large surface such as the
wall display. In addition, conventional input devices such as mouse and keyboard are
not adapted to environments like WILD. They significantly impede physical navigation
and are not optimal for cooperative work. Mobile devices, motion capture systems and
other heterogeneous devices are better enabling technologies for the design of interaction
techniques adapted to this context. However, they make software development more
complex.

The following sections give an overview of the research projects related to the design and
evaluation of interaction techniques that I was directly involved in. Several of these research
projects, and the WILD project in general, have been informed by participatory design sessions
involving end users, mostly astrophysicists and experts in neuroimaging: workshops were held
to identify their needs, create early prototypes, collect their ideas for improvements and refine
the prototypes, all based on real usage scenarios [BCE+12].

Distant Ultra-High-Precision Pointing

One of the first problem we investigated was that of high-precision distant (or remote) point-
ing, as part of Mathieu Nancel’s PhD, co-advised with Michel Beaudouin-Lafon. Distant point-
ing at large displays had been studied in various contexts, ranging from low resolution displays
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to high-resolution back-projected walls. However, it had not been studied in the context of
ultra-high resolution walls that can display much smaller visual elements that users must still
be able to select, as illustrated in Figure 3.6-left.

At such high resolution, basic modeless techniques do not work. The well-known ray-casting
technique, also called laser pointing [ON01], is not precise enough. The technique extends
the user’s arm or a hand-held device with an imaginary ray whose intersection with the wall
display is highlighted. Ray casting degrades quickly with distance to the wall, because hand
tremor and involuntary motion due to fatigue are amplified as the user is farther away from
the display surface [MBN+02, OS02]. Relative techniques [FVB06, MJ01] achieve better
precision but do not scale to large surfaces because of the need for clutching [CVBC08]. Some
techniques combine absolute and relative pointing [MI09, VB05], but they have been designed
and evaluated on displays that were either significantly smaller, or of lower resolution, or both.
It was thus unclear how they would fare in the context of ultra-high-resolution, very large
displays such as WILD. In this context, our question was: given the very high pixel density, is
there a pointing technique that enables efficient selection of both large and small targets at a
distance, and if not, can we design one?

We investigated this question by first identifying the limits of modeless techniques in a for-
mative user study. We then considered techniques that feature two levels of precision, a coarse
positioning mode to approach the area of the target and a precise pointing mode for acquiring
the target, with a method to calibrate the parameters of those two modes. We introduced new
techniques and compared them to adaptations of existing ones [FKK07, VB05], and found that
techniques combining ray casting for coarse pointing and relative position or angular move-
ments for precise adjustments of the cursor’s position enable the selection of targets as small as
4 millimeters while standing 2 meters away from the display6. See [NPBL11] for more detail.

Multi-scale Navigation on Wall Displays

Another problem we investigated as part of Mathieu Nancel’s PhD is that of how to per-
form pan & zoom navigation in mid air while standing at arbitrary locations in front of wall-
sized displays [NWP+11] (Mid-air Pan-and-Zoom on Wall-sized Displays , available in Ap-
pendix A).

While ultra-high-resolution displays typically feature 40 to 100 times more pixels than a
conventional workstation’s screen(s), datasets increase in size faster than displays increase in
dimensions and pixel density. On one side, WILD consists of thirty-two 30-inch tiled moni-
tors and can display a “mere” 131 million pixels; NASA’s Hyperwall-2 and the HyperWall at
UCSD, to our knowledge the largest walls built to date, only double that number, and do so by
adding some screens that users cannot reach. On the other side, as we observed earlier, datasets
in many domains dwarf these display capacities: Spitzer’s image of the inner part of the galaxy

6In comparison, the smallest target sizes reported in earlier studies on wall displays ranged from 9 centimeters
[FKGR09] to 1.6 centimeters [VB05].
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Figure 3.8 : Panning and zooming in Spitzer’s 396 032 x 27 040 = 4.7 billion pixels images of
the inner part of our galaxy.

contains 4.7 billion pixels; one can find 26 to 80 gigapixel panoramas of cities on the Web;
rasterizing OpenStreetMap data at street level would require an 18 petapixel bitmap. Virtual
navigation is thus required even on wall-sized displays, as datasets can be several orders of
magnitude too large to fit on them (Figure 3.8).

As discussed in Section 3.1, many interaction techniques have been specifically designed to
help users navigate large multiscale worlds on desktop computers, using zooming and associ-
ated interface schemes [CKB08]. However, high-resolution wall-sized displays pose different
sets of trade-offs. It is critical to their success that interaction techniques account for both the
physical characteristics of the environment and the context of use, including cooperative work
aspects. Input should be location-independent and should require neither a hard surface such as
a desk nor clumsy equipment: users should have the ability to move freely in front of the dis-
play and interact at a distance [BNB07, YHN07], as we discussed earlier. This precludes use of
conventional input devices such as keyboards and mice, as well as newer interaction techniques
that do not meet requirements such as being location-independent [MRB05, MLG10].

Our goal was to study different families of location-independent, mid-air input techniques for
pan & zoom navigation on wall-sized displays. More specifically, we were seeking to answer
questions related to the performance and subjective preferences of users, including: Beyond
their almost universal appeal, do gestures performed in free space work better than those input
via devices operated in mid-air? Is bimanual interaction more efficient in this context? Is it
more tiring? Do circular, continuous gestures perform better than those that require clutching
(restoring the hand or finger to a more comfortable posture)? We grounded our work on both
theoretical and experimental work on bimanual input [BM86, Gui87, LZB98], the influence of
limb segments on input performance [BM97, ZMB96], on types of gestures [MH04b, Whe03]
and on the integral nature, in terms of perceptual structure [JS92], of the pan & zoom task. In
particular, we were interested in comparing the following dimensions: bimanual vs. unimanual
input; device-based vs. free-hand techniques; degrees of freedom (DOF) and associated kines-
thetic and haptic feedback; and types of movements: linear gestures vs. circular, clutch-free
gestures.

We made no a priori assumptions about relevant metaphors or technologies and considered
freehand as well as device-based techniques. An extensive design and testing phase allowed
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us to limit the number of candidates for the subsequent formal evaluation. For instance, the
apparently intuitive solution that consists in using two hands or two fingers to zoom with pinch
and stretch gestures was considered but quickly discarded: while these gestures work well on
touch-sensitive surfaces such as tabletops, they are much less natural when performed in mid-
air. Most importantly, they proved quite inaccurate, and tiring. We eventually identified a set of
twelve candidate techniques. Their design was informed by related empirical studies reported
in the literature and refined through prototyping and pilot testing. These techniques were or-
ganized according to three key dimensions forming a design space: unimanual vs. bimanual
input, linear vs. circular gestures, and level of guidance through passive haptic feedback. In
addition to performance (task time and accuracy), we took into account other usability issues,
such as fatigue and ease of use.

We formulated hypotheses about these dimensions, and conducted a controlled experiment
evaluating the twelve unique techniques generated from this design space. The task was a
variation of Guiard et al.’s multiscale pointing task [GB04], adapted to take overshoots into
account. Participants had to navigate through an abstract information space made of two groups
of concentric circles separated from one another by a distance of up to 12 million pixels. They
started at a high zoom level in one of the groups, zoomed out until the neighboring target group
appeared, then panned and zoomed into that group until they had reached a position in the
allowed range, i.e., at the correct zoom level and with the target correctly centered.

Our results identified several successful mid-air input techniques that can be used to navi-
gate efficiently in very large datasets on wall-sized displays. In addition to identifying groups
of alternative techniques based on performance, each with specific characteristics, the experi-
ment also suggested clear results with respect to the factors that constituted the design space.
For instance, despite their inherent and almost universal appeal, gestures performed in free
space proved to be generally less efficient and more prone to fatigue than device-based input
techniques. Adding guidance to input gestures increased, rather than decreased, accuracy. In
accordance with the research literature, bimanual input techniques performed very well. Uni-
manual techniques performed honorably, and may still be considered in contexts of use where,
for example, tools must be held in one hand to perform a domain/task specific action. A more
surprising result was the generally higher efficiency of linear gestures when compared to cir-
cular, clutch-free gestures.

Addressing the Problem of Bezels on Tiled Displays

One of the major advantages of tiled monitor setups with respect to projection-based setups is
the significantly higher pixel density. Using tiled monitors to build wall-sized displays actually
has other advantages, including simpler setup and easier calibration. However, the resulting
display walls suffer from the visual discontinuity caused by the bezels that frame each monitor.
For some tasks, depending on the nature of the data being visualized, bezels can sometimes
help users organize display space [Gru01, RCB+05, SHL03]. The grid formed by bezels can
also help structure visual search [BBB10]. However, bezels are a problem when displaying
large images such as maps or other visualizations that span multiple monitors. They create a
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(1) (2) (3)

Figure 3.9 : GridScape: the grid formed by monitor bezels on wall displays is often compared
to a french window. We designed two interaction techniques that transform that grid into an
actual french window. On the map, (1) the Yucatán peninsula (white circle) is partially hidden
by bezels. (2) With GridScape, users can reveal that part of the map simply by slanting their
body or moving slightly to the right. (3) Moving further right, the entire eastern cost of Mexico
can be shown without any bezel occlusion.

visual discontinuity, that can basically be treated in one of two ways [ETO+10]. The problem
can be ignored entirely, displaying the picture as if monitors were juxtaposed seamlessly. This
solution, called the offset approach, is simple and straightforward; it has been employed by
many early platforms. However, since the panels do have seams, this method necessarily entails
distortion of the rendered image, that will be proportional to the bezels’ thickness. The other
solution consists in taking the bezels into account [MH04a, RCB+05]. This solution, called
the overlay approach, gives the overall impression that the bezels are a grid overlaid on top of
a single image that spans the entire wall.

Neither of these approaches is ideal; they represent a trade-off. But to our knowledge these
are the only two solutions in widespread use. One obvious way to address the problem would
be to find a way to perfectly juxtapose the LCD panels. But bezels are unlikely to completely
disappear soon. The ultra-thin bezels advertised in bleeding-edge products (as of early 2012)
such as Samsung’s 460UTN or LG’s 47WV30 are still 6.9mm wide, which amounts to about 50
pixels at 100ppi, and come at the expense of resolution (1366x768 for a 47” diagonal), which
does not qualify as ultra-high-resolution. Projection-based systems are inherently bezel-free,
but are not a viable option, as they have a low pixel density, are difficult to align, and suffer
more from problems such as color drift than LCD-based tiled displays. Some researchers have
tried to mitigate the negative effect of bezels by removing the plastic casing of each panel
[BN07, SADK+09]. However, those bezels cannot really be eliminated, but only halved due to
technological constraints.

The overlay approach has often been presented using french windows as an analogy. We
recently decided to investigate interaction techniques that draw upon this analogy, and make
the display actually behave as if the visualization were observed through a french window.
In [APPC12], we proposed two novel interaction techniques that let users reveal content hidden
behind bezels. The first technique, called ePan, enables users to translate the entire image,
displayed in overlay mode. Translation is controlled explicitly by interacting with a handheld
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Figure 3.10 : (left) example path tracing trial. (right) details of the paths’ rendering: using a
stroke (thin black contour) and shadows helps disambiguate intersections.

device such as a smartphone. The second technique, called GridScape, adopts a more implicit
approach by pushing the metaphor further: the visualization is offset in depth by putting some
(virtual) distance between the LCD panels and the graphical projection plane. Then, using head
tracking to simulate motion parallax [GGSF59], the technique enables users to see occluded
parts of the image simply by moving in front of the display or changing their body posture, as
illustrated in Figure 3.9.

While the techniques are conceptually easy to understand, implementing them on ultra-high-
resolution wall displays requires distributing very large mipmaps on the multiple GPUs and
computers that drive the wall, to eventually form a single coherent image. This image has
to be rendered at a high frame-rate, typically 60fps, as otherwise the visual metaphor dies.
The techniques were developed in C++ using Equalizer [EMP09b], a framework for OpenGL
rendering on clusters of computers. In our implementation, the virtual canvas is made of a
large rectangular mesh on which textures are applied. The techniques are implemented by
translating that mesh orthogonally to (GridScape), or within (ePan), the wall display’s plane.
In GridScape, the camera’s frustum adapts to the user’s 3D head position and orientation. This
information is obtained from WILD’s motion tracking system.

To evaluate these techniques, we carefully operationalized visual path tracing tasks and con-
ducted a controlled experiment that compared the performance and subjective preferences of
users who had to follow paths of varying complexity across display tiles, as illustrated in Fig-
ure 3.10. Two techniques, ePan and a simple switch between offset and overlay modes, required
explicit input from the user to reveal hidden content. They were compared to GridScape that
relied, for that purpose, on users’ physical navigation in front of the display. Results showed
that for path tracing tasks of moderate complexity, both the technique that relies on explicit user
actions (ePan) and the one that relies on more implicit information from users’ physical nav-
igation (GridScape) do improve performance compared to the basic overlay/offset techniques
in use today. For more complex tasks, ePan has a clear advantage over all other techniques.

One limitation of all techniques studied is that they worked for a single user only. As men-
tioned earlier, wall displays are natural platforms for cooperative work, and we felt it was im-
portant that the techniques can function in scenarios involving multiple users. A user should be
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able to activate a technique to look behind bezels near her without interfering with other users’
activities, i.e., without changing the visualization in the regions the other users are focusing on.

A straightforward solution when manually switching between overlay and offset mode con-
sists in toggling between overlay and offset modes only for the tiles located within the field
of view of the user who is invoking the technique. Changes are applied locally, based on the
user’s position and orientation relative to the wall, and do not affect the other users’ focus
area – except for a user who would be standing back, looking at an overview of the entire
collaborative workspace, but then such a user would arguably not be strongly impacted by
those small-scale visual changes. This idea of per-user, locally-bounded visual transformations
can also be adapted to the other two techniques. One solution for ePan is to apply a locally-
bounded translation to the rectangular subregion corresponding to the user’s visual focus area:
the user can choose to trigger ePan in cooperative mode, which only translates that subregion
(again computed from her position and head orientation) in the virtual canvas’ plane, instead
of translating the whole representation as the original ePan technique does. Using a continuous
version of Stretchable Rubber Sheets [SSTR93], the immediate surroundings of this subregion
get distorted (compressed or stretched depending on direction) to achieve a smooth transition
with the other regions that form this user’s context and the other users’ focus area, that the
transformation has left unaffected. Each user is free to invoke ePan independently, for her own
purposes. A similar approach can be employed for GridScape, offsetting (in depth) only the
subregion that is in the user’s focus area. This case requires a more elaborate mapping, using
fisheye-lens-like 1D distortion (Section 3.1.2) to smoothly integrate the locally transformed
view into the surrounding context. Once offset in depth, the subregion’s outer boundaries re-
main fixed, with only the offset plane and surrounding transition areas adapting to the user’s
head and body movements to simulate motion parallax.

3.2 Engineering of Multi-scale Interactive Systems

In their survey of user interface programming from 1992, Myers and Rosson reported that at
this time an average of 48% of the code was devoted to programming the user interface part of
applications [MR92]. As the level of sophistication of interfaces has grown significantly over
the last two decades, this proportion is unlikely to have decreased, with the advent of post-
WIMP interfaces [BL00, Bea00, HDD+04, JGH+08], multi-modal interaction [NC95, SJN08],
the ever-growing capabilities of mobile devices and the novel types of interactive surfaces that
can be combined together to create multi-surface applications [GKE+11, KB09].

On the desktop, a multitude of toolkits have been developed over the years, exploring dif-
ferent ways to address the complexity of user interface programming while enabling software
developers to create increasingly elaborate graphical user interfaces: state machines [AB08,
BB06], constrained-based programming [MMM+97], graphical compilation [TC11], instru-
mental interaction [Bea00, KB09], scene graphs [BGM04], possibly coupled with a dataflow
model [HDD+04, DF04]. Some toolkits focus on specific types of visual interface compo-
nents, such as information visualization toolkits [Fek04, HCL05] and zoomable user interface
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toolkits [BGM04, Pie05a, PLVB00], while others try to be more generic [AB08, BB06, KB09,
Lec03, MMM+97, TC11].

3.2.1 Easing the Development of Multi-scale User Interfaces

Before entering the PhD program at INRIA Rhône-Alpes and Xerox Research Centre Eu-
rope (XRCE) in 1999, I had been an intern at XRCE for 6 months, working on the Visual
Abstract Machine (VAM), a user interface toolkit initiated by Jean-Yves Vion-Dury that en-
abled developers to create 2D zoomable user interfaces in Java and to program interaction
through grammars that were specifying the allowed sequences of events and what sequences
of user actions triggered what function calls in the application. When I started working on the
development environment for the VXT visual programming language (Section 1.1), I decided
to reuse and enhance the zoomable user interface part of this toolkit to develop the zoomable
views that would enable XML developers to navigate in tree structures and transformation rules
represented as uni-dimensional treemaps [PVDQ01, VDP01]. Jazz [BMG00] had not yet been
published, and I was not aware that a full-fledged toolkit for developing ZUIs in Java was about
to become available. I discarded the event grammar part of the VAM toolkit, which I found
very intriguing but felt would require grammars of unmanageable complexity to capture all
interaction. At that point, this stripped-down version of the VAM had no name, I had no plan
for its development beyond making zoomable interface components for VXT, and it was not
meant to become an actual UI toolkit. As I later decided to re-use and extend the capabilities
of this component to develop the zoomable graph views of IsaViz during my internship and
post-doc at MIT (Section 2.1), the toolkit eventually grew into a full-fledged zoomable user
interface toolkit called ZVTM [Pie05a]. The toolkit has never been a research project per se
but ever since it was made an open source project hosted on SourceForge in 2003, it has been
used in many of my projects as well as by other team members and by third parties, either as
an environment for prototyping novel interaction and visualization techniques and evaluating
them [ACP12, BPLL11, RJH11, ACP10, PBA10, CLP09, MCH+09, PA08, PAB07, Pie06]
or for the development of applications7. To date, the most ambitious project that makes use
of ZVTM is the joint effort between ALMA and INRIA to develop advanced multi-scale vi-
sualization components for the ALMA radio-telescope, presented in more detail later in this
section.

On one side, low-level graphics APIs such as OpenGL or Java2D are powerful but difficult to
use, requiring the programmer to deal with low-level graphical operations and implementation
problems. Writing components with these low-level APIs requires a lot of development and
maintenance effort. On the other side, toolkits such as Swing are very powerful, generic and
portable, but are limited to the conventional interface widgets of the WIMP model (Windows
Icons Menus and Pointers). They cannot be used to developed advanced visualization and other
post-WIMP interfaces.

7See http://zvtm.sf.net for representative examples.

http://zvtm.sf.net
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Figure 3.11 : Multi-scale Navigation in Digital Libraries: ZUIST contains 578 research pa-
pers, typically 4-to-10 page long, all available as PDF documents. Users can navigate and
read all documents using a zoomable user interface. Navigation can be organized by year of
publication, by keywords represented as a tag could, or by authors.

The purpose of ZVTM is to give developers a solution situated at an intermediate level of ab-
straction. It aims at making the development of interface components involving complex struc-
tured graphics easier by hiding most of the complexity: performance, memory management,
UI events, geometrical transformations, concurrent access. ZVTM focuses on high-quality vi-
sual rendering while maintaining good performance, and on the user experience by promoting
foundational concepts such as perceptual continuity in graphical interfaces [RCM93] through
a simple-to-use animation module. The toolkit is based on the metaphor of infinite universes
called virtual spaces that can be observed through movable and zoomable cameras. Virtual
spaces contain graphical objects called glyphs: geometrical shapes, bitmap images, text. All
glyphs rely on the same polymorphic object model. A glyph belongs to a specific virtual space,
but can be observed through different cameras simultaneously as each virtual space can con-
tain multiple cameras. Cameras are associated with viewports called views which correspond
to rectangular components (windows, or embedded canvases) in the user interface. Various in-
teraction techniques are implemented on top of this basic set of core concepts, and can easily be
combined: smooth pan & zoom navigation [CKB08], superimposed translucent layers [Lie94],
magnification lenses from the Sigma Lens framework [PA08, PBA10, ACP10], bird’s eye
view [CKB08], rate-based scrolling, speed-dependent automatic zooming [IH00], topology-
aware network navigation techniques [MCH+09], pointing facilitation techniques [CLP09].

The toolkit supports both geometric and semantic zooming [PF93], enabling the develop-
ment of user interfaces to navigate in very large information spaces. For instance, it was used
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Figure 3.12 : Navigating in a multi-scale version of NASA’s Blue Marble Next Generation
world map [SVS+05]: 86 400 x 43 200 pixels decomposed into 2 730 tiles arranged as a
pyramid. The map is enriched with geographical data taken from the Geonames database, the
worldwide air traffic network, and boundaries for countries and administrative regions publicly
available as ESRI shapefiles.

to write the ZUIST application8, demonstrated in Newport, RI, for the 20th anniversary of the
ACM UIST conference in 2007. The application, illustrated in Figure 3.11, lets users navigate
in all papers published during the conference’s first 20 years using a zoomable user interface.
It was developed quickly thanks to ZVTM and its multi-scale/semantic zooming engine: the
source code consists of only 2400 lines of Java code, plus 1200 lines of Python code that were
written first, to parse the ACM Digital Library’s metadata and produce the multi-scale scene
structure that organizes all 578 PDF documents. We later wrote a similar application for Uni-
versité Paris-Sud’s computer science laboratory, that lets users navigate in all documents pub-
lished from 2005 to 2008, ranging from book chapters, journal and conference papers to PhD
dissertations and technical reports, for a total of 1,500 documents. A PDF version of the docu-
ment was available for 753 of them, amounting to about 15,000 pages actually readable directly
within the application. The figures in terms of source code size are similar to those of ZUIST.
Figure 3.12 illustrates a very different application: a prototype geographical information sys-
tem that can query Web services to overlay geolocated information items, including complex
air traffic networks with support for topology-aware navigation techniques [MCH+09], on top
of NASA’s Blue Marble Next Generation map and ESRI shapefiles. That particular applica-
tion’s source consists of 3000 lines of Java code. All of these applications ran (and still run)
smoothly on mid-range machines (laptops or workstations), and did not require advanced hard-
ware resources.

The toolkit has also been used to write interface components for collaborative research
projects, including ANR Blanc project Holyrisk9, in which our contribution is to develop an
application that lets domain experts navigate and read large collections of annotated docu-

8http://www.acm.org/uist/archive/uist2.0/ZUIST.html

9Collaborative project involving Met@risk (agricultural research, INRA), University of California in San
Diego’s sociology department, In-Situ (situated interaction, INRIA, CNRS & Université Paris-Sud), EFSA (Eu-
ropean Food Safety Agency) and JIFSAN (food safety, US Food & Drug Administration, University of Maryland).
Principal Investigator for partner INRIA: Emmanuel Pietriga. More information at http://www.paris.inra.
fr/metarisk/research_unit/research_projects/holyrisk

http://www.acm.org/uist/archive/uist2.0/ZUIST.html
http://www.paris.inra.fr/metarisk/research_unit/research_projects/holyrisk
http://www.paris.inra.fr/metarisk/research_unit/research_projects/holyrisk
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(a) (b)

Figure 3.13 : (a) Artist rendering of the Atacama Large Millimeter/submillimeter Array, in an
extended configuration c©ALMA (ESO/NAOJ/NRAO)/L. Calçada (ESO). (b) Example WIMP
components of the original operations monitoring and control software.

ments related to food risk assessment and structured into a database. But as mentioned ear-
lier, the most ambitious project involving ZVTM to date is the joint effort between ESO10,
NRAO11 and INRIA to develop advanced visualization components for the operations moni-
toring and control software used to run the ALMA radio-telescope12 currently under construc-
tion in the Chilean Andes (Figure 3.13-a). This ongoing project [SPSG10, SPPS11, PCS+12],
that started in late 2009, is about the design and implementation of novel multi-scale user inter-
face components targeted at both operators and astronomers that will be in charge of running
observations from the instrument’s control room.

This project started after experience operating the telescope in the early commissioning
phase had shown that the graphical operator interface implemented with the WIMP toolkit Java
Swing would not scale well from the 8 antennas that were on-site at the time to the 66 under
construction. Conventional WIMP widgets and the WIMP paradigm itself were not powerful
enough (Figure 3.13-b), and more advanced visualization components, defined through a user-
centered design approach, had to be implemented. Figure 3.14 shows some examples of UI
components already implemented, and for some of them currently deployed and tested in the
control room. The design of those components is informed by a series of participatory design
workshops held on site at the Operations Support Facility regularly since late 2009. The goal
of these new components and capabilities, that include a general synchronization mechanism
to easily coordinate multiple views [NS00], is to enable operators and astronomers to identify
trouble spots and react to failures quickly in an environment where situation awareness [EJ12]
is a critical element to the safe and efficient functioning of the observatory.

10European Southern Observatory, http://www.eso.org
11National Radio Astronomy Observatory, http://www.nrao.edu
12Atacama Large Millimeter/submillimeter Array, http://almaobservatory.org

http://www.eso.org
http://www.nrao.edu
http://almaobservatory.org
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(a) (b) (c)

Figure 3.14 : (a) Map of all 66 antennas in an interface that includes, among other features,
geographical coordinate distortion to optimize the representation depending on the physical
configuration of antennas on site, semantic zooming [PF93] and control menus [PLVB00]. The
amount of information about individual antennas ranges from a simple solid fill color giving
a high-level overview of system status (as shown here) to a detailed block diagram at highest
zoom level. (b) Adjacency matrix [HFM07] giving information about phase and amplitude for
the baselines that link antennas pairwise to form an almost fully connected graph. (c) Zoomable
treemap [BHJ99, BL07] representation of all devices’ status, including antennas, the correlator,
and supporting hardware.

3.2.2 A User Interface Toolkit for Cluster-Driven Wall-sized Displays

While ZVTM was originally aimed at the development of desktop post-WIMP interfaces,
we started working in 2009, together with Romain Primet, research engineer at INRIA, on
an extension to the toolkit that would enable applications implemented on top of ZVTM to
run on ultra-high-resolution wall-sized displays such as WILD (Section 3.1.4) with very few
modifications.

This on-going effort is motivated by the fact that research on cluster-driven wall displays
has mostly focused on techniques for parallel rendering of complex 3D models. There has
been comparatively little research effort dedicated to other types of graphics and to the soft-
ware engineering issues that arise when prototyping novel interaction techniques or developing
full-featured applications for such displays. Generally-speaking, visualization platforms such
as WILD pose new research challenges. From a computer graphics perspective: how to ren-
der complex graphics at high frame rates, taking advantage of the cluster’s computing and
rendering power. From a human-computer interaction perspective: how to design effective
visualizations that take advantage of the specific characteristics of large, ultra-high-resolution
surfaces; how to design interaction techniques that are well-adapted to this particular context
of use, and how to handle the multiple and heterogeneous input devices and modalities typi-
cally used in this context. Finally, from a software engineering perspective: how to enable the
rapid prototyping, development, testing and debugging of interactive applications running on
clusters of computers, providing the right abstractions.

Work on the zvtm-cluster extension to ZVTM, and on the jBricks toolkit that now includes
it, focuses on providing an answer to the latter question, that we consider essential to foster
more research and development from the HCI perspective.
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While there has been much research effort put into the development of solutions to enable
the efficient display of 3D graphics on tiled displays driven by clusters of computers over the
last ten years [HHN+02, EMP09a, NSS+06], not all wall display applications use 3D graph-
ics. With the introduction of ultra-high resolution, high-quality 2D graphics open wall-sized
displays to new applications, e.g., in astronomy (Figure 3.15-b), geospatial intelligence and
visual analytics at large, as discussed earlier. These applications essentially combine very large
bitmap images, high-quality text and 2D vector graphics, e.g., satellite imagery augmented
with data layers, or information visualization techniques for the display of large datasets, e.g.,
for the visual exploration of large networks (Figure 3.15-a). However, existing solutions for
distributed rendering on clusters, which are essentially low-level 3D graphics APIs based upon
OpenGL, are not suited to high-quality 2D graphics. They work well for the high-performance
visualization of textured 3D scenes, but are ill-suited to programming rich 2D graphics in-
terfaces, lacking appropriate support for the management and efficient rendering of text, line
styles, arbitrary 2D shapes and WIMP widgets. This was already observed for desktop appli-
cation programming [BM98], and remains true for cluster-driven wall-displays.

To address this need, we developed jBricks, a Java toolkit for the development of post-WIMP
applications executed on cluster-driven wall displays, that integrates zvtm-cluster and a versa-
tile input management module into a coherent framework hiding low-level details from the
developer [PHNP11] (Rapid Development of User Interfaces on Cluster-Driven Wall Displays
with jBricks, available in Appendix A). The goal of this framework is to ease the development,
testing and debugging of interactive visualization applications. It also offers an environment
for the rapid prototyping of novel interaction techniques and their evaluation through controlled
experiments (Figure 3.15-c), such as the one we conducted about mid-air pan-and-zoom tech-
niques for wall-sized displays, summarized in Section 3.1.4 and detailed in [NWP+11].

(a)

(b)

(c)

Figure 3.15 : jBricks applications running on the WILD platform. (a) Zoomed-in visualiza-
tion of the North-American part of the world-wide air traffic network overlaid on NASA’s Blue
Marble Next Generation images augmented with country borders ESRI shapefiles. (b) Pan-
ning and zooming in Spitzer’s Infrared Milky Way (4.7 gigapixels). (c) Controlled laboratory
experiment for the evaluation of mid-air multi-scale navigation techniques (Section 3.1.4).
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Rich interactive 2D desktop applications, usually termed post-WIMP applications, are typ-
ically developed with structured graphics toolkits [AB08, BGM04, HDD+04, Pie05a] that
provide useful abstractions on top of low-level APIs. They enable rapid prototyping and devel-
opment of advanced interactive visualizations. By developing jBricks, our goal was to offer a
structured graphics toolkit capable of running transparently on cluster-driven wall displays and
capable of handling a wide range of input devices and modalities. From a graphics perspec-
tive, this requires hiding the complexity entailed by having to distribute rendering on multiple
computers. While our focus was on expressiveness and ease-of-use, we also paid attention to
scalability issues, adapting ideas originally developed for efficient distributed 3D rendering to
our context, such as the use of a multicast protocol to transmit updates to cluster nodes, and
a culling algorithm adapted to zoomable user interfaces. From an input management perspec-
tive, this required going beyond the basic redirection mechanisms found in existing distributed
rendering frameworks that only support conventional input devices, i.e., mouse and keyboard
operated from the master computer. Support for other devices had mostly been achieved via
ad hoc solutions (drivers or libraries) that were strongly integrated and statically linked within
applications. This approach was not generic and flexible enough when exploring and proto-
typing novel interaction techniques [DF04]. We chose an alternative approach, that consisted
in providing high-level abstractions of input modalities that enable association and runtime
substitution of devices, and that had proven successful in other domains, including physical
ubiquitous computing, virtual reality and in the more general context of post-WIMP applica-
tions.

jBricks, which was written together with Stéphane Huot and Romain Primet, has now reached
a level of maturity that has enabled members of the WILD project to use it for various purposes,
ranging from the development of prototype applications such as the one developed in collab-
oration with astrophysicists from the Institut d’Astrophysique Spatiale for the visualization of
large FITS images, to multiple controlled experiments, and demonstrations of interactive navi-
gation in very large information spaces such as Spitzer’s image of the inner part of our galaxy
(Figure 3.15-b) or the 26 gigapixel panorama of Paris. Other research laboratories equipped
with wall-sized displays are also considering using the toolkit, which we have made available
as an open-source projet.





Perspectives





The two main themes around which I have organized my research over the last ten years are
closely related and cross-fertilize one another. Multi-scale user interfaces are essential to the
management and understanding of massive datasets. Interlinked datasets enriched with even a
small amount of semantics have the potential to help create better user interfaces, by providing
users with more relevant query results and giving them efficient means to navigate and relate
those results. However, there are still many research questions and problems to address in both
themes, and at their intersection to further foster cross-fertilization. My research agenda for
the coming years, presented in the following sections, is positioned in this context, with a focus
on critical systems that require a high level of situation awareness and efficient access to the
data. Those are essential elements to support the decision making process and implementation
of actions in a timely manner [EJ12], taking into account the often cooperative nature of the
work and the resulting need for task coordination [BHR+92, BN99, JW01, Mac99]. Examples
of such work contexts include air traffic control, crisis and emergency management centers,
control rooms of power plants and large scientific instruments such as telescopes. The new
research and innovation center that INRIA is creating in Chile will give me the opportunity to
conduct research in this direction, as detailed below.

4.1 Interacting with Massive Webs of Data

Most efforts in terms of user interface design and development for Semantic Web data, in-
cluding my own, have so far focused on tools for software developers and for experts that
create ontologies and populate them. More end-user-oriented tools are starting to appear, such
as the so-called linked data browsers, some of which make use of presentation knowledge ex-
pressed using the Fresnel vocabulary (Section 2.2). However, those browsers are in most cases
very crude ways of navigating Webs of Data, based on point and click WIMP interfaces, or
hyperlink interfaces that present data to users in a very basic page-centric Web-of-documents
manner.

It is not clear yet how end-users will interact with the Web of Data [Hea08], but to be suc-
cessful, interaction paradigms that let users navigate that new Web will have to be tailored to
this radically different way of browsing information. Now that building blocks are in place,
from knowledge representation and query languages all the way up to the expression of data
presentation knowledge [PBKL06] and to mechanisms like look-up services [TDO07] and
spreading activation [DLK+10], we can start investigating the user interface part of the Seman-
tic Web layer cake, an area of research and development that has not received much attention
so far [Hen12].

It is unlikely that one type of browser, or even one representation and navigation paradigm,
can effectively support all user tasks and suit all types of data, especially when dealing with
large collections of interlinked datasets. The question at this point is actually not to define
a generic paradigm, but rather to integrate navigation techniques and basic representation
paradigms in a coherent framework, understanding their strengths and weaknesses through
more ambitious user studies than the few experiments that have been run so far. Core paradigms
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and techniques exist, such as faceted browsing [HvOH06, ODD06], graphical representa-
tions [BPLL11, Pie06, TXZ+05, WP06], rich interface clients [QHK03, sSO+05], but they
all serve different purposes, and none of these is sufficient on its own. A radical shift might be
needed, that departs from the path that consists in adapting and applying techniques developed
for other purposes to the Web of data, possibly adopting a thing-centric [Hea08] or resource-
centric way of presenting and navigating in the data, but that would go far beyond what tools
like the Tabulator [BLCC+06] currently supports.

Such a solution could for instance couple multi-scale and thing-centric navigation. At
any given time, one thing (i.e., one resource) would be the focus of attention. Users could
navigate from resource to resource, fetching relevant items dynamically, depending on con-
text [DLK+10], leaving a trail of past explorations on the infinite canvas of a zoomable user
interface component, with elaborate mechanisms to backtrack, and to relate, compare and con-
trast the current resource with previously explored ones. Taking advantage of the advanced
graphics capabilities of ZUIs [Pie05a], users could ask for data items, and collections thereof,
to be presented in a particular manner, e.g., be plotted on an interactive map, represented as
a network of connected things [BPLL11], possibly with style sheets applied to them [Pie06],
or summarized in statistical charts. Zooming in and out from the focused resource, and from
the trail of items explored so far, would change the level of detail conveyed to users thanks to
semantic zooming [PF93].

Semantic Web technologies enable users to effortlessly mashup data, somewhat like some
Web services enable users to create mashups on the Web of documents [AGM08, ZR08]. A
platform implementing the navigation paradigm envisioned here would likely provide a pow-
erful user interface layer for exploring those data mashups. Coupled with fast input techniques
based on keystrokes for issuing commands, similar to what add-ons like Quicksilver for Mac
OS X [QSA12] enable, such a solution would also be potentially interesting as an interface
paradigm for efficiently troubleshooting critical systems.

4.2 Human-Computer Interaction and Situation Awareness

Data enriched with (even a small dose of) semantics should play a major role in future criti-
cal systems that support tasks related to crisis and emergency management activities, as well as
systems that deal with vast amounts of data, such as the large scientific instruments mentioned
earlier. (Semi)structuring the data, adding semantics to them, will facilitate access and under-
standing from a user’s perspective: query results will be more relevant, datasets will be easier
to relate and merge thanks to interlinking, thus supporting more efficient troubleshooting and
decision making. In other words, achieving time-critical tasks should become more efficient as
the quality and richness of the data, in terms of structure and machine-processable semantics,
grow. Advances in this area are crucial for enhancing information collection, sharing and dis-
semination, as emphasized in the Pacific Northwest National Laboratory’s research agenda for
Precision Information Environments (PIE) [Pac11]. However, we are still far from achieving
the environments envisioned in the video produced last year by that same laboratory [Pac10].
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There are clear gaps, and research opportunities in many fields beyond data management, one
of them being human-computer interaction.

Central to these contexts of work is the notion of situation awareness, i.e., how workers
perceive elements of the environment with respect to time and space, how they comprehend
their meaning, and the mental models that help them predict future states of those elements.
Situation awareness must be supported by efficient computing systems and their associated user
interfaces, whose design should be primarily driven by user-centered design methods. User
interface technologies always have and will continue to play a central role in the performance
and efficiency of critical systems. Novel user interface paradigms and technologies such as
gesture-based interaction, communication systems for computer-supported cooperative work,
mixed reality systems, as well as multi-surface environments including tablets, portable digital
assistants and ultra-high-resolution wall-sized displays are all likely to have a strong impact in
this domain.

However, several areas of research are still in their infancy. For instance, while there is
already a significant body of work on the visualization of massive datasets on wall-sized dis-
plays, we have barely scratched the surface of that topic, and for now, those platforms remain
mostly confined to research laboratories. While we are making progress on all fronts, more
research and development is needed in computer graphics and software engineering, but most
importantly from the interaction design perspective. Questions about basic interactions such as
remote pointing at targets have been thoroughly researched (see [NPBL11] for an overview),
techniques for more complex tasks such as multi-scale navigation have been designed and
evaluated, concepts such as physical navigation have been developed in relation to visual acu-
ity, and some researchers have started to look into the problem of collaborative interaction in
these environments. But we are still far from walk-up-and-use systems, or even from actually
achieving fluid interaction with wall-sized displays.

Questions to address include, for instance, collaborative work in multi-scale information
spaces. The techniques studied in [NWP+11] enable one or more persons to pan & zoom in
mid-air in front of a wall display. But they do not address the problem of how to partition that
display when multiple users want to explore different regions of the information space (e.g.,
a world map). Simply splitting the display in discontinuous juxtaposed viewports would be
trivial. But this would not provide much support for cooperative work. Multi-scale user in-
terface schemes initially developed for the desktop such as focus+context and overview+detail
techniques could help make users aware of, and relate to, each others’ position. Beyond a
mere transposition of desktop techniques to wall displays, solutions could take advantage of
the significantly higher pixel density of the latter to rethink how these interface schemes can be
integrated: overview+detail and focus+context could for instance be more deeply, possibly re-
cursively, nested, with elaborate transitions between different levels of detail [PBA10] helping
users get a clear picture of who is working on what.
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Another example of question to address is that of seamless manipulation of content items
on multiple heterogeneous surfaces. Gesture-based interfaces are natural candidates for this
and seem to actually be interesting solutions, at least in some contexts, but even if technolo-
gies such as Oblong’s g-speak platform have significantly advanced the state-of-the-art in that
domain [ZBL+10], there is still a lot of room for improvements. Yet another question is that
of taking advantage of the specific characteristics of ultra-high-resolution displays to create
perceptually multi-scale visualizations, coupling physical navigation with visual aggregation,
a perceptual phenomenon that naturally occurs when the conditions in terms of pixel density
and user position with respect to the display entail that the fine details of the representation are
beyond the user’s visual acuity. A few studies have started to look at the potential of patterns
that arise as a result of visual aggregation [EALN11, YHN07], but much more research needs
to be done in that area as well.

Finally, very few real-world applications have been developed so far for these environments.
Most software running on these platforms are little more than programs for running controlled
experiments or demonstrations which, even if quite elaborate, offer only a few features and
are far from full-fledged applications, that would require exposing many more commands
through the user interface. Even ports of existing applications such as Google Earth based on
Chromium [HHN+02] or Liquid Galaxy [Goo11] cannot really be considered real-world ap-
plications, as they do not expose the wealth of features of the original desktop version in a way
that would make them actually usable on wall displays. Our experience with the WILD project,
working with scientists from other disciplines on prototype domain-specific visualization ap-
plications [BCE+12], has shown that designing and implementing full-featured applications
that domain experts can use to conduct actual work in the real-world is far from trivial and
requires significant interaction design and software development effort.

Joining the Communication and Information Research and Innovation Center1 in Santiago
de Chile in July 2012 will give me the opportunity to start out a new team, Massive Data, with
expertise in human-computer interaction, classification and Semantic Web technologies. The
team’s research and development activities will focus on the questions introduced above. They
will include:

· the continuation of the work started in 2010 on user-centered design and implementation
of operations monitoring and control user interfaces for the ALMA radio-observatory’s
control room (Section 3.2.1);

· the design and implementation of tools to support research in astronomy beyond the work
done in ALMA’s control room, such as interfaces based on classification and clustering
techniques for, e.g., browsing large collections of galaxies stored in massive surveys like
SDSS2 and the planned LSST3, whose data will be made public;

1CIRIC is a joint research and innovation center created in March 2012 by INRIA and six Chilean universities.
2Sloan Digital Sky Survey, http://www.sdss.org
3Large Synoptic Survey Telescope, http://www.lsst.org

http://www.sdss.org
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· the design and evaluation of visualization techniques for massive datasets on large ultra-
high-resolution displays, and the implementation of domain-specific applications for,
e.g., communication network monitoring and metrology and possibly other domains such
as the mining industry;

· the design and implementation of user interfaces for browsing data repositories such as
those made available by governments in the context of various open data initiatives.
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I joined the In-Situ project-team at INRIA Saclay – Île-de-France in October 2004.
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Abstract. Semantic Web browsers and other tools aimed at displaying RDF data
to end users are all concerned with the same problem: presenting content primar-
ily intended for machine consumption in a human-readable way. Their solutions
differ but in the end address the same two high-level issues, no matter the un-
derlying representation paradigm: specifying (i) what information contained in
RDF models should be presented (content selection) and (ii) how this informa-
tion should be presented (content formatting and styling). However, each tool cur-
rently relies on its own ad hoc mechanisms and vocabulary for specifying RDF
presentation knowledge, making it difficult to share and reuse such knowledge
across applications. Recognizing the general need for presenting RDF content
to users and wanting to promote the exchange of presentation knowledge, we
designed Fresnel as a browser-independent vocabulary of core RDF display con-
cepts. In this paper we describe Fresnel’s main concepts and present several RDF
browsers and visualization tools that have adopted the vocabulary so far.

1 Introduction

RDF (Resource Description Framework) is designed to facilitate machine interpretabil-
ity of information and does not define a visual presentation model since human read-
ability is not one of its stated goals. Displaying RDF data in a user-friendly manner is a
problem addressed by various types of applications using different representation para-
digms. Web-based tools such as Longwell [1] (see Figure 1-a) and Piggy-Bank [2] use
nested box layouts, or table-like layouts (e.g. Brownsauce [3], Noadster [4], Swoop [5])
for displaying properties of RDF resources with varying levels of details. Other tools
like IsaViz [6] (see Figure 1-b) and Welkin [7] represent RDF models as node-link di-
agrams, explicitly showing their graph structure. A third approach combines these par-
adigms and extends them with specialized user interface widgets designed for specific
information items like calendar data, tree structures, or even DNA sequences, providing
advanced navigation tools and other interaction capabilities: Haystack [8] (see Figure
1-c), mSpace [9] and Tabulator [10].

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 158–171, 2006.
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(a) (b) (c)

Fig. 1. Various types of RDF browsers: Longwell, IsaViz and Haystack

Such applications are confronted with the same two issues, independently of the un-
derlying representation paradigm and interface capabilities: selecting what content to
show and specifying how to format and style this content. Each application takes its
own approach and defines its own vocabulary to specify how to present data to users.
As with other kinds of knowledge, we believe that being able to share what we con-
sider presentation knowledge makes sense in the context of the Semantic Web and that
being able to exchange and reuse presentation knowledge between browsers and other
visualization tools will benefit both programmers and end users. However, the current
diversity of approaches and vocabularies for representing this knowledge makes such
exchange and reuse difficult at best, if not impossible.

1.1 Related Work

Early RDF visualization tools rendered RDF models in a predefined, non-customizable
way [3]. Recent tools provide more flexible visualizations that can be customized by
writing style sheets, transformations, or templates, following either a declarative or a
procedural approach.

Procedural approaches consider the presentation process as a series of transformation
steps. One such approach consists in using XSLT to transform RDF graphs encoded as
RDF/XML trees in an environment such as Cocoon [11]. Authoring XSLT templates
and XPath expressions to handle arbitrary RDF/XML is complex, if not impossible,
considering the many potential serializations of a given RDF graph and the present lack
of a commonly accepted RDF canonicalization in XML [12]. This problem has been
partly addressed by Xenon [13], an RDF style sheet ontology that builds on the ideas of
XSLT but combines a recursive template mechanism with SPARQL as an RDF-specific
selector language. Xenon succeeds in addressing XSLT’s RDF canonicalization prob-
lem but still has a drawback common to all procedural approaches, that transformation
rules are tied to a specific display paradigm and output format, thus preventing the reuse
of presentation knowledge across applications.

Declarative approaches are based on formatting and styling rules applied to a generic
representation of the content. They can be compared to XHTML+CSS, which has been
successful for the classic Web. The Haystack Slide ontology [14], used to describe
how Haystack display widgets are laid out, is one example. Another is IsaViz’s Graph
Style Sheets [15], which modifies the formatting, styling, and visibility of RDF graph
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elements represented as node-link diagrams. The main drawback of the declarative ap-
proaches developed so far is that they make strong assumptions about, and are thus tied
to, the specific display paradigm for which they have been developed and are therefore
unlikely to be meaningful across different representation paradigms.

1.2 Toward the Specification of Presentation Knowledge

Providing a single global view of all the information contained in an RDF model is
often not useful. The mass of data makes it difficult to extract information relevant to
the current task and represents a significant cognitive overload for the user. From an
abstract perspective, the first step of the presentation process thus consists in restricting
the visualization to small but cohesive parts of the RDF graph, similarly to views in
the database world. But identifying what content to show is not sufficient for making
a human-friendly presentation from the information. To achieve this goal, the selected
content items must be laid out properly and rendered with graphical attributes that favor
legibility in order to facilitate general understanding of the displayed information. Rely-
ing solely on the content’s structure and exploiting knowledge contained in the schema
associated with the data is insufficient for producing sophisticated presentations and
visualizations. The second step thus consists in formatting and styling selected content
items.

Fresnel’s goal is to provide an RDF vocabulary to encode information about how to
present Semantic Web content to users (i.e., what content to show, and how to show
it) as presentation knowledge that can be exchanged and reused between browsers and
other visualization tools. However, we do not expect all applications, which do not nec-
essarily rely on the same representation paradigms and formats, to exchange and reuse
all formatting and styling instructions as some might not be appropriate for all para-
digms. We therefore identified a set of core presentation concepts that are applicable
across applications and which form the core modules of Fresnel. One of the design
goals of these modules was to make them easy to learn and use, but also easy to imple-
ment in order to promote their adoption by many applications. On top of these modules,
we have also begun to define additional Fresnel vocabulary items which are grouped in
extension modules. The remainder of this article mainly focuses on the core selection
and formatting modules. More information about extension modules can be found in
the Fresnel User Manual [16].

2 Core Vocabulary Overview

Fresnel is an RDF vocabulary, described by an OWL ontology [16]. Fresnel presenta-
tion knowledge is thus expressed declaratively in RDF and relies on two foundational
concepts: lenses and formats (see Figure 2). Lenses specify which properties of RDF
resources are shown and how these properties are ordered while formats indicate how to
format content selected by lenses and optionally generate additional static content and
hooks in the form of CSS class names that can be used to style the output through ex-
ternal CSS style sheets. The following sections introduce the main vocabulary elements
using the examples in Figures 3 and 4.
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Fig. 2. Fresnel foundational concepts

Figure 3 shows a simple lens and associated formats used to present information
about a person described with the FOAF vocabulary [17]. This figure also shows a
possible rendering of such a resource, that a browser like Horus [18] or Longwell [1]
could produce. Examples use the Notation 3 syntax [19].

2.1 Content Selection

The domain of a lens indicates the set of resources to which a lens applies (line 301: the
lens applies to instances of classfoaf:Person). Propertyfresnel:showProperties
is used to specify what properties of these resources to show and in what order (lines
302-308). In this example, the values of both fresnel:classLensDomain and fres-
nel:showProperties are basic selectors, which take the form of plain URIs (rep-
resented here as qualified names), respectively identifying the class of resources and
property types to select. More advanced selection expressions can be written using ei-
ther FSL or SPARQL. They make it possible to associate lenses with untyped RDF re-
sources, which do occur in real-world models since rdf:type properties are not manda-
tory. They can also be used to specify that a lens should display all properties of a given
namespace, or any other complex selection condition(s) that can be represented by an
FSL or SPARQL expression (see Section 3).

Fresnel Core provides additional constructs for specifying what properties of re-
sources to display. The special value fresnel:allProperties is used when the list
of properties that can potentially be associated with resources handled by a lens is un-
known to the lens’ author but should nevertheless be displayed. When it appears as a
member of the list of properties to be shown by a lens, fresnel:allProperties des-
ignates the set of properties that are not explicitly designated by other property URI
references in the list, except for properties that appear in the list of properties to hide
(fresnel:hideProperties). Two other constructs are used to handle the potential
irregularity of RDF data stemming from the fact that different authors might use sim-
ilar terms coming from different vocabularies to make equivalent statements. Sets of
such similar properties can be said to be fresnel:alternateProperties. For in-
stance,foaf:depiction,foaf:img andp3p:image could be considered as providing
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(300) :PersonLens a fresnel:Lens ;
(301) fresnel:classLensDomain foaf:Person ;
(302) fresnel:showProperties (
(303) foaf:name
(304) foaf:mbox
(305) [rdf:type fresnel:PropertyDescription;
(306) fresnel:alternateProperties (
(307) foaf:depiction foaf:img p3p:image )
(308) ] ) .

(309) :nameFormat a fresnel:Format ;
(310) fresnel:propertyFormatDomain foaf:name ;
(311) fresnel:label "Name" .

(312) :mboxFormat a fresnel:Format ;
(313) fresnel:propertyFormatDomain foaf:mbox ;
(314) fresnel:label "Mailbox" ;
(315) fresnel:value fresnel:externalLink ;
(316) fresnel:valueFormat [ fresnel:contentAfter "," ] .

(317) :depictFormat a fresnel:Format ;
(318) fresnel:propertyFormatDomain foaf:depiction ;
(319) fresnel:label fresnel:none ;
(320) fresnel:value fresnel:image .

Fig. 3. A lens and some formats for presenting instances of class foaf:Person

the same information about resources displayed by a given lens. A browser using this
lens would try to display the resource’s foaf:depiction. If the latter did not exist,
the browser would then look for foaf:img or p3p:image (see lines 305-307). Such
knowledge can also be represented through ontology mapping mechanisms, but Fres-
nel provides this alternative as the ontology layer should not be made a requirement of
the Fresnel presentation process. The other construct, fresnel:mergeProperties, is
used to merge the values of related properties (e.g. foaf:homepage and foaf:work-
Homepage) into one single set of values that can later be formatted as a whole.

The presentation of property values is not limited to a single level, and (possibly
recursive) calls to lenses can be made to display details about the value of a property.
Lenses used in this context are referred to as sublenses. Modifying the example of
Figure 3, we specify in Figure 4 that the browser should render values of the property
foaf:knows (lines 405-407) using another lens (PersonLabelLens, lines 410-413).
The FSL expression (see Section 3) on line 406 specifies in an XPath-like manner that
only values of foaf:knows that are instances of foaf:Person should be selected.

The sublens mechanism implies that a lens can recursively call itself as a sublens for
displaying property values. In order to prevent infinite loops caused by such recursive
calls, Fresnel defines a closure mechanism that allows Fresnel presentation designers to
specify the maximum depth of the recursion.
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2.2 Content Formatting

The default layout of selected information items is highly dependent on the browser’s
representation paradigm (e.g. nested box layout, node-link diagrams, etc.), but the final
rendering can be customized by associating formatting and styling instructions with
elements of the representation.

(400) :PersonLens a fresnel:Lens ;
(401) fresnel:classLensDomain foaf:Person ;
(402) fresnel:showProperties (
(403) foaf:name
(404) foaf:mbox
(405) [rdf:type fresnel:PropertyDescription ;
(406) fresnel:property "foaf:knows[foaf:Person]"∧∧fresnel:fslSelector;

(407) fresnel:sublens :PersonLabelLens]
(408) ) ;
(409) fresnel:group :FOAFmainGroup .

(410) :PersonLabelLens a fresnel:Lens ;
(411) fresnel:classLensDomain foaf:Person ;
(412) fresnel:showProperties ( foaf:name ) ;
(413) fresnel:group :FOAFsubGroup .

(414) :nameFormat a fresnel:Format ;
(415) fresnel:propertyFormatDomain foaf:name ;
(416) fresnel:label "Name" ;
(417) fresnel:group :FOAFmainGroup .

(418) :mboxFormat a fresnel:Format ;
(419) fresnel:propertyFormatDomain foaf:mbox ;
(420) fresnel:label "Mailbox" ;
(421) fresnel:value fresnel:externalLink ;
(422) fresnel:valueFormat [ fresnel:contentAfter "," ] ;
(423) fresnel:group :FOAFmainGroup .

(424) :friendsFormat a fresnel:Format ;
(425) fresnel:propertyFormatDomain foaf:name ;
(426) fresnel:label "Friends" ;
(427) fresnel:group :FOAFsubGroup .

(428) :FOAFmainGroup a fresnel:Group .
(429) :FOAFsubGroup a fresnel:Group .

Fig. 4. An example of a lens using another lens to display some property values

Formats apply to resources, or to properties and their values, depending on the speci-
fied domain. The three example formats of Figure 3 apply respectively to the properties
foaf:name, foaf:mbox and foaf:depiction (lines 310, 313, 318). Formats can be
used to set properties’ labels (lines 311, 314, 319). Property fresnel:label does not
specify a particular layout but simply gives a text string that can be used to identify the
property. Labels might already be defined for many properties (e.g., in the associated
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vocabulary description using rdfs:label), but such labels are not guaranteed to exist.
Moreover, a given label might not always be the most appropriate depending on the
context in which the property is displayed. For instance, the default label associated
with property foaf:name in the FOAF schema is name. When displaying the persons
known by the current person in Figure 4, this default label is replaced by Friends (line
426) so as to indicate the appropriate interpretation of the corresponding foaf:name

property values in this context. The customization of labels also proves useful when
displaying property values that are not direct properties of the current resource, as is
made possible by the use of SPARQL or FSL expressions such as:

foaf:knows/*[airport:iataCode/text() = ’CDG’]/foaf:name

which would require an explanatory label such as Friends that leave near Paris.
Formats can also give instructions regarding how to render values. For instance, line

315 indicates that foaf:mbox values should be rendered as clickable links (email ad-
dresses). Values of foaf:depiction should be fetched from the Web and rendered as
bitmap images (line 320).

Property values can be grouped, and additional content such as commas and an end-
ing period can be specified to present multi-valued properties (line 316: inserting a
comma in-between each email address). CSS class names can also be associated with
the various elements being formatted. These names appear in the output document and
can be used to style the output by authoring and referencing CSS style sheets that use
rules with the same class names as selectors.

2.3 Lens and Format Grouping

Lenses and formats can be associated through fresnel:Groups so that browsers can
determine which lenses and formats work together. Fresnel groups are taken into ac-
count by browsers when selecting what format(s) to apply to the data selected by a
given lens, as several formats might be applicable to the same property values.

Figure 4 illustrates the use of Fresnel groups to display different labels for the
foaf:name property depending on the context in which the property is shown: the
property is labeled Name when displayed in the context of the PersonLens lens, but is
labeled Friends when displayed in the context of the PersonLabelLens lens. This is
achieved by associating the PersonLens (lines 400-409) and the nameFormat (lines
414-417) to one group: FOAFmainGroup, and by associating the PersonLabelLens
(lines 410-413) and the friendsFormat (lines 424-427) to a second group: FOAFsub-
Group.

A Fresnel group can also serve as a placeholder for formatting instructions that ap-
ply to all formats associated with that group, thus making it possible to factorize the
declarations. It is also typically used to declare group-wide data, relevant to both lenses
and formats, such as namespace prefix bindings.

3 Fresnel Selectors

Selection in Fresnel occurs when specifying the domain of a lens or format and when
specifying what properties of a resource a lens should show. Such selection expressions
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identify elements of the RDF model to be presented; in other words, specific nodes and
arcs in the graph. As we expect selection conditions to be of varying complexity, we
allow them to be expressed using different languages in an attempt to balance expressive
power against ease of use.

3.1 Basic Selectors

The simplest selectors, called basic selectors, take the form of plain URI references
as shown in section 2. Depending on whether they are used as values of fresnel:
instanceLensDomain or fresnel:classLensDomain, these URI references are
interpreted respectively either as:

– URI equality constraints (the resource to be selected should be identified by this
URI),

– or type constraints (the resources to be selected should be instances of the class
identified by this URI).

Basic selectors are also used to identify properties, which are used for instance as
values of fresnel:showProperties or fresnel:alternateProperties.

Basic selectors are easy to use but have very limited expressive power. For instance,
they cannot be used to specify that a lens should apply to all instances of class foaf:
Person that are the subject of at least five foaf:knows statements. More powerful
languages are required to express such selection constraints.

3.2 Languages for Complex Selection Expressions

Fresnel presentation designers can use two different languages for expressing complex
selection expressions. The first option is the SPARQL query language for RDF [20].
In the context of Fresnel, SPARQL queries must always return exactly one result set,
meaning that only one variable is allowed in the query’s SELECT clause. Figure 5-a
gives an example of a lens whose domain is defined by a SPARQL expression. Alter-
natively, designers who prefer a more XPath-like approach, which proved to be a well-
adapted selector language for XSLT, can use the Fresnel Selector Language (FSL). FSL
is a language for modeling traversal paths in RDF graphs, designed to address the spe-
cific requirements of a selector language for Fresnel. It does not pretend to be a full
so-called RDFPath language (contrary to XPR [21], an extension of FSL) but tries to
be as simple as possible, both from usability and implementation perspectives. FSL is
strongly inspired by XPath [22], reusing many of its concepts and syntactic constructs
while adapting them to RDF’s graph-based data model. RDF models are considered
directed labeled graphs according to RDF Concepts and Abstract Syntax [23]. FSL is
therefore fully independent from any serialization. A lens definition using two FSL ex-
pressions is shown in Figure 5-b. More information about FSL, including its grammar,
data model and semantics is available in the FSL specification [24].

Applications implementing Fresnel are required to support basic selectors, and we ex-
pect a reasonable share of them to support the two other languages: SPARQL is gaining
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# (a) Lens for John Doe’s mailboxes (SPARQL)
:PersonLens a fresnel:Lens ;

fresnel:instanceLensDomain
"SELECT ?mbox WHERE ( ?x foaf:name ’John Doe’ )

( ?x foaf:mbox ?mbox )"ˆˆfresnel:sparqlSelector .

# (b) Lens for foaf:Person instances that know at least five other resources (FSL)
:PersonLens a fresnel:Lens ;

fresnel:instanceLensDomain
"foaf:Person[count(foaf:knows) >= 5]"ˆˆfresnel:fslSelector ;

# and which shows the foaf:name property of all foaf:Person
# instances known by the current resource.

fresnel:showProperties (
"foaf:knows/foaf:Person/foaf:name"ˆˆfresnel:fslSelector) .

Fig. 5. Examples of SPARQL and FSL expressions used in Fresnel lens definitions

momentum as a W3C recommendation, and four open-source Java implementations of
FSL are already available1 for HP’s Jena Semantic Web Toolkit2, for IsaViz (providing
a visual FSL debugger) and for different versions of the Sesame RDF database3.

4 Implementations

Fresnel has been designed as an application- and output format-independent RDF pre-
sentation vocabulary. In this section we give an overview of various applications imple-
menting Fresnel: Longwell [1] and Horus [18] which both render RDF data as HTML
Web pages using nested box layouts, IsaViz [6] which represents RDF graphs as node-
link diagrams, and Cardovan, a browser and lens editor based on the SWT GUI toolkit.

Longwell is a Web-based RDF browser whose foundational navigation paradigm is
faceted browsing. Faceted browsing displays only the properties that are configured
to be ’facets’ (i.e., to be important for the user browsing data in one or more specific
domains) using values for those fields as a means for zooming into a collection by
selecting those items with a particular field-value pair.

The latest version of Longwell relies on the SIMILE Fresnel rendering engine, a Java
library built on the Sesame triple store. The engine implements all of the Fresnel core
vocabulary and the portion of the extended vocabulary relating to linking groups to CSS
stylesheets as well as the option of using FSL as a selector language. The Fresnel engine
output consists solely of an XML representation of the Fresnel lenses and formats as
they apply to one resource. Longwell then applies an XSLT transformation to the XML
to generate XHTML. The default XSLT stylesheet shipped with Longwell will generate
a traditional nested box layout, as Horus does, but the stylesheet can be modified by
XSLT developers to change the model as they see fit.

The left side of Figure 6 shows the rendering of a foaf:Organization resource
using a lens that gives some details about the organization and lists its constituent mem-
bers, all foaf:Persons, each listed with their corresponding nickname information to
assist in identification.

1 http://dev.w3.org/cvsweb/java/classes/org/w3c/IsaViz/fresnel/
2 http://jena.sourceforge.net
3 http://openrdf.org
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Fig. 6. Displaying a view of an organization (left) and a constituent member (right) in Longwell

The nickname list for each person is preceded by the string ’aka: ’, added to the
display by using the fresnel:contentFirst directive. The list is also comma sep-
arated, accomplished by setting fresnel:contentAfter to a comma. Clicking on
a URI in the display brings the user to that URI; clicking on a textual label changes
Longwell’s focus to the resource represented by that label.

On the right side of Figure 6, the focus is on one specific member of the organization
featured in the left side. A sublens is used to generate office contact details, and the
same sublens used in the organization focus (left image) to describe an organization’s
members is used in the person focus (right image) to describe who this person claims
to know.

Horus is an RDF browser that displays RDF information using a nested box layout. The
browser provides a simple navigation paradigm for selecting RDF resources and allows
users to switch between different lenses for rendering the resources. Horus supports
Fresnel lenses and formats, which can be associated together using Fresnel groups.
Groups can refer to external CSS style sheets which are used to define fonts, colors and
borders. Horus supports basic selectors, but does not offer SPARQL and FSL as selector
languages. Horus is implemented using PHP and is backed by a MySQL database.
Applying a lens to an RDF resource results in an intermediate tree, which is formatted
afterwards using the formats that are associated to the group of the selected lens. The
ordered and formatted intermediate tree is then serialized into XHTML.

Figure 7 shows two different views on the same person in Horus. The view on the
left uses a lens that displays many details about persons. The sentence ”This per-
son knows the following people” is a custom label for property foaf:knows. The
disclaimer ”That a person knows somebody does. . . ” is static content added using
property fresnel:contentLast. Some of the links are formatted as external links
(fresnel:value formatting instruction set to fresnel:externalLink), while oth-
ers refer to RDF resources in the knowledge base, and thus have a different rendering.
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Fig. 7. Two different views on the same person in Horus: detailed view (left), friends view (right)

On the right side of Figure 7, the same person is shown using a different lens. This
lens displays less details about the person itself, but refers to a second lens (used as a
sublens) for displaying details about other persons known by this person. As the sub-
lens belongs to a different group, another CSS class is used to style the names of the
person’s friends.

IsaViz is an RDF authoring environment representing RDF models as node-link dia-
grams. The interpretation of Fresnel in IsaViz is inspired by both Generalized Fisheye
Views [25] and Magic Lenses [26]. Fresnel lenses, in conjunction with the formats as-
sociated with them through groups, are considered as “genuine” lenses that modify the
visual appearance of objects below them.

Figure 8 (left) shows the default rendering of a region of an RDF model containing a
foaf:Person resource. At this level of magnification, only a few of the many property
values associated with the resource are visible. Users need to navigate in the graph in
order to get to the values of properties, which can be cumbersome. Alternatively, users
can select a Fresnel lens from the list of available lenses loaded in IsaViz through the
graphical user interface. The selected lens is then tied to the mouse cursor, and when the
lens hovers over a resource that matches its domain, the resource’s visual appearance
gets modified according to the lens and associated format(s). Resources that match the
selected lens’ domain are made visually prominent by rendering all other nodes and all
arcs using shades of gray with minimum contrast. When the lens hovers over a resource,
properties selected by the lens are temporarily rendered with highly-contrasted vivid
colors and brought within the current view, closer to the main resource and reordered
clockwise according to the ordering of properties in the lens definition, as illustrated in
Figure 8 (right). Property values revert back to their original state when the lens moves
away from the resource. All these visual modifications, including color and position
changes, are smoothly animated thanks to the underlying graphical toolkit’s animation
capabilities [27], thus keeping the user’s cognitive load low following the principles of
perceptual continuity.

Fresnel core formatting instructions are interpreted as customizations of the original
layout and rendering of nodes and links in the diagram. For instance, nodes represent-
ing foaf:image property values can be rendered by fetching the actual image from the
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Web, as illustrated in Figure 8 (right). The default labels of nodes and arcs can be
customized using fresnel:label instructions. In case a resource is the subject of
multiple statements involving the same property or properties defined as fresnel:

mergeProperties, the arcs and nodes representing these statements can be merged
as a single arc and node with all values within that node, optionally separated by text
as specified in fresnel:contentBefore, fresnel:contentAfter and related for-
matting instructions.

Fig. 8. Zoomed-in view of a foaf:Person resource in IsaViz: default presentation (left) and
rendered with a Fresnel lens (right)

Fig. 9. Editing a lens (left) and visualizing the result (right) in Cardovan

Cardovan is IBM’s implementation of Fresnel lenses (see Figure 9). Written in Java,
Cardovan renders lenses with the SWT graphical user interface toolkit. Cardovan is
similar to other implementations in that it uses a subset of CSS to specify the layout of
lens components on the screen. A remarkable feature of Cardovan is that it allows users
to modify a lens in place. Users can add new properties to the lens, modify property
values, and rearrange the physical layout of the properties displayed, though it is not
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a full WYSIWYG Fresnel lens designer. The project is still in its early stages, but is
functional and is already being used for internal projects at IBM.

5 Conclusion

We have given an overview of Fresnel, a browser-independent, extensible vocabulary
for modeling Semantic Web presentation knowledge. Fresnel has been designed as a
modularized, declarative language manipulating selection, formatting, and styling con-
cepts that are applicable across representation paradigms and output formats. We have
presented applications implementing Fresnel core modules while based on different
representation and navigation paradigms, thus substantiating the claim that Fresnel can
be used to model presentation knowledge that is reusable across browsers and other
Semantic Web visualization tools.

Although core modules have been frozen for the time being, the Fresnel vocabu-
lary remains a work in progress as new extension modules meeting special needs are
being developed (e.g., for describing the purpose of lenses and for editing informa-
tion). Extension modules are not necessarily aimed at being application- and paradigm-
independent, as they might not be relevant in all cases; but their inclusion in Fresnel
provides users with a unified framework for modeling presentation knowledge. Another
field for future work is enabling Fresnel formats and lenses to be retrieved transparently
from the Web so that RDF browsers could query the Web for display knowledge about
previously unknown vocabularies.

The development of Fresnel is an open, community-based effort and new contrib-
utors are welcome to participate in it. More information can be found on its Web site
http://www.w3.org/2005/04/fresnel-info/.
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ABSTRACT
A number of experimental studies based on domain-specific
tasks have evaluated the efficiency of navigation techniques
for searching multi-scale worlds. The discrepancies among
their results call for a more generic framework similar in
spirit to Fitts’ reciprocal pointing task, but adapted to a task
that significantly differs from pure pointing. We introduce
such a framework based on an abstract task and evaluate how
four multi-scale navigation techniques perform in one partic-
ular multi-scale world configuration. Experimental findings
indicate that, in this context, pan & zoom combined with an
overview is the most efficient technique of all four, and that
focus + context techniques perform better than classical pan
& zoom. We relate these findings to more realistic situa-
tions, discuss their applicability, and how the framework can
be used to cover a broad range of situations.

Author Keywords
Multi-scale interfaces, Searching task, Controlled Experi-
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INTRODUCTION
Multi-scale interfaces (also called Zoomable User Interfaces
or ZUIs) have generated a growing interest over the past
decade as a powerful way of representing, navigating and
manipulating large sets of data. A number of multi-scale
navigation techniques have been designed and implemented,
ranging from the original pan & zoom [20] to various fo-
cus+context techniques [4, 6, 27]. Up until now, the effi-
ciency of these techniques has been evaluated with two kinds
of experimental studies: usability studies based on domain-
specific tasks and controlled experiments based on multi-
scale versions of Fitts’ pointing paradigm.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2007, April 28 - May 3, 2007, San Jose, California, USA.
Copyright 2007 ACM 978-1-59593-593-9/07/0004...$5.00.

The usability studies that relied on domain-specific tasks
such as searching for items on geographical maps [15], com-
paring hierarchical data structures [18], or reading textual
documents [16] have typically produced inconclusive and
sometimes contradictory results. More precisely, experimen-
tal findings varied from experiment to experiment, but since
application domains varied dramatically, neither these find-
ings can be compared nor generalized. Such results are to
be expected since the performance of a given technique is
indeed dependent on its context of use [1].

A better understanding of the fundamental aspects of multi-
scale navigation could help explain – or even predict – such
results, therefore saving valuable time and allowing better
exploration of novel techniques. Fitts’ pointing paradigm
provides such a fundamental tool for exploring and under-
standing the elementary task of reaching a known target as
fast as possible. Originally devised to study pointing in the
real world [8], it has been used repeatedly in HCI for evalu-
ating a variety of pointing techniques and devices [3, 2, 23].
Fitts’ law has proven remarkably robust, to the point of be-
ing used as part of an ISO standard for pointing devices [25].
Fitts’ pointing task has also been used with multi-scale in-
terfaces and it has been shown that Fitts’ law still applies for
pointing targets with pan & zoom [10]. In particular, it has
been shown that Fitts’ paradigm could address navigation,
not just pointing, in interfaces that require scrolling [14] or
zooming [10].

While Fitts’ pointing paradigm is very powerful, it models a
very specific task: that of reaching a target whose location
is known to the user. However, this scenario only captures
one of several navigation tasks in multi-scale worlds. Users
might only have partial information about the target’s loca-
tion and appearance, thus requiring them to search for poten-
tial targets and get more details about each one until the ac-
tual target is identified. Consider for example a user search-
ing for Brisbane on a multi-scale world map, only knowing
that it is a large Australian city. The strategy first consists
in zooming towards Australia to then inspect each large city
one by one, zooming in to discover that it is not the right
one, zooming out, maybe as far as the whole continent, and
zooming in to the next potential target until the right city is
found. Exploring large spaces in search of a particular tar-
get differs from pure pointing, as it requires users to perform
additional motor actions to identify the target.

CHI 2007 Proceedings • Input Techniques April 28-May 3, 2007 • San Jose, CA, USA

1215

106 SELECTED PUBLICATIONS (2006-2011)



In the same way as Fitts’ reciprocal pointing task opera-
tionalizes the task of reaching a known target, we propose
in this paper to operationalize the above search task in a way
that is easily amenable to controlled experiments. We then
evaluate how four multi-scale navigation techniques perform
in one particular configuration of a multi-scale world: clas-
sical pan & zoom, overview + detail, and two focus + con-
text techniques, namely distortion (graphical fisheye) lenses
and a variation on the DragMag image magnifier which, to
the best of our knowledge, has not yet been evaluated. Our
results indicate that in this context overview + detail out-
performs the other three, and that the two focus + context
techniques outperform classical pan & zoom. However, this
multi-scale world configuration is only one particular case in
a range of situations. We discuss the limits of this prelimi-
nary study, describe the design space that is covered by our
abstract search task and present an environment that we have
developed to help explore this design space.

RELATED WORK
A number of experimental studies have compared the per-
formance of different multi-scale navigation techniques and
have reported contrasted results. Classical pan & zoom was
compared with fisheye and overview + detail on high-level
cognitive tasks involving electronic documents [16]: writ-
ing an essay after having explored a document, and finding
answers to questions within that document. Classical pan
& zoom was the least efficient technique; participants read
faster using the fisheye; they wrote better essays using the
overview + detail, but took more time to answer questions.
In North and Shneiderman’s experiment [19], participants
had to browse the database of U.S. states and counties to an-
swer questions using a detail-only scrollable interface or an
overview + detail interface. The overview + detail interface
outperformed the detail-only interface by 30-80% depend-
ing on the task. However, in another study [18], pan & zoom
or overview + detail were not significantly different when
participants had to navigate a large node-link representation
and make topological comparisons. On the contrary, Horn-
baeck et al. [15] have reported that their overview + detail
interface was more efficient than pan & zoom. This, how-
ever, was true for only one of the two geographical maps
that participants had to explore in their experiment.

The findings of these experiments show that the use of do-
main-dependent tasks makes it difficult to get consistent re-
sults that can be generalized, even more so when they require
a significant amount of cognitive effort from the participants.
Identifying and isolating lower-level, domain-independent
tasks can help reach more generalizable results. From a
motor perspective, one recurring task performed by users of
multi-scale interfaces is to search for targets among sets of
objects by navigating through space and scale. This article
describes an experimental setup for the controlled evaluation
of various interaction techniques considered as appropriate
for the task of searching a multi-scale world.

OPERATIONALIZING MULTI-SCALE SEARCHING
Studying a task through a controlled experiment requires op-
erationalizing it, i.e., defining it as a function of variables

of interest (independent variables) that researchers can act
upon to collect measures (dependent variables). The point-
ing task is a well-known example in the field of HCI, initially
operationalized in psychology by Fitts [8]: to study the per-
formance of pointing techniques, researchers act on the in-
dex of difficulty (ID) variable and measure the movement
time on a reciprocal pointing task. We seek to operational-
ize multi-scale searching in a similar way. In a multi-scale
world, users navigate and look at objects until they find the
target. Users have to navigate in both space and scale to
a position that reveals enough details about each object, in
order to decide whether it is the target or a distractor. Ini-
tially, users make a blind choice of a “potential target” at a
high scale and navigate to it to acquire enough information.
If it is a distractor, they have to navigate to another object,
typically by zooming-out, panning, then zooming-in [10].

Since we are interested in studying the performance in time
and error rate to find a target according to the required “quan-
tity” of exploration from a purely motor perspective, we ab-
stract the representation from any semantic or topological
relationship among objects that could help participants iden-
tify the target in an uncontrolled manner (for instance, hav-
ing reasonable knowledge of the geography of Russia could
help locate Saint Petersburg once Moscow has been found
on a map, or knowing that Chicago is on the shores of lake
Michigan would reduce the area to be explored significantly).
To quantify exploration, our experimental setup consists of a
multi-scale world containing a set of n objects, one of them
being the target and the others distractors. We define the
“quantity” of exploration as the number k of distractors that
users have to visit before finding the target: the larger the
number of visited distractors, the larger the quantity of ex-
ploration. k is probabilistically dependent on n: the larger
the number of objects, the higher the probability of having
a large number of objects to visit before reaching the target.
We control this parameter by forcing participants to visit a
predefined number of objects before finding the target; if we
chose a priori which object is the target, participants could
find it immediately by chance, or on the contrary they could
spend a lot of time searching for it, and this uncontrolled fac-
tor would have a significant impact on our measurements.
We design our experiment to ensure that the target is the
kth object visited, no matter the order of exploration chosen
by each participant. The system thus has to know i) when
objects are seen by the participant, and ii) whether or not
enough detail is displayed about these objects in order to
differentiate the target from distractors. Making the system
aware of these two pieces of information in a fully reliable
manner requires answering the following two questions:

• What minimal scale provides enough information? This
depends on visual acuity, which is user-dependent.

• In which region of the screen and for how long should an
object be displayed to consider it seen? Assuming that the
user visually scans the whole screen is too strong an hy-
pothesis, and probably an unfounded one. Also, if only
part of an object is in the viewport, the system cannot
know for sure whether or not the user has seen it.
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The gray area in the current viewport marks the position of the secondary view window.

(a)

v

u

(current viewport)

v

u

(current viewport)

(overview)
(b)

Classical Pan-Zoom (PZ) Pan-Zoom + Overview (OD)

(c)

v

u

(current viewport)

(lens focus)

v

u

(zoom window)

(current viewport)
du(mag window)

(d)
Constrained Distortion Lens (FL) DragMag (DM)

Figure 1. Representation of multi-scale interaction techniques in space-scale diagrams.

We address these problems as follows. First, we set a mini-
mum scale (minScale) at which the user can collect enough
information to detect a target: all objects seem identical ex-
cept for the target, which reveals a different piece of in-
formation when displayed at or above minScale. In order
to avoid differences among participants, all objects are dis-
played identically at all scales until the user explicitly asks
to reveal the disambiguating piece of information. This ex-
plicit “unveiling” action is available only when the scale is
minScale or more. Second, we make sure that the user can-
not reveal several objects simultaneously. Once an object
has been revealed, the user has to process the information
and, provided that the object is the target, take an additional
explicit action to tell the system that this object is the target.

While we cannot be sure that participants actually look at
targets when unveiling them, it is in their own interest to do
so in order to perform the search task as fast as possible.
Therefore we believe that this design operationalizes a real-
istic search task without having to use more complex devices
such as eye trackers. Before presenting a first experiment
based on this task, we introduce the multi-scale navigation
techniques that we have tested.

MULTI-SCALE INTERACTION TECHNIQUES
Many representation and navigation techniques have been
proposed to interact with multi-scale worlds, some being
variations on others. For our study, we narrowed down the
possibilities to four techniques, chosen to be representative

of the most widespread and/or efficient techniques currently
available. Figure 1 illustrates these techniques using space-
scale diagrams [9].

The first technique is the classical Pan & Zoom (Figure 1-
a). In order to get more detail about specific elements of the
representation, users have to move the entire viewport both
in space and scale, respectively by panning and zooming. No
contextual information is provided; this method is therefore
prone to user disorientation.

One way to address disorientation consists in using overview
+ detail techniques. One such technique, Pan & Zoom +
Overview (Figure 1-b), enhances classical Pan & Zoom by
providing users with an inset containing a representation of
the region surrounding the area currently seen in the main
viewport at a lower scale. The overview is located inside the
main viewport, typically in one of the four corners. The goal
is to minimize the visual interference caused by occlusion
of the elements in focus, but this introduces the problem of
divided attention [22].

In overview + detail representations, more screen real-estate
is dedicated to the focus than to the context. Conversely, fo-
cus + context techniques allocate more screen real-estate to
the context than to the focus. We selected two techniques
that we consider relevant to the multi-scale searching task:
constrained distortion lenses [6] and a variation on the orig-
inal DragMag Image Magnifier [27].
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(a) (b) (c) [viewport cropped] (d) [viewport cropped]

Figure 2. Storyboard: (a) start of trial, (b) navigation to the set of objects, (c) inspection of an object (before unveiling), (d) after unveiling the target
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Figure 3. Space-scale diagram of the scene used in the experiment

Constrained distortion lenses (Figure 1-c) provide a detail-
in-context representation through the local magnification of
a region of the screen (the focus of attention). This focus
region is integrated in the surrounding context by distorting
the representation in the transition region. The distortion
is defined by a drop-off function (see [6] for more details).
We chose a Gaussian profile as it provides a smooth tran-
sition between focus and distortion, and between distortion
and context. Our lens also features a flat top because many
tasks require the focal region not to be distorted [5]. The
in situ magnification of these lenses solves the problem of
divided attention but introduces a distortion that can cause
recognition problems.

The DragMag (Figure 1-d) can be considered a special case
of fisheye lens often called Manhattan lens, featuring a per-
pendicular drop-off function. There is no distorted region
between the focus and the context, but as a result the re-
gion immediately surrounding the focus is occluded. To
address this issue, the focus region is translated by a user-
controlled offset (du in Figure 1-d). This results in the occlu-
sion of another region of the context, which is often consid-
ered less important than the immediate surroundings of the
focus. However, this reintroduces the problem of divided at-
tention encountered with overview + detail representations,
and the occlusion can be more cumbersome to handle than
with the overview.

EXPERIMENT
We conducted a 4x9 within-subject controlled experiment
to compare the efficiency of these four techniques on one
instantiation of the multi-scale search task introduced earlier.

Task
The task consisted in finding a target among a set of objects
as quick as possible while minimizing the number of errors.
The virtual scene contained nine light gray squares orga-
nized into a 3x3 grid layout and embedded inside a large,
darker gray square. We used a grid layout so participants
would easily know where the potential targets were. This
regular layout also prevented performance to be biased by
uneven traveled distances between trials of the same rank k.
A dark red grid was superimposed on the display in order
to minimize desert-fog [17] (see Figure 2-b). The grid was
adaptive to scale, i.e., new grid lines would fade in when
zooming in and some grid lines would fade out when zoom-
ing out so that the display would always contain a reasonable
number of grid lines. All nine objects had square corners ex-
cept for the target which had rounded corners. The rounded
corners could only be seen when the target was displayed at a
large enough scale, called minScale (Figure 3). Participants
thus had to zoom in onto each square in order to find out
whether it was the actual target or not. Zooming in was not
sufficient however: once minScale was reached, a black bor-
der was displayed around the square in focus. Participants
could then use the space bar to unveil the object: this would
permanently reveal whether the object was the target (round
corners) or not. Note that this “unveiling” step does not af-
fect the ecological validity of our task since it penalizes all
techniques equally.

Figure 2 shows a storyboard of the task: participants started
each trial by pressing a button located at the center of the
screen (Figure 2-a). The view was initialized so that the re-
gion containing potential targets (dark gray area) was not
centered on the screen, requiring participants to reach the
region by panning and zooming. The goal was both to bet-
ter simulate a multi-scale navigation & search task and to
avoid a learning effect with respect to the participant’s ini-
tial move. Participants had to navigate to that region (Figure
2-b) and then inspect each object more closely by magni-
fying it using the current navigation technique (Figure 2-c).
Participants were allowed to zoom-in further, but zooming
in too far would have the object fill the display and make it
impossible to find out if it was the target. Once minScale was
reached for an object, participants could unveil that object by
pressing the space bar. The object’s border flashed green for
400 milliseconds, informing the participant that the object
had actually been unveiled. If the object’s corners remained
square, this meant that the object was not the target and par-
ticipants had to navigate to the next potential target using the
current navigation technique. If, on the contrary, the object’s
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(a) (b) (c)

Figure 4. Unveiling an object with (a) pan-zoom + overview [OD], (b) a constrained distortion lens [FL], (c) a DragMag [DM]

corners became rounded (Figure 2-d), participants had to hit
the F1 key to tell the system that they had identified the target
and end the trial. Note that figures 2-c and 2-d are cropped
versions of the viewport, aimed at illustrating the actual dis-
play size of objects at minScale on the monitor used for the
experiment.

Participants were instructed to go as fast as possible to com-
plete a trial (i.e., between hitting the Continue button and
hitting F1), but they were allowed to rest between successive
trials. They were also instructed to minimize the number of
visits to the same object and the number of misses, i.e., hit-
ting F1 when the object was not the target. Such misses
terminated the trial and were counted as errors.

Techniques
The first independent variable we manipulated in our experi-
ment was the technique. The first technique was pan & zoom
(PZ). Participants could pan the view by moving the mouse
while holding the left mouse button, and zoom in/out by
rotating the mouse wheel. These three degrees of freedom
could be controlled simultaneously. The magnification fac-
tor per wheel step was tuned so as to get an average zooming
speed of 8x per second, as advocated in [15]. With this tech-
nique, participants panned & zoomed the entire view to get
enough details about each object. Each of the other three
techniques allowed participants to pan & zoom using the
above commands.

The second technique was overview + detail (OD). The re-
gion seen through the main viewport was represented by a
bright green rectangle in the inset containing the overview
(see Figure 4-a). This rectangle could be dragged, resulting
in changing the content of the main viewport. With these ad-
ditional two degrees of freedom, participants could do fine-
grain panning in the main viewport and coarse-grain pan-
ning in the overview. The representation in the overview
was dynamic: it was not necessarily showing all objects in
the virtual world, as it followed the camera associated with
the detailed view in space and scale when the scale differ-
ence between the overview and the detailed view was larger
than a factor of 24. The overview implemented by Google
Maps1 demonstrates such a behavior.
1http://maps.google.com

The third technique featured a constrained distortion lens,
also called graphical fisheye lens (FL). It allowed for mag-
nification of the region around the mouse cursor (see Figure
4-b). We used a 100-pixel radial lens defined by a Gaussian
drop-off function and the L(2) distance metric [6] with a 60-
pixel radius flat top. The lens was not activated at the start
of a trial. Participants could activate it by clicking the left
mouse button, and deactivate it by clicking the right mouse
button. The lens was always centered on the mouse cur-
sor. When the lens was active, participants were still able
to pan the context by dragging outside the lens with the left
mouse button. The default magnification factor within the
flat top was set to 4 times the scale factor of the context (the
scale factor in the lens focus is always defined relative to
that of the context, since the context can itself be panned
and zoomed). Participants could change the lens’ magnifi-
cation by using the mouse wheel, within the limits of twice
and twelve times the scale factor of the context. This tech-
nique therefore featured five degrees of freedom (2D pan-
ning of context, 2D panning of lens focus, and either the lens
magnification factor or the context scale factor depending on
whether the lens is active or not). Lens activation and deacti-
vation were both animated by smoothly increasing the lens’
magnification factor from 1.0 to its default value (4.0) over
a period of 300 milliseconds for the sake of perceptual con-
tinuity [24]. The lens thus seemed to “emerge” from the flat
surface when activated, and flatten itself when deactivated.

The last technique was inspired by the DragMag Image Mag-
nifier (DM), but interaction with the windows differed sig-
nificantly from the original prototypes [27]. Figure 4-c shows
the two windows composing the DragMag: the mag win-
dow outlines the region magnified in the zoom window.
Participants could activate and deactivate the DragMag by
clicking on the right mouse button. The mag window would
then appear centered around the mouse cursor, the zoom
window being offset by a default distance of 200 pixels to
the southeast of the mag window. As with the previous
technique, both DragMag activation and deactivation were
smoothly animated over a period of 300 milliseconds, with
the zoom window “emerging” from the mag window. Par-
ticipants could drag the mag region, thus changing the con-
tent of the zoom window; they could also drag “through”
the zoom window for small scale adjustments, though this
feature was not very useful in the context of the experiment.
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Participants could also move the zoom window by dragging
the thick bar at its top. This feature was useful to reveal ob-
jects occluded by the zoom window. The mouse wheel was
used to control magnification. Operating the mouse wheel
while the cursor was in the zoom window controlled that
window’s magnification factor. Operating the mouse wheel
anywhere outside this window controlled the scale of the
context. The technique therefore featured six degrees of
freedom (the context scale factor and the zoom window mag-
nification factor could both be controlled when the DragMag
was active). The default magnification factor in the zoom
window was 4 times the scale factor of the context, as for
the distortion lens. The zoom window was not resizable.

For the purpose of comparing the techniques, the overview
of OD, the lens of FL, and the zoom window of DM all used
the same amount of screen real-estate: a 200 x 200 pixels
region, which represented 4.5% of the total available display
area.

Predictions
Our predictions were as follows:

• Time is linearly dependent on the rank k of the tar-
get. We hypothesized that, whatever the technique, the
user has to navigate to inspect objects one by one and that
each navigation incurs the same cost. Since the cost of
revisiting an object is fairly high, we hypothesized that
the number of revisits would be very small. Therefore the
overall task completion time should be linearly dependent
on the “quantity” of exploration, i.e., the target’s rank k in
the sequence of visited objects.

• Focus + Context (FL, DM) and Overview + Detail (OD)
outperform classical Pan & Zoom (PZ). With PZ, nav-
igating from one object to the next typically consists in
zooming out to acquire the next object then zooming in
and panning to magnify it. With DM, FL and OD, it
simply consists in moving the focus onto the next object.
Since the position of the focus can be controlled from the
context, we hypothesized that the zoom-out/pan/zoom-in
sequence of PZ would take more time than relocating the
focus within the context.

• Overview + Detail (OD) outperforms Focus + Context
(DM and FL). With OD, DM and FL, navigating from ob-
ject a to object b consists in moving the focus from a to b.
This movement can be seen as a pointing task. With DM
and FL, pointing is achieved by relocating the focus (i.e.,
the DragMag window or the lens’ focus region) while with
OD, pointing is achieved by relocating the detailed view.
According to Guiard et al. [11], such pointing tasks are
view pointing tasks whose Index of Difficulty depends on
view size. Since the detailed view is significantly larger
than the lens’ focus and the DragMag’s zoom window,
we predicted that OD would outperform the two Focus +
Context techniques (FL, DM).

Participants
Twelve unpaid adult volunteers, 11 males and 1 female, rang-
ing from 23 to 52 years old (28 on average, with a median of

25.5), served in the experiment. Before starting, the exper-
imenter checked that they could perceive the rounded cor-
ners at minScale, showing them squares with squared and
rounded corners successively. The experiment was divided
into four blocks, one block per technique. Before each block,
participants were shown how to achieve the task using the
corresponding technique. They were then asked to practice
on randomly-chosen trials until they felt comfortable with
the technique. The experimenter observed participants and
encouraged them to keep practicing until they were familiar
enough with the technique.

Apparatus
We used a Dell Precision 380 equipped with a 3 GHz Pen-
tium D processor, an NVidia Quadro FX4500 graphics card,
a 1280x1024 LCD monitor (19”) and a Dell optical mouse
with a scroll wheel. The program was written in Java 1.5
using the open source ZVTM toolkit [21] which features a
wide range of multi-scale interaction techniques, thanks to
different types of portals [20] and arbitrary distortion lenses2.
The application was limited to a 1080x824 window with a
black padding of 100 pixels in order to accommodate in-
struction messages and simulate screen real-estate that would
usually be taken by control and information widgets.

Counterbalancing strategy
We used a 9x4 within-subject design: we tested 9 target
ranks (k ∈ [1..9]) for the 4 techniques (PZ, FL, DM and
OD), i.e., 9 ∗ 4 = 36 conditions. Each condition was repli-
cated 3 times so that each participant performed 9 ∗ 4 ∗ 3 =
108 trials (≈ 45 minutes). The initial position of the area
containing the objects was different for each of these 3 repli-
cations and was counterbalanced among blocks with a Latin
square. We grouped the trials into 4 blocks, one block per
technique, to minimize negative skill transfers. To minimize
ordering effects, we computed four different technique or-
ders using a Latin square and composed 4 groups of 3 par-
ticipants (G1, G2, G3, G4), one group per ordering.

We also counterbalanced the presentation order of the dif-
ferent values of k within a block: we used a Latin square
to compute 9 possible orders for presenting the values of k
and concatenated 3 orders to compose a block (3 orders of 9
trials = 27 trials per block). Three block compositions (bc1,
bc2, bc3) were obtained through a Latin square. We mapped
one block composition per participant within a group. Table
1 summarizes our counterbalancing strategy among partici-
pants. While we told participants that the target was selected
randomly by the program, this was not, in fact, the case: in-
stead, the program counted the objects being visited by the
participant during the trial, and displayed the target when the
kth object was unveiled by the participant. This allowed us
to fully control the rank variable. Note that even if the par-
ticipants had known (or guessed) the actual working of the
program, this would not have given them any advantage.
2The content of the lens is not a mere magnification of the origi-
nal pixels, but an actual high-resolution separate rendering of the
region seen through the lens, which provides more details. This
mechanism also makes it possible to use semantic zooming inside
the lens (see Figure 6).
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Figure 5. Fit lines for the four techniques (a), Interaction effects on time (in s) for rank ∗ technique (b), Mean completion time per technique (c)

G1 G2 G3 G4

bc1 S1 S4 S7 S10

bc2 S2 S5 S8 S11

bc3 S3 S6 S9 S12

Table 1. Counterbalancing strategy for the 12 participants (Si).

Results
For each trial, the program collected the completion time,
whether it was a hit or a miss, the order of visit of each ob-
ject and the time at which it was unveiled. It also logged
cinematic data from the cameras associated with the focus
and context viewports. We also collected the participants’
preferences among the techniques in a post-hoc test.

For our analyses, we first removed 14 miss trials (about 1%)
and then 31 outliers (about 2,5% of the hit trials). We veri-
fied that misses and outliers were randomly distributed across
participants, techniques and ranks and that there was no ef-
fect of technique presentation order on time. Learning ef-
fects were not significant for PZ (p = 0.42) and FL (p =
0.75), and were significant but moderate for DM (p = 0.03)
and OD (p = 0.02).

We isolated the rank variable (k) by analyzing it separately
for each technique. We computed the linear regression of
time relative to the rank, treating participants as a random
variable. We obtained the high correlation coefficients listed
in Table 2. This supports our first prediction: completion
time is linearly dependent on the rank (see Figure 5-a).

As expected, the number of revisits was extremely low (less
than 1 revisit on average for each technique) and participants
optimized the order in which they visited the objects so as to
minimize traveled distance. Most participants explored the
objects following an S-shaped pattern, some used a spiral;
very few made diagonal moves, except for one participant
who adopted a very erratic search pattern across all blocks
(his results were nevertheless consistent with our overall find-
ings). Table 2 also reports slopes (a) and intercepts with the
y-axis (b) for each linear regression. We note that the value
of b is lower for PZ. The cinematic logs explain this dif-
ference: with DM, FL and OD, participants initially spent
more time adjusting the scale and position in order to opti-
mize their future interactions. Indeed, with these techniques,

PZ FL DM OD
r2 0.84 0.84 0.81 0.80
a 3.2 2.0 1.7 1.3
b 5.1 8.2 8.5 7.8

Table 2. Correlation coefficients (r2) and coefficients a and b (time =
a ∗ rank + b) for the four techniques.

good position of the context allows participants to only pan
the detailed view through the overview or the focus from the
context without having to adjust the scale.

Since we have evidence that time is linearly dependent on
rank, we now analyze rank as a continuous factor. Analysis
of variance with the REML method for repeated measures
revealed a significant simple effect on time for rank, i.e. k,
(F1,411 = 1500.5, p < 0.0001), a significant simple effect
on time for technique (F3,411 = 91.6, p < 0.0001) and a
significant interaction effect on time for rank * technique
(F3,411 = 54.2, p < 0.0001). Figure 5-b illustrates these
results: the larger the rank, the larger the differences among
techniques. Tukey post-hoc tests reveal that each technique
is significantly different from the others: OD is the most ef-
ficient technique, followed by FL, then DM and finally PZ
(OD > DM > FL > PZ). This supports our second
and third predictions: the Overview + Detail technique out-
performs the two Focus + Context techniques, which them-
selves outperform classical Pan & Zoom. We believe the
lower performance of FL, compared with DM, could be due
to the visual distortion introduced by the lens [13]. We note
however that the difference between the means of these two
techniques (FLmean = 18 s., DMmean = 17 s.) is much
smaller than with the other two (ODmean = 14.8 s., PZmean

= 21.2 s.), as shown in Figure 5-c.

The subjective preferences we collected in the post-hoc ques-
tionnaire match these results. At the end of the experiment,
participants were asked to rank the techniques according to
their preference: 11 ranked PZ as the worst technique, and 9
ranked OD as the best technique.

DISCUSSION AND FUTURE WORK
The search task introduced in this article covers a range of
situations where the user has to explore each potential target
in a multi-scale environment. Unlike the tasks tested in us-
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Figure 6. Looking for Boston, Massachusetts, USA with a distortion lens on a multi-scale world map

ability studies, we focus on the motor and perceptual skills
and try to exclude the cognitive skills involved in searching.
The goal is similar to that of Fitts’ pointing paradigm and
its use in HCI: to assess the limit performance of searching
multi-scale worlds and to come up with predictive perfor-
mance models and novel navigation techniques that improve
multi-scale searching.

Our search task covers a large design space whose main di-
mensions are the amount of information the user has to ac-
quire in order to decide which object is the target and the
structure of the multi-scale world. Our experiment tested an
extreme situation in this design space. First, the user had to
look in detail at each target by navigating to it, therefore ex-
cluding the kind of visual search that occurs, e.g., in a Fitts’
pointing task with distractors. Second, we used a specific
configuration of the multi-scale world: a “small-world”, i.e.
an environment in which there exists at least one viewpoint
from which all objects can be seen, that contained objects of
the same relative size, i.e. same minScale, laid out uniformly
on a grid. Therefore, the results reported in the previous sec-
tion cannot be generalized to all search tasks and we need
to devise a strategy to explore the design space and opera-
tionalize other situations.

Unfortunately, few theoretical models are available to help
us structure this design space. While Guiard et al.’s degree
of goal-directedness [12] could help quantify the amount of
information that users need to recognize a target and Furnas
& Bederson’s space-scale diagrams [9] could help explore
the structure of multi-scale worlds, neither approach is read-
ily applicable to identify relevant points in this design space.
Therefore we have developed an environment for testing re-

alistic multi-scale navigation and searching tasks in order to
inform our design process.

This environment (see Figure 6) displays a multi-scale ver-
sion of NASA’s Blue Marble Next Generation world map
[26] overlaid with geographical features such as countries,
states, cities, parks and lakes. The map is 80000x40000 pix-
els at full resolution, or about 80x40 regular-size screens.
The geographical features can be any set of localized items
found in the Geo-Names3 on-line database. The environ-
ment provides a set of navigation techniques, including those
tested in the study reported in this article. A variant of this
environment was used to run the experiment reported in the
previous section. Both versions are implemented with the
ZVTM toolkit [21] and are publicly available4.

We conducted several pilot studies with this environment us-
ing a set of 1825 cities, 63 states and provinces, and 192
countries. Participants were asked to search for geographical
features by locating first the country, then possibly the state
or province and finally the city. Obviously, this task relies on
cognitive skills such as the participant’s geographical knowl-
edge or contextual hints such as large water bodies. It was
extremely useful however for observing users and collect-
ing quantitative data and subjective evaluations and helped
us identify interesting multi-scale world configurations.

For example, the configuration that we tested in the experi-
ment described in the previous section corresponds to, e.g.,
finding a large city in Australia. Since there are only eight

3http://www.geonames.org
4http://zvtm.sourceforge.net/eval/pb
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(a) (b)

Figure 7. Exploring a sparse region with a drag-mag (a), and a dense region with an overview (b)

large cities spread over the whole continent (see Figure 7-a),
the participant who does not know the geography of Aus-
tralia has to zoom in onto each city. So the task consists in
finding a city among a relatively small, well-identified, set
of objects of the same relative size.

In this context, participants found the most useful technique
to be Overview + Detail, followed by the constrained distor-
tion lens and the DragMag. For the latter two, the commonly
adopted search technique consisted in panning & zooming to
make the entire continent fit the viewport (all cities could be
seen from this altitude, though their names were not visible),
and then activate a lens or DragMag to inspect the potential
targets while keeping the context fixed. The same behavior
was observed with the abstract task, as reported earlier. It is
interesting to note however that the negative effects of dis-
tortion were less frequently mentioned for the geographical
task than for the abstract task, probably because continuous
representations such as world maps withstand distortion bet-
ter than other types of representations, at least for searching.

Other observations of the participants’ behavior with the ge-
ographical task have helped us identify situations that seem
interesting for subsequent experiments. For instance, densely
populated regions such as mainland Southeast Asia (see Fig-
ure 7-b), which feature many cities, were most commonly
explored with the Overview + Detail technique because the
main viewport can accommodate more cities at the scale
where their names become readable (the equivalent of min-
Scale defined in the abstract task), thus facilitating visual
scanning.

These behavior patterns lead us to hypothesize that Overview
+ Detail techniques work better when exploring dense re-
gions while Focus + Context techniques are also efficient
when searching for a target among a sparse set. This may
be due to the fact that visual scanning plays an important
role in the former case while motor actions take precedence

over visual scanning in the latter, at least within the limits of
the magnification factor of graphical fisheye lenses (usually
4 and rarely more than 8 [7]). Providing empirical evidence
for this claim requires running more experiments within the
framework by varying parameters such as density. Another
area for future work is to test configurations in which objects
have different minScale values, corresponding to situations
where users have very limited information about the target,
including the scale at which it is visible. Since such situa-
tions presumably prompt for more zooming actions than the
one we tested, it is possible that the best navigation tech-
nique would be different.

SUMMARY
This paper has introduced a new framework based on an
abstract searching task for multi-scale interfaces that oper-
ationalizes the situation where one has to look for the target
before selecting it. We have used this framework to com-
pare four multi-scale navigation techniques in the context of
one specific multi-scale world configuration (small world,
uniformly dense layout), showing that in this case a fixed
overview afforded better performance than Focus + Con-
text techniques and that traditional pan-and-zoom was the
worst. These results cannot be immediately generalized to
all multi-scale world configurations, and additional evalua-
tions are required to cover a broader range of situations by
varying parameters such as density, topology and the relative
size of targets. Our framework allows for the systematic ex-
ploration of this design space. Moreover, the geographical
environment we have developed can help identify interest-
ing situations and formulate hypotheses about them. These
situations can then easily be translated into configurations of
the abstract task and tested with controlled experiments.
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ABSTRACT
We present DynaSpot, a new technique for acquiring tar-
gets based on the area cursor. DynaSpot couples the cur-
sor’s activation area with its speed, behaving like a point
cursor at low speed or when motionless. This technique
minimizes visual distraction and allows pointing anywhere
in empty space without requiring an explicit mode switch,
thus enabling users to perform common interactions such as
region selections seamlessly. The results of our controlled
experiments show that the performance of DynaSpot can be
modeled by Fitts’ law, and that DynaSpot significantly out-
performs the point cursor and achieves, in most conditions,
the same level of performance as one of the most promising
techniques to date, the Bubble cursor.
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INTRODUCTION
The increase in both resolution and size of computer displays
requires users of desktop interfaces based on the ubiquitous
WIMP paradigm to make highly precise pointing movements
to acquire small interface components over possibly long
distances when using a conventional point cursor. Several
techniques have been proposed to make this fundamental
task easier. Many have been shown to perform better than
the point cursor in experimental settings that were consist-
ing of isolated targets on fairly sparse desktops [1, 3, 5, 10].
However, these techniques are very sensitive to the layout
and density of interface components, and difficulties arise
when selecting one target among multiple objects that are
spatially close together. As noted by Baudisch et al. [4],
non-uniform target distributions with clusters of small tar-
gets are commonplace in GUIs. In such configurations, these
techniques do not provide a significant advantage and some
can actually degrade performance.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2009, April 4 - 9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Other promising techniques have been proposed recently that
work better in a wider range of configurations, including
many variations on expanding targets [6, 7, 20, 21], the Ninja
cursor [15] and Starburst [4]. One of the most promising
technique, the Bubble cursor [9], is a variation on the Area
cursor [14, 26] that dynamically adapts its activation area to
encompass the closest object only. This is achieved by ex-
panding the boundaries of each target based on a Voronoi
tessellation that fills the empty space surrounding each po-
tential target thus maximizing their effective size. While
this optimizes pointing performance, problems arise when
considering interaction beyond the acquisition of a single
interface component. First, as with several of the above-
mentioned techniques, selecting a position in the “empty”
space between targets requires a mode switch. Yet empty
space selection is crucial to many common interactions, e.g.,
to select groups of objects. The mode switch solution results
in “a slightly less than seamless interaction style” [2] for
these essential object manipulation features [15]. Second,
rapid and large changes of the bubble size in non-uniform
target distributions may distract the user and hinder user ac-
ceptance [9, 17, 12], a crucial factor [2] that is sometimes
overlooked.

In this paper, we present DynaSpot, a new type of area cur-
sor that couples the cursor’s activation area with its speed,
as illustrated in Figure 1. The activation area grows as a
function of speed up to a maximum size, typically set to a
few dozen pixels, thus minimizing visual distraction. At low
speed and when motionless, DynaSpot behaves as a regular
point cursor, making all conventional point cursor interac-
tions, including empty space selection, possible without the
need for an explicit mode switch.

(a)

(c)(b)

Activation Area

Cursor Center

Captured Target

Uncaptured Target

Figure 1. (a) DynaSpot’s activation area is coupled to cursor speed.
(b) Multiple objects intersect the area: the target closest to the cursor
center is highlighted and selected. (c) Empty space selection is possible
whenever the activation area is not intersecting any object.
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After a review of related work, we discuss the design and
implementation of DynaSpot, and report the results of two
controlled experiments. Results show that DynaSpot signif-
icantly outperforms the point cursor and achieves levels of
pointing performance similar to the Bubble cursor in most
layout configurations, including densely populated scenes.
We then show that its performance can be modeled with
Fitts’ law. We conclude with a discussion of our findings
and directions for future work.

RELATED WORK
Fitts’ law is the fundamental tool used to study pointing in
human-computer interfaces [18, 25]. It makes it possible to
predict movement time MT with the following equation:

MT = a+ b× log2(
A

W
+ 1)

where A is the distance to the target (amplitude of move-
ment), W the width of the target, and a, b are two coefficients
determined empirically, depending on factors such as input
device and population of users. Techniques developed to fa-
cilitate pointing in virtual worlds try to decrease movement
time either by reducing A, increasing W , or a combination
of both. We direct interested readers to a survey by Balakr-
ishnan [2] and an overview by Grossman et al. [9] that fol-
low this categorization to review existing techniques. In the
following, we consider existing techniques from a slightly
different perspective, considering not only performance but
compatibility with conventional cursor interactions beyond
single target acquisition, and user acceptance.

Sticky icons [26] and Semantic pointing [5] dynamically
adapt the control-display ratio, slowing down the cursor as it
approaches a potential target. These techniques support con-
ventional point cursor interactions. They are, however, very
sensitive to the layout and density of potential targets; while
they work well in sparsely populated workspaces, interven-
ing distractors on the path to the actual intended target in
denser workspaces slow down cursor movements, possibly
degrading performance compared to a regular point cursor.
Cockburn and Firth [7] propose to enable the control-display
adaptation on one axis only depending on the widget’s ori-
entation, thus partially solving the problem for some types
of widgets such as scrollbars.

Drag-and-pop [3] reduces amplitude of movement (A) when
dragging an object by temporarily bringing potential targets,
closer to the cursor. As such, the technique efficiently solves
one particular type of pointing-based interaction, but is not
a general desktop pointing technique. Object pointing [10]
takes a radical approach, ignoring the empty space between
targets by making the cursor jump from one object to the
nearest one in the direction of movement, thus considerably
reducing A. The Delphian desktop [1] follows the same
principle, taking into account peak velocity to determine the
goal target, allowing to jump over potential distractors. Both
techniques are very sensitive to the layout and density of ob-
jects, which can have a strong impact on the accuracy of
the goal target prediction method. Lank et al., describe an
enhanced endpoint prediction method [16] achieving 42%
accuracy and an additional 39% of predictions falling on

an adjacent target, with one third of gesture time remain-
ing. Still, wrong predictions can be frustrating, and the be-
havior of the cursor, jumping from object to object, can be
annoying. By skipping empty space, these techniques do
not allow the user to perform some useful point cursor inter-
actions, such as region selection, without an explicit mode
switch. Kobayashi and Igarashi propose another promising
way to reduce the amplitude of movement (A) by having
multiple cursor instances all synchronized with the same in-
put device: by distributing the cursors over the screen, Ninja
cursor [15] reduces the average distance to any given target
using interactive, seamless disambiguation methods to acti-
vate the appropriate cursor. General point cursor interactions
that require clicking in empty space are however not possi-
ble without mode switching, except for a restricted form of
lasso selection.

Several techniques focus on increasing target width (W ).
Techniques based on lenses coupled with the cursor mag-
nify objects but usually operate in the original, unmagnified,
motor space, thus providing no actual advantage in terms of
pointing facilitation [11, 23]. Ramos et al.’s Pointing lenses
[24] are an exception, increasing target size in both visual
and motor space for the acquisition of small targets with a
stylus. Another solution consists in expanding targets dy-
namically when a point cursor approaches them. McGuffin
and Balakrishnan [20] have found that users can still benefit
from expansions that occur as late as after 90% of the move-
ment has been completed. They were further studied in [21],
and experiments by Cockburn and Brock suggest that visual
expansion plays a more important role than motor expan-
sion [6]. They also note that “enlarged motor-spaces actu-
ally make the targets appear smaller than they really are”, as
empty space around objects is actually empty in visual space
only, not in motor space, meaning that it cannot be used for
interactions such as region selection.

Fitts’ law can accurately model pointing to thin targets using
area cursors with a simple modification to the equation: in-
stead of representing the target width, the term W represents
the cursor width [14]. This implies that cursors with larger
activation areas make pointing easier, but such larger areas
are more likely to encompass several objects, thus creating
ambiguities. These can be resolved by using a secondary
point cursor [26] or by interactively adjusting the cursor area
on multi-point touchpads [22]. The Bubble cursor [9] im-
proves upon the area cursor by partitioning empty space so
as to maximize the activation area of each target. Starburst
[4] relies on a different partitioning of space, better adapted
to non-uniform target distributions. As mentioned earlier,
this optimizes pointing performance, but prevents point cur-
sor interactions that require clicking in empty space. The
Bubble cursor’s growing/shrinking area has also been re-
ported to cause visual distraction in some situations [9, 17,
12]. Several variations on the technique have been designed
[17, 12], but have had limited success both in terms of per-
formance and user acceptance. The lazy bubble [17] makes
it possible to point in some areas of empty space, but these
are severely limited and difficult to identify, making interac-
tions such as region selection impractical.

CHI 2009 ~ Pointing and Cursor Techniques April 8th, 2009 ~ Boston, MA, USA

1392

SELECTED PUBLICATIONS (2006-2011) 117



DYNASPOT
In his survey of pointing facilitation techniques [2], Balakr-
ishnan identifies the final acceptability of a technique by
end-users as a critical measure, seen as a complement to
quantitative performance measures such as selection times
and error rates. The visual distraction caused by some tech-
niques and the mode switches required by earlier-mentioned
techniques hinder their acceptance for many types of appli-
cations and environments. DynaSpot has been designed to
facilitate pointing while taking this more qualitative measure
into account. It was not designed to perform better than all
other techniques under all conditions, but to strike a balance
between performance, end-user acceptance and implemen-
tation in a realistic context.

DynaSpot builds upon area cursors. It uses the dynamic
characteristics of the pointer to adapt the size of the cursor’s
activation area and facilitate difficult pointing tasks while
behaving as a conventional point cursor when appropriate,
without the need for an explicit mode switch. DynaSpot
takes inspiration from other techniques that have success-
fully made use of the cursor’s dynamic characteristics, such
as Speed-Dependent Automatic Zooming [13], Sigma Lenses
[23] and the Speed-coupled flattening lens [11].

As shown in Figure 2, the size of the activation area (which
we term spot from now on) starts to increase as a function
of cursor speed past a given threshold, and up to a maximal
size SPOTWIDTH. When the cursor comes to a full stop, re-
duction of the spot starts after a certain duration LAG, and
takes REDUCTIME to complete. As with regular area cursors,
the spot is made translucent so as to avoid obscuring screen
information relevant to the task [26].

Time
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Figure 2. DynaSpot: spot width as a function of cursor speed.

A target can be selected as soon as the spot overlaps it. While
early area cursor designs [14, 26] used a square shape, Dy-
naSpot’s activation area takes the shape of a circle, as does
Bubble cursor’s, so as to ensure that the nearest target is cap-
tured first. Still, as opposed to the latter technique, there can
be situations where the spot overlaps more than one poten-
tial target, creating ambiguities regarding the one to select.
To resolve such ambiguities, DynaSpot always selects the
target closest to the cursor center (see Figure 1-b). This im-
plies that the system should provide feedback about which
target is currently selected (if any), as is the case for Bubble
cursor. If the spot does not intersect any potential target, then
the background (or “empty space”) is selected, no matter the

current spot width, allowing the user to perform any action
initiated by a button press in empty space, such as a region
selection (see Figure 1-c).

According to Fitts’ law, DynaSpot should facilitate point-
ing because the potential effective width of a target can be
larger than its actual width. For instance, if we consider
an isolated circular target of width W and a spot width of
SW at the time of actual target selection (i.e., when click-
ing), then the potential effective width is EW = W + SW .
Thus, when the user clicks on the target before the spot starts
shrinking (before the end of LAG in Figure 2), the effective
width of the target is EW = W+ SPOTWIDTH, as illustrated
in Figure 3-a. If we consider a target surrounded by other
targets with empty space between them of width IS, as in
Figure 3-b, then the potential effective width depends on the
spot width and what we term the interspace between targets,
IS. If IS ≤ SPOTWIDTH, then the potential effective width
is EW = W + IS. The optimal SPOTWIDTH will depend on
a number of factors: interface type, display resolution, in-
put device, but also on each user. In a typical desktop envi-
ronment, a SPOTWIDTH between 16 and 32 pixels represents
a good compromise: it is large enough to facilitate the ac-
quisition of small targets, yet small enough to prevent size
variations from causing too much visual distraction.

 IS 

EWEW

(a) (b)
Figure 3. (a) Isolated target: potential effective width EW =
W+SPOTWIDTH. (b) Small interspace between targets IS ≤ SPOT-
WIDTH: potential effective width is EW = W + IS.

Speed-dependent Behavior
Figure 2 gives a general idea of the speed coupling between
cursor speed and spot width. The details of this coupling
play a fundamental role in the overall usability of the tech-
nique, and are described in this section. The behavior rules
are as follows:

• when the cursor is moved fast enough (beyond a threshold
speed S ≥ MINSPEED pixel.s−1), the width of the spot is
increased, provided that it has not yet reached its maximal
value SPOTWIDTH;
• when the cursor comes to a full stop and does not move

for a period of time equal to LAG, the spot shrinks to a
point (1 pixel) over a period of REDUCTIME, provided the
user does not move it again, in which case it would grow
again;
• for slow movements below the speed threshold, the spot

width remains constant.

Threshold speed MINSPEED allows the user to perform small,
precise pointing movements using a conventional point cur-
sor, without being distracted by a growing spot. When the
cursor is moved faster, beyond this threshold, the spot grows,
facilitating distant target acquisition. We have found 100
pixel.s−1 to be a reasonable value for MINSPEED.
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The transitions from point cursor to area cursor and con-
versely can be achieved in various ways. We tested several
possibilities through trial and error, and made the following
observations. The spot should grow quickly once MINSPEED

has been reached, but the growth profile does not seem to
play an important role. We found that an exponential growth
(up to SPOTWIDTH) by a factor of 1.2 at each input event
works well.

The reduction transition, controlled by LAG and REDUCTIME

(see Figure 2), is more complex because it has a direct im-
pact on the potential effective width at the time of target se-
lection. Higher values for both parameters should make the
task easier. However, too high values imply that the user
will potentially have to wait longer before she can perform
interactions initiated by an implicit selection in empty space.
In addition, the reduction profile applied during REDUCTIME

also plays a role.
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Figure 4. Spot width as a function of time for the three reduction meth-
ods (LAG = 120 ms, REDUCTIME = 180 ms).

We informally tested three methods to perform this reduc-
tion, as illustrated in Figure 4: (i) an “exponential” one where
the spot width is reduced by a given percentage at each step;
(ii) a “linear” one where the spot width is reduced by a given
constant at each step, and (iii) a “co-exponential” one that
mirrors the first method. We found that the exponential re-
duction yields more target acquisition errors, probably be-
cause of the abrupt transition after the LAG period, due to the
fast reduction of the spot. The co-exponential method starts
reducing the spot at a lower pace, providing a smoother tran-
sition than the linear and exponential methods.

PRELIMINARY STUDY: LAG AND REDUCTION TIME
Before comparing DynaSpot with other pointing techniques,
we ran a preliminary experiment in which we formally eval-
uated different values of LAG and REDUCTIME for the co-expo-
nential transition in order to fine-tune the technique.

Apparatus
We used a 3.2 GHz Pentium4 PC running X Window under
Linux, equipped with an NVidia Quadro FX 1500 graph-
ics card, a 1600 x 1200 LCD monitor (21”), and a standard
optical mouse (400 dpi) with the default X Window accel-
eration function. Our program was written in Java using
the OpenGL pipeline for graphics rendering. We carefully
checked the refresh rate (50 fps), ensuring that timers were
matching the lag and reduction set for each condition.

Participants
Eight unpaid adult volunteers (7 male, 1 female), from 22
to 41 year-old (average 26.6, median 24), all right-handed,
experienced mouse users, served in the experiment.

Procedure and Design
The task was a simple reciprocal pointing task. The two tar-
gets were represented as circles 8 pixels in diameter, painted
with a green fill color and outlined in black. They were
centered horizontally, with a distance of 512 pixels between
them, and were each surrounded by four distractors of the
same size, painted with a white fill color and outlined in
black. These four distractors were laid out so that the inter-
space IS between a distractor and the target would always
match the SPOTWIDTH set for the current trial, as illustrated in
Figure 8-b. We focused on small targets in this preliminary
study as DynaSpot is expected to be most useful in this type
of configuration. The object captured by the cursor (distrac-
tor or actual target, if any) was filled with a red color. Each
target had to actually be selected before proceeding to the
next: clicks outside the current target were counted as errors
but did not end the task.

Our experiment was a 2 × 3 × 3 within-participant design.
Each participant had to perform several trials using two spot
widths: SPOTWIDTH ∈ {16, 32} with three durations for both
lag and reduction time: LAG ∈ {60ms, 100ms, 140ms} and
REDUCTIME ∈ {100ms, 180ms, 260ms}.

We grouped trials into two blocks, one for each spot width.
Four participants started with the small DynaSpot (16 pixels)
while the four others started with the larger one (32 pixels).
Within a block, trials were grouped by LAG × REDUCTIME

condition presented in a pseudo-random order, each sub-
block containing three series of 16 reciprocal pointing tasks.
The first series was used for training, allowing participants
to adapt to the new parameters before we measured their per-
formance. They were then instructed to be as accurate and
as fast as possible. The 16 pointing tasks of a series had
to be performed in a row, but participants were allowed to
rest between trials. The first targeting task of each trial was
ignored. A total of 4,320 actual pointing tasks were thus
taken into account in the analysis (240 measures for each
SPOTWIDTH × LAG × REDUCTIME condition). The experiment
started with a 3 minute training session where the experi-
menter explained DynaSpot’s behavior and how to operate it
to the participant. The experiment lasted approximately 20
minutes.

Results
Repeated measures analysis of variance reveals a signifi-
cant simple effect on movement time for SPOTWIDTH (F1,7 =
97.0, p < 0.0001), LAG (F2,14 = 11.5, p = 0.0011) and
REDUCTIME (F2,14 = 7.5, p = 0.006). The only signifi-
cant interaction is for LAG × REDUCTIME (F4,28 = 3.3, p =
0.0238).

Mean movement time is 884 ms for SPOTWIDTH = 16 and
760 ms for SPOTWIDTH = 32. The LAG × REDUCTIME effect
can be observed on Figure 5 (left): LAG seems to have an
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Figure 5. Movement time (left) and error rate (right) as a function of
LAG, grouped by REDUCTIME.

effect for REDUCTIME equal to 100 and 180 ms but not for
REDUCTIME = 260 ms. This is confirmed by post-hoc tests,
which show a significant difference in mean between all LAG

values for REDUCTIME = 100, between LAG 60 and 100 for
REDUCTIME = 180, but no significant difference for REDUC-
TIME = 260. The overall error rate is 4.5%. Repeated mea-
sures analysis of variance reveals no effect on error rate for
SPOTWIDTH (F1,7 = 0.4, p = 0.522), but a significant ef-
fect for LAG (F2,14 = 10.8, p = 0.0014) and REDUCTIME

(F2,14 = 17.7, p < 0.0001). As for movement time, we
observe a significant interaction for LAG × REDUCTIME only
(F4,28 = 3.4, p = 0.0227), as illustrated in Figure 5 (right).

These results show that for a long-enough REDUCTIME, LAG

can be set to any value within the considered range. For
shorter REDUCTIMEs, the duration of LAG has a significant ef-
fect on both movement time and error rate, and has to be
chosen carefully. Overall, the fastest and least error prone
condition evaluated was LAG = 140 ms and REDUCTIME = 180
ms. For our implementation of DynaSpot, we did not want
the full reduction phase to last longer than 300 ms, as longer
delays can be frustrating. We thus used the following values:
LAG = 120 ms and REDUCTIME = 180 ms.

MAIN EXPERIMENT: DYNASPOT VS. BUBBLE VS. POINT
Having fine-tuned DynaSpot’s parameters, we ran a second
experiment to evaluate the quantitative performance of Dy-
naSpot and get the subjective impressions of participants.
We compared two DynaSpots with different spot widths (16
and 32 pixels) against a regular point cursor, serving as a
baseline, and the Bubble cursor [9], one of the most efficient
general pointing techniques to date (Figure 6).

W

EW

Figure 6. The Bubble cursor captures the target closest to its center.
The shape of the targets are expanded to a maximal shape obtained by
a Voronoi tesselation. The bubble’s effective width, EW , is thus defined
by the corresponding shape.

Apparatus
We used a workstation running X Window under Linux, equi-
pped with two double core 64-bits 2.4 GHz processors, an
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Figure 7. Sixth pointing task of a series (ISO 9241-9 circular layout)

NVidia Quadro FX4500 graphics card, a 1600 x 1200 LCD
monitor (21”) and a standard optical mouse (400 dpi) with
the default X Window acceleration function. Our program
was written in Java using the OpenGL pipeline for graph-
ics rendering, thus ensuring a minimum frame rate of 50 fps
even for large alpha-blended Bubble cursor areas (something
impossible with the default Java2D rendering pipeline).

Participants
Twelve unpaid adult volunteers (all male), from 21 to 33
year-old (average 25.2, median 25), all right-handed, expe-
rienced mouse users, served in the experiment.

Task and Procedure
We followed the same general procedure as the one used by
Grossman and Balakrishnan to compare Bubble cursor with
object pointing and a point cursor [9]: participants had to se-
lect a target rendered as a solid green circle outlined in black,
surrounded by a set of distractors. Additional distractors
were placed on the path from the trial start point to the tar-
get. As illustrated in Figure 7, all distractors were the same
size as the target and were rendered as black outlined cir-
cles. As in our preliminary experiment, the object captured
by the cursor (if any) was painted red. The bubble cursor
area and the DynaSpot disc were both rendered with a semi-
transparent gray. As in the Bubble cursor paper’s experi-
ment, four main distractor targets were positioned to control
the interspace IS around, and thus the effective width EW
of, the goal target1. Two were placed along the direction of
movement, one on each side of the target, while the other
two were placed perpendicular to the direction of movement
(see Figure 3-b). The remaining distractors were laid out so
as to match the density condition DD on the path to the tar-
get. For DD = 0, there were no additional distractors on the
path to the target. For DD = 1, additional distractors were
packed from the start point to the closest main distractor,
and offset in the direction perpendicular to the line of move-
ment by a pseudo-random length, keeping them within a 20
degree slice centered in this line of movement. Additional
distractors outside this slice were placed pseudo-randomly
to match the density within the slice. For DD = 0.5, there
were half as many distractors.
1The original Bubble cursor experiment controlled the interspace
in terms of EW/W ratio (Figure 6), which we will also use here for
cross-experiments comparisons.
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We made the following adjustments to the original design.
Instead of making the next target appear in an unpredictable
location, we laid out all 16 targets of a trial series in a circular
manner. The order of appearance followed the recommen-
dations of the ISO 9241-9 standard forcing participants to
perform pointing tasks in every direction [8]. We chose this
more predictable behavior of targets, encountered in several
pointing experiments, e.g., [6, 11, 23, 25], as it better sim-
ulates situations where users have a rough idea about the
direction of the target they are aiming at before starting the
pointing task. Each target had to actually be selected before
proceeding to the next: clicks outside the current target were
counted as errors but did not end the task.

Design
Our experiment was a 4 × 3 × 3 × 3 × 3 within-participant
design with the following factors: (i) four techniques TECH:
Bubble, DynaSpot16 (SPOTWIDTH = 16), DynaSpot32 (SPOT-
WIDTH = 32) and Point Cursor; (ii) three target widths W:
8, 16 and 32 pixels; (iii) three amplitudes A: 256, 512 and
768 pixels; (iv) three EW/W ratios: 1.5, 2 and 3; (v) three
distractor densities DD: 0, 0.5 and 1.

We grouped trials into four blocks, one per technique. Each
TECH block was divided into 3 sub-blocks, one per EW/W
condition. Each of these sub-blocks was composed of 3 W
× 3 A series of 16 pointing tasks where each DD was used
5 times (the first task of a series was not recorded). An ad-
ditional sub-block at the beginning (W and A random) was
used for training. To counterbalance the presentation order
of conditions, we computed a Latin square for TECH and a
Latin square for EW/W and crossed them, obtaining 12 or-
ders, one for each participant. The order of the W × A con-
ditions, as well as the density DD, were chosen randomly but
the same order was used for each TECH across participants
for the 15 recorded tasks of a series.

The experiment started with a training session consisting of
4 TECH × 3 EW/W series, each with W = 16 and A = 512.
The experimenter introduced each technique to the partici-
pant during the first series of each corresponding TECH block;
the two remaining blocks being used as actual training. For
the series actually recorded, participants were instructed to
be as accurate and as fast as possible. The 16 pointing tasks
of a series had to be performed in a row, but participants
were allowed to rest between series. A total of 19,440 actual
pointing tasks were thus taken into account in the analysis
(60 measures for each unique condition). The experiment
lasted approximately 45 minutes.

Combined Width and Hypotheses
One of the main factors used in the experiment comparing
Bubble cursor to other techniques [9] was the EW/W ratio
(effective width of the goal target by its actual width). The
combination of this and factor W controls the distance be-
tween the goal target and the four distractors surrounding it.
This abstraction, well-adapted to the former experiment, is
however not best suited to analyze the different conditions
with DynaSpot.

 IS 

EW

 IS 

EW

EW

 IS 

EW

(a) (b) (c)
Figure 8. (a) IS < DynaSpot Width: Bubble and DynaSpot have the
same EW . (b) IS = DynaSpot Width: Bubble and DynaSpot have the
same EW , but different effective target shapes. (c) IS > DynaSpot
Width: Bubble’s EW is greater than DynaSpot’s EW .

Since the distractors are uniformly placed around the target,
the ratio can be expressed in terms of interspace IS between
the goal target and the distractors: EW = W + IS and
(EW/W ) = (W + IS)/W . As illustrated in Figure 8, this
formulation helps identify the three main conditions for Dy-
naSpot: the spot width can be (a) larger than, (b) equal to,
or (c) smaller than, the interspace IS. The factors W and
EW/W can be grouped into one factor that we call the com-
bined width CW. In the remainder of this paper, we use the
following notation for each pair of conditions W × EW/W:

(BW,DW16, DW32,W )

where BW is the Bubble cursor’s effective width, DW16

and DW32 are the potential effective widths for the two Dy-
naSpot sizes, and W is the target’s width (which corresponds
to the effective width of the target for the point cursor). The
factors described in the previous section yield nine combined
widths CW, listed in Table 2. When the interspace IS is
equal to one of the DynaSpot TECH’s potential effective width
(case (b) of Figure 8), we underline the corresponding Dy-
naSpot (16 and 32 pixels).

Our main hypothesis is that for a given combined width CW,
the effective width EW for each technique should determine
the performance ordering among techniques: if the effective
width for technique a is larger than for technique b (for a
given combined width), then a should be faster than b (for
this combined width). When the effective widths of two
techniques are equal, we do not expect to find significant
differences in terms of performance. However, we expect a
performance degradation when DynaSpot is at its limit effec-
tive width (underlined width in the CW notation). Indeed, in
this particular case, the spot reduction and small intersection
between the target and the spot may forbid the user to use
the full potential effective width of DynaSpot. Additionally,
we hypothesize that density DD will have a similar effect on
point cursor and both DynaSpots, as the behavior of all three
techniques is not directly impacted by density. On the con-
trary, we expect a performance degradation for low densities
in the case of Bubble cursor, consistent with Grossman and
Balakrishnan’s observations regarding visual distraction in
this condition [9].

Results
Results of the repeated measures analysis of variance are re-
ported in Table 1. We verified that there was no effect of
TECH presentation order and observed that learning effects
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Factors DF DFDen F p
TECH 3 33 115.5 < 0.0001

CW 8 88 509.0 < 0.0001

DD 2 22 28.5 < 0.0001

A 2 22 409.6 < 0.0001

TECH × CW 24 264 12.6 < 0.0001

TECH × DD 6 66 9.0 < 0.0001

TECH × A 6 66 2.3 0.0470
CW × DD 16 176 5.6 < 0.0001

CW × A 16 176 2.1 0.0085
DD × A 4 44 1.8 0.1435

TECH × CW × DD 48 528 1.0 0.3746
TECH × CW × A 48 528 1.2 0.1628
TECH × DD × A 12 132 2.3 0.0123
CW × DD × A 32 352 1.1 0.2637

TECH × CW × DD × A 96 1056 1.2 0.0904

Table 1. Results of the ANOVA for MT ∼ TECH × CW × DD × A.

were not significant. As expected CW and A have a signifi-
cant effect on movement time MT. We also observe an effect
of TECH on movement time. Mean movement time is 976 ms
for Point cursor, 831 ms for Bubble, 819 ms for DynaSpot16
and 791 ms for DynaSpot32. However, the ANOVA also re-
veals significant interactions: TECH × CW, TECH × DD and
TECH × A. A thorough comparison between techniques must
thus take into account combined width, density of distrac-
tors, and amplitude.
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Figure 9. Mean movement time per TECH, grouped by CW.

Tukey HSD test (α = 0.05)
CW All DD conditions DD = 0 DD = 1

(12,12,12,08) P< D32,D16 ; B< D32,D16 - B ≮ D32,D16
(16,16,16,08) P< B,D32,D16 B< D32 -
(24,24,24,08) P< B,D16,D32 B< D32 -
(24,24,24,16) P< B,D32,D16 B< D32,D16 -
(32,32,32,16) P< B,D16,D32 B< D16,D32 -
(48,32,48,16) P< D16,B,D32 ; D16< D32 - D16< B
(48,48,48,32) P< B,D16,D32 - -
(64,48,64,32) P< D16,B,D32 - -
(96,48,64,32) P< D16,D32,B ; D16< B - D32< B

P = Point cursor, B = Bubble, DX = DynaSpotX

Table 2. Significant differences for mean movement time MT between
TECH, by CW. The two rightmost columns show how the results are
modified if we restrict our analysis to distractor densities 0 and 1.

Figure 9 shows the mean movement time for each TECH by
combined width CW. Table 2 gives the results of the Tukey
HSD post-hoc test for differences in mean between tech-
niques by combined width (where a < b means that TECH b
is significantly faster than TECH a). The test shows that Bub-
ble and DynaSpot are both significantly faster than Point and
that there is little difference between Bubble and DynaSpot.
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Figure 10. (a) Movement time for each TECH grouped by distractor
density. (b) Movement time for each TECH grouped by amplitude.

Figure 10-a shows mean movement time for each technique
grouped by distractor density. We see that movement time
increases as density increases for Point cursor and DynaSpot,
but not for Bubble cursor. For Bubble cursor, a post-hoc
Tukey test reveals that it is faster for DD=0.5 than for DD=0,
confirming the results of [9]. The test also reveals that each
of DynaSpot16, DynaSpot32 and Point cursor is faster for
DD=0 than for DD=1. Moreover, as shown in Table 2, Bubble
cursor is slower than DynaSpot for DD=0 in most conditions
where the effective widths are equal, while Bubble cursor is
faster than DynaSpot for DD=1 when the Bubble’s effective
width is larger than the DynaSpot’s effective width.

Figure 10-b shows mean movement time for each technique
grouped by movement amplitude. We see that the difference
between Bubble cursor and DynaSpot increases with ampli-
tude. A post-hoc Tukey test shows that DynaSpot32 is faster
than Bubble for an amplitude of 768, but no such difference
is detected for smaller amplitudes. Moreover, removing the
data for which DD=0 makes this significant difference disap-
pear (a cause of the TECH × DD × A interaction).

These results show that the effective width determines the
performance ordering among techniques only under certain
conditions regarding distractor density. Our hypothesis is
thus only partially verified. Distractor density affects Bub-
ble cursor performance, especially for large movement am-
plitudes. As predicted, a significant degradation is observed
when DD=0, i.e., when the bubble’s envelope varies most
during movement, causing visual distraction. Finally, dis-
tractor density also affects Point cursor and DynaSpot in a
similar way, degrading performance as it increases.

Regarding errors, we find an overall error rate of 6.5%. Re-
peated measures analysis of variance shows a significant ef-
fect on error rate for TECH (F3,33 = 11.6, p < 0.0001), CW
(F8,88 = 8.3, p < 0.0001) and A (F2,22 = 5.7, p = 0.0097).
Interestingly, there is no significant effect of DD (F2,22 =
1.4, p = 0.262). Error rate was 9.7% for Point cursor, 6.5%
for Bubble cursor, and 4.9% for both DynaSpot16 and Dy-
naSpot32. As usual in pointing task experiments, error rate
decreases as the (effective) width grows and the amplitude
decreases. Again, we find a significant interaction between
TECH and CW (F24,264 = 2.6, p < 0.0001). Figure 11 shows
error rate for each TECH grouped by combined width CW.
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Figure 11. Error rate for each TECH grouped by combined width CW.

Removing errors trials or taking the time of the first click
(instead of first successful click) does not change the results.
We checked the number of outliers by counting the number
of trials where the time is 3 standard deviations away from
the mean movement time (by participant, technique, com-
bined width, and amplitude). The data contains only 0.99%
such outliers; 87% of them are errors, and none of them is
more than 3.6 standard deviations away. Again the analysis
without these outliers yields the same results.

Performance results for Point and Bubble cursors are con-
sistent with those in [9]. However, our participants per-
form faster overall: 10.6% faster for Bubble cursor and 9.6%
faster for Point cursor. This can be explained by the use of
a ratio of 1.5 instead of 1.3 for the smallest value of EW/W,
a larger error rate in our experiment, and by the details of
the task: the location of the next target in our case was pre-
dictable, whereas it was not in [9].

Qualitative Results
Participants were asked to rank the techniques by subjec-
tive preference in a post-hoc questionnaire. All participants
ranked DynaSpot (either 16 or 32) as their preferred tech-
nique, followed by the other DynaSpot in second. Only
two participants chose another technique than the other Dy-
naSpot as the second best. One ranked the Bubble cursor
second, the other DynaSpot third and Point last, while the
other participant ranked the Point cursor second, the other
DynaSpot third, and Bubble cursor last. Most participants
complained about the visual distraction caused by the Bub-
ble cursor envelope’s strong variations under certain condi-
tions, leading seven of them to rank that technique last. This
is again consistent with earlier results [9, 12]. For instance,
one participant said that “Bubble cursor is distracting when
the target is far away because the bubble has a big size”.

Fitts’ Law and Effective Width(s)
Figure 12 plots movement time as a function of IDE, the
index of difficulty computed with the target’s potential effec-
tive width. We take the mean for each combined width, am-
plitude and technique, fitting 27 points for each technique.
Table 3 gives the intercept, the slope and the adjusted r2 for
both IDE and ID, the latter being computed using the ac-
tual width of the target. We see that using the effective width
yields higher r2 values and improves the fit. When fitting all
the data, we obtain the equation MT = 85+181.IDE with
an adjusted r2 of 0.962 (for 108 points). This shows that
the potential effective width for DynaSpot provides a “defi-
nition” of the width appropriate for applying Fitts’ Law.
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Figure 12. Linear fit: index of difficulty computed with effective width.

Models Using widthW Using effective widthEW
\ MT = a+ b.ID MT = a+ b.IDE

Techniques a b Adj. r2 a b Adj. r2

Bubble -96 188 0.855 65 194 0.970
DynaSpot16 104 145 0.894 108 171 0.966
DynaSpot32 2 160 0.857 88 176 0.973

Point 69 183 0.969 69 183 0.969

Table 3. Linear fit: intercept, slope and adjusted r2 using ID or IDE.

Figure 13 shows the position of user clicks relative to the
target, and the potential/effective target width for one com-
bined width: (64,48,64,32). We observe that clicks are scat-
tered across a larger area for Bubble cursor than for Dy-
naSpot32, even though both have the same effective width
for this combined width. We explain this by the fact that, for
DynaSpot32, this corresponds to the case described in Fig-
ure 8-b, with the interspace equal to the spot’s width, pre-
venting users from fully taking advantage of the effective
width. Interestingly, we observe that users do not use the
full potential of the Bubble cursor either, as there are very
few clicks in the corners of the target’s activation area.

In an effort to formalize these observations, we measured the
distance to the center of the target for all clicks by combined
width, and analyzed the 95% quantile of these distances. As
expected, effective widths are reflected in these distances.
But other observations can be made. For instance when Dy-
naSpot is at its limit potential effective width (underlined
conditions in CW), as for DynaSpot32 in Figure 13, we do
find a significant difference between DynaSpot and Bubble
cursor, as observed above, but also between DynaSpot32 and
DynaSpot16 when the latter is at its limit potential effective
width. Another interesting observation is that none of the
95%-quantile distances are larger than the effective width,
confirming our initial observation that the corner of the Bub-
ble’s activation area are seldom used.

Another type of “effective width”, that we call the a pos-
teriori effective width and denote We, was introduced by
Crossmann in his 1956 doctoral dissertation and advocated
by MacKenzie and others in the field of HCI [18, 25, 27].
This a posteriori effective width comes from the idea of per-
forming an “adjustment for accuracy”: the width of the tar-
get is corrected so that, under certain hypotheses, the data
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Figure 13. Position of user clicks (after a coordinates change to match a right-to-left horizontal target acquisition) for each technique for combined
width CW (64,48,64,32) – Bubble effective width: 64, DynaSpot16 (resp., DynaSpot32) max. effective width: 48 (resp., 64), and target width: 32.

gives raise to an error rate of 4%. A priori, this normaliza-
tion process leads to more robust results, allowing for bet-
ter comparisons between experiments. In the following, we
check that this definition of effective width can be used to
model DynaSpot movement time.

We refer the reader to [25] for details about the computa-
tion of We. This involves removing outliers, using the time
at first button press, computing by participant and full condi-
tion, with We = 4.133·sd where sd is the standard deviation
of the oriented distance from the click to the target’s center
divided by

√
2. Mean values of We for each technique TECH

at each combined width CW are given in the table below.

CW Bubble DynaSpot16 DynaSpot32 Point
(12,12,12,08) 15.37 (+0.36) 13.89 (+0.21) 13.94 (+0.22) 11.51 (+0.52)
(16,16,16,08) 20.04 (+0.32) 17.12 (+0.10) 17.26 (+0.11) 11.47 (+0.52)
(24,24,24,08) 27.31 (+0.19) 20.38 (-0.24) 26.41 (+0.14) 11.30 (+0.50)
(24,24,24,16) 26.27 (+0.13) 23.53 (-0.03) 25.38 (+0.08) 18.54 (+0.21)
(32,32,32,16) 36.15 (+0.18) 29.85 (-0.10) 32.68 (+0.03) 19.25 (+0.27)
(48,32,48,16) 52.41 (+0.13) 30.74 (-0.06) 43.35 (-0.15) 17.22 (+0.11)
(48,48,48,32) 50.03 (+0.06) 46.31 (-0.05) 48.12 (+0.00) 36.20 (+0.18)
(64,48,64,32) 68.61 (+0.10) 48.51 (+0.02) 57.19 (-0.16) 34.82 (+0.12)
(96,48,64,32) 91.57 (-0.07) 45.80 (-0.07) 59.96 (-0.09) 35.69 (+0.16)

Zhai’s index of occupation [27], Iu = log2(We/EW ), is
given in parentheses. Iu indicates the degree to which the
participants over-utilize (positive Iu) or under-utilize (neg-
ative Iu) the potential effective target. We observe that the
index of occupation is systematically higher for Point cursor,
and then for Bubble cursor, and that it globally decreases as
the width grows. This can be explained by the error rate
(see Figure 11) especially for Point cursor. When compar-
ing Bubble cursor and DynaSpot, which have similar error
rates, this confirms that participants better use the full effec-
tive target width with Bubble rather than with DynaSpot.

The counterpart of We, the a posteriori effective amplitude
Ae, is computed as the mean of the distance from the move-
ment start point to the point where the user clicks. We can
compute the effective index of difficulty:

IDe = log2(Ae/We + 1)

Table 4 gives Fitts’ law equation parameters for IDe, and
the throughput in bit · s−1, computed using either the slope
of Fitts’ equation, or the formula recommended in [25]. This
throughput has the advantage of taking the intercept into ac-
count and to be less dependent both on the ID range used
[25] and on the users’ nominal pointing speed [19]. Thus, it

MT = a+ b.IDe TP = 1000/b TP mean of mean
a b adj. r2 IDe (IDE) [25]

Bubble 46 186 0.825 5.38 (5.15) 5.09
DynaSpot16 85 161 0.781 6.21 (5.85) 5.56
DynaSpot32 51 169 0.809 5.92 (5.68) 5.55

Point 49 179 0.756 5.59 (5.46) 5.34
All 57 174 0.792 5.75 (5.52) 5.38

Table 4. Fitts’ law equation parameters for IDe and throughputs.

may be a good index of performance to compare techniques
among papers. Note that the r2 values obtained here do not
look as good as with the other method, but in this case we
fit 324 points by technique, which are subject to participant
performance variability.

DISCUSSION AND FUTURE DIRECTIONS
The results of our experiments are very encouraging. They
show that DynaSpot provides an average speed-up of 18%
over a conventional point cursor, and that for equivalent ef-
fective widths it achieves the same level of performance as
the Bubble cursor, one of the more promising techniques to
date. DynaSpot is slightly more efficient for low object den-
sities and slightly less efficient for high ones. But most im-
portantly, DynaSpot provides these quantitative performance
benefits without departing too much from the conventional
point cursor technique. This has at least three significant
practical consequences. First, end-users are more likely to
adopt the new technique in their daily use of GUIs because
DynaSpot behaves “almost like” a point cursor and does not
cause a strong visual distraction. Second, DynaSpot is com-
patible with all point cursor interactions such as region selec-
tions initiated by clicking in empty space without requiring
an explicit mode switch. Finally, implementing DynaSpot
does not require significant changes to existing GUI frame-
works to support the technique: we implemented support for
DynaSpot in the ZVTM Java toolkit2 in less than 500 lines of
code, and a lazy version of the technique3 was implemented
in the Metisse windowing system4, relying solely on the ac-
cessibility API to make the technique work across unmodi-
fied applications.

Quantitative and theoretical analyses of performance results
show that DynaSpot performance can be modeled with both
2http://zvtm.sf.net
3Which only needs to know the position and shape of interface
components at click time, but does not feature target highlighting.
4http://insitu.lri.fr/metisse
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the a priori and a posteriori effective widths. Somewhat
unexpectedly, DynaSpot proves to be on a par with Bubble
cursor in most targeting situations. If Bubble cursor’s effec-
tive width is sufficiently larger than DynaSpot’s, then Bub-
ble cursor is faster. However, this happens mostly in con-
figurations where the bubble cursor size is likely to vary dra-
matically, causing visual distractions that both hinder perfor-
mance and user acceptance of the technique.

As future work we would like to evaluate area selection. We
can predict what should happen with DynaSpot: (i) if empty
space between targets is sufficiently large compared to the
maximum spot size, the time it takes to initiate a selection
in empty space should be similar to the time it takes with a
point cursor; (ii) in a dense layout, we expect DynaSpot to
be penalized because of the lag+reduction time (300ms). In
this particular situation, an explicit mode-switching mecha-
nism might represent an interesting compromise. DynaSpot
would then have to be compared, for dense layouts, to Bub-
ble and Area cursors augmented with such an explicit mode-
switch, but also to an augmented DynaSpot featuring both
time-based (implicit) and explicit mode-switching. We also
plan to investigate the use of speed coupling in other point-
ing techniques, as this seems to be an efficient way of adapt-
ing a technique’s behavior.
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ABSTRACT
Applications supporting navigation in large networks are used
every days by millions of people. They include road map
navigators, �ight route visualization systems, and network
visualization systems using node-link diagrams. These ap-
plications currently provide generic interaction methods for
navigation: pan-and-zoom and sometimes bird’s eye views.

This article explores the idea of exploiting the connection
information provided by the network to help navigate these
large spaces. We visually augment two traditional navigation
methods, and develop two special-purpose techniques. The
first new technique, called “Link Sliding”, provides guided
panning when continuously dragging along a visible link.
The second technique, called “Bring & Go”, brings adja-
cent nodes nearby when pointing to a node. We compare
the performance of these techniques in both an adjacency
exploration task and a node revisiting task. This compari-
son illustrates the various advantages of content-aware net-
work navigation techniques. A significant speed advantage
is found for the Bring & Go technique over other methods.

ACM Classi�cation Keywords
H. Information Systems H.5 Information Interfaces and Pre-
sentation H.5.2 User Interfaces (H.1.2, I.3.6)

Author Keywords
Interaction techniques, content-aware, graph visualization,
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INTRODUCTION
Applications supporting navigation in large networks are used
every day by millions of people. They include road map
navigators such as Google maps [10], �ight route visual-
ization systems such as Delta Air Line Route Map [6] and
network visualization systems using node-link diagrams [1,
13]. These applications currently provide generic interac-
tion techniques for navigation: pan-and-zoom and some-
times bird’s eye views.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM  978-1-60558-246-7/09/04...$5.00.

However, for large networks, some important tasks related to
the network’s topology are not efficiently supported by exist-
ing techniques. For example, using Google maps, exploring
a long route often involves panning over long portions of a
highway with no exits. Zooming out or using a bird’s eye
view is possible, but some highway exits are difficult to dis-
tinguish from roads passing over or under the highway, so an
exit can be missed. The same problem arises in network vi-
sualization systems where nodes are connected by links that
can be long and cross many other links. Following a specific
link can take a long time without zooming out, but zooming
out makes it difficult to trace a link when other links cross it
at a shallow angle.

The problem of panning and zooming, or using a bird’s eye
view, becomes even more difficult when using a small screen
to view a network. On a PDA or smart phone, the input
device may not have dedicated zooming controls, and only
a small footprint is available for panning gestures, making
panning over a long route slow and tedious.

In this article we explore several techniques to improve nav-
igation in such network-related scenarios by using topolog-
ical information in addition to geometric information. Two
techniques are simply visual enhancements of common spa-
tial navigation methods, while two are novel approaches that
test different trade-offs between topological and spatial nav-
igation. The first, Link Sliding, allows users to slide along
a link to its destination, while the other, Bring & Go, brings
all possible destinations within the users view, and automat-
ically transports the user to the selected point.

We begin by introducing the Link Sliding and Bring & Go
techniques. We then present a controlled experiment that
compares them with visually augmented pan-and-zoom and
bird’s eye view navigation for three fundamental navigation
tasks. We finally discuss implications to the design of sys-
tems for large-network visualization.

RELATED WORK
In their survey on Graph Visualization and Navigation, Her-
man et al. [14] cite four methods for navigating large net-
works: pan-and-zoom, space distortion techniques such as
fisheye views, topological methods such as Furnas’s “Gener-
alized Fisheye Views” [8] and layout techniques to dynami-
cally change the layout of the network according to the user’s
navigation.
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Scrolling, Panning and Zooming
Scrolling consists of using a widget, such as a scroll-bar, to
control the viewport. Panning uses direct manipulation of
the viewport, usually coupled with zooming. A lot of work
has been dedicated to improving navigation using scrolling,
panning, and zooming, particularly in facilitating navigation
in very large spaces, or the navigation to off-screen targets.

Navigation in Large Spaces
When the space is large compared to the viewport size—
say more than ten times the size—navigation can take a sub-
stantial amount of time, particularly for exploratory tasks.
Early on, scroll-bars were proposed as a means for traveling
through large documents. However, they suffer from several
limitations. They show only the size of the viewport relative
to the size of the document, and give no information regard-
ing off-screen content. When the size of the document is
large compared to the viewport—say 1000 times the size—
moving the thumb of the scroll-bar can produce jumps, and
some positions may be unreachable. Therefore, scrolling
alone is insufficient for navigating large spaces, hence the
prevalence of the pan-and-zoom navigation method

Zooming and panning has been used since the beginning of
interactive computer graphics to navigate in maps and other
graphic scenes. Perlin introduced zoomable user interfaces
in [24], while Furnas and Bederson have formalized the con-
cept of space-scale diagrams to reason about these zoomable
spaces.

Navigation involves not only viewing the space, but also
moving the viewport. Several researchers have worked to
optimize the coupling of zoom and pan to allow faster and
more accurate navigation in zoomable interfaces [17, 11,
32, 27] with no assumptions regarding the contents of these
spaces. Ishak and Feiner have proposed Content-aware Scrol-
ling [19] to optimize navigation when paths are known in
advance. For example, their system simplifies following the
reading path of a 2-column document by interactively mov-
ing the viewport along the path, and dynamically adjusting
the zoom to limit the rate of optical �ow in a way similar to
Speed-Dependent Automatic Zooming [17]. Our Link Slid-
ing technique refines this idea for network navigation.

Navigation to Off-Screen Targets
More recent techniques have begun to address the problem
of reaching known off-screen targets, both in terms of their
visibility [12] and in navigating to them [18]. These tech-
niques are closely related to our interest. Given n potential
targets, some being off-screen, they provide visual indica-
tion of their location using a simple representation at the
viewport’s edge (either arcs or wedges). They then provide
mechanisms to select items of interest, and to navigate to
them quickly. These techniques are primarily aimed at small
screens such as PDAs or smart phones, for reading maps,
and reaching places of interest.

Other methods, such as the Vacuum [5], are designed for
wall-sized displays, where targets may be too far away or
too high to reach. These techniques rely on known targets

that are attracted using a directional probe; once they have
been attracted their selection becomes possible. Instead of
navigating to the items, the items are brought close to the
pointer for examination and selection. These techniques are
closely related to our Bring & Go technique but do not use
any topological information to attract objects, only geomet-
ric information.

Space Distortion Techniques
Another approach to navigating large spaces is to distort
the space to shrink uninteresting areas or magnify interest-
ing ones. Magnifying lenses are the simplest of these tech-
niques. They have been improved with fisheye lenses [23]
that can present an overview of the space while allowing lo-
cal in-context zooms, featuring a smooth transition between
the two regions. Latest developments include Sigma Lenses
[26], which use different dimensions to transition between
the overview and the local zoom. However, the maximum
zoom level is about 50, still limited compared to the size of
spaces such as the surface of the Earth.

Other approaches include rubber-sheet deformations [30] and
folded spaces [7] where parts of the space is folded, or stret-
ched, to provide faster navigation with context awareness.
These techniques address representation, and can cope with
a variety of interaction techniques for deforming the space.

Dynamic Layout for Navigation
The above-mentioned techniques are based on a stable space
that users want to explore. Network visualization systems
start from a graph structure and compute a layout that creates
the space. Changing the layout algorithm, or parameters of
these algorithms, can change the space dramatically. The
Bring Neighbors Lens [31] dynamically adjusts the graph
layout to show local connectivity, but is not designed as a
navigation technique. Some network visualization methods
do use this possibility to facilitate navigation [34]. However,
if not carefully constrained, such transformations may break
the user’s mental map of the network [21].

To a lesser extent, the geometry of links can be changed to
enhance their legibility. EdgeLens [33] interactively distorts
links around the pointer, to separate close links that are hard
to follow visually, or that are simply overlaid. Conversely,
Hierarchical Edge Bundles [15] group links to better show
aggregated trends in graph connections, and can be tuned in-
teractively. These simple operations do not change the lay-
out, but improve the readability of links and can help users
in navigating the network.

Topological Navigation
When a spatial embedding is automatically created from a
graph, the size and visibility of the graph features can be
interactively controlled by the user through a “degree of in-
terest” function, introduced by Furnas [8]. Furnas considers
that items in any topology can be assigned an a priori im-
portance and an importance related to a focus point. When a
user selects an item, he conveys to the system the informa-
tion that this item is important to him. Usually, items in the
neighborhood of the focused item are also important, but not
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as much so, and the importance decreases with some notion
of topological distance. The representation of the topology
should show the focus item and its neighborhood, and then
allocate less screen real-estate and visibility to items that are
farther away and less important.

Again, representation can be separated from interaction. Fur-
nas describes the application of his framework to a tree struc-
ture based on selection. This method has been used effec-
tively on trees [28] and on networks [9]. Issues with this
approach include visual discontinuity when updating the de-
gree of interest, and inconsistency in the user’s mental map
when the geometry is recomputed. Topological navigation
allows arbitrarily large data structures to be navigated, as
only a small subset is visible at any time. Navigation con-
sists of successive selection of neighbor items or of textual
search as in SpaceTree [28].

Current navigation techniques either ignore topological in-
formation to optimize spatial navigation, or consider mainly
topology while attempting to maintain a consistent geom-
etry. Our approach considers aspects of the geometry and
topology at the same time.

AUGMENTING STANDARD NAVIGATION TECHNIQUES
Pan-and-zoom navigation is a standard technique that is used
in a large number of 2D navigation tasks. It is an essential
element of map and graph visualization software, and many
similar applications. However, in the presence of numerous
crossing paths, it can be difficult to follow a single path using
this technique alone. Furthermore, if the distance to the des-
tination is unknown, users may fail to zoom-out, and require
numerous clutching operations to follow the path. Bird’s eye
views have been shown to be effective in navigating large 2D
information spaces [16, 20, 27], but they do not allow the
user to clearly resolve individual paths due to the large scal-
ing factor and the small amount of screen real estate alloted
to the view (Figure 1-a).

(a) (b)

Figure 1. (a) Following a link in a dense graph can be difficult using
standard Bird’s Eye View navigation. (b) Highlighting a node’s outgo-
ing links make the task significantly easier.

We can simplify tasks that use connectivity information by
visually distinguishing paths of interest from the background
clutter. The techniques we implemented for the experiment
below allow users to select a node of interest by clicking on
it. The outgoing links are then colored in red, while the con-
trast of all other links, nodes, and labels (black by default) is
reduced by rendering them a light-gray color (Figure 1(b)).
Users may restore the default color-scheme by clicking again

on the initial node, or may select a different node thereby
highlighting its exiting links.

Our Pan & Zoom implementation supports panning by al-
lowing the user to grab-and-drag the graph by clicking on
any non-node location. The motion of the graph follows that
of the mouse cursor. We use the mouse wheel to zoom by
doubling or halving the view scale at each click of the wheel.
As our graph labels are illegible at scales sufficient for con-
text, we have selected this mapping to facilitate rapid switch-
ing between wide and focused views. Moving the wheel for-
ward zooms in, and backward zooms out. Our Bird’s Eye
View implementation allows users to center the view over
any part of the graph by simply clicking on the correspond-
ing location in the Bird’s Eye View. Users may also pan the
view as in the Pan & Zoom technique, or by dragging the
viewport indicator rectangle in the Bird’s Eye View. For the
purpose of the study, our Bird’s Eye View technique does
not support zooming.

LINK SLIDING
Following a route on a map, or a link in a graph visualiza-
tion, is essentially a one-dimensional navigation task. How-
ever, traditional navigation techniques, such as Pan & Zoom,
require the control of two or three degrees-of-freedom to ac-
complish the task effectively. The Link Sliding technique
simplifies the control task by constraining motion to a single
path. The user slides a link-cursor along the link towards
the destination node, as though sliding a bead on a wire.
Changes in the direction of mouse movements are only nec-
essary if the path curves sharply. Otherwise, the user may
slide between two nodes by simply moving the mouse along
the direction tangent to the path. This motion does not re-
quire a high degree of precision, as any movement perpen-
dicular to the path is ignored, and motion stops at the desti-
nation node. The view is automatically panned to follow the
mouse cursor, keeping it in its initial screen location, and the
zoom level is adjusted so as to provide the user with addi-
tional context while sliding along the link.

To activate Link Sliding, the user simply presses and holds
the mouse button on the start node. A light-gray circle ap-
pears around the node, indicating the selection-radius (Fig-
ure 2-a). This radius specifies a region of unconstrained
mouse movement, which allows the user to select an out-
going link. A link-cursor is projected onto the closest point
on the nearest link to aid in selection. As the cursor passes
the selection-radius, the mouse cursor is drawn towards the
link-cursor. Constrained sliding proceeds as follows: at each
mouse event, the system updates the mouse-cursor position
p, and calculates c, the closest point on the path to p, as-
signing it to the path-cursor position. The mouse position is
pulled towards c, by setting p ′ = αp + (1 − α)c. We set
α = 1 within the selection-radius to allow free mouse move-
ment, and smoothly blend it towards 0 beyond the radius by
updating it at each mouse motion event: α ′ = βα + ω . Our
system sets β = 0.5 and ω = 0 to rapidly pull the mouse
cursor to the link.
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Figure 2. (a)The mouse cursor is free to move within a node’s selection-radius. The link cursor shows the closest link, which will be selected upon
passing the selection-radius. (b) Link selection can also be performed at junctions of edge-bundles, beyond a node or junction’s selection-radius the
mouse cursor is constrained to slide along the link.

Distance-dependent Automatic Zooming
Automatic zooming has been shown to reduce completion
times in document navigation tasks [17]. However, previ-
ous work on speed-dependent automatic zooming [17] re-
lied on rate-control panning and scrolling using a mouse.
Pairing first-order control with an isotonic input device like
the mouse is known to yield poor performance [35]. We
introduce a zero-order control mapping that automatically
zooms based on the user’s position along a path. Distance-
dependent Automatic Zooming (DDAZ) is possible, when
both the start and end positions along a path are known (e.g.
when following a route map). While a variety of useful
zoom-level mappings are possible [19], for a graph naviga-
tion task we designed a mapping that sets the zoom level at
the halfway point along the path so that the length of the path
is equal to the viewport width. Thus, short links that traverse
less than one screen-width will produce no zooming, while
for long links, most of the remaining distance to the target is
likely to be visible at the halfway point. Beyond providing
the user with additional context, zooming the view adjusts
the motor-space mapping to document space, allowing the
user to move faster at the central part of the link. We use
the following mapping (similar to a connes function): Given
a distance d traveled by a user along a path of length l, the
scale of the viewport is z = (1− (1− (2d/l− 1)6)4) × (1−
l/w), where w is the width of the viewport at z = 1. This
mapping smoothly and rapidly reaches a wide view of the
graph.

Sliding Along Edge Bundles
When a vertex in a graph has a large number of neighbors, it
is helpful to gather the exiting links in edge bundles to reduce
visual clutter, and aid in link selection [15]. Link Sliding has
been designed to easily traverse edge bundles. Sliding along
a bundle of links is identical to sliding along a single link
until a junction in the bundle is reached. Around each bun-
dle junction, a light-gray circle indicates a selection-radius
where the mouse cursor is detached from the link cursor, al-

lowing the user to select an exiting link in the same manner
as is done at the start node. At each mouse event, the clos-
est point on the entire bundle is computed, and its position
assigned to the link cursor. This allows the user to jump
between nearby links in a bundle by moving the mouse cur-
sor rapidly away from the current link to which it is con-
strained. Isolated links strongly maintain the sliding con-
straint, as no other link can be reached within a single mouse
motion event. The strength of the mouse cursor’s attraction
to the bundle can be modified by adjusting the smoothing
parameters of α as described above.

Bundling
When a node has many outgoing links, selecting one spe-
cific link becomes difficult. To overcome that problem, we
aggregate all the links that point in the same direction and
construct edge bundles. We limit the number of links start-
ing from a node to k (3 to 5 depending on the user’s prefer-
ence). Therefore, bundles have to split at special positions
we call “junction nodes”. Our algorithm constructs bundles
and junction nodes until the number of outgoing links from
n is less than or equal to k.

The bundling algorithm consists of two stages. It first selects
the links that are to be bundled, i.e.: 1) the link to the most
distant neighbor of n, called nf , and 2) the links to the nodes
closest to nf among the neighbors of n. It then adds a single
link (the bundle root) from n to a created junction node nj .
The junction node is positioned at the center of the wedge
formed by the bundled links, at a distance from n that is a
fraction of the distance to the closest node of the bundle. The
second stage consists of changing the bundled links’ sources
from n to nj . This process is repeated until all the long links
have been bundled.

Bundling is only performed when the user starts the naviga-
tion by selecting the source node. It is considered a naviga-
tion mode and not a rendering style as in [15].
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Figure 3. Multiple links leaving a node in the same compass direction (a) are collected into bundles by routing them through a dummy junction node
(b). The process is repeated until the number of bundles leaving all nodes or junctions in the same compass direction fall below a given threshold (c).
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Figure 4. (a) Highlighting all �ights to/from Sydney, Australia. (b) Close-up on Sydney, with highlighting. (c) Bring & Go initiated on Sydney.

BRING & GO
Link Sliding makes it easy to navigate along a given path.
However, it does not help in the decision process that leads to
the selection of one path among many potential candidates.
This decision might depend on the type of arc to be followed
when there are different types of paths. It might also depend
on attributes of the node at the other end of the path. Having
to navigate to the other end, in order to decide whether this
is the path of interest or not, quickly becomes tedious as the
number of connected arcs increases.

Bring & Go addresses this problem by bringing adjacent
nodes close to a node upon selection. Figure 4-a shows a
map of about 700 commercial �ights connecting 232 air-
ports. Highlighting (in red) gives a general idea of the num-
ber and location of airports connected to the currently se-
lected node: Sydney International. At this scale, the node is
difficult to select, being only 1-pixel large on a 17” display.
Moreover, some parts of the network are very crowded, mak-
ing it difficult to visually follow the paths. One has to zoom-
in to get detailed information such as airport names, thus
losing context and moving all airports connected to Syd-
ney out of the viewport (Figure 4-b). When selecting the
node corresponding to Sydney, Bring & Go translates all air-
ports connected to it inside the current viewport (Figure 4-c)
using smooth animations to preserve perceptual continuity
[29]. The spline curves that represent links are smoothly
�attened and brought inside the viewport, thus providing ad-
ditional contextual information, such as the degree of con-
nected nodes, that might help the user make his decision.
For instance, the user might be looking firstly for an airport
hub, which would be more likely to offer him a direct �ight
to his final destination.

Once the user has made a decision about what link to follow,
Bring & Go makes it very easy to reach the corresponding
node with a simple selection of that node. The viewport is
smoothly animated, zooming out and then in to get some
context, as when traveling along a path with Link Sliding
(see section on distance-dependent automatic zooming for
details about the computation of the trajectory in space and
scale). In the meantime, all nodes and splines are animated
back to their previous position and geometry, thus restoring
the network to its original configuration and terminating the
Bring & Go.

The concept of Bring & Go is similar to Hopping [18] and
Drag-and-Pop[3], which facilitate selection by bringing prox-
ies of potential targets closer to the cursor. Bring & Go,
however, is designed for navigation, rather than selection,
and can handle a much larger number of distant targets, as
only connected nodes are brought close. The technique is
also similar to the Bring Neighbors Lens [31], which ad-
justs the layout of the graph to bring connected nodes into
view. However, we believe that Bring & Go’s use of prox-
ies, rather than distortion, better preserves spatial constancy,
and is critical for geographically embedded networks. Most
importantly, Bring & Go works iteratively: a new Bring &
Go can be initiated on a node that is currently inside the
viewport as the result of a previous Bring & Go, bringing
additional nodes into view, and so on. Looking for a �ight
from Sydney to Tel Aviv (which are not directly connected in
our network), a user would easily identify London as a hub
and, thanks to a second Bring & Go initiated on the London
node brought inside the viewport, find that it is connected to
Tel Aviv.
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Bring & Go Layout
The layout algorithm for computing the position of nodes
brought inside the viewport is relatively simple. As illus-
trated in Figure 5, nodes are placed in concentric circles
centered on the selected node according to the following
method.

Polar coordinates (ρ; θ) are computed for all connected nodes.
The list of nodes to be brought inside the viewport is sorted
by distance ρ (shortest first). Nodes are then brought onto
the rings following this order. For each node the algorithm
checks each ring, starting from the innermost one, until it
finds one where the node can be laid out, without overlap-
ping any previously laid-out node, while keeping its θ coor-
dinate constant. This method preserves the direction to the
original location of brought nodes, and gives a sense of their
relative distance to the selected node.

Figure 5. The layout of brought nodes preserves the direction to their
actual location, and gives a sense of their relative distance to the se-
lected node.

EXPERIMENT
We conducted an experiment to compare the performance
and limits of Bring & Go (hereafter abbreviated B&G) and
Link Sliding (LS) with simple visual augmentation of the
methods currently available for navigating in node-link dia-
grams: Pan & Zoom (PZ), and interactive Bird’s Eye View
(BEV). Participants were asked to perform a compound nav-
igation task on an abstract graph. We measured the perfor-
mance time for each sub-task, and accuracy where relevant.
Following the task participants responded to a questionnaire
regarding their experience.

Task and Stimuli
All navigation tasks are set in one of two randomly gen-
erated scale-free graphs, one sparse, and one dense. The
graphs were created using a Barábasi-Albert model [2]. In
the graph generation process, each new node is connected to
n distinct nodes, randomly chosen from the existing nodes.
The sparse graph (1000 nodes, 1485 edges) was generated
with a random connectivity n 2 [1; 2], and the dense graph
(1000 nodes, 2488 edges) using n 2 [1; 5]. We also provide
a small graph (200 nodes, 477 edges) for training purposes.

The nodes on the graphs are labeled with the names of an-
imals, and vegetables. Unlike a real-world task, where the
node labels are meaningful to the user, random name labels
can be difficult to remember. To reduce the cognitive load on
our participants we consistently give the start node the label
“rat”, and give one of its neighbors the label “cat” (explained
below).

The trials in each condition are assigned to four fixed pat-
terns in the corresponding graph, each consisting of a start-
ing node and its neighbors. A pattern has a starting node of
degree d (d = 5 in the sparse graph, and d = 10 in the dense
graph). For each technique, participants perform timed tasks
for all patterns of the two graphs. As we have four tech-
niques, we provided four versions of each graph: the initial
one, and its rotations by 90, 180 and 260 degrees. The la-
bels are changed for each graph pattern, but retain their ani-
mal/vegetable category.

As each technique we study may be best suited to a different
graph navigation tasks, we select three representative task
from Lee et al.’s task taxonomy for graph visualization [22].
The tasks include identifying all nodes connected to a given
node, following a link, and returning to a previously visited
link. Participants performed the three tasks in sequence to
complete one trial. The first task (neighbors task) is to iden-
tify a node’s immediate neighbors. Participants begin at the
start node, which is highlighted in orange, and are asked to
count how many of the node’s neighbors are labeled with an
animal name, and to remember the location of the cat node.
Participants press the space-bar to start, and press it again
when they are done counting. After typing in the number of
animal nodes, the system informs the participant if they have
counted correctly. In the second task (follow task), the sys-
tem centers the view about the start node, and participants
are asked to follow a link, highlighted in orange, from the
start node to a selected “visit node”. Pressing the space-bar
begins the task and clicking on the visit node completes it.
Participants are then instructed to begin the third task (revisit
task). Participants press the space-bar to start, and must then
locate the cat node that they have seen in the neighbors task,
and click on it. They may do this either by retracing their
steps back to the start node, or by moving directly to where
they believe the cat node is located.

To control the tasks completion time, the sum of the dis-
tances between the starting node and its neighbors is con-
stant in all trials of the sparse graph, and all trials of the
dense graph. The distance between the starting node and the
cat node is constant in all patterns, as is the distance between
the starting node and the visit node. Participants were given
a maximum of 40 seconds to perform each task.

Design
Our experiment follows a 4× 2 within-subject design: each
participant performs tasks using each of the four techniques
(Technique 2 fPZ, BEV, B&G, LSg) under two different
graph conditions (G 2 fSparse;Denseg). We group trials
into four blocks, one per technique, so as not to confuse par-
ticipants with frequent changes of the technique. To avoid
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ordering effects, we balance the presentation of technique
using a Latin square consisting of four presentation orders,
and randomly assign three participants per order. Within a
Technique block, each participant perform eight measured
trials, i.e., four trials with each of the two graphs. Trials
within a block were presented in a random order after a train-
ing phase containing four trials, allowing participants to get
familiar with a given technique before empirical measures
were collected. Each navigation task (neighbors, follow, and
revisit) within a trial had to be performed without any pause,
but participants were allowed to rest between tasks. The
experimenter first introduced the task, and then described
each technique immediately before the corresponding block,
to ensure that participants understood how each technique
worked and how best to operate it.

Thirty-two measured trials per participant were analyzed,
yielding a total of 384 trials:

12 Participants
× 4 Techniques
× 2 Graphs
× 4 Trials

384 Total Trials

Apparatus
The experiment was ran on a HP Compaq 8710p equipped
with a 2.4 GHz Intel Core 2 Duo processor, an Nvidia Quadro
NVS 320M graphics card, a 1440 x 900 17” (43.2 cm) LCD
monitor, and a Dell optical mouse. The mouse wheel pro-
duced 24 discrete clicks per revolution. The software was
written in Java 1.6 using the Piccolo toolkit [4].

Participants
Twelve unpaid adult volunteers (8 male, 4 female), with ages
ranging from 23 to 35 years, participated in the experiment.
Participants were right-handed, with normal or corrected-to-
normal vision.

Predictions

Neighbors Task
H0 - Time performance rank: B&G will be the fastest for
both graph densities, as all of the neighbors can be seen on
the screen at once with legible labels. B&G will be followed
by LS as it should make navigating to neighbors easy, and
by BEV, which allows fast motion through the graph. PZ is
expected to be the worst performer.

H1 - Density in�uence on LS: LS may be affected by graph
density as participants must make more decisions while slid-
ing along a bundle. This may cause its performance to drop
below that of BEV for dense graphs .

Follow Task
H2 - Time performance rank: B&G will be the fastest for
both graph densities, followed by LS; BEV and PZ will
perform similarly, as following a single link requires a high
degree of precision, which may be difficult to achieve using
BEV.

H3 - Density in�uence on LS: We expect LS to be affected
by graph density, possibly performing slower than BEV for
dense graphs .

Revisit Task
H4 - Time performance rank: B&G will be the fastest for
both graph densities, followed closely by LS which may
support greater use of spatial memory; BEV and PZ are ex-
pected to be slower due to more difficult control, but as both
support use of spatial memory we do not expect the differ-
ence to be as great as in the previous tasks.

Results
In the analysis reported below the performance times of tri-
als that were not completed successfully are replaced by the
mean time of successful trials for each condition.

Neighbors Task
Error Rate: An error in this task indicates that the par-
ticipant’s count of neighboring nodes labeled with animal
names was incorrect. Of all errors 19% were committed
after the participant reached the time limit. The rest were
committed within the alloted time for the task.

A Friedman’s α2 test showed a significant effect of Tech-
niques (Figure 6-a). Wilcoxon’s signed ranks test revealed
a significant difference for dense graphs . BEV (42% error
rate) and LS (33%) were both significantly more error-prone
than B&G (10%), while PZ showed a 25% error rate.

Performance Time: Results for this task should be inter-
preted cautiously on account of the high rate of errors. An
analysis of variance (ANOVA) revealed a significant effect
of Techniques on Time (F3,33 = 69.811, p < :0001) (Fig-
ure 6-b). Post-hoc pairwise mean comparisons showed that
B&G was significantly faster than the three other techniques
and that BEV performed better than PZ. Mean times were:
PZ 27.2 sec (SD=0.8), BEV 21 sec (SD=0.7), LS 24 sec
(SD=0.8) and B&G 8.5 sec (SD=0.2). ANOVA also re-
vealed a significant effect of Graphs (F1,11 = 242.587, p <
:0001) and a significant interaction Techniques × Graphs
(F3,33 = 21.82, p < :0001). The performances of all Tech-
niques were degraded with dense graphs . As predicted in
H0, B&G showed fastest performance at visiting the neigh-
borhood. LS, however was slower than expected. Moreover,
the density of the graphs had an in�uence on time perfor-
mance for all Techniques , whereas H1 predicted that LS to
be the most affected.

Follow Task
Error Rate: An error is reported when a participant was
unable to complete the task within the time limit. Only two
errors occurred, both for PZ in a dense graph. Both were
due to subjects getting lost.

Performance Time: ANOVA revealed a significant effect
of Techniques on Time (F3,33 = 12.521, p < :0001) (Fig-
ure 6(c)). Post-hoc pairwise mean comparisons showed that
B&G was significantly faster than PZ and BEV and that LS
was significantly faster than PZ. Mean times were: PZ 7 sec
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Figure 6. (a) Neighbours Task Error Rate and (b) Performance Time, (c) Follow Task Performance Time, (d) Revisit Task Performance Time.

(SD=0.4), BEV 5.6 sec (SD=0.2), LS 4.9 sec (SD=0.3) and
B&G 4.2 sec (SD=0.2). ANOVA also revealed a significant
effect of Graphs (F1,11 = 5.81, p < :05) and a significant
interaction Techniques × Graphs (F3,33 = 3.71, p < :05).
While the performances of PZ, BEV and B&G remains sta-
ble for both graphs densities, the performances of LS were
degraded, with a mean time of 3.8 sec (SD=0.2) for sparse
graphs and 6 sec (SD=0.6) for dense graphs . Here, our pre-
diction for both time performance (H2) and graph density
in�uence on LS (H3) were verified.

Revisit Task
Error Rate: Nine errors occurred, 3 for PZ, BEV and LS,
mainly for the dense graphs, where subjects did not find the
cat node and time ran out.

Performance Time: ANOVA revealed a significant effect
of Techniques on Time (F3,33 = 35.453, p < :0001) (Fig-
ure 6(d)). Post-hoc pairwise mean comparisons showed that
B&G was significantly faster than the three other techniques
and that LS was significantly faster than PZ. Mean times
were: PZ 15.6 sec (SD=0.7), BEV 13.3 sec (SD=0.6), LS
12 sec (SD=0.7) and B&G 7.2 sec (SD=0.2). ANOVA also
revealed a significant effect of Graphs (F1,11 = 15.612, p <
:01). Performances on the dense graphs were significantly
degraded. However, ANOVA did not show any significant
interaction Techniques × Graphs . While our predictions on
the time performance rank were verified, the difference be-
tween the spatial techniques and Bring & Go were greater
then expected (H4).

Qualitative Evaluation
Following the task, participants responded to a questionnaire
regarding their experience. Questions were presented using
a five point labeled Likert scale with labels ranging from
“strongly disagree” to “strongly agree”. For each technique,
participants responded to statements stating that it was easy
to learn, was tiring, and was pleasant to use, that they were
able to accomplish the tasks quickly using the technique, and
that they found it easy to accomplish the neighbors and re-
visit tasks using the technique. Response summaries are pre-
sented in Figure 7. Written and oral comments were also
solicited.

Participants unanimously agreed that Bring & Go was quick,
and made accomplishing the tasks easy. They also found

1 2 3 4 5
Strongly agreeStrongly disagree

Bring & Go       Link Slider       Bird’s Eye View       Pan & Zoom

Pleasent

Tiring

Revisit
is easy

Neighbors
is easy

Quick

Easy to
learn

Figure 7. Questionnaire results for the four techniques.

it the least tiring, and most pleasant to use. Link Sliding
and Bird’s Eye View both received middling reactions re-
garding the ease and speed at accomplishing tasks. Pan &
Zoom was generally rated as slow and difficult to use for the
given tasks. A common complaint regarding Pan & Zoom
was that the zoom control was too sensitive. We had set the
zoom control to double or half the view scale at each click of
the wheel in order to facilitate multi-scale navigation. This
may be inconsistent with the wheel’s more common use as a
scrolling control, where a great amount of turning is needed
to effect large changes.

Link Sliding elicited the most varied opinions regarding how
pleasant it was to use. Some participants enjoyed the tech-
nique, one saying that it was “fun, and helped learning the
graph layout,” while others found it to be “tiring on the eyes.”
Several reported feeling dizzy or disoriented while sliding
along links, attributing this feeling to the automatic zooming
feature. The disorientation may also be due to rapid motion
of the viewport while the participant’s eyes were fixed on the
cursor, which did not change screen location.

CHI 2009 ~ Understanding Graphs April 9th, 2009 ~ Boston, MA, USA

2326

SELECTED PUBLICATIONS (2006-2011) 133



DISCUSSION
Our experiment clearly illustrates that using connectivity in-
formation as a basis for graph navigation can significantly
reduce task completion time, while improving the quality
of the user experience. Specifically, the Bring & Go tech-
nique is faster and easier to use than the others we tested.
While the other techniques do use connectivity information
to some extent, they rely primarily on the spatial layout of
the graph, and on the motion of the user’s view port in this
space. This is in sharp contrast with Bring & Go, which
provides only slight spatial cues, and automatically controls
the view port. The degree to which Bring & Go is faster is
somewhat surprising, particularly for the revisit task, as one
would expected its performance to improve with greater spa-
tial awareness of the graph structure (H4). We believe that
the ability to see all connected nodes quickly, and traverse
links rapidly, greatly reduced our participants’ need to rely
on their memory.

One participant commented that Pan & Zoom “requires a lot
of memory effort.” This method does not allow a user to
see all neighboring nodes at the same time while still being
able to read their labels, consequently the user must remem-
ber the nodes’ locations. Bring & Go makes remembering
neighbor locations unnecessary, as they can all be seen at
once. However this advantage may diminish in tasks that
demand greater spatial awareness, such as navigating maps,
or in networks where the location of a node is meaningful.
Furthermore, the revisit task in our experiment only required
users to traverse a single intermediate node with a known
name. As the number of intermediate nodes increase, re-
membering a graphs connectivity may become more diffi-
cult than remembering its spatial embedding. Studying this
trade-off is an interesting avenue for future research.

Beyond reducing memory requirements, Bring & Go also
has a mechanical advantage over the other techniques, as the
user does not need to pan the view. Panning is a closed-loop
control task that must be performed almost continuously in
the spatial navigation techniques, and which the user per-
forms in parallel with a visual search. Bring & Go requires
active control for only two pointing sub-tasks, and the visual
search is performed separately. The difficulty of spatial navi-
gation is re�ected in participants comments on Pan & Zoom,
as some note that they never used the zooming feature, find-
ing it too difficult to control both position and scale at the
same time. This difficulty may explain the high variance
we observed in the Pan & Zoom technique, as some partic-
ipants may have relied largely on zooming for navigation,
while others would have relied more on panning.

Two key features of Link Sliding, that we expected would
raise its performance over the other spatial techniques, are
the simplification of the control task by reducing it to the
control of a single degree of freedom, and the automatic
control of the view port zoom level. Indeed, for the elemen-
tary task of following a single link, Link Sliding appeared
to perform at least as well as Bring & Go This can be seen
in the follow task in the sparse graph condition(Figure 6-c).
However, this performance did not scale favorably with the

complexity of the task (H1). Visiting all of the neighbors of
a node requires repeated round-trips back to the start node.
In contrast, using Bird’s Eye View participants were able to
move directly from neighbor to neighbor. A number of our
participants commented that it was too difficult to jump be-
tween adjacent links, and one explicitly requested a mecha-
nism for shortcuts between links. Another possible barrier to
allowing Link Sliding to navigate easily from high-valence
nodes is the effect of edge-bundling. While edge-bundling
reduces clutter, and simplifies link selection when leaving a
node, it also changes the visual orientation of links, and re-
quires the user to follow a more complex path with multiple
junctions that are not a part of the underlying graph’s topol-
ogy. The change in angle can be particularly problematic
when the user attempts to return to the previous node after
releasing the mouse button, as the new node’s outgoing bun-
dles do not match the original node’s bundles, so the user
must leave by following a bundle aimed in a slightly differ-
ent direction then of the bundle on which she arrived. We
believe that some of these issues may be addressed by opti-
mizing the bundling algorithm to minimize changes in link
angle, or by finding an optimal set of static edge-bundles for
the entire graph.

CONCLUSION
This work has began the exploration of topology-aware nav-
igation of large graphs, by examining several possible meth-
ods ranging from mostly spatial, to mostly topology-based
navigation. We have found the technique Bring & Go, which
relies more on topology than spatial location, to hold a clear
advantage for several key navigation tasks. The Link Sliding
technique, which attempts to combine the advantages of both
spatial and topological navigation, did not perform as well as
expected, performing the same as, or only slightly better than
Bird’s Eye View. However, we believe that Link Sliding is
worthy of further investigation for navigating networks, such
as route-maps, that are spatially embedded. While Bring &
Go works well for finding labeled nodes, it provides very
little geographical context. For example, finding all of the
coastal towns of an unknown country would be a difficult
task using Bring & Go, as the user cannot easily follow the
shoreline. This task could be easily accomplished using ei-
ther Link Sliding or Bird’s Eye View navigation.

Our results suggest that any system for visualizing large net-
works will profit from some form of topology-aware naviga-
tion using one or more of the techniques described here. As
both the visual augmentation, as well as the navigation tech-
niques, are triggered only in the context of links and nodes,
they do not interfere with existing spatial navigation. In-
deed, a combination of methods may be required for high-
level navigation tasks, as each method has its own unique
strengths.

Bring & Go and Link Sliding have been implemented us-
ing both Piccolo [4] and ZVTM [25], and are available in
ZGRViewer1, a tool for navigating large graph layouts com-
puted using the GraphViz package2.
1http://zvtm.sf.net/zgrviewer.html
2http://www.graphviz.org/
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Representation-Independent In-Place
Magnification with Sigma Lenses

Emmanuel Pietriga, Olivier Bau, and Caroline Appert

Abstract—Focus+context interaction techniques based on the metaphor of lenses are used to navigate and interact with objects in large

information spaces. They provide in-place magnification of a region of the display without requiring users to zoom into the representation

and consequently lose context. In order to avoid occlusion of its immediate surroundings, the magnified region is often integrated in the

context using smooth transitions based on spatial distortion. Such lenses have been developed for various types of representations

using techniques often tightly coupled with the underlying graphics framework. We describe a representation-independent solution that

can be implemented with minimal effort in different graphics frameworks, ranging from 3D graphics to rich multiscale 2D graphics

combining text, bitmaps, and vector graphics. Our solution is not limited to spatial distortion and provides a unified model that makes it

possible to define new focus+context interaction techniques based on lenses whose transition is defined by a combination of dynamic

displacement and compositing functions. We present the results of a series of user evaluations that show that one such new lens, the

speed-coupled blending lens, significantly outperforms all others.

Index Terms—Graphical user interfaces, visualization techniques and methodologies, interaction techniques, evaluation/

methodology.

Ç

1 INTRODUCTION

BIFOCAL display techniques complement conventional
navigation techniques such as pan and zoom, typically

used in 2D multiscale environments [1], [2], [3], and those
based on the walking and flying vehicle [4] metaphors
commonly employed to interactively explore 3D worlds.
Beyond the now-ubiquitous map-like overviews introduced
30 years ago [5], a variety of bifocal techniques termed
focus+context have been designed to further help users
navigate in complex visual representations such as large
trees [6], [7], graphs [8], and high-resolution bitmap
representations [9]. These techniques can also help users
interact with objects in vector graphics editors [10] or select
small interface widgets [11]. The defining characteristic of
these focus+context techniques is that they provide in-place
magnification of a region (the focus) of the current display
(the context), allowing users to get more detailed informa-
tion about specific elements of the interface without having
to zoom in the whole representation.

Interactive in-place magnification lenses have been
available on the user’s desktop for more than a decade,
from simple magnifier lenses used as accessibility tools [12]
to fancy screen savers distorting the user’s workspace.
These early implementations were based on a simple
magnification method that consisted in merely duplicating
the pixels of the original representation. While implement-
ing such lenses is fairly trivial, implementing lenses that
actually render objects in the magnified region with more

detail is not. Models and implementations of the latter
usually require information about, and some level of control
on, the inner structure and elements of the representation,
which might actually get modified by the lens. Such models
and implementations are thus often tightly coupled with a
particular graphics framework or application. From a
purely theoretical perspective, however, the same general
approach applies to many types of applications: 2D vector
graphics editors, geographical information systems, CAD
tools, or any other 3D application. No matter the repre-
sentation and underlying graphics framework, the process
consists in rendering a subregion F of the current
representation C at a larger scale and with more detail,
and integrating F into C through a nonlinear transforma-
tion to achieve a smooth transition between the two.

The Sigma Lens framework [13] extends this general
process by defining transitions between focus and context
as a combination of dynamic displacement and compositing
functions, making it possible to create a variety of lenses
that use techniques other than spatial distortion to achieve
smooth transitions between focus and context, and whose
properties adapt to the users’ actions, all in an effort to
facilitate interaction. In this paper, we extend and strength-
en that framework by describing a general approach to its
design and implementation that shows how Sigma Lenses
can be representation independent. The main contribution
is a rendering technique based on a unified model that can
be integrated with minimal effort in different graphics
frameworks, ranging from 3D graphics consisting of
complex textured meshes to rich multiscale 2D graphics
combining text, bitmaps, and vector graphics. The techni-
que does not need to have knowledge about, or access to,
the graphical objects that constitute the representation.

After an overview of related work in Section 2, we give a
theoretical description of our framework in Section 3, also
summarizing the Sigma Lens unified model originally
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defined in [13]. We then instantiate lenses of particular
interest in this model, and present a series of evaluations
that test their limit performance on 2D navigations tasks.
We provide a detailed summary of the experiments
reported in [13], and report the results of a new controlled
experiment that covers cognitive aspects of interaction with
lenses that were left as future work, further confirming that
one of our new lens designs, namely the SPEED-COUPLED

BLENDING lens, significantly outperforms all others. A
technical overview of two implementations follows, one for
OpenGL 3D graphics taking advantage of hardware
acceleration, the other for a general purpose, cross-platform
2D application programming interface. Advantages and
limitations of our approach are discussed in Section 8, along
with plans for future work.

2 RELATED WORK

Many focus+context techniques are based on the concept of
lenses. The simplest lens is the electronic equivalent of a
magnifying glass. While easy to understand, this type of lens
occludes the immediate surroundings of the magnified
region [14], as a physical magnifying glass does, thus hiding
an area of significant interest and making it difficult for users
to relate focus and context in the representation. In order to
avoid this problem, the magnified region is often integrated
in the context using smooth transitions based on nonlinear
magnification techniques. These techniques create a transi-
tion zone in which the representation is distorted (see Fig. 1a).

Distortion-based visualization techniques often rely on
metaphors inspired by the physical world such as stretch-
able rubber sheets [15] and, more generally, surface
deformations [16]. Others work with more fundamental
concepts such as hyperbolic projection [6] or nonlinear
magnification fields [17]. The distortion can either extend to
the limits of the representation [14], [15], or it can be
bounded to a specific area. This paper focuses more
specifically on the latter case, i.e., on lenses, termed
constrained lenses [9], [17], [18], [19], that leave a significant
part of the context undistorted. Cockburn et al. [20] survey
many of these techniques in their recent review of over-
view+detail, zooming, and focus+context interfaces.

While all the above techniques apply to 2D graphics,
other techniques have been developed for distortion in 3D.

A first set of techniques deforms 3D representations by
projecting a texture on a mesh that models the distortion, as
do pliable surfaces for 2D representations [16]. LaMar
et al.’s magnification lenses [21] are based on homogeneous
texture coordinates and special geometries. They can be
applied to both 2D and 3D representations but are limited
in the type of distortion and lens shapes they can model.
Nonlinear perspective projections [22] project the RGB
image produced by a 3D pipeline on a surface shape
inserted in front of the flat projection plane. They can model
spatially bounded distortions. Related to the latter is Brosz
et al.’s single camera flexible projection framework [23],
which is capable of modeling nonlinear projections through
the parametric representation of the viewing volume.

There is also an impressive set of space deformation
techniques (see [24] for an overview), ranging from early
works on the deformation of solid primitives [25], [26] to
view-dependent geometry [27] and deformation based on
hardware-accelerated displacement mapping [28], [29] and
deflectors [30]. These techniques distort 3D geometry, but
often do so in an object-centric manner, and are thus not
well suited to the implementation of focus+context naviga-
tion lenses, which deform a region of the current display,
i.e., a subsection of the current viewing frustum that
intersects a set of objects, some of them only partially.
Camera textures [31] are among the few to actually apply
constrained magnification lenses to 3D meshes, but the
technique requires a sufficient level of tessellation of the
target mesh to produce distortions of good quality.

Techniques such as the last one are typical examples of
approaches strongly coupled with a specific type of graphics.
This coupling is both a strength and a weakness. The strength
lies in the capacity to access and modify the graphical objects
that are to be distorted and rendered in a focus+context view.
This is also a weakness, however, as a technique that works
with 2D vector graphics will not be applicable to 3D meshes,
or even to representations that include bitmap images. Other
techniques, such as those based on 3D surface deformation
and texture mapping, suffer from a somewhat opposite
problem: while generating focus+context views of 2D
representations, they require capabilities that are often not
available in 2D graphics libraries.

One goal of our approach is to provide a method for
implementing constrained magnification lenses that is as

456 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 3, MAY/JUNE 2010

Fig. 1. Three different lenses obtained with minor modifications to the scale and compositing functions: (a) a distortion lens on a high-resolution
bitmap (subway map), (b) a hovering lens on 2D vector graphics and text (ACM UIST keyword tag cloud), and (c) a speed-coupled blending lens on a
3D model of the Moon orbiting the Earth.
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independent as possible of the nature of the representation
and graphics library employed, ranging from 3D scenes in
OpenGL to rich 2D vector graphics, as typically manipu-
lated with tools such as Adobe Illustrator. Our other goal is
to create a flexible framework of higher expressive power
than existing solutions, going beyond distortion to achieve
smooth visual transitions between focus and context,
resulting in lenses that can be manipulated more efficiently
by users.

3 GENERAL FRAMEWORK

Our general approach is positioned at a level of abstraction
high enough for the model to be applicable to a variety of
graphics frameworks, requiring the underlying libraries to
provide as small a number of features as possible. It
basically consists in transforming the representation at the
pixel level after it has been rendered, independently of how
it was rendered. To employ terminology drawn from 3D
graphics, our technique works in image space, as opposed
to object space. This approach has advantages beyond its
wide applicability but also some limitations, which will be
discussed later in Section 8.

3.1 Dual Rendering

All constrained magnification lenses featuring a regular
shape share the following general properties, no matter
how they transition between focus and context (see Fig. 2):

. RI : the radius of the focus region (a.k.a. the flattop),
which we call inner radius,

. RO: the radius of the lens at its base, i.e., its extent,
which we call outer radius,

. MM: the magnification factor in the flattop.

Applying a constrained lens to a representation effec-
tively splits the viewing window into two regions: the
context region, which corresponds to the part of the
representation that is not affected by the lens, and the lens
region, in which the representation is transformed. We
consider the lens and context regions as separate buffers:
the context buffer holds what is displayed in the absence of
any lens; the lens buffer contains a rendering of the region
corresponding to the bounding box of the lens. These

basically correspond to the context and focus viewing
windows of the original Sigma Lens model [13] in the case
of 2D multiscale representations, though here we are not
limited to this type of graphics representation.

Our technique consists in asking the underlying
graphics library for two separate rendering passes. One
corresponds to what is seen in the context region and is
stored in the context buffer, whose dimensions w� h
match that of the final viewing window displayed to the
user. The other rendering pass corresponds to what is seen
in the lens region. Since we want the lens to actually
provide a more detailed representation of objects in the
magnified region, and not merely duplicate pixels from the
previous rendering, the actual dimensions of the lens
buffer are 2 �MM �RO � 2 �MM �RO. The buffer can thus
accommodate a uniform magnification by a factor of MM

of the lens region. The final viewing window displayed on
screen can then be obtained through the arbitrary
transformation and composition of pixels from both
buffers. This includes displacement and compositing
functions that will control the transition between the focus
and context regions, as defined in the Sigma Lens unified
model [13], which we briefly summarize.

3.2 Sigma Lenses

Sigma lenses build upon prior work on distortion lenses
[18], but combine space, time, and translucence to define
new types of transitions between focus and context, in an
effort to create more usable lenses (see Sections 5 and 6).

The standard transformation performed by graphical
fish-eyes consists in displacing all points in the focus buffer
to achieve a smooth transition between focus and context
through spatial distortion. This type of transformation can
be defined through a drop-off function which models the
magnification profile of the lens. The drop-off function is
defined as

Gscale : d 7! s;

where d is the distance from the center of the lens and s is a
scaling factor. Distance d is obtained from an arbitrary
distance function D. A Gaussian-like profile is often used to
define drop-off function Gscale, as it provides one of the
smoothest visual transitions between focus and context (see
Figs. 2 and 3). It can be replaced by other functions, which
are already well-described in literature [9], [18].
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Fig. 2. Gaussian distortion lens. The level of detail in the flattop is
increased by a factor of MM ¼ 4:0.

Fig. 3. Simple distortion lens.
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Definition 1. Displacement and compositing function R

Rðx; yÞ ¼
xc þ x�xc

MM ; yc þ y�yc
MM

� � N
�FT
ðx; yÞ;
f8ðx; yÞjDðx; yÞ � RIg; ð1:1Þ

xc þ x�xc
GscaleðDðx;yÞÞ ; yc þ

y�yc
GscaleðDðx;yÞÞ

� � N
GcompðDðx;yÞÞ ðx; yÞ;

f8ðx; yÞjRI < Dðx; yÞ < ROg; ð1:2Þ
ðx; yÞ; f8ðx; yÞjDðx; yÞ � ROg: ð1:3Þ

8>>>>>>><
>>>>>>>:

Distance functions producing basic regular lens shapes
are easily obtained through LðP Þ-metrics [18]:

D : ðx; yÞ 7!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� xcjP þ jy� ycjP

P

q
;

where ðx; yÞ are the coordinates of a point seen through a
lens centered in ðxc; ycÞ, and P 2 IN�. P ¼ 2 corresponds to a
circular lens and P ¼ 1 to a square lens. As discussed later,
more complex or irregular lens shapes can easily be
obtained, e.g., by making RI and RO angle dependent,
usually in combination with Lð2Þ.

In our approach, the overall process consists in applying
a displacement function to all pixels in the lens buffer that
fall into the transition zone: pixels between RI and MM �RO

get compressed according to the drop-off function in such a
way that they eventually all fit between RI and RO. Pixels of
the lens buffer can then be composited with those of the
context buffer that fall into the lens region.

When only interested in spatial distortion, generating the
final representation simply consists in replacing pixels in the
lens region of the context buffer by those of the lens buffer, in
other words, compositing them with the over operator
(� ¼ 1:0). But, other values of � and other operators in Porter
and Duff’s rich algebra [32] can be used to achieve interesting
visual effects. It is, for instance, possible to obtain smooth,
distortion-free transitions between focus and context by
applying an alpha blending gradient centered on the lens. Or,
as we will see later, a simple magnifier lens (RI ¼ RO) can be
made much more usable by making it uniformly translucent
and coupling � to its speed.

The rendering of a point ðx; yÞ in the final viewing
window is controlled by functionR (see Definition 1), where

plens �� pcontext
denotes the pixel resulting from alpha blending a pixel from
the lens buffer and another from the context buffer with an
alpha value of �. As with scale for distortion lenses, the
alpha blending gradient can be defined by a drop-off
function that maps a translucence level to a point ðx; yÞ
located at a distance d from the lens center:

Gcomp : d 7! �;

where � is an alpha blending value in [0; �FT ], �FT being
the translucence level used in the flattop of the lens.

The flattop region corresponds to case ð1:1Þ of Definition 1,
the transition to case ð1:2Þ, and the region beyond the lens
boundaries, i.e., the context, corresponds to case ð1:3Þ.
Detailed information about the model and functions
summarized in this section can be found in the original
paper on Sigma Lenses [13].

4 INSTANTIATING LENSES IN THE MODEL

In our approach to the implementation of the Sigma Lens
framework, new lenses are obtained very easily, only by
defining functions Gscale and Gcomp. Some examples of
interesting transitions follow.

First, for reference, a plain and simple distortion lens
with a Gaussian-like drop-off function (Fig. 3) can simply be
obtained with the following instantiations of Gscale and
Gcomp : f8d j RI < d < ROg

GscaleðdÞ ¼ MM�1
2 � cos �

RO�RI
� d� ��RI

RO�RI

� �
þ MMþ1

2 ;

GcompðdÞ ¼ 1:0:

(

Figs. 1a and 2 give examples of a distortion lens with a
Gaussian-like drop-off.

The BLENDING lens described in [13], which achieves a
smooth transition between focus and context through
gradual alpha blending only (Fig. 4), is easily instantiated
using a linear drop-off for �:

f8djRI < d < ROg
GscaleðdÞ ¼MM;
GcompðdÞ ¼ �FT

RI�RO
� d� �FT �RO

RI�RO
:

�

This type of lens does not feature a continuous spatial
transition between focus and context. Instead, visual
continuity is achieved through increasing translucence.

As with any lens, other distance functions can be used
[18]. Lð1Þ, however, introduces artificial edges which give
a false impression of spatial depth; if a square lens is
required, Lð3Þ offers an interesting approximation, smooth-
ing the edges while featuring a shape close to a square, as
illustrated in Fig. 5.

Spatial distortion and gradual alpha blending can of
course be combined. Fig. 6 shows an example of a so-
called HOVERING lens as it appears to float above the
representation.

f8djRI < d < ROg
GscaleðdÞ ¼ 1�MM

RO�RI
� dþ MM�RO�RI

RO�RI
;

GcompðdÞ ¼ �FT
RI�RO

� d� �FT �RO

RI�RO
:

(

This lens mitigates issues of both distortion-only and
alpha blending-only transitions: 1) when the user is
performing a focus targeting action,1 the target object no
longer appears to temporarily move away from the
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Fig. 4. Blending lens.

1. The low-level and ubiquitous action which consists in moving the lens
in the main window so as to position it over an object to be magnified in the
flattop is termed focus targeting [33].
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approaching flattop when entering the peripheral zone of

the transition region (an effect due to the spatial distortion)

as this zone is almost transparent; 2) this peripheral zone is

still visible (undistorted) by translucence through the inner,

distorted zone of the transition; 3) the distortion in this

inner region contributes to visually differentiating focus

and context during lens movements, and to the minimiza-

tion of the distance between the point where an object

disappears from the context and the point where it appears

in the focus area.

4.1 Speed Coupling

In addition to the transition functions described earlier, the

Sigma Lens framework allows for lens properties such as

magnification factor, radius, or flattop opacity to vary over

time. The first example of lens to make use of dynamic

properties was Gutwin’s SPEED-COUPLED FLATTENING lens

[33], which uses the lens’ dynamics (velocity and accelera-

tion) to automatically control magnification. By canceling

distortion during focus targeting, speed-coupled flattening

lenses improve the usability of distortion lenses. Basically,

MM decreases toward 1.0 as the speed of the lens (operated

by the user) increases, therefore flattening the lens into the

context, and increases back to its original value as the lens

comes to a full stop. Such behavior can easily be implemented

in our approach using a simple interpolated low-pass filter

(see [13] for detailed information). Let SðtÞ be the time-based

function returning a numerical value that depends on the

velocity and acceleration of the lens over time. The function is

set to return a real value in [0.0,1.0]. Making a lens parameter

such as the magnification factorMM speed dependent is then

easily achieved by simply multiplying that parameter by the

value of SðtÞ, as shown in Fig. 7a.

Other properties can be made speed dependent, includ-
ing the radii RI and RO, as well as the translucence value in
the lens’ flattop �FT . For instance, the SPEED-COUPLED

BLENDING lens, which to our knowledge features the best
focus targeting performance, is also easily obtained as
shown in Fig. 7b. This lens features a larger flattop area
compared to lenses of the same size that feature a transition
zone. This makes the earlier mentioned focus targeting task
easier for the user from a purely motor perspective, but the
occlusion stemming from the absence of a smooth transition
zone counterbalances this theoretical advantage. The occlu-
sion problem is addressed by coupling �FT to the speed of
the lens: the lens becomes increasingly translucent as it is
moved faster, and conversely (see Section 5 for more detail).

5 USER STUDY: FOCUS TARGETING PERFORMANCE

In order to verify the above assumptions about the
properties of various lenses and their impact on user
performance, we ran a series of experiments that evaluate
lens usability in different navigation situations. We briefly
present in this section the results of studies reported in
detail in [13], that compare a set of lenses on an elementary
action involved in any navigation task: focus targeting. The
task consists in putting a given target in the flattop of the
lens and is one of the building blocks of many higher level
navigation tasks such as searching [35]. We then report in
Section 6 the results of new experiments that further test the
two most efficient lenses in a more complex navigation task
that involves both global and local navigation actions.

5.1 Apparatus

In all our experiments, we used a Dell Precision 380
equipped with a 3 GHz Pentium D processor, an NVidia
Quadro FX4500 graphics card, a 1;600� 1;200 LCD monitor
(2100) and a Dell optical mouse. The program was written
with the multiscale 2D framework presented in Section 7.1.
The application was limited to a 1;400� 1;000 window with
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Fig. 6. Hovering Lens.

Fig. 7. Lenses with speed-coupled properties.

Fig. 5. Smoothing lens edges, on a magnified view of the Antarctic
peninsula [34].
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a black padding of 100 pixels in order to accommodate
instruction messages.

5.2 Task and Procedure

Our focus targeting task consisted in acquiring a target in the
flattop of the lens as quickly as possible. In our experimental
setting, the lens was centered on the mouse cursor. The task
ended when the participant clicked the left mouse button,
provided that the target was fully contained within the
flattop. Each trial consisted in performing 24 successive focus
targeting tasks in a row. As illustrated in Fig. 8, the targets
were laid out in a circular manner. The order of appearance
forced participants to perform focus targeting tasks in every
direction, as recommended by the ISO9241-9 standard [36].
We decided to have only one target visible at a time, as we
noticed during a pilot experiment in which all targets were
visible that some participants were often taking advantage of
the layout pattern to acquire the current target object by
positioning the lens relative to that object’s neighbors.

5.3 Experiment 1: Lens Type and Focus Targeting

We first compared the focus targeting performance and
limits of five lenses described earlier: a plain MAGNIFYING

GLASS, a simple distortion lens (FISH-EYE), BLENDING,
SPEED-COUPLED FLATTENING, and SPEED-COUPLED

BLENDING (see Section 4). Focus targeting performance
was evaluated at five different magnification factors (MM).
Higher magnification factors make the task increasingly
difficult: 1) the transition area becomes harder to under-
stand as it must integrate a larger part of the world in the
same rendering area, and 2) it becomes harder to precisely
position the target in the flattop of the lens, the latter being
controlled in the motor space of the context window. To test
the limits of each lens, we included factors up to 14�. Our
experiment was a 5� 5 within-participant design: each
participant had to perform several trials using each of the
five lenses with five different magnification factors
(MM 2 f2; 4; 6; 10; 14g). Ten volunteers (seven males, three
females), from 23 to 40 years old (average 26.4, median 25),
all with normal or corrected to normal vision, served in the
experiment and allowed us to collect data on 11,500 actual
focus targeting tasks.

5.4 Results

Interestingly FISH-EYE and BLENDING do not significantly
differ in their performance. We initially thought that
translucence could improve user performance by eliminat-
ing the space-based transition drawbacks. Transitioning
through space indeed introduces distortion that makes
objects move away from the approaching lens focus before
moving toward it very fast, making focus targeting
difficult [33]. BLENDING does not actually overcome this
problem since it introduces a new one: the high cognitive
effort required to comprehend transitions based on
gradually increasing translucence which, as opposed to
distortion-based transitions, do not rely on a familiar
physical metaphor.

We expected speed-based lenses (SPEED-COUPLED FLAT-

TENING and SPEED-COUPLED BLENDING) to outperform
their static versions (FISH-EYE and MAGNIFYING GLASS).
Each focus targeting task can be divided into two phases: in
the first phase, the user moves the lens quickly to reach the
target’s vicinity, while in the second phase, she moves it
slowly to precisely position the target in the focus. In the first
phase, the user is not interested in, and can actually be
distracted by, information provided in the focus region since
she is trying to reach a distant object in the context as quick as
possible. By smoothly and automatically neutralizing the
focus and transition regions during this phase, and then
restoring them, speed-based lenses should help the user. Our
results did actually support that this is the case for SPEED-
COUPLED BLENDING and MAGNIFYING GLASS: smoothly
neutralizing and restoring the focus of a MAGNIFYING GLASS

by making it translucent does improve performance. How-
ever, our participants were not significantly faster with
SPEED-COUPLED FLATTENING than with FISH-EYE. This
was especially surprising since the study conducted in [33]
showed a significant improvement in users performance with
SPEED-COUPLED FLATTENING. We think this inconsistency
is probably due to implementation differences: we imple-
mented SPEED-COUPLED FLATTENING as a constrained lens
while it was implemented as a full-screen lens by Gutwin. In
full-screen lenses, distortion affects the whole representation,
which thus benefits more from the neutralization effect than
constrained lenses that only affect a limited area.

From a pure motor perspective, the difficulty of a focus
targeting task can be evaluated as a view pointing task in a
fixed-scale interface [37]. We can thus use (1) in Fig. 9 to
quantify the difficulty of moving the lens’ flattop, of size
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Fig. 8. Targets’ order of appearance in a trial (targets are twice their
actual relative size for legibility purposes).

Fig. 9. Focus Targeting Task in a space scale diagram.
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Wfocus, to a position where it will contain the target, of size
Wtarget, initially located at a distance D from the lens’ center.
Formula (1) computes the Index of Difficulty, ID, of our focus
targeting task. The lens’ position in the context window is
controlled in the visual and motor space of that window.
Wtarget, Wfocus and D are thus expressed in context pixels: in
our experiment, Wtarget ¼ 8 pixels and D ¼ 800 pixels, while
Wfocus depends on a given Lens�MM condition:
Wfocus ¼ ð2�RIÞ=MM. As MM increases, the size of Wfocus

decreases, making the task more difficult. For lenses of equal
size (RO), the size of the flattop (RI), and thus Wfocus, vary
depending on the lens type. MAGNIFYING GLASS and SPEED-
COUPLED BLENDING lenses are made of a flattop only:
Wfocus ¼Wlens ¼ 200, while other lenses have to accommo-
date the transition within the same overall area: Wfocus ¼
Wlens=2 ¼ 100 in our implementation. MAGNIFYING GLASS

and SPEED-COUPLED BLENDING thus feature a larger flattop
than other lenses with the same overall size, consequently
making focus targeting easier from a motor perspective: ID
ranges from 3.2 to 6.3 for MAGNIFYING GLASS and SPEED-
COUPLED BLENDING while it ranges from 4.2 to 8 for FISH-
EYE, SPEED-COUPLED FLATTENING, and BLENDING. Our
data showed that SPEED-COUPLED BLENDING is actually
faster than all other lenses starting at MM ¼ 4. However,
MAGNIFYING GLASS becomes the worst lens at MM ¼ 6: its
large opaque flattop causes occlusion that makes the second
phase of the task (precise positioning) too difficult to make
users benefit from a larger flattop.

Fig. 10 summarizes these results. Our analyses only
provide a partial order of performance between the five
lenses but strongly support that SPEED-COUPLED BLENDING

lens is the most efficient lens.

5.5 Experiment 2: Flat Top Size and Focus
Targeting

Experiment 1 compared lenses with the same size (RO).
We found that SPEED-COUPLED BLENDING lenses out-
perform SPEED-COUPLED FLATTENING lenses, and attrib-
uted this performance gain 1) to the large flattop of the

SPEED-COUPLED BLENDING lens, which makes focus
targeting easier from a motor perspective, and 2) to the
absence of distortion and reduction of occlusion effects
through the coupling of focus translucence with lens
speed. Experiment 2 aimed at better understanding the
results of the previous experiment by identifying the
contribution of both properties to this performance gain.
We studied how SPEED-COUPLED BLENDING performed
at two “extreme” sizes: 1) the lens has the same size as
other lenses (Wlens ¼ 200), and 2) the lens has the same
size as the flattop of lenses which accommodate a
transition area and thus feature a smaller flattop
(Wlens ¼ 100), making focus targeting harder from a motor
perspective as explained earlier. We called the latter
SPEED-COUPLED BLENDINGsmall and compared it to
SPEED-COUPLED BLENDING and SPEED-COUPLED FLAT-

TENING, both from the previous experiment.
Two representative magnification factors were selected:

MM 2 f8; 12g. This experiment was thus a 3� 2 within-
participant design. Six volunteers (five males, one female),
from 23 to 40 years old (average 27.8, median 25.5), all with
normal or corrected to normal vision, served in the
experiment. Fig. 11 illustrates our results: even at the same
level of motor difficulty, the SPEED-COUPLED BLENDING

lens still performs better than the SPEED-COUPLED

FLATTENING lens. This means that interface designers are
given several options to improve upon a classical lens such
as FISH-EYE: 1) they can either get a smaller but more
efficient lens (in terms of focus targeting performance),
saving screen real estate for the context, 2) if the latter is
not critical they can make the SPEED-COUPLED BLENDING

lens occupy the same space as a FISH-EYE would, further
improving focus targeting performance, or 3) find a balance
between these solutions.

6 EXPERIMENT 3: TRANSLUCENCE AND

SPEED-DEPENDENCE

Lieberman used translucence in Powers of Ten Thousands
[38], a bifocal display technique that makes the focus and
context views share the same physical screen space, by using
multiple translucent layers. Even though it has been shown
to be usable in exploratory studies [39], [40], this type of
representation based on transparent or translucent layers is
cognitively demanding, causing visual interferences that are
the source of serious legibility problems, and requiring
additional mental effort from the user to relate focus and
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Fig. 10. Mean completion time per Technique�MM condition.

Fig. 11. Mean completion time per MM � Technique condition.
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context. Translucence can hence affect targeting perfor-
mance, especially when targets are superimposed on a
complex background such as a map or photograph. Speed-
dependent properties can also be confusing as they affect the
lens’ appearance depending on cursor movements. As the
simple abstract world we used in the first two experiments
might have hidden potential negative effects caused by
translucence, we present here further controlled experiments
aimed at verifying that our comparative lens performance
ordering is still valid in more realistic environments.

6.1 Preliminary Experiment

In [13], we had already conducted a preliminary study to
assess the potential effects of translucence on targeting
performance. The task was the same as described earlier,
but the 24 targets were laid out on a satellite photograph,
and could either be filled with a fully opaque red color or
with a translucent red, in which case they blended into the
background and were less easily identifiable. The satellite
photograph was a 7;000� 5;000 pixels portion of NASA’s
Blue Marble world map [34], providing an appropriate level
of detail in both the focus and context regions. This
experiment yielded a performance ordering consistent with
that observed in the first two. Target opacity had a
significant effect on performance only for BLENDING. This
result is not unexpected as the BLENDING lens can be prone
to visual interference between focus and context in the
transition region depending on the nature of the represen-
tation, especially when noncontrasted objects are targeted.
No matter how aesthetically pleasing (several participants
noted that it produced very nice graphical renderings), the
BLENDING lens suffers from a lack of reliance on a familiar
physical metaphor, and proneness to visual interference in
the transition region. The SPEED-COUPLED BLENDING lens,
however, does not seem to suffer from these problems, as its
use of translucence is very different: it can be seen as a
magnifying glass whose content smoothly fades out to
prevent occlusion at focus targeting time.

In the remainder of this section, we further evaluate
speed-dependent lenses by introducing a task that implies
more speed variations when operating the lens by forcing
both global navigation (large movement followed by a stop)
and local navigation (small movements for fine-grain
positioning), as the preliminary experiment described
above suggests that SPEED-COUPLED BLENDING could
cause some legibility problems since it is neither opaque
nor fully transparent during local navigation phases.

6.2 Task and Procedure

Transitions based on distortion or transparency add com-
plexity to the representation, and can affect usability
differently depending on the nature of the objects dis-
played. To test lens usability in a wide range of realistic
situations, we used different representations. We conducted
two experiments illustrated in Fig. 12 based on two different
types of representation: a network (vector graphics) for
Experiment 4graph (Bg ¼ graph), and a high-resolution
satellite map (bitmap) for Experiment 4map (Bg ¼ map). In
both cases, the task is the same. A word is displayed to the
user in three locations: top, center, and bottom of the screen.
Participants are instructed to memorize this word as they
will have to search for it in the representation. Once this

target word is memorized, participants put the cursor on a
red square (20� 20 pixels) located at the center of the screen
and press the space bar to start the trial. The red square
disappears, as does the target word displayed at the center
(the ones displayed in the top and bottom margins remain
displayed throughout the trial in case participants forget it).
Words appear successively in the same locations as the
circular targets did in previous experiments. When a word
appears, the participant has to move the lens over it to be
able to read it (a word represents about 27� 8 pixels in the
context and is thus unreadable at this scale). If the word is
not the target word, she proceeds to the next one by
pressing the space bar. This is repeated until she finds the
target word, in which case she clicks the left mouse button
to end the current trial and start a new one.

In both cases (mouse click or space bar), the word must be
in focus. For a word to be considered in focus, our software
uses the following criterion: the intersection area between
the word and the lens’ flattop should be at least 66 percent of
the flattop area (thus ensuring that the word can be read). A
word can, however, never be fully displayed in the flattop.
This is to force participants to perform local navigation as
described earlier. Here again to compare lenses both in usual
and extreme conditions, we use two magnification factors
(MM 2 f8; 12g). Font size is set to 42 pts (at context scale) for
MM ¼ 8 and 28 pts for MM ¼ 12, so that the lens’ flattop
can display at most six letters at full magnification. We use
two word lengths to test the effect of the amount of local
navigation on lens performance (LabLength 2 f8; 12g). To
decrease the probability of a participant recognizing a word
only based on a few specific letters (which would reduce the
amount of local navigation), we have chosen words that are
similar to a certain degree: all eight-letter words start with
“a” and end by “ed;” all 12-letter words start with “m” and
end by “ed.” We also had to make participants believe that
the target word could appear at any time so they don’t turn
the task into a pure routine motor task. To that end, we
introduced a secondary factor, Rank, that was used to
control how many objects participants had to inspect before
finding the target word for a given trial. Rank could take
four different values: {2, 4, 6, 8}.

The graph of Experiment 4graph contained 76 nodes that
were laid out in a semirandom manner so as to provide a
uniform density and to make sure that a node would
coincide with each of the potential target locations (a word
was always displayed inside a node, see Fig. 12a). For
Experiment 4map, we used the NASA world map mentioned
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Fig. 12. (a) Experiment 4graph (labels displayed in black) and
(b) Experiment 4map (labels displayed in yellow over a black background).
Viewports are cropped to show details.
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earlier (Fig. 12b). In this latter experiment, we introduced an
additional factor: in half of the trials, words were opaque
(O) while in the other half, they were translucent2 (T )
(Opacity 2 fO; Tg), as shown in Fig. 13. We hypothesized
that background and focus might be perceptually inter-
preted as one illegible image if contrast is not strong
enough, especially for SPEED-COUPLED BLENDING as it
itself makes use of translucence. Opacity was not included
as a factor in Experiment 4graph because sharp edges
displayed on a uniform background are strongly contrasted.

Twelve volunteers (nine males, three females), from 23 to
33 years (average 26.7, median 26.5), all with normal or
corrected to normal vision, no color blindness, served in the
experiment. Each of them was involved in both experi-
ments. Experiment 4graph lasted around 40 minutes, and
4map lasted around 1 hour (instructions were shorter since
all participants were already familiar with the task). The
two experiments were performed on two different days to
minimize fatigue and boredom. Each experiment was
composed of four blocks, one per Lens�MM condition.
Successive changes of Lens values would have been too
disturbing. To counterbalance Lens presentation order, six
participants saw the two SPEED-COUPLED FLATTENING

blocks first, while the six other participants started with
SPEED-COUPLED BLENDING. We always presented block
MM ¼ 8 first for a given Lens, so as to avoid harder
conditions being presented first to participants.

A Lens�MM block contained four series of four trials
in Experiment 4graph and eight series of four trials in
Experiment 4map. A series contained words of the same
length and presented the four different Rank values in a
pseudorandom order to ensure that the overall difficulty
was the same for all participants. In Experiment 4graph, a
participant saw alternatively a series of 8-letter words and
a series of 12-letter words, twice. In Experiment 4map, a
participant saw alternatively two series of 8-letter words
and two series of 12-letter words, twice; one series per
opacity value (Opacity ¼ O then Opacity ¼ T ). Table 1
summarizes this experimental design.

6.3 Results and Discussion

We collected three main measures for our analyses:
1) completion Time, i.e., the time interval between the
appearance of the first word and the click on the target
word; 2) the number of Reading errors, i.e., when the
participant notices that she has pressed the space bar
instead of clicking on the target word or if she has visited an
abnormally large number of words3; 3) the number of

Acquisition errors, i.e., when the participant presses the
space bar or clicks while the word is not in focus. In this case,
the message “target not in focus” would flash and the
participant would have to adjust the lens (the trial
continues, the timer is not reset).

A total of 62 trials among 768 were restarted because of
Readingerrors in Experiment 4graph (	8 percent) and 128 trials
among 1,536 in Experiment 4map (	9 percent). Note that the
recorded time for these particular trials was potentially
biased, as participants could avoid some cognitive aspects
of the task and turn it into a simple motor task. For instance, if a
participant remembered the rank at which the target word
appeared when realizing her failure, she could avoid having
to carefully read the intermediary words the second time,
simply pointing at them. To avoid analyzing data with an
unbalanced number of measures per factor, we left these trials
in our data after having checked that 1) Reading errors were
uniformly distributed among the primary factors and 2) that
neither primary factors nor Rank had a significant effect on
the number ofReading errors.

Figs. 14a, 14b, 14c, 14d, 14e, 14f, 14g, and 14h show the
data collected along the Lens, MM, and LabLength factors.
Regarding Time, we did not observe any significant effect
of any condition. We can see in the first two columns that
participants were faster using SPEED-COUPLED BLENDING

than SPEED-COUPLED FLATTENING. This difference was,
however, not statistically significant.

Differences in accuracy were stronger. In both experi-
ments, participants were more accurate using SPEED-
COUPLED BLENDING than SPEED-COUPLED FLATTENING.
Lens and MM had a significant effect on both Time and
Acquisition errors (Table 2). Furthermore, differences
between lenses in terms of accuracy increased with the
magnification factor (Figs. 14c and 14d): Lens�MM had a
significant effect on Acquisition errors.

Participants were more accurate with shorter words:
LabLength had a significant effect on Acquisition errors in
Experiment 4map (F1;11 ¼ 22; p < 0:0001), see Fig. 14h.
However, participants were not significantly faster with
shorter words. We did not expect this observation since the
task is supposed to be harder from a motor perspective.
The local navigation required by longer words probably
penalizes overall task performance more than the motor
aspects involved in a simple focus targeting task. In
addition, lenses seem to be unequally affected by word
length: Lens� LabLength was significant on Acquisition
errors (F1;11 ¼ 17; p < 0:0001) in Experiment 4map. These
results tend to show that SPEED-COUPLED BLENDING

better supports local navigation than SPEED-COUPLED
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Fig. 13. Experiment 4map: Opaque target versus Translucent target.

TABLE 1
Summary of Design for Experiment 3

2. When Opacity ¼ T , words and their black background are rendered
with an alpha channel set to 0.2, thus blending into the satellite image,
which makes them more difficult to identify (Fig. 13).

3. Instructors told participants that if they had visited about 15 words
without having seen the target word this meant they had missed it. In this
case, the participants could press the Escape key to skip the current trial and
restart it (the timer was reset).
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FLATTENING (Figs. 14f and 14h). This latter effect, observed
only in Experiment 4map, reinforces our intuition that lens
usability is affected by the type of representation. To have a
closer look at this effect, we built a table resulting from the
concatenation of trials of Experiment 4graph (Bg ¼ Graph)
and trials where Opacity ¼ O of Experiment 4map
(Bg ¼Map). Analysis of variance revealed a significant
effect of Bg on Acquisition errors (F1;11 ¼ 17; p < 0:0001)
but not on Time (Figs. 14i and 14j). Participants were more
accurate on a vector-based representation (the network)
probably because the white background helped perceive
the limits of the label. We also found one interaction effect
Lens�Bg on Acquisition errors (F1;11 ¼ 14; p ¼ 0:0002):
surprisingly SPEED-COUPLED FLATTENING is more pena-
lized by background type than SPEED-COUPLED BLEND-

ING is (left of Fig. 14j). Transparency does not hinder
performance on complex representations, and seems more
robust than distortion for high magnification factors.
Hence, our hypotheses about usability problems due to
the use of transparency are not supported by this
experiment. Analysis of the Opacity factor in Experiment
4map also supports SPEED-COUPLED BLENDING’s robust-
ness. The effect of Opacity on Acquisition errors was
significant (F1;11 ¼ 6; p ¼ 0:01), which is consistent with

participants remarks about the reading difficulty they had
when labels were translucent. Interaction effect Lens�
Opacity was also significant on Acquisition errors
(F1;11 ¼ 5; p ¼ 0:02) revealing that users were more strongly
affected by label opacity with SPEED-COUPLED FLATTEN-

ING than with SPEED-COUPLED BLENDING. As a summary,
speed-coupled translucence does not have a negative
impact on reading performance. The dynamically varying
translucence of the SPEED-COUPLED BLENDING lens does
not cause significant visual interference, even on complex
scenes featuring a low level of contrast. The SPEED-
COUPLED BLENDING lens remains more efficient than the
SPEED-COUPLED FLATTENING lens.

7 IMPLEMENTATIONS

According to the previous evaluations, Sigma Lenses should
prove useful in various types of graphical user interfaces.
The next step consists in investigating how to add support
for the framework in existing graphics environments.
Though implementation is not straightforward, the ap-
proach is generic enough that it can be implemented in
different environments with only a few requirements. The
underlying graphics library must allow 1) for the scene to be
rendered at different levels of detail, and 2) for the pixels
that constitute the two rendered images (the context region
and the lens region) to be manipulated and composited
before the actual rendering to the screen occurs. The
following sections describe two different implementations,
one for multiscale 2D graphics, the other for OpenGL scenes.

7.1 Multiscale 2D Framework

Pad [1] was one of the first toolkits designed for the
implementation of multiscale interfaces. Since then, several

464 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. 3, MAY/JUNE 2010

TABLE 2
Significant Effects Revealed by Analysis of Variance of MM

and Lens Factors on Acquisition Errors

Fig. 14. (a), (c), (e), and (g) Experiment 4graph and (b), (d), (f), and (h) Experiment 4map: Time and Acquisition errors. SCB ¼ Speed-Coupled Blending
lens; SCF ¼ Speed-Coupled Flattening lens.
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other zoomable user interface toolkits have been developed,
including Piccolo [2] and ZVTM [3]. Our implementation is
based on the latter, an open source toolkit built on top of
Java2D. It allows for the same scene to be rendered from
different viewpoints. Furthermore, as the toolkit does not
rely on Java’s internal double buffering mechanism but
implements its own and makes the offscreen rendering
buffers publicly accessible, adding support for Sigma
Lenses was easy. Our extension works directly on these
offscreen images, and is independent of their content. It is
thus readily compatible with all graphical objects that can
be displayed by the toolkit, including arbitrary vector-based
shapes, bitmap images, and text rendered with any font.

A call to the extension is simply inserted in the rendering
loop, between the rendering of the main offscreen buffer,
which corresponds to the context region, and its copy to the
screen. The extension asks for a second rendering from the
viewpoint of a camera set to observe the lens region.
Clipping algorithms internal to the toolkit make sure that
only objects visible through each camera get projected and
drawn in the associated offscreen buffer. Our extension
then creates the focus+context representation. As a sig-
nificant part of the final rendering will match the context
buffer exactly, the latter serves as the target of the
transformation to prevent unnecessary copy operations.
For each pixel ðx; yÞ in the subregion corresponding to the
lens, we simply read a pixel in the raster associated with the
lens buffer using an index computed through function R,
thus achieving magnification as well as distortion depend-
ing on the drop-off defined by Gscale. This pixel gets
composited with the original pixel ðx; yÞ from the context
buffer, using alpha blending if necessary with a value of �
computed through function R (more specifically Gcomp).
Pixels outside the lens region are left untouched.

The core classes of the extension represent about 700 lines
of actual code, supporting three different BufferedImage
types (type varies depending on operating system and color
depth). Taking advantage of the inheritance mechanism, a
new lens is then typically written with less than 100 lines of
code: most of those lines are dedicated to constructors,
getters, and setters. Lines that actually modify the rendering
of the transition, i.e., implementations of Gscale and Gcomp
specific to each lens, only account for about 10 percent of
those 100 lines except for lenses with speed-dependent
properties, in which case the coupling with the interpolated
low-pass filter adds extra 80 lines of code.

Performance. We measured the performance of this
implementation on a representation consisting of a multi-
scale version of the high-resolution (86;400� 43;200 pixels)
Blue Marble Next Generation world map from NASA [34].
The pyramid consists of 2,728 tiles, each 1;350� 1;350 pixels
in size. We overlaid shapefile data representing country
boundaries as vector graphics on top of the map, amounting
to 23,715 segments forming 1,375 polygons of various
shapes and sizes. Performance tests were run on a Windows
XP PC, equipped with a 3 GHz Pentium D processor, 2 GB
of RAM and an NVIDIA Quadro FX 4500 graphics card with
512 MB of memory, using Java 1.6 with the default DirectX
rendering pipeline enabled. The application ran in a 1;280�
640 window. All lenses were 200 px wide, occupying about

5 percent of the rendering area, and were tested at various
magnification factors ranging from 2� to 8�. Rendering the
content of the context buffer took an average of 23 ms (base
condition). Average time spent rendering and compositing
the content of the lens buffer ranged from 24 ms in the best
case (2� distortion lens) to 74 ms in the worst case (8�
hovering lens), corresponding to overall frame rates varying
between 21 and 10 fps. While not extremely high, the
measured frame rates show that our framework can be
implemented in graphics environments that do not benefit
from significant hardware acceleration such as plain
Java2D, and still achieve interactive frame rates for
relatively complex representations.

7.2 3D Framework

The second implementation takes advantage of program-
mable graphics hardware. Lenses are written with the
OpenGL Shading Language (GLSL). The rendering process
is as follows: First, the lens region is rendered to a texture,
thanks to a frame buffer object that makes it possible to
render to other destinations than those provided by the
window system. The projection frustum is set to match the
lens region, so that only objects visible in that region get
rendered in this first pass. Only the projection frustum is
changed, not the camera position, so as not to introduce
any discontinuity between the context and lens regions.
The viewport’s dimensions, and thus those of the target
texture are set4 according to the lens buffer’s size:
2 �MM �RO � 2 �MM � RO. Second, the viewport and
perspective projections are set according to the dimensions
of the application’s window to render the scene as it would
look like in the absence of any lens. Third, the texture
generated during the first step is mapped on a plane
matching the lens region using normalized texture co-
ordinates. If the scene were to be rendered through the
standard fixed function pipeline, this higher resolution
texture would perfectly blend into the context. Instead, we
use a fragment shader that implements the lens’ displace-
ment and compositing functions. The data contained in the
texture are accessed through this fragment shader. Context
fragment color data are accessed from the lens texture
through a texture sampler by using the texel coordinates
calculated by the standard fixed function pipeline in
previous stages of the rendering process:

//focus color data access with

texture2D(lensTex,vec2(x�1.0/texWidth,
y�1.0/texHeight));

//context color data access with

texture2D(lensTex,gl_TexCoord[texNum].st);

The fragment shader is independent of the content of the
scene observed. It is an implementation of the specific
instance of function R defining one particular lens, nothing
more. External data controlled by the application, such as
the position of the lens ðxc; ycÞ, its magnification factor MM,
or the cursor speed, are sent to the shader using GLSL
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uniform variables. The source code of a stand-alone
shader is thus very small, typically 60-80 lines, instructions
related to a specific instance of Gscale or Gcomp typically
amounting to 2-4 lines.

Performance. We used the same hardware configuration
as in Section 7.1, except that the software was running
under Linux, with version 169.07 of the NVIDIA driver. The
application ran in a 1;050� 750 window and displayed 3D
objects of varying complexity. We tested lenses 200-800 px
wide, at magnification factors ranging from 2� to 8�.
Measures indicate that, in these ranges, the values of MM
and RO have negligible influence on performance. In all
cases, rendering the content of the lens region takes
approximately the same amount of time as rendering the
context in the frame buffer. For instance, a 3D model made
of 69,451 facets is displayed at 123 fps with a lens versus
231 fps with no lens; another model made of 345,944 facets
is displayed at 28 fps versus 53 fps. Performance could be
improved if necessary by implementing manual frustum
culling, taking the different sizes of the context and lens
regions into account (lens rendering time would depend on
the lens region’s dimensions). Time spent distorting and
compositing in the fragment shader is not significant
compared to scene rendering time.

8 DISCUSSION AND FUTURE WORK

As opposed to most techniques described in the literature,
we wanted to develop a lightweight, representation-
independent approach to the problem of focus+context
navigation based on constrained lenses. This choice has
implications in terms of implementation effort, expressive
power and graphics performance.

Graphics performance will obviously vary depending on
the complexity of the representation and on the underlying
graphics framework’s capabilities, such as clipping algo-
rithms and level of support for hardware acceleration; but
even in cases where most of the computations are done on
the software side, acceptable frame rates can be achieved for
most lenses on reasonably complex scenes such as the one
described in Section 7.1. Performance can, however, be an
issue when highly magnifying lenses defined by complex
drop-off functions for both scale and translucence are used
in a non-hardware-accelerated framework. In that case,
values for Gscale (displacement function) and Gcomp (blending
gradient) can be precomputed for each target pixel in the
lens region and stored in a data structure such as an array
or texture for fast lookup. Memory consumption will
amount to a maximum of two structures storing ð2ROÞ2
floating point numbers, and can be lowered to a quarter of
that value by taking advantage of vertical and horizontal
symmetry for lenses based on LðP Þ-metrics.

The shape of a lens does not necessarily have to feature
the above-mentioned symmetry. While most constrained
lenses have been restricted to regular shapes such as circles
and squares (Magic Lenses [41] excepted), irregular
perimeters can be obtained fairly easily by defining them
using parametric equations that make RI and RO angle
dependent. We are planning to better integrate such
perimeters in the framework, our final goal being to build
adaptive lenses whose shape changes to provide more

relevant magnifications of the objects in focus by accessing
information about their geometry.

One strong point of our approach is its good expressive
power which comes at a relatively small implementation
cost. The two implementations described in Section 7 show
that it can be implemented with minimal effort in various
graphics frameworks, only requiring offscreen drawing
capabilities, a feature commonly available in graphics APIs,
and the possibility to draw the representation at two
different scales. Once the core lens programming elements
are in place (when required at all), writing a new lens
typically takes only a few lines, most of the code being the
same from one lens to another, and differences residing
mainly in the definition of transitions.

Working on the rendered scene, distorting and composit-
ing the focus and context regions by manipulating pixels
makes our technique fully independent of the actual 2D or 3D
objects that constitute the representation. However, this
approach also has some limitations. One limitation is that
performance depends on the magnification factor and size of
the lens, as a consequence of the increased level of detail in the
focus. Another issue is related to the quality of the rendering
in the transition area for lenses that make use of distortion: as
points get compressed in the transition region, small objects
such as points may be lost, and lines cut if they fall between
pixels, especially for high magnification factors. This pro-
blem can be partially addressed by specifying an expression
of Gcomp that matches Gscale, but this, in turn, can introduce
unwanted rendering artifacts. Solutions based on MIP maps
[42] can help address this issue, but will be computationally
expensive if the content of the representation in the magnified
region varies continuously.

9 SUMMARY

We have presented an approach to the implementation of
constrained magnification lenses for navigation in large
workspaces, based on the displacement and compositing of
pixels from two renderings at different scales. This
technique has several practical advantages such as its
independence with respect to the type of representation and
its low cost of implementation. But, more importantly, it
allows for a variety of dynamic transitions between the
focus and context regions, including—but not limited
to—those covered in the Sigma Lens framework. This
framework enables the design of new lenses, such as the
SPEED-COUPLED BLENDING lens, which has been shown to
perform very efficiently through a series of controlled
experiments that cover cognitive aspects of navigation tasks
ranging from motor performance to legibility issues on
various types of representations.
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ABSTRACT
Focus+context interfaces provide in-place magnification of
a region of the display, smoothly integrating the focus of
attention into its surroundings. Two representations of the
data exist simultaneously at two different scales, providing
an alternative to classical pan & zoom for navigating multi-
scale interfaces. For many practical applications however,
the magnification range of focus+context techniques is too
limited. This paper addresses this limitation by exploring
the quantization problem: the mismatch between visual and
motor precision in the magnified region. We introduce three
new interaction techniques that solve this problem by in-
tegrating fast navigation and high-precision interaction in
the magnified region. Speed couples precision to navigation
speed. Key and Ring use a discrete switch between precision
levels, the former using a keyboard modifier, the latter by de-
coupling the cursor from the lens’ center. We report on three
experiments showing that our techniques make interacting
with lenses easier while increasing the range of practical
magnification factors, and that performance can be further
improved by integrating speed-dependent visual behaviors.

Author Keywords
Focus+Context, Lenses, Quantization, Navigation, Selection
ACM Classification Keywords
H. Information Systems H.5 Information Interfaces and Pre-
sentation H.5.2 User Interfaces (H.1.2, I.3.6)
General Terms
Design, Human Factors

INTRODUCTION
Although display technologies continue to increase in size
and resolution, datasets are increasing even faster. Scien-
tific data, e.g., telescope images and microscope views of
the brain, and generated data, e.g., network visualizations,
geographical information systems and digital libraries, are
too big to be displayed in their entirety, even on very large
wall-sized displays. In Google Maps, the ratio between ex-
treme scales is about 250,000. Vast gigapixel images, such
as the 400,000-pixel wide image of the inner-part of our
galaxy from the Spitzer telescope also require huge scale
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factors between a full overview and the most detailed zoom.
Users do not necessarily need to navigate through the entire
scale range at one given time, but still, they need interaction
techniques that will allow them to fluidly navigate between
focused and contextual views of large datasets. Such tech-
niques are typically based on the following interface schemes
[8]: overview + detail, zooming, focus + context; none of
which offers an ideal solution. The task determines which
technique is most appropriate, taking scale range, the na-
ture of the representation, input device, available screen real-
estate, and of course, the user’s preferences, into account.

This paper introduces techniques designed to improve lens-
based focus+context interfaces. Our goals are to extend the
range of practical magnification factors, which is currently
very limited, and to make low-level interactions easier. For
the sake of clarity, we illustrate all of our techniques with
one common type of lens: constrained magnification lenses
[4, 18, 19]. However, our improvements are generic and
apply to all types of lenses. They can also be adapted to other
focus+context interfaces, including hyperbolic trees [16] and
stretchable rubber sheets [20].

QUANTIZATION IN FOCUS+CONTEXT INTERFACES
Constrained lenses provide in-place magnification of a boun-
ded region of the representation (Figure 1-a). The focus is
integrated in the context, leaving a significant part of the
latter unchanged. Typical examples of such lenses include
magnifying glasses and many distortion-oriented techniques

1px

12px

12px
(c)

(b)

(a)
Map of the Boston area (source: OpenStreetMap.org)

context
focus

Figure 1. (a) In-place magnification by a factor of 12; (b) center of
magnified region with cursor in the middle (detail); (c) same region
after moving the lens by one pixel both South and East.
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Figure 2. Space-scale diagram of possible locations for lens center (each
ray corresponds to one pixel in context space).

such as the so-called graphical fisheyes. Early implementa-
tions of magnification techniques only magnified the pixels
of the context by duplicating them without adding more de-
tail, thus severely limiting the range of useful magnification
factors (up to 4x). Newer implementations [4, 18] do pro-
vide more detail as magnification increases. Theoretically,
this means that any magnification factor can be applied, if
relevant data is available. In practice, this is not the case
as another problem arises that gets worse as magnification
increases: quantization.

Lenses are most often coupled with the cursor and centered
on it. The cursor, and thus the lens, are operated at context
scale. This allows for fast repositioning of the lens in the in-
formation space, since moving the input device by one unit
makes the lens move by one pixel at context scale. However,
this also means that when moving the input device by one
unit (dot), the representation in the magnified region is off-
set by MM pixels, where MM is the focus’ magnification
factor. This means that only one pixel every MM pixels
can fall below the cursor in the magnified region. In other
words some pixels are unreachable, as visual space has been
enlarged in the focus region but motor space has not.

This problem is illustrated in Figure 1: between (b) and (c),
the lens has moved by 1 unit of the input device, correspond-
ing to 1 pixel in the context, but the magnified region is offset
by 12 pixels. Objects can thus be difficult or even impossi-
ble to select; even if their visual size is above what is usually
considered a small target (less than 5 pixels). The square
representing Arlington station in Figure 1 is 9-pixel wide,
yet its motor size is only 1 pixel.

Figure 2 illustrates the problem with a space-scale diagram
[11]: the center of the lens can only be located on a pixel
in the focus window that is aligned – on the same ray in the
space-scale diagram – with a pixel in the context window.
Since the focus window is MM2 larger than the context
window, and since the cursor is located at the lens’ center,
only one out of MM2 pixels can be selected. Figure 2 shows
that as MM increases, more pixels become unreachable.

Beyond the general problem of pixel-precise selection in the
magnified region, quantization also hinders focus targeting,
i.e., the action that consists in positioning the lens on the
object of interest [12, 18]. This action gets harder as the
magnification factor increases, even becoming impossible at
extreme magnification factors.

This quantization problem has limited the range of magni-
fication factors that can be used in practice; the upper limit
reported in the literature rarely exceeds 8x, a value relatively
low compared to the ranges of scale encountered in the in-
formation spaces mentioned earlier.

In this paper, we introduce techniques that make it possible
to perform both fast navigation for focus targeting and high-
precision selection in the focus region in a seamless manner,
enabling higher magnification factors than those allowed by
conventional techniques. After an overview of related work,
we introduce our techniques. Speed continuously adapts mo-
tor precision to navigation speed. Key and Ring use a discrete
switch between two levels of precision (focus and context),
the former using an additional input channel, the latter by
decoupling the cursor from the lens’ center. We then report
the results of two controlled experiments that evaluate fo-
cus targeting and object selection performance. Finally, we
iterate our designs by integrating speed-dependent visual be-
haviors from the Sigma Lens framework [18]. The resulting
hybrid lenses further improve performance, as shown in a
third controlled experiment.

RELATED WORK
Most techniques for navigating multi-scale information spa-
ces are based on either overview + detail, zooming or focus
+ context (see Cockburn et al. [8] for a very thorough sur-
vey). Zooming interfaces, e.g., [21, 14] display a single level
of scale and therefore require a temporal separation to tran-
sition between “focus” and “context” views. They usually
do not suffer from quantization effects, but both views can-
not be observed simultaneously. Overview+detail interfaces
[13, 22] show both views simultaneously using spatial sepa-
ration, still requiring some mental effort to integrate the two
views. They usually allow pixel-precise selections in the de-
tail region, but focus targeting is also subject to quantization
problems in conventional bird’s eye views.

Focus+context techniques “aim to decrease the short term
memory load associated with assimilating distinct views of
a system” [8] by integrating the focus region inside the con-
text. This integration, however, limits the range of magni-
fication factors of practical use. Basic magnifying glasses
occlude the surroundings of the magnified region [12]. To
address this issue, distortion oriented techniques provide a
smooth transition between the focus and context views. Dis-
tortion, however, causes problems for focus targeting and
understanding of the visual scene. Carpendale et al. [4]
describe elaborate transitions that enhance the rendering of
the distorted area and make higher magnifications compre-
hensible from a visual perspective. Gutwin’s Speed-coupled
flattening lens [12] cancels distortion when the lens is repo-
sitioned by the user, thus removing a major hindrance to fo-
cus targeting. The Sigma Lens framework [18] generalizes
the idea of speed-coupling to a larger set of lens parameters.
For example, the Speed-coupled blending lens makes focus
targeting easier from a motor perspective by increasing the
focus region’s size for the same overall lens size, using a dy-
namically varying translucence level to smoothly transition
between focus and context.
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Although their primary goal is different, focus+context in-
terfaces share issues with techniques designed to facilitate
pointing on the desktop. The decoupling of visual and motor
spaces plays a central role in techniques designed to facili-
tate the selection of small targets, e.g., [6, 7, 17] – see [2] for
a detailed survey. Not designed for exploratory multi-scale
navigation, but closer to our problem are pointing lenses
[19], which punctually enlarge both visual and motor space
to facilitate small target selection through stylus input. How-
ever, visual space is enlarged by duplicating the pixels of
the original representation. The popup vernier [1] enables
users to make precise, sub-pixel adjustments to the position
of objects by transitioning from coarse to fine-grain drag-
ging mode through an explicit mode switch. The technique
provides visual feedback based on the metaphor of vernier
calipers to make precise adjustments between both scales.

LENSES WITH HIGH-PRECISION MOTOR CONTROL
The quantization effect is due to the mismatch between vi-
sual and motor space precision in the focus region. This
mismatch, in turn, is caused by the following two properties
of conventional lenses:
(P1) the cursor is located at the center of the lens, and

(P2) the cursor location is controlled in context space.
These properties cause problems with the two low-level ac-
tions performed by users: focus targeting, and object selec-
tion within the magnified region. In this section we introduce
three techniques that address these problems by breaking the
above properties.

For all our techniques, lens displacements of less than MM
focus pixels, corresponding to displacements of less than 1
context pixel, are achieved by slightly moving the represen-
tation in the focus region while keeping the cursor stationary
(see discussion of Experiment 2’s results for more detail).

Precision through Mode Switching: the Key technique
The first approach to address the problem is to provide a
way of controlling the location of the lens in focus space
(as opposed to context space). We immediately discard the
solution that consists in solely interacting in focus space be-
cause of obvious performance issues to navigate moderate to
large distances (all distances are multiplied by MM in fo-
cus space). The simplest technique uses two control modes:
a context speed mode and a focus speed mode. This requires
an additional input channel to perform the mode switch, for
instance using a modifier key such as SHIFT. Users can then
navigate large distances at context speed, where one input
device unit is mapped to one context pixel, i.e., MM fo-
cus pixels, and perform precise adjustments at focus speed,
where one input device unit corresponds to one focus pixel.

Figure 3 illustrates this technique, called Key: the first case
(No modifier) is represented by the topmost grey line; the sec-
ond case (Shift pressed) by the bottommost grey line. When
SHIFT is pressed, (P2) is broken. A similar “precision mode”
is already available in, e.g., Microsoft Office to freely posi-
tion objects away from the intersections formed by the un-
derlying virtual grid using a modifier key.
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Figure 3. Displacement in focus space (in pixels) for one input device
unit move in function of the input device speed (MM = 4).

The Key technique represents a simple solution. However,
as the selection tools based on Magic Lenses [3], an addi-
tional channel is required to make the explicit mode switch.
Bi-manual input techniques are still uncommon. Modifier
keys tend to be used for other purposes by applications, and
their use often results in a “slightly less than seamless inter-
action style” [2]. The next two techniques we propose do
not require any additional input channel.

Speed-dependent Motor Precision: the Speed technique
Following recent works that successfully used speed-depen-
dent properties to facilitate pointing [5] and multi-scale nav-
igation [12, 14, 18], our first idea was to map the precision of
the lens control to the input device’s speed with a continuous
function, relying on the assumption that a high speed is used
to navigate large distances while a low speed is more char-
acteristic of a precise adjustment (as observed for classical
pointing [2]).

The black line (Speed) in Figure 3 illustrates the behavior of
our speed-dependent precision lens. Cursor instant speed s
is computed as the mean speed over the last four move events.
It is mapped to the lens’ speed so as to break (P2) as follows:
(i) if s < MIN SPEED then the lens moves at focus speed ;
(ii) if MIN SPEED ≤ s ≤ MAX SPEED then the lens moves

by x focus-pixels for 1 input device unit, where x is
1 + (1− MAX SPEED−s

MAX SPEED−MIN SPEED )× (MM − 1) ;
(iii) if s > MAX SPEED then the lens moves at context

speed like a conventional lens.

Cursor-in-flat-top Motor Precision: the Ring technique
The last technique is inspired by Tracking menus [10]. Con-
sider a large rigid ring (e.g., a bracelet) on a flat surface (e.g.,
a desk). The ring can be moved by putting a finger inside it
and then moving that finger while keeping it in contact with
the surface to pull the ring. This is the basic metaphor used
to interact with the Ring lens: the ring is the lens’ focus re-
gion (called the flat-top) and the cursor is the finger.

The Ring lens breaks property (P1): it decouples the cursor
from the lens center; the cursor can freely move within the
flat-top at focus scale, thus enabling pixel-precise pointing
in the magnified region (bottommost grey line (Inside ring) in
Figure 3). When the cursor comes into contact with the flat-
top’s border, it pulls the lens at context speed, enabling fast
repositioning of the lens in the information space (topmost
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grey line (Pushing ring) in Figure 3). Figure 5 illustrates the
lens behavior when the cursor comes into contact with the
ring: the segment joining the lens center (g) to the contact
point (p) is progressively aligned with the cursor’s direction.

Decoupling the cursor’s location from the lens’ center has a
drawback when changing direction: because the user has to
move the cursor to the other end of the flat-top before she can
pull the lens in the opposite direction. We tried to address
this issue by pushing the physical metaphor: we introduced
friction in the model to make the ring slide when the cursor
stops, with the effect of repositioning the lens’ center so as
to match the cursor’s position. We were not able however to
get a satisfying result, and abandoned the idea.

EXPERIMENTS
We conducted two experiments to compare the performance
and limits of the three lenses described above. Participants
were asked to perform a simple task: selecting an object in
the magnified area. The targets were laid out in a circular
manner and the order of appearance forced participants to
perform the task in every direction, following the recommen-
dations of the ISO 9241-9 standard [9]. Only one target was
visible at a time so that participants could not take advantage
of the layout to facilitate the task: as soon as the participant
clicked on one target, the next target appeared. The recorded
movement time is the interval between the appearance of the
target and a click on it. The target is presented as a yellow
circle on a gray background, and is always surrounded by a
10-pixel red square clearly visible in the context view. The
background is also decorated by a grid to help participants
understand the transition between context and focus view,
and to minimize desert fog effects [15] that can occur with
scenes that are too uniform.

Analysis of the Task
A pointing task with a lens is typically divided in two main
phases: (i) focus targeting, which consists in putting a given
target inside the flat-top of the lens (Figure 4-(a) and (b)) and
(ii) cursor pointing to precisely position the cursor over the
target (Figure 4-(b) and (c)).

The focus targeting task has an index of difficulty of about:

IDFT = log2(1 +
Dc

(WFTc −Wc)
)

where WFTc
and Wc are the respective sizes of the flat-top

and the target in context pixels, and Dc is the distance to the
target in context pixels as well1. This formula clearly shows
that difficulty increases as distance increases, as the size of
the flat-top decreases, and as the size of the target decreases.
The size of the flat-top in context pixels is directly related to
the magnification factor of the lens, MM . Indeed, the size
of the flat-top is fixed in terms of focus pixels, so the higher
MM , the smaller the size of the magnified area in context
pixels (see [18] for an analysis of the difficulty of a focus
targeting task).
1IDFT is the exact index of difficulty when the target must be fully
contained in the flat-top. Here the task is slightly easier because the
target just has to intersect the flat-top.

Figure 5. Bottom: behavior of a Ring lens when the cursor comes into
contact with the flat-top’s border at the bottom of the ring and then
moves to the right. Top: Computation of the ring’s location.

The final cursor pointing task mainly depends on the area
of the target in focus space that intersects the flat-top after
the focus targeting task. The larger this area, the easier the
cursor pointing task. We can at least consider the best case,
i.e., when the target is fully contained in the flat-top. In this
case, the difficulty of the cursor pointing task can be assessed
by the ratio Df

Wf
where Df is the distance between the cur-

sor and the target, and Wf is the motor size of the target
when magnified in the flat-top. The distance Df is small,
i.e., smaller than the flat-top’s diameter, so we assume that
the difficulty of the cursor pointing task is mainly caused by
the value of Wf . Note that for regular lenses, the value of
Wf is actually the size of the target at context scale because
the target is only visually magnified. With our lenses how-
ever, since pixel-precise selections are possible, Wf is the
magnified size of the target (at focus scale). We provide ad-
ditional details about the division between the two subtasks
in the following sections.

The first experiment tests pointing tasks with an average
level of difficulty, while the second one tests pointing tasks
with a very high level of difficulty, involving targets smaller-
than-a-pixel wide at context scale. Our experimental design
involves the three factors that determine the pointing task
difficulty introduced above: the distance to the target (DC),
its width (WC), and the lens’ magnification factor MM.

Experiments: Apparatus
We conducted the experiments on a desktop computer run-
ning Java 1.5 using the open-source ZVTM toolkit. The dis-
play was a 21” LCD monitor with a resolution of 1600 x
1200 (≈ 100 dpi). The mouse was a regular optical desktop
mouse at 400 dpi with the default acceleration function.

Experiment 1: Design
The goal of the first experiment is to test whether any of the
three techniques we introduced in the previous section de-
grade performance when compared with regular lenses (Reg).
We expect them to improve overall performance because
the overall task difficulty is theoretically lower. On the one
hand, the focus targeting task should not be harder: since we
test small targets with lenses having the same flat-top size,
the distance in context space is the main factor contributing
to difficulty. All our lenses are able to navigate large dis-
tances like a regular lens, i.e., move at context speed (Key:
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(a) (b) (c)
Figure 4. Screenshots of our experimental task: focus targeting from (a) to (b) and, cursor pointing from (b) to (c). Screenshots have been cropped to
show details, and cursors have been made thicker to improve readability.

when SHIFT is released; Ring: when the cursor pulls the lens;
Speed: when the lens moves fast enough). On the other hand,
cursor pointing should be easier since the difficulty of this
second phase mainly depends on the target’s motor width in
focus space. Since all of our lenses allow to navigate at fo-
cus speed, they can take benefit of the magnified target size
whereas this is not the case with a regular lens: even though
it is magnified, the target size in motor space is the same as
if it were not magnified.

Sixteen unpaid volunteers (14 male, 2 female), age 20 to 35
year-old (average 26.8, median 26), all with normal or cor-
rected to normal vision, served in Experiment 1. Experiment
1 was a 4 × 2 × 2 × 3 within-subject design with the fol-
lowing factors:
• Technique: TECH ∈ {Speed ,Key ,Ring ,Reg}
• Magnification: MM ∈ {4, 8}
• Distance between targets (context pixels): DC ∈ {400, 800}
• Target width (context pixels): WC ∈ {1, 3, 5}
We grouped trials into four blocks, one per technique (TECH),
so as not to disturb participants with too many changes be-
tween lenses. The presentation order was counterbalanced
across participants using a Latin square. Within a TECH block,
each participant saw two sub-blocks, one per value of mag-
nification factor (MM). The presentation order of the two val-
ues of MM was also counterbalanced across techniques and
participants. For each TECH × MM condition, participants ex-
perienced a series of 12 trials per DC × WC condition, i.e., 12
targets laid out in a circular pattern as described earlier. We
used a random order to present these 2 × 3 = 6 series within
a sub-block. We removed the first trial of each series from
our analyses as the cursor location is not controlled when a
series begins. To summarize, we collected 4 TECH × 2 MM
× 2 DC × 3 WC × (12-1) replications × 16 participants =
8448 trials for analysis. Before each TECH condition, the ex-
perimenter took 2-3 minutes to explain the technique to be
used next. Participants were told each time the value of MM
was about to change, and had to complete 4 series of practice
trials for each new TECH × MM condition.

Experiment 1: Results and Discussion
Our analysis is based on the full factorial model:

TECH×MM×WC×DC×Random(PARTICIPANT)
with the following measures:
• FTT, the focus targeting time;

• CPT, the cursor pointing time;
• MT = FTT + CPT, the time interval between the appear-

ance of the target and a successful mouse press on it (this
measure includes penalties caused by errors); and

• ER, the error rate (an error is a press outside the target).

Analysis of variance reveals an effect of TECH on MT (F3,45 =

15.2, p < 0.0001). A Tukey post-hoc test shows that Reg is
the significantly slowest technique and that Key is signif-
icantly faster than Ring. Note that there is no significant
difference between Ring and Speed, nor between Speed and
Key. Participants also made more errors with Reg than with
our techniques. We expected Reg to perform worse since, as
we already mentioned, the target’s motor size is in context
pixels for Reg whereas it is in focus pixels for Key, Speed
and Ring. The target is thus much harder to acquire in the
CPT phase. Analysis of variance shows a significant effect
of TECH (F3,45 = 18.5, p < 0.0001) on ER. Figures 6-(a) and
(b) respectively show the time MT and error rate ER for each
TECH×WC condition.

We find a significant effect of DC (F1,15 = 121.9, p < 0.0001)
on movement time MT. It is consistent with our expectations:
DC has a significant effect on FTT (F1,15 = 165, p < 0.0001)
while it does not on CPT (p=0.4). The higher the value of DC,
the harder the focus targeting phase. Our techniques do not
seem to be at a disadvantage in this phase compared to Reg
since the effect of DC×TECH on FTT is not significant (p=0.9).

MM also has a significant effect on MT (F1,15 = 249.6, p <

0.0001), the effect being distributed across both FTT (F1,15 =

515, p < 0.0001) and CPT (F1,15 = 79, p < 0.0001). Figure 6-
(c) shows the three measures per TECH×MM: a bar represents
MT per condition while the line shows the repartition be-
tween FTT (lower part of the bar) and CPT (upper part)2.
This clearly shows that a high MM leads to high FTT since
the flat-top size in context pixels directly depends on MM, as
explained in the previous section. A higher MM also means
a larger target width in focus pixels. This can explain the
effect of MM on CPT: CPT decreases as MM increases.

The target width in focus pixels is of course also related
to WC, which is consistent with our observations: WC has
an effect on both (i) FTT (F2,30 = 45, p < 0.0001) and (ii)
CPT (F2,30 = 1110, p < 0.0001), and also on MT (F2,30 =

2Error bars in the figures represent the 95% confidence limits of
the sample mean (mean± StdErr × 1.96).
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Figure 6. Movement time (a) and error rate (b) per TECH × WC. (c) Movement time per TECH × MM. For (a) and (c), the lower part of each bar
represents focus targeting time, the upper part cursor pointing time.

623.8, p < 0.0001, Figure 6-(a)). Indeed, as we expected, the
smaller WC, the higher the focus targeting time (i). Also,
the larger WC, the larger the target in focus pixels to im-
prove focus pointing time (ii). Regarding error rate, WC

(F2,30 = 17.5, p < 0.0001) and MM (F1,15 = 16.8, p = 0.0009)
have a significant effect on ER: participants made more er-
rors when the target size was small. This is a simple inter-
pretation that explains the difference in means that we ob-
serve; but we have to refine it to reflect the more complex
phenomenon that actually takes place.

Coming back to the effect of TECH, we also observe two sig-
nificant interaction effects that involve TECH on MT.

First interaction effect: TECH×MM (F3,45 = 4.7, p = 0.0063)
which can be observed on Figure 6-(c). A Tukey post-hoc
test shows that for MM = 4, Speed, Key and Ring are sig-
nificantly faster than Reg but this test also shows that for
MM = 8, only Key and Speed are significantly faster than
Reg (Ring no longer is). A closer look at the focus targeting
phase explains why Ring seems to suffer from high magnifi-
cation factors. We know that FTT increases as MM increases.
We can observe on Figures 6-(c) and (a) that Ring is actually
slower than the other techniques for this FTT phase. This is
probably due to the cost of repairing overshoot errors during
this phase: changes in direction are costly with Ring since
the user first has to move the cursor to the opposite side of
the flat-top before being able to pull the lens in the opposite
direction.

Second interaction effect: TECH×WC (F6,90 = 55.1, p < 0.0001)
which can be observed on Figure 6-(a). A Tukey post-hoc
test shows a significant difference in mean for WC=1 between
Reg and the other techniques, while this difference is not sig-
nificant for WC=3 and WC=5. To better assess the interpreta-
tion of such a result, we consider finer analyses on CPT. Fig-
ure 7 shows CPT for each TECH×MM×WC condition. Analy-
ses reveal significant effects of TECH, MM and WC and signif-
icant interactions TECH×MM and TECH×WC (all p < 0.0001)
on CPT. Tukey post-hoc tests show that Key, Speed and Ring
are globally faster than Reg for cursor pointing. This is not
surprising since the motor size of the target is smaller for
Reg than for the others, as we said earlier. However, this sig-
nificant difference holds only for WC=1 and WC=3, not for
WC=5. In the latter case, only Speed is significantly faster
than Reg. Moreover Ring is faster than Key for WC= 1, while
Speed is not. These results suggest that Ring is particularly
efficient for very small targets and that Speed is more appro-
priate for larger ones.

4,1 4,3 4,5 8,1 8,3 8,5
MM,Wc

P
oi

nt
in

g 
T

im
e 

(m
s)

0
50

0
15

00
25

00

Speed Key Ring Reg

Figure 7. Cursor pointing time per TECH × MM × WC condition.

The latter observations suggest that modeling the movement
time MT as the sum of FTT and CPT (MT=FTT+CPT) may
be too naive to explain the subtle differences between tech-
niques. For instance, this model does not explain the dif-
ferences between Ring and Speed that depend on WC. In
the same spirit, we observe that the difference between Reg
and other lenses for WC=5 is very small considering that
the target’s motor size is 5 for Reg and 20 (MM=4) or 40
(MM=8) for Key, Speed and Ring. The additive model based
also fails to explain the following observation: Speed fea-
tures significantly higher FTT values than Key and Reg for
MM=8 only. We tentatively explain this by the increased
difficulty of controlling a lens with speed-dependent preci-
sion when the slope of the mapping function is too steep
(linear function from MIN SPEED to MAX SPEED, i.e.,
focus speed to context speed on Figure 3). We tried sev-
eral variations that, e.g., depend on the difference between
these two speeds, without success. Using a gentler slope
is frustrating because of the stickiness caused by the large
movements required to reach the MAX SPEED threshold.
The more subtle differences we reported in the second part
of this section may be explained by the fact that a transi-
tion phase between the focus targeting phase (FTT) and the
cursor pointing phase (CPT) actually exists for our lenses:
pressing a key for Key, stop pulling the flat-top for Ring,
performing speed adjustments with Speed.

At the end of the experiment, participant were asked to rank
the lenses (with ex-aequo allowed) using two criteria: per-
ceived usability and performance. These two rankings were
almost the same for all participants. All but one ranked Reg
as their least preferred technique (one participant ranked it
third with Speed fourth). There was no significant differ-
ence among other lenses. For instance, 8 participants ranked
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Speed first, 3 ranked it second; 6 participants ranked Key
first, 5 ranked it second, and 5 participants ranked Ring first,
7 ranked it second. We also asked participants to comment
on the techniques. The main reason for the bad ranking of
Reg is the great difficulty to acquire small targets, related
to the cursor jumping effect due to quantization. Regard-
ing Speed, most participants found the technique “natural”;
some found the speed “difficult to control”. The partici-
pants who ranked Key high justified it by a “transparent con-
trol”; other participants complained about the need to use
two hands. Regarding Ring, the cursor pointing phase was
found easier because the lens is stationary, but participants
also raised the overshooting problem discussed earlier.

To summarize, in comparison with regular lenses, precision
lenses increase pointing accuracy. They also increase selec-
tion speed for small targets and are as fast for larger ones.

Experiment 2: Design
This second experiment evaluates our techniques on extreme
tasks: very small target sizes and high magnification factors.
We discard the Reg technique as it is not capable of achiev-
ing sub-pixel pointing tasks, i.e., involving targets that are
smaller-than-a-pixel wide in context space. Another differ-
ence with Experiment 1 is that we use WF as a factor instead
of WC. This allows us to isolate the effects of WF and MM.
Indeed, since WF = WC × MM, two values of MM correspond
to two different values of WF for the same WC value.

Twelve participants from Experiment 1 (10 male, 2 female),
age 20 to 35 year-old (average 27.25, median 26.5), also
served in Experiment 2. Experiment 2 was a 3 × 2 × 2
× 3 within-subject design with the following factors:

• TECH ∈ {Speed ,Key ,Ring}
• MM ∈ {8, 12}
• DC ∈ {400, 800}
• WF ∈ {3, 5, 7}
As in Experiment 1, trials were blocked by technique, with
presentation order counterbalanced across participants us-
ing a Latin square. The experimenter explained the tech-
nique to be used during 2-3 minutes before each TECH condi-
tion. For each TECH, participants saw the two values of MM,
grouped into two sub-blocks (sub-block presentation order
were counterbalanced across techniques and participants).
Each sub-block contained 6 series of 8 trials, 1 series per
DC × MM condition, presented in a random order. To sum-
marize, we collected 3 TECH × 2 MM × 2 DC × 3 WC × (8-1)
replications × 12 participants = 3024 trials for analysis. As
in Experiment 1, participants were alerted by a message each
time the MM value changed and had to complete 4 practice
series for each TECH × MM condition.

Experiment 2: Results and Discussion
Our analysis is based on the full factorial model:

TECH×MM×WF×DC×Random(PARTICIPANT)

We consider the same measures as in Experiment 1: task
completion time MT, focus targeting time FTT, cursor point-
ing time CPT and error rate ER.
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Figure 8. Movement time per TECH×MM. The lower part of each bar
represents focus targeting time, the upper part cursor pointing time.

Analysis of variance reveals simple effects of WF (F2,22 =

68), MM (F1,11 = 393) and DC (F1,11 = 65) on MT (all p <

0.0001). As expected, MT increases as WF decreases, as MM
increases and as DC increases. Participants also make sig-
nificantly more errors when WF decreases (3.67% for WF =
7, 5.36% for WF = 5 and 8.82% for WF = 3).

The differences in movement time MT among techniques is
significant (F2,22 = 21.6, p < 0.0001) while the difference in
error rate is not (6.15% for Speed, 6.05% for Key and 5.65%
for Ring).

There is an interaction effect TECH×MM on MT (F2,22 =

24.8, p < 0.0001): Tukey post-hoc tests show that Ring and
Key are significantly faster than Speed but only for MM=12
while these differences are not significant for MM=8. Figure
8 shows that this large difference at MM=12 is due to a sharp
increase of focus targeting time (FTT) for Speed. Comments
from participants confirm that the speed dependent control
of motor precision is too hard when the difference between
context scale and focus scale is too high, resulting in abrupt
transitions. With Speed, participants did not succeed in con-
trolling their speed: either they overshot the target (targeting
speed too high) or spent a lot of time putting the target in
focus (speed too low). Therefore, Speed does not seem to be
a suitable lens for pointing with a very high magnification
factor: at MM=12, the linear function linking focus speed to
context speed is too steep to be usable.

Figure 8 shows that focus targeting performance of Ring de-
grades as MM increases. However, good cursor pointing per-
formance compensates for it, resulting in good overall task
completion time. Figure 9 shows CPT for each TECH × MM
× WC condition. Analysis of variance reveals a significant
effect of WF (F2,22 = 230, p < 0.0001) on CPT. As mentioned
earlier, the larger WF, the easier the cursor pointing task.
However, the effects of MM (F1,11 = 154, p < 0.0001) and
TECH (F2,22 = 64, p < 0.0001) on CPT are less straightforward
to interpret. CPT is higher when MM=12 than when MM=8,
Ring is faster than Key and Speed, and the difference be-
tween Ring and both Key and Speed is larger when MM=12
than when MM=8 (the TECH×MM interaction is indeed sig-
nificant on CPT, F2,22 = 9.8, p = 0.0009).

A plausible explanation for these effects lies in the differ-
ences in terms of Control-Display (C-D) gain among tech-
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Figure 9. Cursor pointing time per TECH × MM × WF condition.

niques in the cursor pointing phase3. Figure 10 illustrates the
difference in terms of control-display gain among lenses, all
in high-precision mode. During the cursor pointing phase,
Ring is stationary; only the cursor moves inside a static flat-
top. This is not the case for Key and Speed for which high-
precision cursor pointing is achieved through a combination
of cursor movement and flat-top offset. In Figure 10, to
achieve a mouse displacement of 15 units, the cursor has
moved by 1 context pixel (= 8 focus pixels) and the repre-
sentation has moved by 7 focus pixels to achieve an overall
displacement of 15 focus pixels. As a result, the control-
display gain is divided by MM for Key and Speed. This might
be the cause for the observed performance degradation. This
interpretation is consistent with the stronger degradation for
Key and Speed than for Ring from MM=8 to MM=12. Note,
however, that there is still a small degradation of CPT from
MM=8 to MM=12 for Ring, that we tentatively explain by a
harder focus targeting phase when MM=12 that influences
the transition from focus targeting to cursor pointing.

To summarize, when pushed to extreme conditions, the Speed
lens becomes significantly slower than the other precision
lenses while Ring remains as fast as Key without requiring
an additional input channel for mode switching.

MOTOR CONTROL COMBINED WITH VISUAL FEEDBACK
Previous experiments show that techniques with advanced
motor behaviors enable higher-precision focus targeting and
object selection while increasing the upper limit of usable
magnification factors. The Sigma Lens framework [18] takes
a different approach at solving the same general problem by
proposing advanced visual behaviors. We now explore how
to combine these two orthogonal approaches to create hybrid
lenses that further improve performance.

Sigma Lenses with High-Precision Motor Control
The two Sigma lens visual designs reported as the most effi-
cient ones in [18] can be directly combined with our motor
designs. The first one is the Speed-coupled blending (ab-
breviated Blend): it behaves as a simple magnifying glass
whose translucence varies depending on lens speed. Smooth
transition between focus and context is achieved through dy-
namic alpha blending instead of distortion. This enables a
larger flat-top for the same overall lens size, reducing the
3The ratio between the distances traveled by the cursor and the
input device, both expressed in metric units.

(min speed) / (Shift pressed)(inside ring)

Figure 10. Difference in control-display gain between Ring and
Speed/Key lenses (MM=8). In italic: cursor location on screen.

focus targeting task’s index of difficulty. The other design
(abbreviated Flat) is a variation on Gutwin’s original Speed-
coupled flattening [12]. The lens flattens itself into the con-
text as its speed increases so as to eliminate the problems
caused by distortion. Figure 11 illustrates both behaviors.

We designed four new techniques that result from the com-
bination of one of the above two visual behaviors with either
speed-dependent motor precision (Speed) or cursor-in-flat-
top motor precision (Ring). Key was discarded because it
proved awkward to combine explicit mode switching with
speed-dependent visual properties.

Speed + Flat: this lens behaves like the original Speed de-
sign, except that the magnification factor decreases toward 1
as speed increases (Figure 11-a). The main advantage is that
distortion no longer hinders focus targeting. Additionally,
flattening provides indirect visual feedback about the lens’
precision in motor space: it operates in context space when
flattened, in focus space when not flattened.

Ring + Flat: This lens behaves like the original Ring de-
sign, with the magnification factor varying as above. As
a consequence, the flat-top shrinks to a much smaller size
(time stamp t3 on Figure 11-a), thus making course correc-
tions during focus targeting easier since the cursor is still re-
stricted to that area. As above, distortion is canceled during
focus targeting.

Ring + Blend: This distortion-free lens behaves like the orig-
inal Ring design, except that the restricted area in which the
cursor can evolve (the flat-top) is larger (time stamps t1 and
t5 in Figure 11-b). As speed increases, the flat-top fades out,
thus revealing the context during the focus targeting phase
(time stamps t2 to t4). An inner circle fades in, representing
the region that will actually be magnified in the flat-top if the
lens stops moving. The cursor is restricted to that smaller
area, making course corrections less costly.

Speed + Blend: This lens behaves like the original Speed
design without any distortion. As above, the flat-top fades
out as speed increases and fades back in as speed decreases.
Again, the larger flat-top reduces the focus targeting task’s
index of difficulty. In a way similar to Speed + Flat, blend-
ing provides indirect visual feedback about the lens’ preci-
sion in motor space: it operates in context space when trans-
parent, in focus space when opaque.

Experiment 3: Design
Our goal is to evaluate the potential benefits of combining
techniques that enable higher motor precision with visual
behaviors based on speed-coupling. We use Static versions,
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Figure 11. Behavior of two Sigma lenses during a focus targeting task ending on East Drive in Central Park. (a) As speed increases, the speed-coupled
flattening lens smoothly flattens itself into the context (from t1 to t3), and gradually reverts to its original magnification factor when the target has been
reached (t4 and t5). The inner circle delimits the region magnified in the flat-top. (b) As speed increases, the speed-coupled blending lens smoothly
fades into the context (from t1 to t3), and gradually fades back in when the target has been reached (t4 and t5). The inner circle fades in as the lens
fades out; it delimits which region of the context gets magnified in the lens. The magnification factor remains constant.

i.e., without any dynamic visual behavior, of our Ring and
Speed techniques as baselines. Experiment 2 revealed that
problems arise for the difficult tasks. We thus consider here
difficult conditions in terms of magnification and target size.
To reduce the length of the experiment, we discarded the DC

factor (distance between targets) as it did not raise any par-
ticular issue for any of the techniques.

Twelve participants from the previous experiments served in
Experiment 3. Experiment 3 was a 2 × 3 × 2 × 3 within-
subject design with the following factors:
• Motor precision technique: TECH ∈ {Speed ,Ring}
• Visual behavior: VB ∈ {Blend ,Flat ,Static}
• Magnification: MM ∈ {8, 12}
• Target width in focus pixels: WF ∈ {3, 7, 15}
Trials were grouped into two main blocks, one per tech-
nique (TECH). These blocks were divided into three sec-
ondary blocks, one per visual behavior. The presentation or-
der of TECH main blocks and VB secondary blocks was coun-
terbalanced across participants using a Latin square. Within
a TECH×VB block, each participant saw two sub-blocks, one
per magnification factor (MM); presentation order was coun-
terbalanced as well. For each TECH × VB × MM condition,
participants experienced 3 series of 8 trials, one per value of
WF, presented in a random order. We collected 2 TECH × 3
VB × 2 MM × 3 WC × (8-1) replications × 12 participants =
3024 trials for analysis. As with the other two experiments,
participants received a short explanation before each TECH ×
VB condition and performed 3 practice trial series per TECH

× VB × MM condition.

Experiment 3: Results and Discussion
As in Experiments 1 and 2, we perform analyses of vari-
ances with the full factorial model VB × TECH × MM × WC

× Random(PARTICIPANT) for MT, FTT, CPT and ER. Tukey
post-hoc tests are used for pairwise comparisons.

As expected, we find a simple effect of VB on MT (F2,22 =
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Figure 12. Movement time (MT) per VB by TECH × MM condition.
The lower part of each bar represents focus targeting time (FTT), the
upper part cursor pointing time (CPT).

67, p < 0.0001) revealing that visual behaviors significantly
improve overall performance. Even if CPT is significantly
degraded, the gain in FTT is strong enough (significantly)
to decrease MT (see Figure 12). The degraded cursor point-
ing performance observed here is not surprising. It can be
explained by the time it takes for a speed-coupled blending
lens to become opaque enough or for a speed-coupled flat-
tening lens to revert to its actual magnification factor. The
performance gain measured for the focus targeting phase is
consistent with previous experimental results [12, 18]. Over-
all, the gain in the focus targeting phase is strong enough to
improve overall task performance.

The effects of WF and MM on MT are consistent with the pre-
vious two experiments: MT increases as WF decreases and
as MM increases. Ring is still significantly faster than Speed
(TECH has a significant effect on MT: F1,11 = 153, p < 0.0001).
Even if visual speed-coupling improves the performance of
Speed more than that of Ring (significant interaction effect
of TECH×VB on MT: F1,11 = 11, p = 0.0005), Ring remains
faster than Speed for each MM. However, the advantage of
Ring over Speed is significant only for MM=12 when we
consider only the two speed-coupling techniques (TECH×MM
on MT is significant, F1,11 = 227, p < 0.0001, as well as
VB×TECH×MM, F2,22 = 21, p < 0.0001).
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Note that we do not observe a significant advantage of Blend
over Flat as reported in [18]. The main difference is that our
targets are much smaller than those tested with Sigma lenses
(0.25 to 1.9 context pixels in our experiment vs. 8 context
pixels in [18]). Small targets probably cause more overshoot
errors that are more expensive to repair with Blend than with
Flat: if the larger flat-top of Blend is supposed to make fo-
cus targeting easier under an error-free hypothesis, it also
causes an area of occlusion that is a significant drawback
when trying to correct overshoots. Our participants actually
reported that observation; in case of an overshoot they of-
ten left the target zone completely to perform a new focus
targeting task. However this interpretation should be taken
carefully since we did not record the number of overshoot
errors. We only measured ER, the percentage of clicks out-
side the target (5.15% for Blend, 5.55% for Flat and 4.36%
for Static). As in Experiment 2, the only factor that has an
effect on error rate is target width WF.

SUMMARY AND FUTURE WORK
Large differences in scale between focus and context views
cause a quantization problem that makes it difficult to pre-
cisely position lenses and to acquire small targets. Quan-
tization severely limits the range of magnification factors
that can be used in practice. We have introduced three high-
precision techniques that address this problem, making focus
targeting and object selection more efficient while allowing
for higher magnification factors than regular lenses. This
is confirmed by the results of our evaluations, which also re-
veal that some lenses are more robust than others for extreme
conditions, with the Ring technique performing the best. Our
high-precision techniques can be made even more efficient
by combining them with speed-dependent visual behaviors
drawn from the Sigma lens framework, as shown in the last
experiment.

We analyzed our observations based on a model for target
acquisition that sums the focus targeting and cursor pointing
time to get the overall task time. Our results suggest that
this model is too simple as it ignores the transition period
between the two subtasks. This is especially true for lenses
with a speed-dependent behavior, because of the delay to
revert back to their stationary configuration. As future work
we plan to refine the additive model to better account for
these transitions. We also plan to adapt our techniques to
other focus+context interfaces and investigate non-circular
focus shapes.
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Exploratory Analysis of Time-Series with ChronoLenses

Jian Zhao, Fanny Chevalier, Emmanuel Pietriga, and Ravin Balakrishnan

Fig. 1. The ChronoLenses interface includes (A) a charts panel showing the time-series; (B) a lens creation toolbar; (C) a lens
analysis pipeline view of (D) the currently selected lens; (E) a property panel showing details of the currently selected lens. A context
menu (F) can be invoked to perform lens-based operations, and (G) the lens toolbar allows quick access to a lens’ parameters.

Abstract—Visual representations of time-series are useful for tasks such as identifying trends, patterns and anomalies in the data.
Many techniques have been devised to make these visual representations more scalable, enabling the simultaneous display of
multiple variables, as well as the multi-scale display of time-series of very high resolution or that span long time periods. There has
been comparatively little research on how to support the more elaborate tasks associated with the exploratory visual analysis of time-
series, e.g., visualizing derived values, identifying correlations, or discovering anomalies beyond obvious outliers. Such tasks typically
require deriving new time-series from the original data, trying different functions and parameters in an iterative manner. We introduce
a novel visualization technique called ChronoLenses, aimed at supporting users in such exploratory tasks. ChronoLenses perform
on-the-fly transformation of the data points in their focus area, tightly integrating visual analysis with user actions, and enabling the
progressive construction of advanced visual analysis pipelines.

Index Terms—Time-series Data, Exploratory Visualization, Focus+Context, Lens, Interaction Techniques.

1 INTRODUCTION

Time-series data are found in almost every domain, ranging from fi-
nance to many engineering and scientific disciplines. Time has in-
herently unique characteristics: for most purposes outside the theory
of relativity, things evolve over time, but time does not depend on
other variables. Time is considered uniform and absolute. It is thus
often treated as a special variable, in terms of both how the data is
structured and how it is presented to users. Tasks associated with the
analysis of temporal datasets typically focus on the evolution of other
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(dependent) variables with respect to time: identifying trends and re-
curring patterns, establishing correlations and possibly predicting the
future based on past and current behavior.

Visual representations of time-series take advantage of people’s
innate perceptual abilities to process information and detect struc-
ture [32], making it significantly easier for users to discover trends and
patterns at different scales, but also to identify anomalies in the data
[10, 31]. However, basic time-series visualizations using line plots do
not scale well; and as time-series data are often very large, featuring
multiple, possibly heterogeneous, dependent variables measured for
long periods of time and/or at high sampling rates, visualization of
real-world time-series data poses significant challenges and has been
an active area of research for many years. Many interactive visual-
ization tools have been developed to address this scalability problem,
offering innovative alternatives to the common line plot visualizations
or enhancing the visualization with advanced interactive features.

There has been comparatively little research on how to support the
more elaborate tasks typically associated with the exploratory visual
analysis of time-series, e.g., visualizing derived values, identifying
correlations, or identifying anomalies beyond obvious outliers. Such
tasks typically require deriving new time-series from the data, visual-
izing those time-series and relating them to the original data plots.
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Visual exploration techniques take advantage of human abilities to
drive the data exploration process and are especially useful for undi-
rected searches, when users know little about the data or have only
vague exploration goals [23, 35]. As emphasized by Keim’s visual
analytics mantra – “Analyze first, Show the important, Zoom, Filter
and analyze further, Details on demand” [24] – this process is itera-
tive. For it to be efficient, visual representations, that support human
judgment, and interactions, that re-parameterize the visual represen-
tation, should be tightly integrated, enabling users to quickly choose
and refine parameter values that best suit the task at hand [2]. New
plots derived from the original data should be put in context and made
easy to relate both to the original data and to other plots that have been
derived as part of the exploratory process.

We introduce a novel, domain-independent time-series visualiza-
tion technique called ChronoLenses, aimed at supporting users in ex-
ploratory visual analysis tasks. ChronoLenses, as many other types of
lenses, delimit a region of interest in the data to be put in focus through
magnification [12, 33], visual filtering [15] or other arbitrary trans-
formations of the underlying content [8]. Based on the metaphor of
direct manipulation, ChronoLenses perform on-the-fly transformation
of the data points in their focus area, tightly integrating visual anal-
ysis with interaction. Users can build pipelines composed of lenses
performing various transformations on the data (e.g., remove mean,
compute 1st derivative, auto-correlation), effectively creating flexible
and reusable time-series visual analysis interfaces. At any moment,
users can change the parameters of already created lenses, with the
modifications instantaneously propagating down through the pipeline,
providing immediate visual feedback that supports the iterative explo-
ration process. Figure 1 gives an overview of the technique.

After a review of related work, we introduce tasks and require-
ments associated with the exploratory analysis of time-series, gathered
from expert users in varied domains including operations monitoring
and control for a radio-observatory, environmental research related to
weather forecast, as well as financial and network streaming data anal-
ysis. We then describe the general concept of ChronoLenses, followed
by its implementation in a research prototype application that provides
rich interaction and analytical support for time-series. Example anal-
ysis pipelines follow with usage scenarios based on our work with
network analysts, and astronomers of the ALMA radio-observatory,
demonstrating how ChronoLenses can be used for the monitoring and
offline analysis of complex time-series data. We conclude the paper
with a discussion of the current implementation’s limitations.

2 RELATED WORK

2.1 Time-series Visualization
Visual representations of time-series date back to the 18th century with
seminal work using line charts by Playfair [37]. Many new static and
dynamic techniques have been proposed since then. See [1, 32, 36] for
relevant surveys. Some innovative techniques focus on helping users
identify periodic patterns in the data. For instance, van Wijk [20] uses
a calendar-based display to visualize time-oriented series aggregated
on a daily, weekly or monthly basis via similarity clustering. Other
visualizations, such as SpiralGraph [40] and SpiralView [7], lay out
the data on a spiral-shaped time axis to reveal cycles. These techniques
can yield meaningful representations of data that feature periodicity,
making recurring patterns easy to spot. VizTree [28] takes a different
approach, computing a symbolic representation of time-series and then
representing the sequence of symbols using a suffix tree. The resulting
visualization is radically different from other temporal visualizations
and can be disconcerting at first, but represents a potentially powerful
alternative to other techniques for identifying patterns in large datasets.

Most of the work on time-series visualization has focused on the
scalability of the more conventional line plot and bar chart representa-
tions, either by proposing variations on the original plotting techniques
or by enhancing them with advanced interactive visual filtering tech-
niques. Variations on conventional line plots include Small multiples
and sparklines [37], Horizon graphs [18], and Braided graphs [22].
These techniques focus on the issue of optimal space management, en-
abling the display of an increased number of time-series compared to

regular line plots. Lopez-Hernandez et al. [29] address the same prob-
lem for a specific type of time-series – univariate oscilloscope digital
signals – by wrapping the signal in time, representing the different
traces on layers that can be brushed by users.

2.2 Multi-scale Representations
Multi-scale visualization techniques adapt the representation depend-
ing on available screen real-estate. Time-series can be represented
at several levels of detail and abstraction using different qualitative
scales, or hybrids combining qualitative and quantitative informa-
tion [6], gradually revealing more information as more space gets al-
located to the chart, or as the user zooms in a region of interest [27].
Line Graph Explorer [25] provides an overview+detail interface for
the exploration of large collections of time-series. It displays a com-
pact overview of the entire collection by encoding the y-dimension
of individual line graphs using color instead of space and viewing se-
lected graphs in detail as standard line graphs. The technique is also
interesting as the overview visualization lends itself well to sorting and
clustering of the graphs using various similarity distances.

Hao et al. [17] present a space-filling, multi-resolution matrix rep-
resentation of time-series where the color of a cell encodes the mag-
nitude of the corresponding value in the data. The same authors pro-
pose another space-filling visualization capable of displaying multiple
time-series, where the various charts are organized based on their im-
portance in a treemap-like structure [16]. Stack zooming [21] uses a
relatively similar technique, taking advantage of the one-dimensional
nature of time-series to present them as hierarchies of strips, where
each strip contains magnified versions of one or more region(s) of in-
terest delimited in the above strip. Stack zooming can also be seen
as a specialization of the DragMag [39] that supports recursive mag-
nification and automatic arrangement of magnification windows. The
technique enables efficient exploration of time-series at multiple lev-
els of detail. LiveRAC [31] offers another variation on this approach,
organizing charts in a reorderable spreadsheet-like matrix that allows
side-by-side visual comparisons at multiple levels of detail. The tech-
nique supports semantic zooming [12], providing visual representa-
tions adapted (cell-wise) to the allocated screen space.

2.3 Lens-based Interaction for Time-series Visualizations
Timeboxes [19] take a different approach to the scalability problem.
Timeboxes act like visual filters that specify constraints on what time-
series to display, only showing plots that intersect the one or more
boxes that form conjunctive queries, enabling the dynamic exploration
of large data sets by direct manipulation of the rectangular boxes. In
that sense, timeboxes can be seen as data filtering lenses, that have an
impact on the visualization beyond the region of interest.

SignalLenses [26] provide another type of lens, conceptually closer
to the usual lens-based focus+context visualization techniques [12].
SignalLenses are used for the visual analysis of large electronic time-
series and help perform tasks such as anomaly detection and motif
discovery. They provide in-place magnification of the signal, achiev-
ing a smooth transition between the focus and context regions through
1D distortion [11, 33]. Though they can provide additional measure-
ment tracks to assist the exploration of time-series data by computing
time-aligned properties, SignalLenses are limited to the magnification
of plots in the region of interest. The MagicAnalytics lenses of Kro-
noMiner [41] go beyond simple magnification, building on the concept
of Magic Lenses [8] originally designed for arbitrary 2D graphics.
MagicAnalytics lenses compute and display the result of a function
involving two time-series. They represent one of the basic building
blocks of ChronoLenses, though limited to single step transformations.

ChronoLenses go beyond these simple transformations, offering
multi-step transformations of one or more time-series. These can be
purely visual transformations, or transformations that change the value
of the data (1st derivative, point-wise maximum, etc.). ChronoLenses
enable users to construct elaborate visual analysis pipelines, with mod-
ifications automatically propagating downstream, providing immedi-
ate visual feedback that supports the iterative exploration process.
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3 TASKS AND DESIGN REQUIREMENTS

To better understand the needs for interactive visualization when ex-
ploring time-series data, we conducted informal interviews with expert
users from various domains, including: astronomers, experts doing re-
search in network streaming data analysis, finance, and weather fore-
casting. Based on their feedback and on the literature [4], we identified
low-level tasks that users typically perform to carry out time-series
analyses. From these tasks, we derived design requirements for the
ChronoLenses technique, as introduced in this section.

The analysis of time-series datasets typically implies feature ex-
traction and data comparison by transforming one or more time-series
into another. Such computations usually require performing one, or a
combination of, the following low-level tasks:

T1 Single-data stream transformation. Transform each data point
of a series by applying an operator. Examples are data alteration,
e.g., Fourier transforms and Box-Cox transforms [9]; bias reduc-
tion, e.g., remove means and remove trends; repeated pattern iden-
tification, e.g., auto-correlation; and operations related to delays
and time lags, e.g., differencing and seasonal differencing.

T2 Cross-data stream analysis. Compute a new time-series from
two or more input time-series. Examples are data comparison,
e.g., subtraction; similarity examination, e.g., inner product; rela-
tionship discovery, e.g., cross-correlation; and series aggregation,
e.g., point-wise maximum value.

However, exploring time-series often implies going through a more
elaborate analysis pipeline that combines various tasks [24]. Practi-
cally speaking, this implies that users should be able to make com-
pound queries on the data by iteratively performing sequences of low-
level tasks T1 and T2, combining and modifying the transformation
parameters as part of the visual exploration process. From these ob-
servations we derive the following requirements:

R1 Dynamic transformations. Low-level tasks T1 and T2 are the
core components of the visual analysis process. The transforma-
tions that support them should be easy to perform through oper-
ators applied to the input time-series data. Visual representations
and interactions that re-parameterize these transformations should
be tightly integrated so as to facilitate exploratory analysis.

(a) Dynamic selection of input region of interest: users should
be able to dynamically select and modify what timespan(s)
in the input data are to be processed through the operators.

(b) Dynamic transformation parameters: users should be able
to easily configure and edit transformation parameters.

(c) Immediate visual feedback: the system should provide in-
stant visual update to reflect these changes.

R2 Dynamic analysis pipeline. Enabling the easy combination
of operators makes it possible to progressively build and re-
fine the analysis pipeline, thereby helping formulate complex
queries [24].

(a) Dynamic composition: users should be able to build the
analysis pipeline iteratively, combining basic transforma-
tions through the incremental composition of operators that
take as input arbitrary combinations of time-series from
the original dataset and time-series that result from earlier
transformation steps upstream in the pipeline.

(b) Reuse of intermediate results and easy backtracking: The
above requirement entails that all intermediate time-series
transformation steps in the pipeline should be reusable as
input to downstream operators, enabling users to branch out
and explore, and possibly compare, alternatives at any point
while sharing the data transformation steps that come earlier
in the analysis process.

(c) Visual representation of the pipeline: the system should
provide an overview of the analysis pipeline, helping users
maintain a mental map of the transformation steps and keep
track of the exploration history.

We also rely on general principles for visual exploration as listed
in [41], including: direct manipulation; overview first, zoom & filter,
details on demand; and support for dynamic multi-focus exploration.

4 CHRONOLENSES FRAMEWORK

ChronoLenses is an interactive visualization technique for the ex-
ploratory analysis of time-series data, whose design was driven by the
above requirements. It computes on-the-fly transformations of data
points and displays the result of those transformations in place, us-
ing the metaphor of lenses. The MagicAnalyticsLens technique intro-
duced in [41] relies on the Magic Lens concept [8] and forms one of
the basic building blocks for ChronoLenses. While MagicAnalytics
lenses enabled users to apply four single-step basic transformations
to exactly two input time-series, ChronoLenses extends the concept,
allowing for an arbitrary number of input time-series and introduc-
ing several additional operators. But most importantly ChronoLenses
enable multi-step transformations to be specified, where the result of
time-series transformed through a given lens can serve as input to an-
other lens, and where multiple pipelines can be branched out to explore
multiple alternative visualizations simultaneously, easing the formula-
tion of complex queries.

4.1 Lens Parameters
We define a lens L as the transformation of an input time-series in
the focus region of that lens into a resulting time-series. Time-series
can be seen as streams of data that get transformed through the lenses
that constitute an analysis pipeline structured as a dataflow. Transfor-
mations are computed on-the-fly according to a set of parameters that
can be dynamically adjusted1. To support tasks T1 and T2, L can
either transform a single data stream, or perform cross-data stream op-
erations. Data streams can be univariate or multivariate. Each lens L
is defined by four transformations, all optional:

Unary Operator: Lunary(·) defines the transformation that applies
to a single data stream in the focus region of the lens (T1);

Binary Operator: Lbinary(·, ·) defines the transformation that takes
the data in the focus region of the lens (processed by Lunary if set
to anything else than the identity transform) as the first operand,
and the output data stream resulting from the parent lens in the
hierarchy (detailed later), if any, as the second2 operand (T2);

Filter: L f ilter(·,θ) defines visual filters that hide time-series speci-
fied by parameter θ (applies to multivariate data streams only);

Scaling: Lscale(·,s) determines the magnification factor s applied to
the data rendered in the lens’ focus.

Operators Lunary and Lbinary perform actual computations on the
input data and can take some data points outside the lens’ time span,
such as when computing the 1st derivative. On the contrary, L f ilter
and Lscale only affect the visual representation of the processed data
within that time span. They do not need to access data outside it.

4.2 Pipelines of Lenses
As mentioned earlier, the output of a lens, i.e., the time-series result-
ing from the transformation of an input time-series, can be fed to one
or more lenses. In other words, lenses can be piped, effectively cre-
ating a lens-based data flow pipeline that can be used to progressively
build elaborate visual analysis interfaces. The hierarchical combina-
tion of lenses relies both on a layering system and on cross-data stream
parent-child relationships between lenses. The tree structure not only
helps users keep track of the sequence of exploration steps, but also
makes it possible to backtrack, that is, adjust the intermediate process-
ing stages iteratively, the system providing immediate visual feedback

1ChronoLenses support the representation of stacked multivariate time-
series. In that case, each individual series is processed separately using the
L transformation, and is then stacked in the lens’ frame.

2Most of the operations that consider more than two input data streams can
usually be simulated by cascading a series of binary operations.
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Fig. 3. Schematic representation of the ChronoLenses combination mechanism (I), and all possible elementary combinations (II).

Fig. 2. ChronoLenses rendering pipeline for lens L . (P) processing
pipeline in parent lens; (1) applying Unary Operator Lunary; (2) applying
Binary Operator Lbinary; (3) applying Filter Operator L f ilter; (4) applying
Scaling Operator Lscale.

of the consequences of these parameter adjustments by propagating
them downwards in the hierarchy. In the following, we describe the
steps involved in rendering data seen through a lens, and then describe
how lenses can be combined to build a full analysis pipeline.

4.2.1 Rendering Pipeline
Figure 2 illustrates the steps of the rendering pipeline applied to some
multivariate input data, eventually leading to the visualization of the
resulting time-series through lens L , that gets part of its input from a
parent lens.

More formally, the rendering pipeline can be described as follows.
Let �D = (d1,d2, . . . ,dm)

T be the m-dimensional set of data points
defined by the focus region of lens L . We note Lop(�Di) the re-
sult of applying one of the transformations steps to the data, where
op ∈ {unary,binary, f ilter,scale}. The final result L (�D) is obtained
by performing the following four computational steps:

C1 Apply unary operator Lunary, such that �D1 = Lunary(�D) (Fig-
ure 2-1);

C2 Apply binary operator Lbinary, such that �D2 = Lbinary( �D1, �Dp)

(Figure 2-2), where �Dp is the set of data points resulting from
applying the parent lens to the same or to another set of input data
points (Figure 2-P);

C3 Apply visual filter operator L f ilter such that �D3 =L f ilter( �D2,θ),
where θ defines the subset of time-dependent variables to be ren-
dered in case of multivariate input (Figure 2-3);

C4 Apply scaling operator Lscale such that �D4 = Lscale( �D3,s),
where s defines the magnification factor (Figure 2-4). We note
L (�D) = �D4 the final result.

Any of the four operators can be set to null, in which case the asso-
ciated step is equivalent to an identity transform. As mentioned earlier,
operators Lunary and Lbinary perform actual computations on the in-
put data while L f ilter and Lscale only affect the visual representation
of the data. Thus, a simple magnifying lens can be obtained by only
setting Lscale. And a lens showing only one time-series in a multi-
variate plot can be obtained by only setting L f ilter with θ limited to
that particular series. The following section focuses on the more com-
plex computational steps C1 and C2, and describes complete analysis
pipelines involving multiple lenses.

4.2.2 Analysis pipeline
Users can specify elaborate transformations by combining multiple
lenses. Two lenses L1 and L2 can be combined either by overlaying
them in the chart, in which case the operators defining the lenses get
applied sequentially to the input time-series data points (first those of
L1, then those of L2); or by declaring L1 as the parent lens of L2, the
transformed output of L1 being an operand of L2’s binary operator.
Figure 3.I gives a schematic representation of these two combination
mechanisms. Basic transformations that apply to a single data stream
only require a lens with a unary operator (Figure 3-a) as defined in
C1. Cross-data-stream computations require the definition of a child
lens (Figure 3-b), that takes as input a data stream resulting from a
parent lens and the data in the child lens’ focus. The two streams are
processed through the child lens’ binary operator (C2), with the unary
operator (C1) pre-processing the data points in the child lens’ focus, if
set. Figure 3.II illustrates all possible elementary lens combinations:

E1 Simple transformation (Figure 3-c): the most basic lens, where
Lunary is set and Lbinary is null. It is conceptually similar to a
Magic Lens [8], with the unary operator (noted α) transforming
the data in the lens’ focus region;

E2 Series of transformations (Figure 3-d): two lenses that are piled
up (they observe the same timespan) on separate layers as in tra-
ditional graphics editors. The first lens processes the input time-
series data points that fall into its focus through unary operator α1.
The resulting data is fed to the second lens and gets processed by
unary operator α2. It is possible to pile up an arbitrary number of
lenses, as with Fishkin and Stone’s Movable Filters [14].
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E3 Cross-data computation (Figure 3-e): cross-data computations
are achieved by creating a parent-child relationship between two
lenses. Output data from the parent lens and time-series data
points in the child lens’ focus region are the operands given to
binary operator β . The unary operator of the child lens is set to
null (identity transform).

E4 Simple transformation and cross-data computation (Figure 3-f):
both the unary operator α and the binary operator β are set. The
lens first applies transformation α to the time-series data points
in its focus. The result of this transformation, �D1, is then fed to
the binary operator β along with the output of the parent lens’
transformation, �DP.

More elaborate analysis pipelines can be built by creating hierar-
chies consisting of the above elementary combinations (see Section 6).

5 CHRONOLENSES INTERFACE

We developed a proof-of-concept, full-featured interactive visualiza-
tion tool implementing the ChronoLenses technique for the visual ex-
ploration of multivariate time-series. The interface (Figure 1) consists
of five main components: (A) the chart panel displaying the differ-
ent time-series in a classical stacked view; (B) a lens creation toolbar;
(C) a lens analysis pipeline view displaying all ancestors of the cur-
rently selected lens (D); and (E) a property panel showing the latter
lens’ settings. Following the design requirements listed in Section 3,
the interactive visualization was designed to allow rapid exploration
of time-series and construction of analytical pipelines. This section
describes the interactive visual interface of our prototype. Concrete
examples of use are introduced in the following section.

Figure 4-I shows the user interface of a lens L . The region of
interest (time span �D in the lens focus) is visually represented as a
blue focus bar on the time axis (Figure 4-c). The time-series L (�D)
is displayed inside the lens’ frame (Figure 4-b). A toolbar located
on the top border of the lens provides quick access to the lens’ main
parameters (Figure 4-a). This toolbar is visible only when the cursor
is hovering over the lens, so as to minimize visual clutter. Detailed
information of a lens is also provided in a tooltip when hovering.

The user can modify the visual representation of plots, offering dif-
ferent perspectives on the data. Our prototype supports classical plots
such as line charts and dot plots, but also statistical plots including
histograms and Q-Q normal plots for comparing data distributions.

5.1 Creating an Analysis Pipeline
Advanced analysis pipelines are typically built by creating and pro-
gressively combining multiple lenses corresponding to the desired el-
ementary operations E1-E4 defined in Section 4.2.2.

To create a basic lens, the user first specifies its parameters through
the creation toolbar, for instance choosing a unary operator such as
remove means, and setting the binary operator to null. She then selects
the data to be processed through the lens by initiating a rubber-band
selection on any time-series loaded in the charts panel. This selection,
achieved thanks to a simple mouse drag (Figure 4-e), defines the time
span of interest, that will become the lens’ focus.

Lenses that enable cross-data stream analyses obviously accept two
input streams3. One stream is defined by the lens’ focus, set as ex-
plained above. The second stream is provided as the output of another
lens. This lens is considered as the parent lens; it feeds data to the
child lens, that performs the cross-data stream analysis. The parent
lens must exist in order to create a child lens.

The user can derive a child lens from the currently selected lens,
by clicking on the Create Child Lens button in the creation toolbar or
on the equivalent contextual menu item (Figure 1-f), after having set
the desired parameters for the unary operator (if relevant) and binary

3As explained in Section 4.2.1, these streams can contain multivariate time-
series. The binary nature of the transformation does not mean that input time-
series are restricted to two variables. See Section 5.3 for more information
about handling multivariate time-series.

operator (e.g. cross-correlation). The time span of a child lens must
match that of the parent lens. This is to guarantee that input streams
contain the same number of data points for binary operations, and thus
make sure that cross-data stream operations are consistent. However,
it would be possible to support unequal time spans between parent
and child lenses, using time-series transformations that would make
the number of data points between both streams consistent using, e.g.,
linear interpolation methods for time-series.

The created lenses are z-ordered using layers and can be piled up
according to this ordering. Piling up lenses entails piping their opera-
tors as described in Section 4.2.2. In the current implementation, two
lenses get actually piped when the upper lens’ time span is fully con-
tained within that of the lens underneath: the result of the latter then
becomes the input of the former, as when composing Movable Filters
by overlapping them [14].

To help the user keep awareness of the analysis pipeline, a pipeline
view is provided, depicting the currently selected lens’ ancestors (Fig-
ure 1-C). The tree structure displays dynamic miniatures of the differ-
ent lens branches, alongside labels detailing the operators associated
with each lens in the pipeline. The current lens is visually empha-
sized with a thick blue border, and always corresponds to the top-left
element in the pipeline view. By hovering over a lens either in the
pipeline view or in the main chart view, the user can get an overall
preview of all its ancestors. All lenses upstream are visually identified
using an outer-glowing effect varying from green (closest ancestor)
to yellow (furthest ancestor) in both views. The hovered lens is also
emphasized with a blue glow effect (Figure 1-D).

5.2 Visual Exploration through Direct Manipulation
Visual exploration, the process of interactively browsing through dif-
ferent regions of a dataset to gain a better understanding of it, is not
only useful as a quick and effective technique for hypothesis confirma-
tion. It is also, and perhaps more importantly, essential for discovering
the unexpected and raising new questions [38]. Direct manipulation
has been successfully applied to time-series interactive visualizations
as a means to facilitate visual exploration in conjunction with immedi-
ate visual feedback; see, e.g., PatternFinder [10] and KronoMiner [41].
ChronoLenses, by virtue of their progressive analysis pipeline building
process, are meant to facilitate step-by-step exploration through direct
manipulation, while giving users freedom to edit intermediate steps.
Changes to a lens in the hierarchy are automatically propagated to its
descendants, and all affected plots are visually updated accordingly.

5.2.1 Modifying Lens Parameters
To facilitate opportunistic discovery of regions of interest, we make
it possible to redefine the focus region of a lens by simply dragging
the lens frame (Figure 4-g) or the associated focus bar (Figure 4-h)
left or right. The immediate redisplay of the newly computed result
in both the chart view and the pipeline view enables quick access to
different regions of the data stream, and thereby effectively supports
visual exploration. The red arrow controllers placed on the focus bar
(Figure 4-f) make it possible to adjust the lens’ time span. The time
span of all lenses downstream is adjusted accordingly so as to keep the
number of data points consistent, as explained earlier. The user can
also decide to move a lens to a different chart to further her analysis
on another dataset, as illustrated in Figure 4-k.

The lens frame’s width can be increased using the mouse wheel.
The time span considered does not change, which means that resiz-
ing affects the Lscale parameter: the lens behaves as a magnifying
glass4. Resizing on the vertical axis works similarly, except that the
lens frame’s height never changes and is always equal to the underly-
ing chart’s bounding box height. The y-axis origin can be adjusted by
dragging the plot up and down inside the frame. An auto-adjust func-
tion is also provided, that automatically adjusts the y-axis’ origin and
scale so as to make the best use of available screen real-estate within
the lens’ frame as the user drags it.

4The above-mentioned blue bar still shows the original region of interest.
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Fig. 4. (I) UI of a ChronoLens: (a) toolbar enabling adjustment of the lens’ main parameters, (b) tooltip (pops-up when hovering), (c) focus bar with
resizing handles, (d) lock icon for detaching/reattaching the lens’ frame from/to the focus bar; (II) associated interactions.

5.2.2 Groups of Lenses
As mentioned earlier, the z-ordering of lenses that belong to the same
analysis pipeline implicitly defines in what order transformation oper-
ations are applied to the data. The z-ordering and relative position of
lenses that make a given analysis pipeline is important and should be
kept constant during visual exploration via direct manipulation (when
brushing the time-series plots with the lenses). Having to move each
lens would be extremely cumbersome and would greatly impede the
interactive visual exploration process. To avoid this, lenses can be
grouped. All lenses that belong to the same group move synchronously
as the user drags any one of them. The user can therefore create a com-
pound lens set in which lenses are piled up in a specific order, thus
creating a reusable analysis pipeline.

Grouping lenses can also be useful when analyzing multiple charts
at a time, or when looking for seasonality. Such tasks require the in-
terval between lenses (time lag) in the data stream to remain constant.
By defining a group consisting of the different lenses to be moved syn-
chronously, the user can keep the time lag between these constant.

A lens can be added to the currently selected group through the
contextual menu (Figure 1-F). All lenses belonging to the same group
as the currently selected one are outlined with a green stroke, giv-
ing feedback about the time-lag constraints that exist between those
lenses. Group membership is also reflected in the tree view, where the
group number is explicitly specified alongside the lens miniatures.

5.2.3 Dealing with Visual Clutter
The instantiation of many lenses can quickly lead to visual clutter.
Lenses that are part of the same analysis pipeline will often overlay
each other, either partially or fully occluding one another. This can
be a problem when the user wants to visualize intermediate computa-
tional steps of the pipeline. Occlusion problems can also arise when
magnification lenses (any lens with Lscale > 1) look at time spans that
are disjoint but close to one another.

To address these issues, we introduce a mechanism that enables the
user to detach the lens frame from its associated focus bar, thereby giv-
ing her control over where to display the lens’ output, independently
of the actual input region of interest (focus bar location). Figures 4-g
to 4-j illustrate this mechanism. To detach a lens from its focus bar,
the user simply clicks on the lock icon (Figure 4-d) to unlock the lens
from the focus bar. In that mode, dragging the lens frame does not
affect the focus interval (Figure 4-i), making it possible to space out
lenses or, on the contrary, move them closer to facilitate comparison.
In the same manner, dragging the focus bar only affects the input time
span, the lens frame remaining in place (Figure 4-j). Wherever a lens
and its focus bar are positioned, locking them again will keep the po-
sition offset constant (Figure 4-g-h). When hovering over a lens frame
or a focus bar, both are emphasized with a glow effect making it easier
to identify what focus bar is associated with what lens, and conversely.

Other mechanisms that help manage visual clutter include delete
and minimize buttons in the toolbar (Figure 4-a). The former deletes

Fig. 5. Lenses applied to multivariate data: (a) auto-correlation for three
series out of five; (b) point-wise aggregated maximum showing the re-
sulting plot (common to all series) overlaid on top of each variable’s plot.

the lens, the latter hides the lens’ frame, but not its focus bar. The bar
remains visible so as to keep the user aware of its existence. At all
times, double-clicking it makes the lens’ frame visible again.

5.2.4 Multi-foci Exploration
As many other types of datasets, time-series are amenable to multi-
scale navigation. For a given series, the user might be interested in
behaviors and event patterns that occur at various time scales, from
months or years down to fractions of a second.

Magnification lenses support the process of interactively drilling
down into the data, and enable the comparison of different time spans
(a common practice when analyzing time-series data [13, 21, 41]) sim-
ply by instantiating multiple lenses. Magnification lenses can easily be
instantiated in ChronoLenses: any lens with Lscale > 1 is a magnifica-
tion lens that enables drilling down into the data. However, magnifica-
tion lenses pose some problems from an interaction perspective [5, 33].
In-place magnification of the focus region means that the immediate
surroundings of the region of interest will be occluded if the lens is
simply overlaid on the original data, hiding potentially valuable in-
formation and hindering navigation. Smooth transition between the
magnified focus and surrounding context can be achieved using spa-
tial distortion [26], but the introduced deformation has a cost in terms
of legibility and interpretation of the visualization.

An alternative drill-down method called Stack Zooming was re-
cently proposed by Javed et al. [21]. The technique consists in stack-
ing multiple views as the user drills down into the data. The con-
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Fig. 6. Exploring ALMA Line Length Correction Stretcher Voltage plots for four antennas: (a) two-day overview at a sampling rate of one second; (b)
magnification of the 5 hours seen through the remove mean lens applied in (a); magnification of the 50 minutes for a single antenna seen through
a filtering lens, rendered in scatterplot mode (c) and line-plot mode (d).

tent of a given view is a magnification of a region in the view imme-
diately above, delimited by a lens-like viewfinder similar to a (one-
dimensional) DragMag [39]. The technique can seamlessly be inte-
grated with ChronoLenses and is implemented as follows.

The user creates a new empty chart panel in the main view. Then,
dragging-and-dropping an existing lens into this empty panel dupli-
cates the data within the span of the lens and displays it in this new
panel. The visual representation is stretched horizontally to fill the
panel, thus providing a magnified view of the lens’ content that is dy-
namically updated whenever that lens moves. Figure 6 illustrates this
technique, with chart (b) providing a magnified version of the region
seen through the lens in chart (a). Lenses can be instantiated on this
new panel, enabling users to drill-down recursively and build a truly
multi-scale view hierarchy in which lenses at any level can be freely
adjusted. Lenses that form this hierarchy are of course not limited to
simple magnification and can apply to the data any of the elaborate
transformations enabled by the ChronoLenses operators.

5.3 Multivariate Time-Series
In ChronoLenses, multivariate datasets can be visualized either over-
plotted in the same chart (Figure 1, top chart) or separately, stacked on
top of one another (Figure 1, bottom chart). When applying a lens to
a multivariate data stream, each series gets processed independently,
except for some operators that aggregate the data, such as point-wise
minimum or maximum. In that case, the output is a univariate stream,
that can be duplicated and overlaid in all charts. We distinguish ag-
gregated operators from other operators by color-coding in red all the
replicas of the unique plot resulting from data aggregation (Figure 5-b)
as opposed to the one-to-one color mapping used when the different
variables are processed separately (Figure 5-a).

To focus on a subset of variables, the user can filter out series that
she does not want to be considered in the computational pipeline by
setting the filter operator L f ilter accordingly. To do so, she can either

select all the series to be taken into account in the corresponding menu
accessible from the lens toolbar, or specify the list in the property panel
(Figure 1-E), by entering the corresponding textual expression using a
very simple syntax. When filtered out, streams are neither computed
nor rendered, as the first and fourth streams in Figure 5-a. Note that
when a lens defines an aggregated operator, filtering out a stream has
an impact on the result, as the stream is no longer considered as an
operand. Again, we offer the user full control over what data gets pro-
cessed, making the analysis process highly flexible and customizable.

6 USE CASE SCENARIOS

In this section, we illustrate how ChronoLenses can be used with two
use cases involving real datasets.

6.1 ALMA Observatory Usage Scenario
The Atacama Large Millimeter/submillimeter Array (ALMA, [3, 34])
is a single telescope (under construction in the Chilean Andes) that
will eventually be composed of 66 high-precision antennas. Observa-
tions are based on the principle of interferometry: a source in the sky is
observed by at least two antennas; the signals (radio waves) captured
by each antenna are then combined by a central computer called the
correlator to form images suitable for performing scientific analysis.
Time-series visualization are used by both operators and astronomers
for a variety of tasks, ranging from checking some of the thousands
of monitor points in the system to performing scientific data quality
assurance during observations. In the following, we focus on one ex-
ample where ChronoLenses can help users in their daily task.

When combining the signals coming from the different antennas
taking part in a given observation, the correlator must know the length
of the path traveled by the signal through the fiber optics cables with an
accuracy of hundredths of a millimeter. A round-trip laser signal gets
sent to all antennas in order to continuously monitor the length of the
optical fibers, as the latter can expand and contract due to temperature

2428 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 17, NO. 12, DECEMBER 2011

SELECTED PUBLICATIONS (2006-2011) 165



L1

L3

L2

L3
L4

L3

L5

L6

Fig. 7. Analysis of a month of the visiting population of two P2P video-on-demand channels: a) analysis of the evolution of the correlation within
and between the channels (see Section 6.2.1); b) looking for seasonal pattern lag value, the blue arrows show a strong correlation at a delay of
1440s (=24h) and c-d) comparing the delayed time spans (see Section 6.2.2).

variations. These changes in path length must be compensated in real-
time. This is achieved by the Line Length Correction (LLC) system,
which ensures that path lengths are all stabilized to about 1 micron.
Operators are interested in monitoring the LLC stretcher voltage for
each antenna, and observing potential deviation of an antenna’s LLC
stretcher voltage compared to that of the other antennas.

From a time-series visualization perspective, different things can be
happening at different time scales: from several days to a few minutes.
Efficient multi-scale and multi-focus visualization, as enabled by the
Lscale operator and the variation on stack zooming [21] implemented
in ChronoLenses, is thus an essential feature. Figure 6-a plots voltage
against time for 2 days at a sampling rate of 1 second.

Starting from this 2-day overview, the operator is first interested
in finding out whether all antennas are behaving normally or if one
or more are somehow deviating. All antennas are expected to behave
more or less similarly. Direct visual comparison between the plots,
overlaid or stacked, is sufficient to see the deviation of one antenna
during the second day (Figure 6-a).

To better see the smaller and shorter fluctuations, the operator cre-
ates a lens spanning a 5-hour period, with Lunary operator remove
mean (Figure 6-a). The lens is dragged and dropped to create panel
6-b. The content of that panel is a stretched version of what is seen
through 6-a’s lens. The operator can clearly see that the fluctuations
are in phase, which implies that they all come from a single source.
She could then plot various monitoring points simultaneously based
on system or environmental components likely to cause these fluctu-
ations and create lenses defining a cross-correlation Lbinary operator
(not shown here), eventually tracing the source to temperature fluctu-
ations in the local oscillator room.

Finally, zooming in further to display just 50 minutes (Figure 6-c),
the operator can see some odd features in the signal for one of the
antennas. She filters out antennas that behave normally using a lens
defining the appropriate L f ilter. She also switches from a scatterplot
to a line-plot rendering inside the lens focus (Figure 6-d), revealing
fast oscillations at a much lower scale that occur on top of the slow
ones observed earlier for this particular antenna. This antenna-specific
issue eventually gets traced to a device repeatedly turning on and off
in the antenna.

6.2 Peer-to-peer Network Fluctuation Analysis
We consider a network system manager who is trying to optimize
bandwidth usage on a centralized peer-to-peer system. She uses line
graphs of the visiting population of two different video-on-demand
channels. The relative evolution through time of the two channels,
temporal distances, and the activity load before and after peak events
are important clues that the analyst can rely upon, assisting her in the
decision making process. For instance, identifying regular activity pat-
terns helps better predict future fluctuations and therefore better pin-
point the needs for server pool optimization. Being able to spot anoma-
lies such as overloads in their context also helps identify the potential
causes, and plan for technical solutions.

�D1 �D2

�R

Fig. 8. Comparing the evolution of two time-series using ChronoLenses.
Left: the analysis pipeline, right: the corresponding lens hierarchy.

6.2.1 Analyzing the Evolution of Correlations
Our dataset consists of the visiting population of two different chan-
nels over a month, sampled from the server every 10 minutes (Fig-
ure 7). The overall yearly or monthly trends of the channels might be
different. For instance, one might be rising much faster than the other,
or one might fall while the other is rising a bit. In this first scenario,
the user is rather interested in the smaller scale fluctuations, comparing
evolution and identifying potential correlations at this scale.

The user first focuses on a single channel, looking for repeating
patterns. To do so, she compares differentiated data at different times
by performing the following steps: 1) remove mean, to make the data
more stationary and thus more amenable to comparison for our pur-
poses; 2) compute the first derivative (or differencing) of those; and
3) perform the cross-correlation between the two for comparison. The
pipeline that supports this type of analysis, described below, is com-
posed of four lenses, as shown in Figure 8.

The user creates lenses L1 and L2, with the Lunary operator set to
remove mean (step 1). She then creates L3 (Lunary operator set to 1st
derivative) and places it on top of L1 (step 2). Its child lens L4 gets
positioned on top of L2 with operators Lunary and Lbinary set to 1st
derivative and cross-correlation respectively (steps 2-3). In the end,
L4 outputs the correlation of the data below it (1st derivative of L2) and
its parent’s output (L3). The discovery of recurring patterns usually re-
quires performing computations on data with parameterized-yet-fixed
lags in time. Here, we use lens groups – that make all member lenses
move synchronously – to build dynamically-parameterized operators
enabling efficient exploration of the effect of different time lags and
time spans via direct manipulation.

Grouping L1 and L3 on the one hand (L1-3), and L2 and L4 on the
other hand (L2-4) makes it possible to drag one or the other focused
intervals along time and look for strong correlation by observing the
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result of L4. When such a correlation is identified, as in Figure 7-a, the
user can group L1-3 and L2-4 altogether and drag them. If L4 exhibits
a stable plot while dragging, then a recurrent trend is identified. If
on the contrary the plot varies, direct manipulation with immediate
feedback helps better understand the correlation variation before and
after peaks of interest, whereas it might be more difficult to apprehend
when computing automatic pattern detection.

When the analyst has located a pattern of interest, she can focus
on the second channel to look for correlations. She creates pipeline
L5-6 similar to group L2-4 using the data from the second channel as
input: L5 (remove mean) and L6 (L3’s child placed on top of L5 with 1st
derivative and cross-correlation operators), as depicted in Figure 7-a.

Different analysis tasks can easily be performed with the current set
of lenses: (1) drag the group L5-6 until the plot is like, or the opposite
of, L2-4 to identify correlations between the two series (see Figure 7-
a); (2) group L2-4 and L5-6 so that they preserve their relative distance
while dragging one or the other in order to compare the correlation
fluctuations by simultaneously looking at the results of lenses L4 and
L6. If those behave the same, then a similar evolution is identified
and the relative lag is known. If they always behave the opposite,
there is an inverse causality; and (3) by extending the group to L1-3
and dragging the whole, the analyst can also explore if a pattern is
preserved in time. The user can also change the lenses’ operators at
any time during exploration, as for example changing L3, L4 and L6’s
Lunary operator to 2nd derivative and looking for insights when more
lag is involved (20 minutes in our example).

6.2.2 Comparing different Time Spans in the same Series
Discovering seasonality is another important task in time-series data
analysis. It helps better predict future fluctuations. In this second part
of the scenario, our user is interested in finding seasonal differencing
on the two channels simultaneously, in order to gain a better under-
standing of what characterizes the typical data streaming cycle, if such
a cycle exists. Gaining this knowledge will eventually help develop
strategies to optimize bandwidth usage, but also assist in spotting ab-
normal behavior when it occurs.

Box-Cox Transforms [9] can be used to perform a variance stabiliz-
ing transformation. Seasonal differencing parameterized with a time
lag can then be applied to find out if the non-stationarity of the origi-
nal time-series is removed [30], but this requires to know the lag value
in advance. The identification of an appropriate lag value to perform
seasonal differencing can be made easier by building the following
pipeline: an auto-correlation lens (L1) on top of a Box-Cox transform
lens (L2). A strong correlation is observed at a delay of approximately
1440 minutes = 24 hours (see Figure 7-b).

The analyst deletes L2 and furthers her exploration as she creates
L2’s child lens L3 with Box-Cox transform and subtraction, synchro-
nized so that L3 is always 24 hours ahead of its parent (Figure 7-c).
An auto-correlation lens is then applied on top (after the differenc-
ing operation) to evaluate stability of the series. At this position in
the original time-series (Figure 7-d), there does not seem to be any
significant seasonal pattern, as high correlation values exist only at
zero-delay. But moving the lens group along the timeline, one pattern
is eventually discovered (Figure 7-e), calling for further exploration.

7 DISCUSSION

ChronoLenses aim at facilitating the creation of customized analy-
sis pipelines for easy exploration and navigation through time-series
datasets. Our initial prototype, although already offering a large set
of functionalities, still has limitations. It could be improved in several
ways, as discussed in this section.

7.1 Layering and Treeview Limitations
In its current implementation, the ChronoLenses interface does not
support effective layer management for the z-ordering of lenses that
pile up. Although the grouping of lenses keeps the z-ordering constant,
when not grouped, selecting a lens puts it on the topmost layer. This
might be annoying when dealing with complex pipelines as clicking
on a lens only to get information about it or even by mistake can alter

the pipeline. Making layer management more stable and more easily
configurable through a dedicated synchronized view would reduce the
need for advanced planning when building the pipeline and would aid
keep an accurate mental map of the data flow.

Similarly, the lens hierarchy treeview could be enhanced. As is, the
hierarchical view dynamically changes as the user selects a different
lens. This might be distracting and difficult to interpret. Moreover it
is not interactive. There is an opportunity for improvement here, as an
additional and complementary representation of the analysis pipeline
could be used as an alternative means of performing exploration tasks
if enriched with interactive capabilities. In particular, allowing for the
creation of lenses, duplication of analysis branches, or other changes
to the analysis pipeline from this alternate view would make it easier
to build up and manage complex pipelines.

7.2 Integration of SigmaLens Focus+Context Techniques
Another limitation of the current implementation is related to the po-
sitioning of lenses. When displaying an overview of large time-series,
ChronoLenses only draws a subset of all points (subsampling). Mag-
nifying the data through a lens enables the display of more detail in
context. However, as the lens’ magnification factor increases, small
movements of the lens translate to larger jumps in terms of time span
observed in the lens’ focus. For instance, given a magnification factor
of 10x, moving the lens by 10 pixels will move the time span observed
through the lens by 100 equivalent pixels at that zoom factor (see [5]
for a detailed description of this problem of quantization). The prob-
lem also exists when controlling the time span seen in a plot through
a lens observing a lower scale version of that plot à la Stack zooming.
Adapting one of the high-precision magnification lens techniques in-
troduced in [5] would solve this issue, enabling both fast repositioning
and precise selection within the lens focus.

A related issue is that our lenses occlude the area immediately sur-
rounding the region of interest, as basic magnifying lenses do. Sig-
nalLenses [26] address this issue by distorting the representation in a
bounded transition region between the lens focus and the context. We
chose not to rely on spatial distortion because of the issues it raises
in terms of making accurate analytical comparison and interpretation.
However, there are other solutions to this problem, such as speed-
coupled Sigma Lens focus targeting techniques [33]. For instance, the
Speed-coupled Blending Lens technique consists in coupling the lens
focus’ opacity to its speed, smoothly fading out the lens as speed in-
creases and smoothly fading it back in when it comes to a stop, having
reached its target position. The technique addresses the problems of
visual occlusion and would be relatively straightforward to implement
in ChronoLenses as we already support translucency in lens render-
ings. However, potential issues related to visual interference between
the layers during lens repositioning would have to be investigated.

8 CONCLUSIONS AND FUTURE WORK

We have presented ChronoLenses, a novel domain-independent vi-
sualization technique for the visual exploration of time-series data.
ChronoLenses relies on the metaphor of lenses, that compute on-
the-fly data transformations in place. ChronoLenses allow users
to progressively build elaborate analysis pipelines by interactively
compounding elementary operations, thus supporting complex user-
defined exploratory analysis tasks.

The concept of ChronoLenses can be extended to other types of
data than time-series, e.g., image analysis and image processing tech-
niques for exploring temporal media such as video, where content-
aware operators (feature detection algorithms, sharpening and color
correction filters) would complement more generic operators (magni-
fication, track filtering).

In addition to exploring new applications of the framework, we plan
to improve our implementation by addressing the limitations discussed
in the previous section, and by exploiting analytical mechanisms to
guide exploration. For instance, lenses could be made to snap to lo-
cal optima in the visualized time-series as the user drags them, using
measures such as, e.g., the strongest local cross-correlation.
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Figure 1. Panning and zooming in Spitzer’s 396 032 x 12 000 = 4.7 billion pixels images of the inner part of our galaxy.

ABSTRACT
Very-high-resolution wall-sized displays offer new opportu-
nities for interacting with large data sets. While pointing
on this type of display has been studied extensively, higher-
level, more complex tasks such as pan-zoom navigation have
received little attention. It thus remains unclear which tech-
niques are best suited to perform multiscale navigation in
these environments. Building upon empirical data gathered
from studies of pan-and-zoom on desktop computers and
studies of remote pointing, we identified three key factors for
the design of mid-air pan-and-zoom techniques: uni- vs. bi-
manual interaction, linear vs. circular movements, and level
of guidance to accomplish the gestures in mid-air. After an
extensive phase of iterative design and pilot testing, we ran
a controlled experiment aimed at better understanding the
influence of these factors on task performance. Significant
effects were obtained for all three factors: bimanual interac-
tion, linear gestures and a high level of guidance resulted in
significantly improved performance. Moreover, the interac-
tion effects among some of the dimensions suggest possible
combinations for more complex, real-world tasks.
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INTRODUCTION
Very-high-resolution wall-sized displays can accommodate
several hundred megapixels and make it possible to visu-
alize very large, heterogeneous datasets in many domains
[1, 3, 34]. Astronomers can use them to display telescope
images constructed from hundreds of thousands of frames
stitched together, such as Spitzer’s 4.7 billion pixels images
of the inner part of our galaxy (Figure 1). Biologists can
explore the docking of complex molecules. Artists can cre-
ate gigapixel images, such as the 26 gigapixel panorama of
Paris based on 2,346 pictures stitched together. Crisis man-
agement centers can interact with highly detailed maps of
very large areas. For example, OpenStreetMap data range
from a view of the world down to street level, resulting in an
image that requires 18 peta (18 · 1015) pixels at its highest
level of detail.

With resolutions up to 100-dpi, these LCD-based displays
afford more physical forms of navigation [3, 32, 34] com-
pared to conventional desktop setups or to lower-resolution
projection-based large displays: Users simply step back to
get an overview of the displayed data and walk forward to
see details, including small but legible text. However, as
the examples above show, datasets increase in size faster
than displays increase in dimensions and pixel density. The
display depicted in Figure 1 consists of thirty-two 30-inch
tiled monitors and can display a “mere” 131 million pixels.
NASA’s Hyperwall-2, to our knowledge the largest wall built
to date, only doubles that number, and does so by adding
some screens that users cannot reach. Virtual navigation is
thus still required, as datasets can be several orders of mag-
nitude too large to fit on even wall-sized displays [4].

Many interaction techniques have been specifically designed
to help users navigate large multiscale worlds on desktop
computers, using zooming and associated interface schemes
[11]. However, high-resolution wall-sized displays pose dif-
ferent sets of trade-offs. It is critical to their success that
interaction techniques account for both the physical char-
acteristics of the environment and the context of use, in-
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cluding cooperative work aspects. Input should be location-
independent and should require neither a hard surface such
as a desk nor clumsy equipment: users should have the abil-
ity to move freely in front of the display and interact at a
distance [3, 34]. This precludes use of conventional input
devices such as keyboards and mice, as well as newer inter-
action techniques: The powerful multi-finger gestural input
techniques designed by Malik et al. [22] were devised for
interaction with lower-resolution large displays from afar.
They require sitting at a desk, and are thus not optimal for
displays of very high-resolution that afford more physical
forms of navigation. The recent Cyclostar approach [21] is
very elegant, but requires the display surface to be touch-
enabled, a feature that wall-sized displays often lack. Cy-
clostar is also not well-suited to wall-sized displays, as it re-
quires users to be within arm’s reach of the display surface.
While this is perfectly acceptable for displays up to 1.5m in
diagonal such as SMART BoardsTM, users of larger displays
such as the one in Figure 1 (5.8m in diagonal) would only see
a very limited portion of the display while navigating. This
lack of an overview would be a non-negligible hindrance as
navigation is mostly driven by contextual information.

Our goal is to study different families of location-indepen-
dent, mid-air input techniques for pan-zoom navigation on
wall-sized displays. More specifically, we seek to answer
questions related to the performance and subjective prefer-
ences of users, including: Beyond their almost universal ap-
peal, do gestures performed in free space work better than
those input via devices operated in mid-air? Is bimanual in-
teraction more efficient in this context? Is it more tiring?
Do circular, continuous gestures perform better than those
that require clutching (restoring the hand or finger to a more
comfortable posture)? We ground our work on both theoreti-
cal and experimental work on bimanual input [8, 14, 18], the
influence of limb segments on input performance [2, 35],
on types of gestures [25, 33] and on the integral nature, in
terms of perceptual structure, of the pan-zoom task [17]. In
particular, we are interested in comparing the following di-
mensions: bimanual vs. unimanual input; device-based vs.
free-hand techniques; degrees of freedom (DOF) and asso-
ciated kinesthetic and haptic feedback; and types of move-
ments: linear gestures vs. circular, clutch-free gestures.

RELATED WORK
This work is at the intersection of many HCI research areas,
including multiscale interfaces, large displays, spatial input
and travel in virtual environments. This section highlights
strongly related or seminal work that guided our designs and
we point to relevant surveys, when available.

Large Displays
Large displays have been the focus of much research and
evaluation over the last ten years. Ni et al. [27] survey hard-
ware configurations, rendering techniques as well as interac-
tion techniques for many different types of large displays.

Overall, the body of empirical work on large displays sug-
gests that users can greatly benefit from their use. It also
shows that the design of interaction techniques has to be
carefully adapted to the characteristics of these displays

and to their context of use. Early studies investigated how
users could benefit from larger displays in different set-
tings. Baudisch et al. [4] found advantages to using a large
focus+context screen over zooming and overviews to ex-
tract information from large documents such as maps and
schematics of circuit boards. Improvements to spatial task
performance were also identified in several complementary
studies [12, 26, 31].

Other works have focused on the size and configuration of
high-resolution tiled displays. Ball et al. [3] found that for
tasks involving pan-zoom, such as navigating to a known
location, searching for specific targets or looking for pat-
terns, users perform better with larger viewport sizes that
require less virtual navigation, promoting physical naviga-
tion instead. Virtual navigation was always performed with
the same device: a gyroscopic mouse. Results from other
recent studies suggest that large displays are also beneficial
for information visualization and analysis tasks thanks to the
larger amount of data that can be displayed [1, 34].

Spatial Input and Mid-air Interaction Techniques
Spatial input has been studied for years in the context of
travel in immersive virtual environments and other 3D user
interfaces based on virtual camera control with techniques
using gloves, bimanual input and leaning, or high degrees of
freedom devices [7, 24, 35]. Hinckley et al. [16] present
a survey of design issues in spatial input, including fatigue,
recalibration, clutching, motion and orientation, unimanual
vs. bimanual interaction. One important issue they raise is
the interdependency of all these aspects, that makes formal
studies challenging, as we will see later.

Several input devices make it possible to point in mid-air
on large displays: commercial devices such as gyroscopic
mice, or soap [5], based on hardware found in a conventional
optical mouse wrapped in elastic fabric. ARC-Pad [23] en-
ables seamless absolute+relative pointing on large displays
through a mobile touchscreen. The VisionWand [10] is a
passive wand whose colored tips are tracked in 3D by two
webcams. The multiple degrees of freedom enable a richer
interaction vocabulary, that includes pan-zoom navigation.

Recent advances in motion tracking and dynamic gesture
recognition technologies now make it possible to investigate
freehand input techniques. Vogel and Balakrishnan [32] pro-
pose three pointing and clicking techniques that work with
bare hands, with emphasis on important design characteris-
tics such as accuracy, performance, but also comfort of use.
Zigelbaum et al. [36] describe a gestural interface based on
Oblong’s g-speak spatial operating environment to navigate
in a collection of videos arranged in a 3D interface through
a set of twenty hand-centric gestures.

Multi-scale Navigation on the Desktop
Pan-zoom navigation techniques have been studied for many
years in the more general context of multiscale interfaces for
the desktop. Cockburn et al. [11] provide a thorough survey
of the many zooming, overview + detail and focus + context
techniques, as well as empirical work that evaluated them.
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Of particular interest to us is the work by Guiard et al. on
multiscale pointing. Multiscale pointing consists of panning
and zooming the view so as to bring the target in view, fol-
lowed by a cursor pointing action to that target [15]. They
performed several empirical studies, showing that multiscale
pointing obeys Fitts’ law, and that performance bandwidth
is proportional to view size (up to a ceiling that we far ex-
ceed on wall-sized displays). They introduced an experi-
mental task adapted from Fitts’ reciprocal pointing task, that
we further adapt to take into account potential overshoots
in the scale dimension. An earlier paper [6] evaluated pan-
zoom performance with uni- and bimanual input, suggest-
ing that performance is enhanced with two hands, as it af-
fords better pan-zoom coordination. Pan-zoom navigation
has however not received much attention beyond desktop in-
terfaces, except for the recent work by Malacria et al. on
Cyclostar [21], specifically designed for touch-enabled sur-
faces and discussed in more detail in the next section.

PANNING AND ZOOMING IN MID-AIR
A large body of literature is devoted to the design and eval-
uation of input devices that feature a high number of de-
grees of freedom (DOF). Available degrees of freedom have
a direct impact on the potential for parallelization of actions
required to achieve the task. For example, 6DOF input de-
vices can increase the degree of parallelization of docking
tasks [35], though studies report limits in terms of human
capacity to handle all DOFs simultaneously. Pan and zoom
is a 3DOF task: the user controls the view’s position (x, y)
and its scale (s). The possible solutions for mapping pan
and zoom to three input channels are endless.

The film industry offers interesting and visually attractive
scenarios with movies such as Minority Report which show
users interacting via freehand gestures to navigate in a seem-
ingly fluid and efficient way. The technology to achieve this
type of interaction is now available in research laboratories
and beyond [36]. However, it remains unclear how freehand
gestures actually fare when compared to device-based input
techniques that take advantage of the human ability to use
physical tools [10] and suffer less from problems commonly
associated with spatial input [16], such as precision and fa-
tigue. Years of research in virtual reality have demonstrated
that devising efficient navigation techniques for immersive
virtual environments is still a challenge.

Our goal is to study families of input techniques that let
users pan and zoom from any location in front of very
high-resolution, wall-sized displays. We made no a priori
assumptions about relevant metaphors or technologies and
considered freehand as well as device-based techniques.

An extensive design and testing phase allowed us to limit the
number of candidates for the subsequent formal evaluation.
For instance, the apparently intuitive solution that consists
in using two hands or two fingers to zoom with pinch and
stretch gestures was considered but quickly discarded: while
these gestures work well on touch-sensitive surfaces such
as tabletops, they are much less natural when performed in
mid-air. Most importantly, they proved quite inaccurate, and

FactorsFactors Advantages Disadvantages

Hands One • One hand available for 
other actions

• Pan and zoom are performed 
sequentially

Hands

Two • Pan and zoom can be 
performed in parallel

• No hand available for other 
actions

Gesture Linear • Direct, natural mapping to 
zoom actions

• Potentially requires 
clutching

Gesture

Circular • No clutching (continuous 
gesture)

• Less natural mapping to 
zoom actions

Degree of 
Guidance

1D path
• Input guided by strong 

haptic feedback
• Mainly involves fingers

• Only 1 degree of freedom

Degree of 
Guidance

2D 
surface

• Many degrees of freedom
• Mainly involves fingers

• Input guided by limited 
haptic feedbackDegree of 

Guidance

3D free 
hand

• Many degrees of freedom
• No device

• No haptic feedback
• Mainly involves whole hand 

and arms

Table 1. Key Dimensions of the Design Space

tiring. Another category of techniques that was discarded
are those based on first-order-of-control and operated via an
elastic or isometric input device. As reported in the litera-
ture in the case of pointing, e.g., [9], our pilot tests revealed
that techniques based on first-order-of-control allow for fast
and comfortable coarse navigation, but perform poorly dur-
ing the final precise positioning phase, causing numerous
overshoots.

We eventually identified a set of twelve candidate tech-
niques. Their design was informed by related empirical stud-
ies reported in the literature and refined through prototyping
and pilot testing. These techniques can be organized accord-
ing to three key dimensions forming a design space (Table
1), and introduced in the following sections. In addition to
performance (task time and accuracy), we took into account
other usability issues, such as fatigue and ease of use.

Unimanual vs. Bimanual Input
In their paper on the perceptual structure of multidimen-
sional input, Jacob and Sibert claim that panning and zoom-
ing are integrally related: the user does not think of them as
separate operations, but rather as a single, integral task like
“focus on that area over there” [17]. Buxton and Myers [8]
and later Bourgeois and Guiard [6] observed high levels of
parallelism for pan-zoom operations, further supporting this
argument. The level of parallelism correlates with task per-
formance and is typically well afforded by the use of biman-
ual input techniques [14, 18]. While we expect bimanual
techniques to outperform unimanual ones, we are still inter-
ested in comparing their performance, as the latter might still
be of interest in more complex, real-world tasks that require
input channels for other actions.

Linear vs. Circular Gestures
Navigating in the scale dimension (zooming in and out) is a
task typically performed through vertical scroll gestures on,
e.g., a mouse wheel or a touchpad. The mapping from in-
put to command is natural, but often entails clutching as the
course of mouse wheels and touchpads is very limited. An
alternative consists in mapping continuous circular gestures
to zooming. Clockwise gestures zoom in; counter-clockwise
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Figure 2. Matrix of the 12 techniques organized according to key characteristics: uni- vs. bimanual, degree of guidance, linear vs. circular gestures.
1D path involves guiding gestures along a particular path in space; in 2D surface gestures are made on a touch-sensitive surface; while in 3D free
gestures are totally free.

gestures zoom out. Despite the less natural mapping from in-
put to commands, such continuous, clutch-free gestures have
been successfully applied to vertical scrolling in documents
[25, 33], and to pan and zoom on large, touch-sensitive sur-
faces in CycloStar [21]. Circular gestures potentially benefit
from an automatic Vernier effect [13]: as zooming is mapped
to angular movements, the larger the circular gesture’s ra-
dius, the greater the distance that has to be covered to make
a full circle, and consequently the more precise the input.

Guidance through Passive Haptic Feedback
Two main categories of techniques have been studied for
mid-air interaction on wall-sized displays: freehand tech-
niques based on motion tracking [32, 36]; and techniques
that require the user to hold an input device [5, 10, 19, 23].
Input devices provide some guidance to the user in terms of
what gesture to execute, as all of them provide some sort
of passive haptic feedback: A finger operating a knob or
a mouse wheel follows a specific path; gestures on touch-
enabled devices are made on planar surfaces. Freehand tech-
niques, on the contrary, provide essentially no feedback to
the user who can only rely on proprioception [24] to execute
the gesture. We call this dimension the degree of guidance.
Gestures can be guided to follow a particular path in space
(1D path); they can be guided on a touch-sensitive surface
(2D surface) ; or they can be totally free (3D free). These
three values correspond to decreasing amounts of passive
haptic feedback for the performance of input gestures.

DESIGN CHOICES
Panning. For all techniques, controlling the cursor’s position
is achieved naturally by ray-casting from the dominant hand
to the wall display (dashed arrows in Figure 2). As men-
tioned earlier, first order of control was discarded for both
pan and zoom operations. Panning is achieved by dragging,
as in applications such as Adobe IllustratorTM or Google
MapsTM with their typical hand-shaped cursor.

Zooming. As in desktop applications such as Google Maps
or NASA’s WorldWind, linear techniques zoom in by mov-
ing forward towards the display and zoom out by moving
backwards; circular techniques zoom in by turning clock-
wise and zoom out by turning counter-clockwise (solid ar-
rows in Figure 2). Pointing plays an important role when
zooming, as it specifies the focus of expansion (zoom
in)/contraction (zoom out). Letting users specify this focus
point is very important on displays of that physical size, as
they will typically not be standing right in the center. A fo-
cus of expansion implicitly located at the center of the screen
would make zooming operations tedious and hard to control
as every zoom operation would require multiple panning ac-
tions to compensate drifts induced by the offset focus.

Bi-manual interaction. All bimanual techniques (Figure 2,
bottom row) are grounded in Guiard’s study of asymmetric
division of labor in bimanual actions that led to the Kine-
matic chain model [14]. Following the observation that mo-
tion of the dominant hand typically finds its spatial reference
in the results of motion of the non-dominant-hand, we assign
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pointing and panning to the dominant hand, while the non-
dominant hand controls zoom, as is typically the case for
bimanual pan-zoom techniques on the desktop [6, 8].

Input Gestures via a Device
The main limb segments involved in the input of gestures
via a device are the fingers and, to a lesser extent, the fore-
arm (for the dominant hand). This group of techniques is
illustrated in Figure 2, columns 1D path and 2D surface.

Column 1D path illustrates techniques that provide a high
degree of guidance for executing the zooming gestures. The
first row corresponds to one handed techniques: the device is
operated by the dominant hand, which also controls pointing
via ray-casting. The second row corresponds to two handed
techniques: the dominant hand controls pointing via ray-
casting, while the non-dominant hand controls zoom using
the device. linear gestures can be input using, e.g., a wire-
less handheld mouse featuring a scroll wheel; circular ges-
tures using, e.g., any type of handheld knob. Depressing a
button on the device activates drag mode for panning.

Column 2D surface illustrates techniques that use a touch-
sensitive surface for input, providing a lesser degree of guid-
ance. The surface is divided horizontally in two areas. Users
zoom in the upper area either by moving the thumb up and
down (linear case), or by drawing approximate circles (cir-
cular case). Touching the lower area activates drag mode
for panning. Users just rely on proprioceptive information
to switch between both areas and do not have to look at the
device. These techniques can be implemented with a touch-
sensitive handheld device such as a PDA or smartphone.

1D path techniques employing circular gestures will pro-
vide more guidance, but will not benefit from the earlier-
mentioned Vernier effect, as input is constrained to one spe-
cific trajectory. However, the range of amplitudes that can
be covered with the thumb is limited [30]. This should min-
imize the trade-off between 1D path and 2D surface in that
respect. For 2D surface techniques, rubbing gestures [28]
were considered to avoid clutching when performing linear
gestures, but were found to be impractical when performed
with the thumb on a handheld touch-sensitive surface. As
a technique designed specifically for thumb input, we were
also interested in MicroRolls [30]. However, these were
originally designed for discrete input. Cardinal MicroRolls
would have had to be mapped to first order of control, which
we discarded as discussed earlier, and circular MicroRolls
are not precise enough for zoom control.

Input Gestures in Free Space
The main limb segments involved in performing gestures in
free space are the wrist, forearm and upper arm. This group
of techniques is illustrated in Figure 2, column 3D free.

The first row illustrates one handed techniques using either
linear or circular gestures. The technique using circular
gestures is actually very close to the CycloStar zooming ges-
ture, but performed in mid-air, without touching any surface.
Users perform circular gestures with the dominant hand and
forearm oriented toward the display. As in CycloStar, the

focus of expansion is the centroid of the round shape cor-
responding to the cursor’s circular path, here projected on
the display surface (dotted arrow in Figure 2-e). The tech-
nique using linear gestures consists in pushing the dominant
hand forward to zoom in, as if reaching for something, with
the palm towards the target. Turning the hand and pulling
backward (away from the display) zooms out. Users point
orthogonally to the palm of the same hand (blue arrows in
Figure 2-e, left side), with the arm slightly tilted for greater
comfort. The second row illustrates two handed techniques
(Figure 2-f). The linear zooming gestures are similar to the
ones above, but are performed with the non-dominant hand,
the dominant hand still being used for pointing and spec-
ifying the focus of expansion. In the circular case, users
adopt a potentially less tiring posture, pointing at the floor
with their non-dominant hand and making circular move-
ments. All other postures and movements being ignored by
the system for the non-dominant hand, the user can easily
clutch. Several options can be considered for engaging drag
mode: specific hand postures such as pinching, or using a
small wireless actuator (e.g., a button).

EXPERIMENT
We conducted an experiment using a [2×2×3] within-
subjects design with three primary factors: HANDEDNESS ∈
{OneHanded, TwoHanded}, GESTURE ∈ {Circular, Linear}, and
GUIDANCE ∈ {1DPath, 2DSurface, 3DFree} to evaluate the 12
unique interaction techniques described above. We con-
trolled for potential distance effects by introducing the
DISTANCE between two consecutive targets as a secondary
within-subjects factor. We systematically varied these fac-
tors in the context of a multiscale navigation task within a
wall-sized display environment.

Measures include performance time and number of over-
shoots, treated as errors. Overshoots occur when participants
zooms beyond the target zoom level, and indicate situations
in which the participant has less precision of control over the
level of zoom. For instance, from an overview of Canada,
zooming down to street level in Google Maps when what the
user actually wanted was to get an overview of Vancouver.

Hypotheses
Based on the research literature and our own experience with
the above techniques, we made the following 7 hypotheses.

Handedness: prior work [6, 8, 15, 18] suggests that two-
handed gestures will be faster than one-handed gestures (H1)
because panning and zooming are complementary actions,
integrated into a single task [17]. Two-handed gestures
should also be more accurate and easier to use (H2).

Gesture: Linear gestures should map better to the zoom-
ing component of the task, but should eventually be slower
because of clutching, the limited action space compared to
zoom range requiring participants to repeatedly reposition
their hand/finger (H3). Prior work [25, 33] suggests that
users will prefer clutch-free circular gestures (H4).

Device vs. Free Space: Zhai et al. [35] suggest that tech-
niques using the smaller muscle groups of fingers should be
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Figure 3. Participant performing the task

more efficient than those using upper limb segments. Bal-
akrishnan et al. [2] moderate this observation with find-
ings suggesting that the fingers are not performing better
than forearm or wrist for a reciprocal pointing task. Nev-
ertheless, they acknowledge that differences exist in the mo-
tor system’s ability to control the different limb segments.
Based on the gestures to be performed and taking into ac-
count the physical size and mass of the segments involved,
we predicted that techniques using fingers (1DPath and 2DSur-
face conditions), should be faster than those requiring larger
muscle groups (hands and arms, 3DFree conditions) (H5).

We also predicted that 1DPath gestures would be faster, with
fewer overshoots than techniques with lesser haptic feed-
back, i.e., 2DSurface and 3DFree (H6). Finally, we predicted
that 3DFree gestures would be more tiring (H7).

Participants
We recruited 12 participants (1 female), ranging in age from
20 to 30 years old (average 24.75, median = 25). All are
right-handed daily computer users. None are color-blind.

Apparatus
Hardware. The display wall (Fig. 1 and 3) consists of 32
high-resolution 30” LCDs laid out in an 8×4 matrix, 5.5 me-
ters wide and 1.8 meters high. It can display 20480 × 6400
pixels. A cluster of 16 computers, each with two high-end
nVidia 8800GT graphics cards, communicate via a dedicated
high-speed network through a front-end computer. Our goal
is to identify the performance characteristics of each tech-
nique from the user’s perspective. It is thus essential that
each technique operates equally well from a purely tech-
nological perspective. We use a VICON motion-capture
system to track passive IR retroreflective markers and pro-
vide 3D object coordinates with sub-millimeter accuracy at
200Hz (although gesture recognition technologies are con-
stantly improving, such a system is still necessary to get re-
liable and precise 3D position/orientation information). The
Linear 1DPath condition uses the wheel of a wireless Logitech
M305 mouse (Fig. 2-a,b). The Circular 1DPath condition uses
a wireless Samsung SM30P pointing device, normally used
for presentations (Fig. 2-a,b). All 2DSurface conditions use an
iPod Touch. So as to avoid failures from gesture segmenta-
tion algorithms that would impact task performance in an un-
controlled manner, we use an explicit mode switch to unam-

TARGET HITTARGET HIT

TARGET HIT

TARGET HIT

(1) (2)

(3) (4)

Figure 4. Task (schematic representation using altered colors): (1)
Groups of concentric circles represent a given position and zoom level.
(2) Zooming out until the neighboring set of circles appears. (3-4) Pan
and zoom until the target (green inner disc and circles, dashed for il-
lustration purposes only) is positioned correctly with respect to the sta-
tionary gray ring.

biguously engage drag mode (panning). As mentioned ear-
lier, we use the device’s main button for 1DPath conditions,
and the lower area of the touch-sensitive surface for 2DSurface
conditions. While in real-world applications we would use
specific hand postures such as pinching in 3DFree conditions,
for the sake of robustness we use a wireless mouse button
whose activation is seamlessly integrated with the gesture.

Software. The experiment was written in Java 1.5 running
on Mac OS X and was implemented with the open source
ZVTM toolkit [29] (http://zvtm.sf.net) modified to run
on clusters of computers driving display walls. Touchstone
[20] was used to manage the experiment.

Pan-Zoom Task
The task is a variation of Guiard et al.’s multiscale pointing
task [15], adapted to take overshoots into account. Partici-
pants navigate through an abstract information space made
of two groups of concentric circles: the start group and the
target group. Each group consists of seven series of 10 con-
centric circles symbolizing different zoom levels, each des-
ignated by a different color (Fig. 4.2). The target group fea-
tures two additional green circles (dashed in Fig. 4.4) and a
disc, referred to as C1, C2 and C3 from smallest to largest.

Participants start at a high zoom level in the start group
(Fig. 4.1). They zoom out until the neighboring target group
appears (Fig. 4.2). It may appear either on the left or right
side of the start group. Then they pan and zoom into the tar-
get group until they reach the correct zoom level and the tar-
get is correctly centered. A stationary gray ring symbolizes
the correct zoom level and position (Fig. 4-(1-4)). Its radii
are r1 = 4400 and r2 = 12480 pixels. All three criteria must
be met for the trial to end: A) C1 is fully contained within the
stationary ring’s hole (radius = r1), B) radius(C2) < r2, C)
radius(C3) > r2. Overshoots occur when the zoom level
is higher than the maximum level required to meet criteria
B and C, in which case participants have to zoom out again
(C1 becomes white instead of green in that situation). When
all conditions are met, the message TARGET HIT appears and
the thickness of C2 and C3 is increased (Fig. 4.4). The trial
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ends when the position and zoom level have stabilized for at
least 1.2 seconds (all trials must be successfully completed).

Procedure
The experiment presents each subject with six replications
of each of the 12 techniques at three DISTANCEs. The exper-
iment is organized into four sessions that each present three
techniques: One combination of the GESTURE and HANDED-
NESS factors and all three degrees of GUIDANCE. Each session
lasts between 30 and 90 minutes, depending on techniques
and participant. Participants are required to wait at least one
hour between two consecutive sessions, and to complete the
whole experiment within four days or fewer, with a max-
imum of two sessions per day to avoid too much fatigue
and boredom. Participants stand 1.7m from the wall and are
asked to find a comfortable position so they can perform ges-
tures quickly, but in a relaxed way.

Practice Condition: Participants are given a brief introduc-
tion at the beginning of the first session. Each technique
begins with a practice condition, with trials at three differ-
ent DISTANCEs: (49 920, 798 720 and 12 779 520 pixels).
Measures for the experimental condition start as soon as 1)
participants feel comfortable and 2) task performance time
variation for the last four trials is less than 30% of the task
time average in that window.

Experimental Condition: Each technique is presented in a
block of 18 trials consisting of 6 replications at each DIS-
TANCE. Trials, blocks and sessions are fully counter-balanced
within and across subjects, using a Latin square design.

Measures: We measure movement time MT and number of
overshoots for each of 2592 trials: 2 GESTURE × 2 HAND-
EDNESS × 3 GUIDANCE × 3 DISTANCE × 12 participants × 6
replications. Participants also answer questions, based on a
5-point Likert scale, about their perceived performance, ac-
curacy, ease of learning, ease of use, and fatigue. They rank
the techniques with respect to the GUIDANCE factor after each
session. When they have been exposed to both conditions
of HANDEDNESS or GESTURE, they rank those as well. After
the last session, they rank the techniques individually and by
factor. Participants are encouraged to make additional ob-
servations and comments about any of the above.

Results and Discussion: Movement Time
Prior to our analysis, we checked the performance for un-
wanted effects from secondary factors. We checked for in-
dividual performance differences across subjects and found
that, for all 12 participants, movement time and number of
overshoots were perfectly correlated with the overall per-
formance measures. As expected, movement time data are
skewed positively; replications of unique experimental con-
ditions are thus handled by taking the median (note that tak-
ing the mean yields similar results). In all remaining analy-
sis, we handled participant as a random variable, using the
standard repeated measures REML technique. We found
no significant fatigue effect although we did find a signifi-
cant learning effect across sessions. Participants performed
about 1.4 s more slowly in the first session and then became
slightly faster over the next three sessions. However, we
found no significant interaction between session orders and

Factor DF, DFDen F Ratio p

HANDS 1,11 24.65 0.0004 *
GESTURE 1,11 42.87 < 0.0001 *
GUIDANCE 2,22 58.80 < 0.0001 *
DIST 2,22 228.8 < 0.0001 *
HANDS×GESTURE 1,11 2.060 0.1790
HANDS×GUIDANCE 2,22 4.914 0.0172 *
GESTURE×GUIDANCE 2,22 10.38 0.0007 *
GESTURE×DIST 2,22 17.27 < 0.0001 *
HANDS×DIST 2,22 11.57 0.0004 *
GUIDANCE×DIST 4,44 3.828 0.0094 *
HANDS×GESTURE×GUIDANCE 2,22 1.127 0.3420
HANDS×GESTURE×DIST 2,22 0.790 0.4661
HANDS×GUIDANCE×DIST 4,44 0.650 0.6301
GESTURE×GUIDANCE×DIST 4,44 3.750 0.0104 *
HANDS×GESTURE×GUIDANCE×DIST 4,44 1.049 0.3929

Table 2. Results of the full factorial ANOVA for MT .

main factors. As the factors were counter-balanced, this cre-
ated no adverse effects in the analysis.

Table 2 details results of the full factorial ANOVA for the
model MT ∼ HANDS × GUIDANCE × GESTURE × DIST ×
Rand(Participant). We observe that HANDS has a significant
effect on MT (Figure 5-a1). A post-hoc Tukey test shows
that TwoHanded gestures are significantly faster than OneHan-
ded gestures (avg. 9690ms vs. 11869ms). We found a sig-
nificant interaction effect of HANDS × GUIDANCE (Figure 5-a).
The interaction does not change the significance of the post-
hoc test, but indicates that the magnitude of the difference is
greater for 3DFree than for 2DSurface and greater for 2DSurface
than for 1DPath techniques.

Unsurprisingly, performance data strongly support (H1): all
other conditions being equal, two-handed techniques are
consistently faster than one-handed techniques. An interest-
ing observation is that using two hands is more advantageous
when the degree of guidance for achieving gestures is low.

GUIDANCE has a significant effect on MT (Figure 5-b). A post-
hoc Tukey test shows that 1DPath (avg. 9511ms) is signifi-
cantly faster than 2DSurface (10894ms), which in turn is sig-
nificantly faster than 3DFree (11934ms). This time the HANDS

× GUIDANCE interaction changes the significance of the test
(Figure 5-b). The difference is that a post-hoc Tukey test
shows no significant difference between 2DSurface and 3DFree
for TwoHanded.

Both hypotheses (H5) and (H6) are supported: involving
smaller muscle groups improves performance; providing
higher guidance further contributes to this. However, this
effect is less pronounced in TwoHanded conditions. This con-
firms the previous observation that a higher degree of guid-
ance is especially useful when a single hand is involved.

GESTURE also has a significant effect on MT. A post-hoc Tukey
test shows that Linear movements (avg. 9384ms) performed
significantly faster than Circular gestures (12175ms). How-
ever, we have a strong significant interaction of GESTURE ×
1Error bars in all the figures represent the 95% confidence limit of
the mean of the medians per participants (±StdErr × 1.96).
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Figure 5. (a): MT per HANDS × GUIDANCE. (b) MT per GUIDANCE × HANDS. (c) MT per GUIDANCE × GESTURE.

GUIDANCE (Figure 5-c). A post-hoc Tukey test shows that
(i) for Circular gestures: 1DPath guidance is faster than both
2DSurface and 3DFree with no significant difference between
2DSurface and 3DFree; (ii) for Linear gestures, there is no sig-
nificant difference between 1DPath and 2DSurface, but a signif-
icant difference between 2DSurface and 3DFree; (iii) for 1DPath
guidance there is no significant difference between Circular
and Linear gestures, but there is a significant difference be-
tween Circular and Linear for 2DSurface and 3DFree guidance.

Surprisingly, Linear gestures are generally faster than Circular
ones. (H3), that claimed that Linear gestures should be slower
because of clutching, is not supported. Performance differ-
ences between gesture types are however affected by the de-
gree of guidance: Circular gestures with 1DPath guidance (e.g.,
a knob) are comparable to Linear gestures with low guidance.
We tentatively explain the lower performance of Circular ges-
tures with 2DSurface guidance by the difficulty of performing
circular gestures with the thumb [30], also observed here.

Another interesting observation is that our analogue of Cy-
cloStar in mid-air (Circular gestures with 3DFree guidance)
performs poorly. It seems that the lack of a surface to guide
the gesture significantly degrades this technique’s usability.
Another factor contributing to its poor performance in our
study is likely related to overshoots, as discussed below.

As expected, distance to target (DIST) has a significant ef-
fect on MT. A post-hoc Tukey test shows that MT increases
significantly with distance. There are several significant in-
teractions between DIST and the main factors (Fig. 6), but
none of these change the relative performance ordering for
the main factors. These interactions are due to a change in
the magnitude of the difference across conditions, confirm-
ing that the choice of an efficient technique is of increasing
importance as the task becomes harder.

Results and Discussion: Overshoots
As detailed earlier in the description of task design, over-
shoots correspond to zooming beyond the target zoom level
and are treated as errors. We consider the model Overshoots∼
HANDS × GUIDANCE × GESTURE × DIST × Rand(Participant).

We observe significant simple effects on Overshoots for GES-
TURE (F1,11 = 21.04, p = 0.0008) and GUIDANCE (F2,22 = 53.80,
p < 0.0001), and one significant interaction effect for GES-
TURE × GUIDANCE (F2,22 = 8.63, p = 0.0017). Circular gestures
exhibit more overshoots than Linear gestures (1.65 vs. 2.71).
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Figure 6. MT per DIST × GESTURE, for each GUIDANCE

2DSurface gestures exhibit more overshoots than 1DPath and
3DFree gestures (3.75 for 2DSurface vs. 1.52 for 1DPath, and
1.26 for 3DFree). There is a significant difference between
Linear and Circular gestures for 2DSurface and 3DFree, but not
1DPath. Moreover, overshoots exhibit the same interaction
effect for 2DSurface gestures: Circular 2DSurface result in signif-
icantly more overshoots than Linear 2DSurface (4.68 vs. 2.82).

The observed higher number of overshoots for Circular tech-
niques helps explain the generally lower MT performance
measured for this type of gestures. The best-fitting ellipse
algorithm involved in the recognition of Circular gestures has
an inherently higher cost of recovery, introducing a delay
when reversing course. The poor performance of our ana-
logue of CycloStar is at least partially due to this, knowing
that there was a major difference between the zooming ex-
periment reported in [21] and the present one: we included
overshoots in our task design, whereas the CycloStar experi-
ment apparently did not (there is no report of such a measure
in task design or results analysis), thus ignoring this issue.

Results and Discussion: Qualitative Results
Qualitative data confirms our results. Participants generally
preferred TwoHanded to OneHanded techniques (8/12) and Lin-
ear to Circular gestures (10/12). Subjective preferences about
degree of guidance were mixed, with 4 participants prefer-
ring the high degree of guidance provided by 1DPath tech-
niques, only 1 for both of 2DSurface and 3DFree techniques,
and all others expressing no particular preferences. Looking
at the details of answers to our 5-point Likert scale ques-
tions about perceived speed, accuracy, ease of use and fa-
tigue, significant results (p < 0.002) were obtained only
for degree of GUIDANCE, with 1DPath being consistently rated
higher than 2DSurface and 3DFree; and for HANDS, TwoHanded
techniques being considered less tiring than OneHanded tech-
niques (p < 0.03).
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GROUP HANDS GESTURE GUIDANCE Figure MT (ms)
Gr1 TwoHanded Linear 2DSurface 2-d 8 100

TwoHanded Linear 1DPath 2-b 8 377

Gr2 OneHanded Linear 1DPath 2-a 9 160
TwoHanded Circular 1DPath 2-b 9 168
TwoHanded Linear 3DFree 2-f 9 185
OneHanded Linear 2DSurface 2-c 9 504

Gr3 OneHanded Circular 1DPath 2-a 11 340
TwoHanded Circular 2DSurface 2-d 11 591
TwoHanded Circular 3DFree 2-f 11 718
OneHanded Linear 3DFree 2-e 11 981

Gr4 OneHanded Circular 2DSurface 2-c 14 380
OneHanded Circular 3DFree 2-e 14 851

Table 3. Groups of techniques according to MT

Comments from participants suggest that in the OneHanded
condition, zoom gestures interfere with pointing as they in-
troduce additional hand jitter and consequently lower accu-
racy. Some participants also commented that pointing and
zooming were confounded in the OneHanded conditions, mak-
ing the techniques difficult to use (H2). However, two partic-
ipants strongly preferred one-handed gestures, arguing that
they were less complex and less tiring. They assumed their
performance was better (even though it was not), probably
because they experienced more overshoots in the two handed
condition, which may have led to their conclusions. One
of them mentioned that for the one handed condition there
was “no need for coordination”; techniques were “more re-
laxed” and made it “easier to pan and zoom”.

Linear gestures were preferred to Circular ones, participants
commenting that circular gestures were difficult to perform
without guidance, that circular gestures for zooming inter-
fered with linear gestures for panning, and that circular ges-
tures were hard to map to zoom factor. All but one partic-
ipants preferred linear gestures overall although one com-
mented that he liked “the continuity of circular gestures”.
Others commented that “making good circles without a
guide is hard” and did not like having to turn their hands.
These findings contradict our hypothesis that users would
prefer clutch-free circular gestures (H4). This hypothesis
was based on observations made for techniques operated on
a desktop, not in mid-air, and involved different limb seg-
ments. In many of our conditions, the gestures had to be
performed with the thumb, and were thus more complex to
achieve than when using, e.g., the index finger in conjunc-
tion with hand or forearm movements. Several participants
commented on this interaction effect: “[It is] too hard to
do circle gestures without a guide”, “Linear movements are
easier on the iPod” and “[Is it] impossible to do circular
movements on a surface, maybe with some oil?”.

Finally, as hypothesized (H7), participants found 1DPath
guidance least tiring while 3DFree caused the most fatigue.

Results and Discussion: Individual Techniques
The analysis of variance for the model MT ∼ HANDS × GUID-
ANCE × GESTURE × DIST × Rand(Participant) does not show
a significant triple interaction between the three main fac-
tors (Table 2). Formally, we cannot say more than the above
about the ranking of the twelve techniques. However, based
on the results about MT above, we can observe four distinct

groups of techniques, shown in Table 3. As a side note, if
we consider the model MT∼ GROUP × Rand(Participant), the
ANOVA shows a significant effect of GROUP (F3,33 = 65.35,
p < 0.0001) and a post-hoc Tukey test shows a significant
difference between each groups.

Gr1 contains the two fastest techniques with similar MT :
TwoHanded, Linear gestures with either 2DSurface or 1DPath de-
grees of guidance. Optimal performance in terms of move-
ment time implies the use of two hands and a device to guide
gestural input.

Gr2 contains the four techniques that come next and also
have close MT : the OneHanded version of the two fastest tech-
niques, the TwoHanded Circular 1DPath and the TwoHanded Linear
3DFree techniques. Techniques in this group are of interest
as they exhibit a relatively good level of performance while
broadening possible choices for interaction designers. For
instance, the unimanual techniques in this group make one
hand available to perform other actions. The 3DFree tech-
nique is also of interest as it does not require the user to hold
any equipment and is generally appealing to users.

Gr3 contains techniques that again have very close MT but
about 2.3 s slower than the techniques of Gr2. This group
consists of OneHanded Circular 1DPath, TwoHanded Circular 2DSur-
face and 3DFree, and OneHanded Linear 3DFree. Techniques in
this group are of lesser interest, except maybe for the OneHan-
ded Linear 3DFree technique, which is the fastest unimanual
technique using gestures performed in free space.

Gr4 contains the 2 techniques performing worst, OneHanded
Circular 2DSurface and 3DFree. These are significantly slower
than all others, about 3 s slower than the techniques of Gr3
and about 6 s slower than the techniques of Gr1. Our data
suggest that these techniques should be rejected.

SUMMARY AND FUTURE WORK
We studied different families of location-independent, mid-
air input techniques for pan-zoom navigation on wall-sized
displays. After an extensive exploratory design phase, we
identified the following key factors for the design of such
techniques: handedness (uni- vs. bimanual input), gesture
type (linear or circular), and level of guidance (movements
restricted to a 1D path, a 2D surface or free movements in
3D space). We systematically evaluated each combination of
these factors through a controlled experiment in which par-
ticipants performed pan-and-zoom navigation in an abstract,
very large multiscale environment, with distances up to 12
million pixels.

Experimental results identify several successful mid-air in-
put techniques that can be used to navigate efficiently in very
large datasets on wall-sized displays. In addition to identify-
ing groups of alternative techniques based on performance,
but each with specific characteristics, the experiment also
suggests clear results with respect to the factors that con-
stitute our design space. For example, despite their inher-
ent and almost universal appeal, gestures performed in free
space prove to be generally less efficient and more prone to
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fatigue than device-based input techniques. Adding guid-
ance to input gestures increases, rather than decreases, ac-
curacy. In accordance with the research literature, bimanual
input techniques perform very well. Unimanual techniques
perform honorably, and may still be considered in contexts
of use where, for example, tools must be held in one hand to
perform a domain/task specific action. A more surprising re-
sult is the generally higher efficiency of linear gestures when
compared to circular, clutch-free gestures.

As future work, we plan to investigate how these pan-zoom
techniques combine with other interaction techniques. In-
deed, in real-world applications, users must also handle text
entry, menu selection, copy and paste, drag and drop, and
other activities. This implies trade-offs among techniques: a
technique with optimal performance in this experiment may
prove less easy to integrate with other techniques because of
its requirements in terms of handedness or type of device.
We have started to explore these questions in the context of
real-world activities involving scientists visualizing and ma-
nipulating extremely large sets of multi-scale data.

ACKNOWLEDGEMENTS
We wish to thank Clément Pillias and Romain Primet, who
helped implement the experiment on the wall-sized display,
as well as Caroline Appert, Stéphane Huot and the anony-
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ABSTRACT
Research on cluster-driven wall displays has mostly focused
on techniques for parallel rendering of complex 3D mod-
els. There has been comparatively little research effort ded-
icated to other types of graphics and to the software engi-
neering issues that arise when prototyping novel interaction
techniques or developing full-featured applications for such
displays. We present jBricks, a Java toolkit that integrates
a high-quality 2D graphics rendering engine and a versatile
input configuration module into a coherent framework, en-
abling the exploratory prototyping of interaction techniques
and rapid development of post-WIMP applications running
on cluster-driven interactive visualization platforms.

General Terms
Design, Human Factors, Performance

Keywords
Wall Displays, Clusters, Interaction, Toolkit, Prototyping

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Inter-
faces. - Graphical user interfaces.

INTRODUCTION
Over the last decade, wall-sized displays have evolved from
experimental, CRT monitor-based setups to sophisticated ar-
rays of tiled projectors or LCD panels. The latter are of-
ten called ultra-high-resolution displays to emphasize their
significantly higher display capacity compared to projector-
based very-high-resolution displays. They typically accom-
modate several hundred megapixels, and are driven by clus-
ters of computers. As an example, the setup depicted in Fig-
ure 1 uses 32+1 graphic processing units in 16+1 computers
to display 20480×6400 � 131 megapixels on a 5.5m×1.8m
surface (� 100dpi). These displays enable the visualization
of truly massive datasets. They can represent the data with
a high level of detail while retaining context [14], and en-
able the juxtaposition of data in various forms. To make
them interactive, wall-sized displays are increasingly cou-
pled with advanced input devices, e.g., motion-tracking sys-
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
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EICS’11, June 13–16, 2011, Pisa, Italy.
Copyright 2011 ACM 978-1-4503-0670-6/11/06...$10.00.

tems, wireless multitouch devices, in order to enable multi-
device and/or multi-user interaction with the displayed data
[14, 15]. These interactive ultra-high-resolution displays can
be used in many application domains, including command
and control centers, geospatial imagery, scientific visualiza-
tion, collaborative design and public information displays.

These new environments pose new research challenges.
From a computer graphics perspective: how to render com-
plex graphics at high frame rates, taking advantage of the
cluster’s computing and rendering power. From a human-
computer interaction perspective: how to design effective
visualizations that take advantage of the specific character-
istics of large, ultra-high-resolution surfaces; how to design
interaction techniques that are well-adapted to this particular
context of use, and how to handle the multiple and hetero-
geneous input devices and modalities typically used in this
context. Finally, from a software engineering perspective:
how to enable the rapid prototyping, development, testing
and debugging of interactive applications running on clus-
ters of computers, providing the right abstractions.

In this paper, we focus on the latter research question, that
we consider essential to foster more research and develop-
ment from the HCI perspective. We present jBricks, a Java
toolkit for the development of post-WIMP applications ex-
ecuted on cluster-driven wall displays, that extends and in-
tegrates a high-quality 2D graphics rendering engine and a
versatile input management module into a coherent frame-
work hiding low-level details from the develeoper. The goal
of this framework is to ease the development, testing and de-
bugging of interactive visualization applications. It also of-
fers an environment for the rapid prototyping of novel inter-
action techniques and their evaluation through controlled ex-
periments, such as the one we recently conducted about mid-
air pan-and-zoom techniques for wall-sized displays [14].

Background and Motivation
The parallel-rendering techniques developed over the last ten
years enable the efficient display of 3D graphics on tiled dis-
plays driven by clusters of computers. This is usually done
by sending already rendered images to the cluster nodes,
or by sending geometry and performing compositing oper-
ations to produce the final wall-sized image. Different tech-
niques exist, including sort-first and sort-last pipelines as
well as various hybrid solutions. Well-known frameworks
include Chromium [9], Equalizer [8] and SAGE [11]. See
Ni et al. [15] for a comprehensive survey.
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(a) (b)

(c)

Figure 1. jBricks applications running on the WILD platform (32 tiles for a total resolution of 20 480 × 6 400 pixels). (a) Zoomed-in visualization of
the North-American part of the world-wide air traffic network (1 200 airports, 5 700 connections) overlaid on NASA’s Blue Marble Next Generation
images (86 400 × 43 200 pixels) augmented with country borders ESRI shapefiles. (b) Panning and zooming in Spitzer’s Infrared Milky Way (396 032
× 12 000 pixels). (c) Controlled laboratory experiment for the evaluation of mid-air multi-scale navigation techniques [17].

However, not all wall display applications use 3D graphics.
With the introduction of ultra-high resolution, high-quality
2D graphics open wall-sized displays to new applications,
e.g., in astronomy, geospatial intelligence and visual ana-
lytics at large, to give a few examples. These applications
essentially combine very large bitmap images, high-quality
text and 2D vector graphics, e.g., satellite imagery aug-
mented with data layers, or information visualization tech-
niques for the display of large datasets, e.g., for the visual
exploration of large networks (Figure 1-a). However, there
is currently no good solution for the distributed rendering of
high-quality 2D graphics on cluster-driven wall displays.

Low-level 3D graphics APIs such as OpenGL are currently
the main solution for developing cluster-driven visualiza-
tions. They work well for the high-performance visualiza-
tion of textured 3D scenes, but are ill-suited to program-
ming high-quality 2D graphics interfaces, lacking appro-
priate support for the management and efficient rendering
of text, line styles, arbitrary 2D shapes and WIMP wid-
gets. This was already observed for desktop application
programming [4], and remains true for cluster-driven wall-
displays. Pixel streaming approaches à la SAGE work well
when combining different windows of relatively limited size
from different applications, potentially running on different
machines. They would however not work for full-screen,
highly-dynamic visualizations on ultra-high-resolution dis-
plays: updating hundreds of megapixels forming a single co-
herent image at an interactive refresh rate would require sig-
nificantly more network bandwidth than is commonly avail-
able and would put an extremely heavy load on the node in
charge of rendering the image to be streamed.

Rich interactive 2D desktop applications, usually termed
post-WIMP applications, are typically developed with struc-
tured graphics toolkits [1, 5, 10, 16] that provide useful ab-
stractions on top of low-level APIs. They enable rapid pro-
totyping and development of advanced interactive visualiza-
tions. Our goal is to offer a structured graphics toolkit capa-
ble of running transparently on cluster-driven wall displays
and capable of handling a wide range of input devices and

modalities. From a graphics perspective, this requires hid-
ing the complexity entailed by having to distribute rendering
on multiple computers. While our focus is on expressiveness
and ease-of-use, we also pay attention to scalability issues,
adapting ideas originally developed for efficient distributed
3D rendering to our context, such as the use of a multicast
protocol to transmit updates to cluster nodes, and a culling
algorithm adapted to zoomable user interfaces. From an in-
put management perspective, this requires going beyond the
basic redirection mechanisms found in existing distributed
rendering frameworks that only support conventional input
devices, i.e., mouse and keyboard operated from the mas-
ter computer. For now, support for other devices is mostly
achieved via ad hoc solutions (drivers or libraries) that are
strongly integrated and statically linked within applications.
This approach is not generic and flexible enough when ex-
ploring and prototyping novel interaction techniques [7]. An
alternative approach consists in providing high-level abstrac-
tions of input modalities that enable association and runtime
substitution of devices. It has proven successful in other do-
mains, including physical ubiquitous computing [3], virtual
reality (Gadgeteer for VR Juggler [6]) and in the more gen-
eral context of post-WIMP applications (ICon [7], Squidy
[12]), and we adapt it to interactive wall displays.

jBricks FRAMEWORK ARCHITECTURE
The framework is essentially composed of two independent
modules: one for managing all graphical operations, and
one for handling input. The two modules are loosely cou-
pled. They communicate via a dynamic plugin architecture
and network sockets using high-level protocols such as OSC.
This makes the framework highly flexible: modules can be
instantiated multiple times and can run on different nodes.

Structured Graphics
Our goal is to provide an API and feature-set similar to those
of desktop structured graphics toolkits [1, 5, 10, 16] while i)
hiding the complexity entailed by distributed rendering, ii)
promoting ease of learning and ease of use, and iii) enabling
code reuse: visualization components initially developed for
desktop computers should run on cluster-driven wall dis-
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plays with minimal changes to the original application code.
With these high-level objectives in mind, we chose to ex-
tend an existing structured graphics toolkit rather than start
developing a new one from scratch.

We used the open-source ZVTM toolkit [16], that supports
most Java2D drawing primitives but offers higher-level ab-
stractions that ease the management and manipulation of
graphical objects: rendering is handled in retained mode,
meaning that the toolkit retains a complete model of the ob-
jects to be rendered. ZVTM follows a monolithic approach,
as opposed to a polylithic one1. Experience has shown that
monolithic approaches are conceptually easier to handle by
developers, generate less lines of code and require managing
a smaller number of objects [5]; properties that we consider
of high importance for rapid UI development.

Featured types of graphical objects include polygons of ar-
bitrary shape, splines, Swing widgets, bitmap images and
high-quality text, with support for advanced stroke and fill
patterns. Those objects (Glyphs) are placed on infinite draw-
ing surfaces (Virtual Spaces) that are observed through one
or more Cameras. A camera renders the objects that lie in its
viewing frustum in a View, that corresponds to a window on
the screen. The toolkit makes it easy to create zoomable user
interfaces (cameras can be smoothly panned and zoomed).
It supports multiple independent views, as well as Portals
(views within views) [4], multiple layers within a view (each
corresponding to a different camera), as well as a variety
of built-in focus+context visualization techniques. Cameras
and glyphs can be animated using various pacing functions.

Cluster-based Structured Graphics Rendering
jBricks’ extension of ZVTM to render graphics on cluster-
driven tiled displays is conceptually straightforward. It takes
an approach similar to what sort-first algorithms do for par-
allel rendering of 3D graphics in retained mode: as ZVTM
already enables multiple cameras to observe a given vir-
tual space, implementing tiled rendering basically consists
in sharing that virtual space between all cluster nodes and
setting one camera per display tile. Each camera’s view-
ing frustum is configured so that their juxtaposition forms
an overall coherent image from the user’s perspective, ac-
cording to the physical layout of display tiles.

Distributed Virtual Spaces. jBricks adopts a client-server
model [15]: as shown in Figure 2, a single instance of the
application runs on a client node, generating the geometry
(populating virtual spaces with glyphs) and distributing it to
render servers running on cluster nodes. Virtual spaces and
glyphs contained therein are broadcast to all cluster nodes.
They are replicated and kept synchronized as glyphs are
added, removed, or have their properties changed. Paral-
lel rendering frameworks for 3D graphics have mainly fo-
cused on the visualization of static-geometry models where
only the camera(s) are manipulated interactively. The appli-
cations that jBricks aims to support typically manage much
more dynamic objects, both in terms of geometry and visual
1Monolithic toolkits primarily use compile time inheritance to ex-
tend functionality, while polylithic toolkits primarily use run-time
composition to do so, typically using a scene graph [5].
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Figure 2. Example jBricks configuration: wall’s graphics client and
input server for motion tracker and tablet run on client node; input
server for mouse, keyboard and smartphone run on user’s laptop.

appearance (color, stroke, font, etc.), potentially requiring
a lot of network bandwidth. Multicast communication can
greatly decrease bandwidth requirements for those updates
[13]. We use JGroups (http://www.jgroups.org) as our
group communication layer, that provides reliable messag-
ing over IP multicast. Over this layer, we exchange atomic
changes called Delta, which are serialized Java objects rep-
resenting a new value for a given glyph attribute, propagated
to the corresponding glyphs on render servers.

Performance. As noted by Bederson and Meyer [4] about
zoomable user interfaces: “Smooth real-time interaction is
crucial. If the system becomes slow and jerky, the metaphor
dies”. The use of a multicast protocol for updating glyphs
enables us to smoothly animate several hundred property
changes simultaneously and independently of the number
of render servers. Camera animations do not require sig-
nificant bandwidth, as moving a camera only requires up-
dating a maximum of three double-precision floating point
values per frame. A more serious bottleneck when panning
and zooming is the frame rate achieved by render servers.
ZVTM already implements efficient culling algorithms for
zoomable user interfaces. Glyphs get projected and rendered
for a given camera only if they lie in that camera’s viewing
frustum. jBricks benefits from this directly: each server ren-
ders only the glyphs that will eventually be visible in the
associated tile, which significantly decreases the computa-
tional and rendering load for scenes with high object counts.

Preliminary tests have shown that visualizations containing
up to 200,000 objects could be rendered at interactive frame
rates on the platform depicted in Figure 1. jBricks also ben-
efits from Java2D’s OpenGL pipeline, and from ZVTM’s
spatial indexing and dynamic external resource (un-)loading
mechanisms. These were developed to support multi-scale
navigation in very large datasets, such as gigapixel bitmap
images decomposed recursively as a region quadtree. We
adapted these mechanisms in jBricks to work in a distributed
context, enabling the interactive visualization of very large
images. Example images that have been visualized include
the 26 gigapixel panorama of Paris (354 048 × 75 520 pix-
els) and Spitzer’s Infrared Milky Way (Figure 1-b), that can
be freely panned and zoomed on a wall display.

Programming. jBricks adds cluster support to ZVTM by
monkey-patching the original toolkit using AspectJ, with-
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out altering its source code. This makes the cluster exten-
sion module small (� 3 000 lines of code vs. � 39 000
for ZVTM) and facilitates forward compatibility. This also
keeps API changes to a minimum: virtual spaces, glyphs,
animations and most other constructs are managed through
the original ZVTM API; low-level mechanisms for distribu-
tion to render servers are hidden from the developer. Only
cameras and views get created and managed in a slightly
different manner. The tiled display’s geometry has to be de-
clared: number of rows and columns, size of each screen
(pixels), options such as whether to paint pixels behind the
bezels separating the tiles (overlay approach) or ignore them
(offset approach). Clustered Views replace regular ZVTM
views: a clustered view is divided into blocks, each block
corresponding to a tile and render server. Render servers can
be instantiated multiple times on a single node if that node
drives multiple tiles. ZVTM-based desktop applications,
originally written to run on single hosts, can be adapted to
run on a cluster-driven large displays by changing as little as
four lines of code. Render servers are instances of a generic
display program that is part of jBricks, meaning that devel-
opers only have to modify the client application and do not
have to run application-specific code on cluster nodes. This
enables a quick development and deployment lifecycle. It is
also interesting to note that the client application and render
servers can run anywhere, including on the same computer,
which facilitates development outside the cluster platform.

Advanced Input & Interaction
Wall-sized displays are often augmented with a complex in-
teractive environment, made of heterogeneous input modal-
ities ranging from actual input devices (e.g., mouse, 6-DOF
devices, tablets), to the output of interactive systems used
for input (e.g., motion-tracking system software, multi-touch
table tracker, mobile device sensors interpreter). jBricks’s
cluster extension to ZVTM handles all aspects related to
graphics distribution and rendering, but supports little be-
yond basic input redirection for conventional devices. An
input management system is required to handle the multiple
input channels and to ease their fusion so as to eventually
deliver high-level input events to applications, that make the
description of complex interaction techniques easier [10].

We identified three main requirements for such an input
management system. The system should be able to han-
dle various kinds of distributed input in a generic way to al-
low easy substitution of input modalities, and should provide
generic output to several distributed applications, no matter
whether they were specifically developed for this platform
or not. The system should be extensible, making it easy to
support new devices and functionalities with re-usable pro-
cessing functions or interaction techniques. Finally, the sys-
tem should be adaptable, enabling runtime addition of new
devices and changes to the input configuration.

With these objectives in mind, we developed the jBricks
Input Server (jBIS), the distributed input and interaction
management system of jBricks. jBIS is built on top of
the FlowStates toolkit [2], that combines the ICon [7] and
SwingStates [1] libraries. ICon’s dataflow model can han-
dle multiple devices and describe advanced interactions ef-

ficiently [10]. Its visual editor makes it simple to connect
them to application input endpoints (Figure 3). SwingStates
extends the Java language with state machines and provides
a simple yet powerful programming language that simpli-
fies the description of interaction logics on the application
side. FlowStates integrates these two models seamlessly:
state machines are instantiated as dataflow processing de-
vices that can be graphically connected to input devices or
to other state machines in the dataflow configuration.

Input handling. Thanks to the ICon library, the jBricks In-
put Server has built-in support for various regular and ad-
vanced input devices: mouse, keyboard, various tablets,
Nintendo Wii remotes, VICON motion-trackers, interactive
pens, etc. These input devices are instantiated as dataflow
processing devices that can be connected to adapters or ap-
plication devices through the dataflow editor (see the mouse
device in Figure 3). These dataflow components are high-
level structured representations of input devices (or classes
of input devices) with typed output slots mapped to the var-
ious channels of the input device they handle.

We extended ICon to support generic devices through vari-
ous protocols with specific dataflow devices that can receive
and send OSC, Ivy or TUIO messages. This approach pro-
vides an implicit way of performing automatic device reg-
istration thanks to the addressing mechanism of these pro-
tocols: each input source that sends a message addressed
to a specific receiving device in a running configuration is
implicitly considered. For instance, a jBIS’ OSC receiver
device can listen to messages addressed to /jBIS/position

with two arguments, x and y. This device will then exter-
nalize the corresponding output slots. These will be updated
each time that a new /jBIS/position message is received,
wherever it comes from: a smartphone running an applica-
tion that sends OSC messages from touchscreen events, the
tracking software of an interactive table, mouse movements
from a laptop running another instance of the jBIS, etc.

Interaction configuration. Input configuration and the lower-
level description of interaction techniques (typically the con-
nection to inputs) get specified in jBIS with an ICon dataflow
configuration. ICon provides an extensive library of adapter
devices, e.g., math or logic operators, control structures,
flow control. These can be used to manipulate and transform
the raw values of input channels into higher-level data struc-
tures (e.g., the mult device in Figure 3). The jBIS built-in li-
brary also extends the basic processing devices of ICon with
platform-specific ones, adapted to interactive wall-sized dis-
plays: for instance, the pointed tile dataflow component re-
turns the display tile that is intersected by a 3D vector re-
ceived as input (typically modeling the user’s arm). More
than simple low-level processing components, these higher-
level devices are close to the re-usable interaction techniques
of [10], offering several levels of granularity to the user when
building an input configuration.

The jBricks Input Server also includes a plug-in mechanism
for the creation of custom dataflow devices with FlowStates
[2]: state machines are instantiated as dataflow components,
and their transitions are triggered by the connected inputs
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(pointing and pan-zoom in Figure 3). Programmers can use this
descriptive and straightforward approach to extend the jBIS
library and to describe some parts of the interaction logic
of an application, or even more generic libraries that can be
used with multiple applications running on the platform.

Link with application/visualization software. In jBricks, the
higher-level interaction logic (manipulation of objects, graph-
ical feedback) is encoded in the client application (Figure
2) developed with ZVTM. The link between the jBIS and
this application can be established in two ways. The first
solution consists in using specific dataflow devices in the in-
put configuration to deliver high-level interaction events to
the application through a networking protocol such as OSC;
the client application interprets these messages and reacts
accordingly. The other solution consists in using the plug-
in mechanism of jBIS to implement application-specific de-
vices that will be instantiated as endpoints of the dataflow.
These plugins can define their own protocol to communicate
with the client application, or even encapsulate it, enabling
direct communication as the client node is running in the
same process (same Java Virtual Machine) than jBIS.

Finally, jBIS can be controlled remotely, so that applications
can trigger commands (start/stop/change the input config-
uration) or dynamically install a plugin. Several jBIS in-
stances can run simultaneously, communicating through net-
working dataflow devices (Figure 2). This modularization,
based on the description of partial input configurations, re-
inforces the flexibility and adaptability of the platform as
partial configurations can easily be substituted.

The architecture of jBricks and the resulting development
and configuration tools make it possible to develop applica-
tions outside the platform, i.e., on a simple laptop, and then
deploy and run them on an actual cluster-driven wall dis-
play. On the graphics side, changes to the client application
are minimal (four lines of code) and can easily be managed
using, e.g., command line options or Maven profiles. On
the interaction side, the jBricks Input Server makes it easy
to dynamically reconfigure and adjust inputs according to
available devices and modalities. In the following section,
we illustrate these principles with a short scenario showing
how jBricks can be used for the prototyping and implemen-
tation of interaction techniques for a controlled experiment
on a wall-sized display.

jBricks IN ACTION
Abelard and Eloı̈se need to prepare an experiment to com-
pare one-handed mid-air interaction techniques for selection
of very small targets on wall-sized displays. They consider
two techniques: a very precise bi-modal pointing technique,
and a cursor-centered pan & zoom technique.

They first describe the two techniques with state machines
(Figure 3) and plan to implement and configure them as fol-
lows. The pointing technique will be operated with a gy-
roscopic mouse and will feature a coarse mode – i.e., ray-
casting – and a precise mode – i.e., relative pointing with a
low CD gain. Precise mode will be triggered using the right
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Figure 3. jBIS configurations of the pointing (a) and pan & zoom (b)
techniques and their corresponding state machines. A mouse is used to
control the techniques and simulate unavailable devices.

mouse button; target selection using the left button (Fig-
ure 3-a). The pan & zoom technique is operated with an iPod
Touch. Vertical thumb movements control the zoom factor,
ray-casting of the user’s arm controls the cursor’s position.
Two small areas at the bottom of the iPod’s screen trigger
panning and target selection, respectively (Figure 3-b).

Prototyping
As jBricks’ graphics and input modules are loosely-coupled,
Abelard can work on the experiment’s graphics while Eloı̈se
implements and configures the two interaction techniques.

Abelard is working on the graphics part of the experiment.
Using ZVTM, he creates an application that displays the tar-
gets, cursor appearance and textual instructions on his per-
sonal computer without having to worry about the specifics
of the cluster-based wall display environment. He just needs
to consider the actual dimensions of his graphical scene (in
this case, a 20000 × 7000 pixel area). To make the entire
scene visible on his screen, he sets the zoom factor higher
than it will eventually be in the real experiment (a straight-
forward operation in a zoomable user interface).

Meanwhile, Eloı̈se implements each technique as a Flow-
States state machine and encapsulates them in a jBricks In-
put Server plugin, making them available as dataflow pro-
cessing devices. During this early prototyping stage, Eloı̈se
focuses on developing the interaction logic, using a basic
version of the graphics interface provided by Abelard. She
does not need to work on the actual hardware platform ei-
ther. She runs jBIS on her laptop and uses a regular mouse to
simulate the actual input devices that will be used eventually
(motion-capture system, gyroscopic mouse, iPod Touch).
In this testing configuration, ray-casting with the motion-
capture system and gyroscopic mouse are replaced by mouse
coordinates; the mouse wheel and buttons are used in lieu of
touch events. The output ports of the mouse device are con-
nected to the technique devices, pan-zoom and pointing (Fig-
ure 3), the two modes of the pointing technique being simu-
lated by applying constant multipliers to the mouse coordi-
nates (the mul and CD gain processing devices). Later, these
configurations will be slightly modified to handle the actual
input devices to be used in the experiment.
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Figure 4. jBIS configurations of the final pointing (a) and pan & zoom
(b) techniques. The simulation inputs (in grey) can be reused at any
time simply by changing the connections.

Porting to the Wall Display Hardware Platform
On the input side, Eloı̈se substitutes the devices used for pro-
totyping on her laptop with the platform’s actual devices, as
shown in Figure 4. The regular mouse can be directly substi-
tuted with the gyroscopic mouse, with only a CD gain adjust-
ment (changing the value of precise CD gain, Figure 4-a). jBIS
has built-in support for the 10-camera motion tracking sys-
tem in the room (the VICON laser device). For the iPod Touch,
Eloı̈se uses a built-in OSC receiver device in her input con-
figuration to receive touch events from a freely-available ap-
plication running on the handheld (Figure 4-b). To deploy
the client application on the actual hardware, Abelard only
needs to add a few jBricks instructions describing the Clus-
tered View. He then embeds the application into the jBIS
plugin made by Eloı̈se. The client application is launched
by jBIS; it has access to the state machines’ output and will
react according to the chosen interaction technique.

Further iterations, switching back and forth between the sim-
plified configuration running on personal computers and the
one for the actual wall display hardware is straightforward.
Abelard and Eloı̈se can also easily add new techniques by
implementing new state machines and test several input con-
figurations for each of them.

CONCLUSION
The jBricks framework extends and integrates state-of-the-
art structured graphics and input management toolkits to en-
able the rapid development of post-WIMP applications for
cluster-based wall displays equipped with advanced input
devices and modalities. Its architecture and features enable
easy deployment and reconfiguration, allowing developers
to partially implement and debug their applications on con-
ventional hardware such as a single laptop or workstation.

We have successfully used jBricks for the rapid prototyp-
ing of novel interaction and visualization techniques, and
to run controlled experiments for their evaluation [14]. It
is also used for the development of various applications for
the visualization of large datasets in other disciplines: as-
trophysics, social network analysis, geospatial intelligence.
The Java-based platform makes it easy to use existing li-
braries in client applications. In addition, ZVTM features
several extension modules that enable, e.g., the layout of
large networks, the visualization of treemaps, native high-
quality PDF rendering, FITS astronomy image display, inter-
active navigation in OpenStreetMap, from world overview
down to street level. Future work will focus on improving
the Java2D/OpenGL rendering pipeline by optimizing the

stream of instructions. The implementation of a higher-level
communication protocol, based on HID definitions on top
of OSC, will improve dynamic input device registration and
configuration. jBricks will be made available under an open-
source software license (http://insitu.lri.fr/JBricks).
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Résumé en Français





Les récentes avancées en matière d’acquisition, stockage et traitement des données ont
résulté en une augmentation spectaculaire de la quantité d’information collectée et analysée
dans de nombreux domaines : disciplines scientifiques, industrie, commerce, bibliothèques
numériques, données mises à disposition du public par des organismes gouvernementaux, do-
maines auxquels s’ajoutent les contenus que tout un chacun peut mettre sur le Web à travers
les réseaux sociaux, les blogs ou les sites de partage de documents multimédia. La capacité
des systèmes et bases de données hétérogènes d’échanger et croiser ces données, mais aussi
d’inférer de nouvelles données, s’est aussi grandement améliorée, grâce à des technologies
émergentes comme celles issues des recherches liées au Web des données [BL09] (par opposi-
tion au Web des documents) s’appuyant sur les technologies du Web sémantique.

Ces technologies, qui vont des services Web aux ontologies et associent les données semi-
structurées [ABS99] à des informations sémantiques interprétables par les machines, pour-
raient révolutionner une nouvelle fois les activités dans de nombreux domaines, de plus en plus
centrées sur les données. Grâce à ces technologies, des systèmes hétérogènes et distribués à
l’échelle d’Internet peuvent échanger de l’information, produire automatiquement de nouvelles
données par le biais de moteurs d’inférence et des ontologies associées aux données de base,
et croiser des sources de données multiples grâce à des mécanismes de résolution de conflits.
Les jeux de données résultants sont souvent très grands, et peuvent ensuite être interconnectés
comme c’est le cas par exemple dans le cadre de l’initative Linked data.

La gestion de quantités massives de données pose des problèmes de recherche dans de
nombreuses spécialités du domaine de l’informatique : représentation des connaissances et
bases de données, communication & réseaux, sécurité, fouille de données, mais aussi in-
terprétation et manipulation de ces données par leurs créateurs et utilisateurs. Mes travaux de
recherche s’inscrivent dans le domaine de l’interaction homme-machine (IHM), et portent plus
spécifiquement sur la conception, le développement et l’évaluation de techniques d’interactions
et de visualisation facilitant la compréhension et la manipulation de ces masses de données.

Le but des recherches en IHM est de rendre les ordinateurs plus faciles à utiliser tout en aug-
menter les capacités des utilisateurs pour leur permettre de gérer des problèmes plus complexes,
des jeux de données plus grands, de manière la plus efficace possible, que ce soit dans des con-
textes mono-utilisateur ou de travail collaboratif. Une description plus formelle est que l’IHM
s’intéresse à la conception de systèmes qui réduisent la barrière entre le modèle cognitif que
ce font les humains de la tâche qu’ils doivent accomplir et le compréhension qu’a l’ordinateur
de cette même tâche. L’IHM concerne la conception, le développement et l’évaluation des
systèmes informatiques avec lesquels des personnes ont à interagir. Il s’agit d’un domaine
de recherche multi-disciplinaire, regroupant des experts en informatique, sciences cognitives,
design, ingénierie, ethnographie, facteurs humains et sociologie. Dans le contexte plus précis
décrit plus haut, la recherche en IHM se concentre sur la conception, le développement et
l’évaluation de techniques d’interaction et de visualisation qui aident les utilisateurs à mieux
comprendre et manipuler des jeux de données (semi-)structurés plus grands et plus complexes.
Les utilisateurs peuvent être de simples consommateurs des données, essayant d’interpréter
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l’information et d’en extraire de nouvelles connaissances et idées; ils peuvent aussi être les
producteurs de ces données, les créant, les structurant, les transformant et les publiant pour
consommation par d’autres utilisateurs. Dans tous les cas, producteurs et consommateurs de
données doivent faire face à des grands volumes de données, organisés en structures plus ou
moins complexes, et qui peuvent être interconnectées. Quel que soit le niveau de complexité et
la richesse, en termes de fonctionnalités, des systèmes d’acquisition, de traitement, et de stock-
age, les données sont produites par des utilisateurs, et au final exploitées par des utilisateurs.

Ma recherche est basée sur la conviction que l’interaction homme-machine, et plus spécifi-
quement les interfaces graphiques, peuvent être d’une grande aide aux utilisateurs quand elles
fournissent des visualisations pertinentes des données, de leur structure, et qu’elles sont couplées
à des techniques d’interaction permettant une navigation efficace dans de grands espaces d’info-
rmation. Elles jouent à ce titre un rôle important dans la recherche et le développement de
systèmes informatiques pour la gestion et l’analyse de masses de données semi-structurées.
Mes activités de recherche des dix années passées ont été organisées autour de deux thèmes
principaux, présentés en détail dans ce mémoire :

· langages visuels et techniques de visualisation d’information pour aider les utilisateurs à
interpréter et manipuler des jeux de données semi-structurés ;

· conception, développement et évaluation expérimentale de techniques d’interaction multi-
échelle pour naviguer dans des masses de données.

Visualisation et transformation de données structurées

Les langages de description de données semi-structurées, des couches basses comme XML
aux descriptions ontologiques situées à un plus haut niveau d’abstraction permises par OWL,
permettent aux utilisateurs d’organiser leur données. Elles permettent aussi aux machines
d’effectuer automatiquement des traitements élaborés sur ces données en leurs associant une
sémantique que les ordinateurs sont capables d’interpréter: au-delà de la structuration des
donnés, des vocabulaires permettent de décrire les données grâce à des vocabulaires ou des
ontologies, d’interconnecter les jeux de données, et de les croiser.

Le Web que nous utilisons depuis de nombreuses années permet essentiellement à des util-
isateurs humains de consulter des pages Web. Ce Web est maintenant souvent appelé Web
des documents, pour le différencier du Web des données reposant sur les technologies men-
tionnées ci-dessus. Le Web des données permet de partager de l’information sous forme de
données, provenant de différentes sources qui peuvent être lues automatiquement, et qui peu-
vent dans une certaine mesure servir de base à des raisonnements automatiques effectués par
les machines. Les langages sous-jacent, XML inclus, sont conçus pour faciliter l’interprétation
des données par les machines, à l’opposé des pages HTML du Web des documents, dont les
principaux consommateurs sont des lecteurs humains.
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La plupart des utilisateurs finaux du Web des données ne verront jamais de lignes de code
XML ou RDF. Mais certaines catégories d’utilisateurs sont confrontés aux données brutes et
doivent les comprendre et les manipuler :

· experts dans un domain particuler qui créent les vocabulaires et les ontologies qui asso-
cient aux données une sémantique exploitable par les machines, et les peuplent avec des
données réelles ;

· développeurs qui écrivent des programmes pour interroger et manipuler les données,
par exemple pour établir des corrélations, inférer de nouvelles informations, mais aussi
au final pour transformer les structures de données résultant de ces processus vers un
vocabulaire cible comme HTML afin d’être lues et visualisées par tout type d’utilisateur.

Mes travaux de thèse de 2000 à 2002 au Xerox Research Centre Europe et à l’INRIA Rhône-
Alpes ont porté sur la conception et l’implémentation d’un langage de programmation visuelle,
VXT, pour la spécification de transformations de documents XML [PVDQ01, PVD01]. Le
but de ce langage était de faciliter le développement de transformations XML en tirant parti
du caractère multi-dimensionnel des langages visuels pour représenter explicitement la struc-
ture hiérarchique des données, considérée comme un élément d’information à part entière,
que même les langages situés à un haut niveau d’abstraction comme XSLT ne peuvent pas
montrer, en partie à cause de leur caractère uni-dimensionnel. Une partie importante de mon
travail était alors concentrée sur la définition formelle de la syntaxe et de la sémantique du
langage et sur l’établissement de preuves quant à sa complétude et à la validité de ses produc-
tions [Pie02a, VDP01]. Je me suis cependant aussi beaucoup intéressé aux problématiques
d’IHM liées à la conception de l’environnement de développement pour ce langage visuel.
Les langages visuels peuvent être des outils puissants, et certains comme LabView [Pow11]
sont eu beaucoup de succès. Mais ils requièrent une attention particulière en termes de con-
ception de l’interface graphique et des interactions permettant de manipuler les structures
programmatiques du langages et les données [GP96]. Parmi les problèmes principaux se
trouve celui du passage à l’échelle [BBB+95]. Cela était particulièrement vrai pour VXT,
qui devait représenter visuellement des structures de donnés hiérarchiques potentiellement très
grandes et complexes, les grammaires structurelles associées, et les règles de transformations
de type XSLT. Ceci m’amena à adopter des techniques récentes du domaine de la visualisa-
tion d’information, notamment pour la représentation de structures arborescentes et pour la
navigation multi-échelle dans de grands espaces d’information.

Une visite dans l’équipe W3C du MIT à l’automne 2001 me donna la possibilité de tra-
vailler sur un problème proche : celui de concevoir une solution d’édition graphique inter-
active de données RDF [Pie02b]. La structure de ces données, de type graphe étiqueté et
orienté, est très difficile à percevoir à travers les représentations textuelles. Même si ces
dernières sont le moyen principal de représentation et d’échange d’information entre agents
logiciels, elles sont loin d’être optimales quand il s’agit d’échanger l’information entre le
système informatique et l’utilisateur. Les représentations visuelles peuvent aider, mais in-
troduisent de nouveaux problèmes, et mon travail a consisté à proposer des solutions à cer-
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tains de ces problèmes. Ce travail, continué en post-doctorat dans le groupe DIG au MIT en
2003 [Pie03, KKPS03, Pie06], et la collaboration qui y fit suite autour du langage Fresnel en
2005-2006 [BLP05, PBKL06, PL09], sont détaillées dans la Chapitre 2, de même que des
projets collaboratifs plus récents, dans lesquels ma contribution a essentiellement porté sur la
conception et l’implémentation de visualisations interactives de données semi-structurées pour
des applications dans des domaines spécifiques [BLP10, BPLL11, MCH+09].

Navigation multi-échelles dans des masses de données

Après cette année de post-doctorat et une autre passée dans l’industrie, j’ai rejoint l’équipe-
projet In-Situ à l’INRIA Saclay comme Chargé de Recherche, à l’automne 2004. Mon intérêt
pour l’IHM et plus particulièrement pour les techniques d’interaction et de visualisation d’info-
rmation s’était amplifié au court des années, et je souhaitais mener des recherches dans ce
domaine. In-Situ m’a fourni d’excellentes conditions pour effectuer cette transition.

Mes travaux dans ce domaine, décrits dans le Chapitre 3, ont été essentiellement centrés
sur la navigation multi-échelle dans des données massives, représentant des données semi-
structurées ou d’autres types de données tels que des réseaux [MCH+09] ou des données
provenant par exemple systèmes d’information géographiques. D’abord par la définition d’une
méthode d’opérationalisation des tâches de recherche multi-échelle permettant d’évaluer les
performances de techniques d’interaction [PAB07]. Puis par une étude approfondie des tech-
niques de représentation dites focus+context qui grossissent localement une zone d’intérêt d’un
grand espace d’information pour fournir plus détails sur les éléments qu’elle comporte. Les
techniques de ce type utilisaient jusqu’alors des distorsions spatiales pour intégrer la zone
d’intérêt de manière continue dans son contexte, ce qui posait des problèmes d’interprétation
de la visualisation et de performance d’acquisition de cible. Nous avons dans un premier
temps proposé des alternatives à la distorsion spatiale, fondées sur la dimension temporelle
et sur le contrôle fin de la semi-transparence [PBA10, PA08]. Nous nous sommes ensuite
intéressés au problème de quantization posé par les forts facteurs de grossissement lors des
tâches d’acquisition de cibles [ACP10], associé à la problématique des techniques facilitant le
pointage de petites cibles sur laquelle j’ai collaboré avec d’autres membres de l’équipe [CLP09].

La visualisation multi-échelle de données massives est aussi le problème de recherche au
centre du projet WILD, mené en collaboration avec le LIMSI-CNRS et l’équipe-projet Aviz
(Analyse Visuelle) à l’INRIA Saclay. Le but de ce projet, que je coordonne avec Michel
Beaudouin-Lafon, et qui a représenté l’essentiel de mon activité de 2008 à 2010, est d’étudier
les dispositifs d’affichage ultra-haute-résolution pour la visualisation collaborative de masses
de données scientifiques. La première phase a consisté en la construction d’une plate-forme
de visualisation composée d’un mur d’écrans de 5.5m de large par 1.8m de haut offrant une
capacité d’affichage de 131 millions de pixels, piloté par une grappe de seize machines, couplé
à un système de capture de mouvements et à des surfaces tactiles (tables interactives, smart-
phones, tablettes). La deuxième phase du projet consiste en trois types d’activité :
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· La conception et l’évaluation de techniques d’interaction et de visualisation génériques
optimisées pour ce type de plate-forme, les dispositifs d’entrée conventionnels type
souris+clavier n’étant pas adaptés dans ce contexte. Ce sujet de recherche a donné lieu
à mon premier co-encadrement d’étudiant en thèse, Mathieu Nancel, débuté en octo-
bre 2008 avec Michel Beaudouin-Lafon, et a abouti à des publications majeures pour
l’équipe, dont [NWP+11].

· La conception et l’implémentation d’applications de visualisation en collaboration avec
des chercheurs de différents laboratoires de l’Université Paris-Sud et du plateau de Saclay,
notamment l’Institut d’Astrophysique Spatiale (visualisation d’images FITS – observa-
tions du satellite Planck), le Laboratoire de l’Accélérateur Linéaire (visualisation de
résultats d’expérience en 3D) et le laboratoire Neurospin (visualisation comparative de
scans de cerveaux).

· Le développement de boı̂tes à outils facilitant le prototypage des techniques d’interaction
et le développement des applications mentionnées ci-dessus. Ainsi, la boı̂te à outils
ZVTM mentionnée plus haut a été adaptée pour fonctionner sur des grappes d’ordinateur,
permettant aux applications qui l’utilisent d’être affichées sur des stations de travail con-
ventionnelles comme sur des murs d’écran tels que WILD, sans déploiement spécifique
sur la grappe [PHNP11].

En parallèle à ces travaux sur la navigation multi-échelle, mes travaux précédents sur la visu-
alisation de données structurées (réseaux/graphes) m’ont permis d’initier plusieurs collabora-
tions, dont une commencée début 2011 avec le Japan Advanced Institute of Science and Tech-
nology, portant sur la modélisation et la simulation du comportement d’entités biologiques tels
que les virus type λ phage. Enfin, une collaboration ambitieuse a démarré fin 2009 avec l’ESO
(European Southern Observatory) autour des interfaces de monitoring et de contrôle du radio-
télescope ALMA (Atacama Large Millimeter/submillimeter Array). Ce partenariat de plusieurs
années entre ALMA et l’INRIA, mené en étroite collaboration avec les chercheurs et ingénieurs
de l’ESO et du NRAO (National Radio Astronomy Observatory), a pour but de concevoir et de
développer de nouvelles interfaces homme-machine pour le contrôle du télescope adaptées à la
complexité de l’instrument, fondées sur des composants de visualisation avancés de données
temporelles, de réseaux denses et d’informations géographiques intégrés dans une interface de
navigation multi-échelle. Cette collaboration va continuer au sein du CIRIC (Communication
and Information Research and Innovation Center), centre de recherche que l’INRIA a ouvert
au Chili en mars 2012 en partenariat avec six universités.

Perspectives

En juillet 2012, je rejoindrai le CIRIC. Ma mission, d’une durée initiale de deux ans, sera
de monter une équipe dont les thèmes seront centrés sur la visualisation de masses de données
en temps réel. Cette équipe travaillera en partenariat avec des chercheurs de l’Universidad
de Chile ainsi qu’avec des entreprises et organismes comme ALMA, la collaboration avec ce
dernier venant naturellement s’inscrire dans les thèmes de recherche de cette équipe.
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L’équipe développera aussi sa propre plate-forme de visualisation interactive de masses de
données sur grandes surfaces d’affichage à densité de pixels élevée, ce thème de recherche
étant encore relativement peu exploré et présentant de nombreuses opportunités en termes de
recherche et de collaboration à la fois académiques et industrielles, par exemple pour la visual-
isation d’infrastructures réseaux (les réseaux de communication étant un des axes de recherche
principaux du CIRIC) ou du fonctionnement des exploitations minières du pays.

Cette orientation de mes travaux vers la visualisation interactive de masses de données en
temps réel a pour but, à terme, de développer mon activité de recherche plus spécifiquement
sur l’interaction homme-machine pour les systèmes critiques, type salle de contrôle de grands
équipements ou centres de gestion de crise, dans lesquels les systèmes d’information doivent
fournir aux utilisateurs les données les plus pertinentes, les aider à les interpréter, afin de fournir
un support de décision optimale dans un contexte distribué.
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